155 research outputs found

    Bearing angle based cooperative source localization

    Full text link
    © 2014 IEEE. This paper deals with the cooperative source localization problem with the goal of having an accurate estimate of the coordinate of the source cooperatively by a group of unicycle-type mobile agents. Neither absolute positioning information nor a common sense of direction is shared by the agents. Each agent gets its estimate about the source's coordinate in its own local frame based on the bearing measurements about its neighbors (that may or may not include the source) together with its own linear and angular speed information. A continuous time estimation scheme and a distributed fusion scheme are proposed for this goal such that the source's relative coordinate can be estimated at any time by each agent no matter whether it can directly detect the source or not. The globally asymptotic convergence of the estimation scheme and the fusion scheme is rigorously analyzed. Simulation results are also provided to verify the effectiveness of the proposed algorithms

    Enclosing a moving target with an optimally rotated and scaled multiagent pattern

    Get PDF
    We propose a novel control method to enclose a moving target in a two-dimensional setting with a team of agents forming a prescribed geometric pattern. The approach optimises a measure of the overall agent motion costs, via the minimisation of a suitably defined cost function encapsulating the pattern rotation and scaling. We propose two control laws which use global information and make the agents exponentially converge to the prescribed formation with an optimal scale that remains constant, while the team's centroid tracks the target. One control law results in a multiagent pattern that keeps a constant orientation in the workspace; for the other, the pattern rotates with constant speed. These behaviours, whose optimality and steadiness are very relevant for the task addressed, occur independently from the target's velocity. Moreover, the methodology does not require distance measurements, common coordinate references, or communications. We also present formal guarantees of collision avoidance for the proposed approach. Illustrative simulation examples are provided

    Bearing rigidity theory and its applications for control and estimation of network systems: Life beyond distance rigidity

    Get PDF
    Distributed control and location estimation of multiagent systems have received tremendous research attention in recent years because of their potential across many application domains [1], [2]. The term agent can represent a sensor, autonomous vehicle, or any general dynamical system. Multiagent systems are attractive because of their robustness against system failure, ability to adapt to dynamic and uncertain environments, and economic advantages compared to the implementation of more expensive monolithic systems

    An Active-Sensing Approach for Bearing-based Target Localization

    Full text link
    Characterized by a cross-disciplinary nature, the bearing-based target localization task involves estimating the position of an entity of interest by a group of agents capable of collecting noisy bearing measurements. In this work, this problem is tackled by resting both on the weighted least square estimation approach and on the active-sensing control paradigm. Indeed, we propose an iterative algorithm that provides an estimate of the target position under the assumption of Gaussian noise distribution, which can be considered valid when more specific information is missing. Then, we present a seeker agents control law that aims at minimizing the localization uncertainty by optimizing the covariance matrix associated with the estimated target position. The validity of the designed bearing-based target localization solution is confirmed by the results of an extensive Monte Carlo simulation campaign

    Radiative Contour Mapping Using UAS Swarm

    Full text link
    The work is related to the simulation and design of small and medium scale unmanned aerial system (UAS), and its implementation for radiation measurement and contour mapping with onboard radiation sensors. The compact high-resolution CZT sensors were integrated to UAS platforms as the plug-and-play components using Robot Operation System. The onboard data analysis provides time and position-stamped intensities of gamma-ray peaks for each sensor that are used as the input data for the swarm flight control algorithm. In this work, a UAS swarm is implemented for radiation measurement and contour mapping. The swarm of UAS has advantages over a single agent based approach in detecting radiative sources and effectively mapping the area. The proposed method can locate sources of radiation as well as mapping the contaminated area for enhancing situation awareness capabilities for first responders. This approach uses simultaneous radiation measurements by multiple UAS flying in a circular formation to find the steepest gradient of radiation to determine a bulk heading angle for the swarm for contour mapping, which can provide a relatively precise boundary of safety for potential human exploration

    Adaptive Formation Control of Cooperative Multi-Vehicle Systems

    Get PDF
    The literature comprises many approaches and results for the formation control of multi-vehicle systems; however, the results established for the cases where the vehicles contain parametric uncertainties are limited. Motivated by the need for explicit characterization of the effects of uncertainties on multi-vehicle formation motions, we study distributed adaptive formation control of multi-vehicle systems in this thesis, focusing on different interrelated sub-objectives. We first examine the cohesive motion control problem of minimally persistent formations of autonomous vehicles. Later, we consider parametric uncertainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect adaptive control approach and exploiting the features of the certainty equivalence principle, we propose control laws to solve maneuvering problem of the formations, robust to parametric modeling uncertainties. Next, as a formation acquisition/closing ranks problem, we study the adaptive station keeping problem, which is defined as positioning an autonomous mobile vehicle AA inside a multi-vehicle network, having specified distances from the existing vehicles of the network. In this setting, a single-integrator model is assumed for the kinematics for the vehicle AA, and AA is assumed to have access to only its own position and its continuous distance measurements to the vehicles of the network. We partition the problem into two sub-problems; localization of the existing vehicles of the network using range-only measurements and motion control of AA to its desired location within the network with respect to other vehicles. We design an indirect adaptive control scheme, provide formal stability and convergence analysis and numerical simulation results, demonstrating the characteristics and performance of the design. Finally, we study re-design of the proposed station keeping scheme for the more challenging case where the vehicle AA has non-holonomic motion dynamics and does not have access to its self-location information. Overall, the thesis comprises methods and solutions to four correlated formation control problems in the direction of achieving a unified distributed adaptive formation control framework for multi-vehicle systems

    Coordinated Standoff Tracking of Moving Target Groups Using Multiple UAVs

    Get PDF
    This paper presents a methodology for coordinated standoff tracking of moving target groups using multiple unmanned aerial vehicles (UAVs). The vector field guidance approach for a single UAV is first applied to track a group of targets by defining a variable standoff orbit to be followed, which can keep all targets within the field-of-view of the UAV. A new feedforward term is included in the guidance command considering variable standoff distance, and the convergence of the vector field to the standoff orbit is analyzed and enhanced by adjusting radial velocity using two active measures associated with vector field generation. Moreover, for multiple group tracking by multiple UAVs, a two-phase approach is proposed as a suboptimal solution for a Non-deterministic Polynomial-time hard (NP-hard) problem, consisting of target clustering/assignment and cooperative standoff group tracking with online local replanning. Lastly, localization sensitivity to the group of targets is investigated for different angular separations between UAVs and sensing configurations. Numerical simulations are performed using randomly moving ground vehicles with multiple UAVs to verify the feasibility and benefit of the proposed approach.clos
    corecore