4,006 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Continuous Modeling of 3D Building Rooftops From Airborne LIDAR and Imagery

    Get PDF
    In recent years, a number of mega-cities have provided 3D photorealistic virtual models to support the decisions making process for maintaining the cities' infrastructure and environment more effectively. 3D virtual city models are static snap-shots of the environment and represent the status quo at the time of their data acquisition. However, cities are dynamic system that continuously change over time. Accordingly, their virtual representation need to be regularly updated in a timely manner to allow for accurate analysis and simulated results that decisions are based upon. The concept of "continuous city modeling" is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. However, developing a universal intelligent machine enabling continuous modeling still remains a challenging task. Therefore, this thesis proposes a novel research framework for continuously reconstructing 3D building rooftops using multi-sensor data. For achieving this goal, we first proposes a 3D building rooftop modeling method using airborne LiDAR data. The main focus is on the implementation of an implicit regularization method which impose a data-driven building regularity to noisy boundaries of roof planes for reconstructing 3D building rooftop models. The implicit regularization process is implemented in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). Secondly, we propose a context-based geometric hashing method to align newly acquired image data with existing building models. The novelty is the use of context features to achieve robust and accurate matching results. Thirdly, the existing building models are refined by newly proposed sequential fusion method. The main advantage of the proposed method is its ability to progressively refine modeling errors frequently observed in LiDAR-driven building models. The refinement process is conducted in the framework of MDL combined with HAT. Markov Chain Monte Carlo (MDMC) coupled with Simulated Annealing (SA) is employed to perform a global optimization. The results demonstrates that the proposed continuous rooftop modeling methods show a promising aspects to support various critical decisions by not only reconstructing 3D rooftop models accurately, but also by updating the models using multi-sensor data

    Multi-modal Non-line-of-sight Passive Imaging

    Full text link
    We consider the non-line-of-sight (NLOS) imaging of an object using the light reflected off a diffusive wall. The wall scatters incident light such that a lens is no longer useful to form an image. Instead, we exploit the 4D spatial coherence function to reconstruct a 2D projection of the obscured object. The approach is completely passive in the sense that no control over the light illuminating the object is assumed and is compatible with the partially coherent fields ubiquitous in both the indoor and outdoor environments. We formulate a multi-criteria convex optimization problem for reconstruction, which fuses the reflected field's intensity and spatial coherence information at different scales. Our formulation leverages established optics models of light propagation and scattering and exploits the sparsity common to many images in different bases. We also develop an algorithm based on the alternating direction method of multipliers to efficiently solve the convex program proposed. A means for analyzing the null space of the measurement matrices is provided as well as a means for weighting the contribution of individual measurements to the reconstruction. This paper holds promise to advance passive imaging in the challenging NLOS regimes in which the intensity does not necessarily retain distinguishable features and provides a framework for multi-modal information fusion for efficient scene reconstruction

    Efficient Action Detection in Untrimmed Videos via Multi-Task Learning

    Full text link
    This paper studies the joint learning of action recognition and temporal localization in long, untrimmed videos. We employ a multi-task learning framework that performs the three highly related steps of action proposal, action recognition, and action localization refinement in parallel instead of the standard sequential pipeline that performs the steps in order. We develop a novel temporal actionness regression module that estimates what proportion of a clip contains action. We use it for temporal localization but it could have other applications like video retrieval, surveillance, summarization, etc. We also introduce random shear augmentation during training to simulate viewpoint change. We evaluate our framework on three popular video benchmarks. Results demonstrate that our joint model is efficient in terms of storage and computation in that we do not need to compute and cache dense trajectory features, and that it is several times faster than its sequential ConvNets counterpart. Yet, despite being more efficient, it outperforms state-of-the-art methods with respect to accuracy.Comment: WACV 2017 camera ready, minor updates about test time efficienc
    • …
    corecore