10,604 research outputs found

    Speaker Diarization Based on Intensity Channel Contribution

    Get PDF
    The time delay of arrival (TDOA) between multiple microphones has been used since 2006 as a source of information (localization) to complement the spectral features for speaker diarization. In this paper, we propose a new localization feature, the intensity channel contribution (ICC) based on the relative energy of the signal arriving at each channel compared to the sum of the energy of all the channels. We have demonstrated that by joining the ICC features and the TDOA features, the robustness of the localization features is improved and that the diarization error rate (DER) of the complete system (using localization and spectral features) has been reduced. By using this new localization feature, we have been able to achieve a 5.2% DER relative improvement in our development data, a 3.6% DER relative improvement in the RT07 evaluation data and a 7.9% DER relative improvement in the last year's RT09 evaluation data

    Speaker diarization of multi-party conversations using participants role information: political debates and professional meetings

    Get PDF
    Speaker Diarization aims at inferring who spoke when in an audio stream and involves two simultaneous unsupervised tasks: (1) the estimation of the number of speakers, and (2) the association of speech segments to each speaker. Most of the recent efforts in the domain have addressed the problem using machine learning techniques or statistical methods (for a review see [11]) ignoring the fact that the data consists of instances of human conversations

    The 2005 AMI system for the transcription of speech in meetings

    Get PDF
    In this paper we describe the 2005 AMI system for the transcription\ud of speech in meetings used for participation in the 2005 NIST\ud RT evaluations. The system was designed for participation in the speech\ud to text part of the evaluations, in particular for transcription of speech\ud recorded with multiple distant microphones and independent headset\ud microphones. System performance was tested on both conference room\ud and lecture style meetings. Although input sources are processed using\ud different front-ends, the recognition process is based on a unified system\ud architecture. The system operates in multiple passes and makes use\ud of state of the art technologies such as discriminative training, vocal\ud tract length normalisation, heteroscedastic linear discriminant analysis,\ud speaker adaptation with maximum likelihood linear regression and minimum\ud word error rate decoding. In this paper we describe the system performance\ud on the official development and test sets for the NIST RT05s\ud evaluations. The system was jointly developed in less than 10 months\ud by a multi-site team and was shown to achieve very competitive performance

    Robust audio indexing for Dutch spoken-word collections

    Get PDF
    Abstract—Whereas the growth of storage capacity is in accordance with widely acknowledged predictions, the possibilities to index and access the archives created is lagging behind. This is especially the case in the oral history domain and much of the rich content in these collections runs the risk to remain inaccessible for lack of robust search technologies. This paper addresses the history and development of robust audio indexing technology for searching Dutch spoken-word collections and compares Dutch audio indexing in the well-studied broadcast news domain with an oral-history case-study. It is concluded that despite significant advances in Dutch audio indexing technology and demonstrated applicability in several domains, further research is indispensable for successful automatic disclosure of spoken-word collections

    Location Based Speaker Segmentation

    Get PDF
    This paper proposes a technique that segments into speaker turns based on their location, essentially implementing a discrete source tracking system. In many multi-party conversations, such as meetings or teleconferences, the location of participants is restricted to a small number of regions, such as seats around a table. In such cases, segmentation according to these discrete regions would be a reliable means of determining speaker turns. We propose a system that uses microphone pair time delays as features to represent speaker locations. A GMM/HMM framework is used to determine an optimal segmentation of the audio according to these locations. We also demonstrate how this approach is easily extended to more complex cases, such as the presence of two simultaneous speakers. Experiments testing the system on real recordings from a meeting room show that the proposed location features can provide greater discrimination than standard cepstral features, and also demonstrate the success of the extension to handle dual-speaker overlap

    Jitter and Shimmer measurements for speaker diarization

    Get PDF
    Jitter and shimmer voice quality features have been successfully used to characterize speaker voice traits and detect voice pathologies. Jitter and shimmer measure variations in the fundamental frequency and amplitude of speaker's voice, respectively. Due to their nature, they can be used to assess differences between speakers. In this paper, we investigate the usefulness of these voice quality features in the task of speaker diarization. The combination of voice quality features with the conventional spectral features, Mel-Frequency Cepstral Coefficients (MFCC), is addressed in the framework of Augmented Multiparty Interaction (AMI) corpus, a multi-party and spontaneous speech set of recordings. Both sets of features are independently modeled using mixture of Gaussians and fused together at the score likelihood level. The experiments carried out on the AMI corpus show that incorporating jitter and shimmer measurements to the baseline spectral features decreases the diarization error rate in most of the recordings.Peer ReviewedPostprint (published version

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved
    corecore