13,183 research outputs found

    Multi-scale assembly with robot teams

    Get PDF
    In this paper we present algorithms and experiments for multi-scale assembly of complex structures by multi-robot teams. We also focus on tasks where successful completion requires multiple types of assembly operations with a range of precision requirements. We develop a hierarchical planning approach to multi-scale perception in support of multi-scale manipulation, in which the resolution of the perception operation is matched with the required resolution for the manipulation operation. We demonstrate these techniques in the context of a multi-step task where robots assemble large box-like objects, inspired by the assembly of an airplane wing. The robots begin by transporting a wing panel, a coarse manipulation operation that requires a wide field of view, and gradually shifts to a narrower field of view but with more accurate sensors for part alignment and fastener insertion. Within this framework we also provide for failure detection and recovery: upon losing track of a feature, the robots retract to using wider field of view systems to re-localize. Finally, we contribute collaborative manipulation algorithms for assembling complex large objects. First, the team of robots coordinates to transport large assembly parts which are too heavy for a single robot to carry. Second, the fasteners and parts are co-localized for robust insertion and fastening. We implement these ideas using four KUKA youBot robots and present experiments where our robots successfully complete all 80 of the attempted fastener insertion operations

    Stanford Aerospace Research Laboratory research overview

    Get PDF
    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be, addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modelling and control of extremely flexible space structures. The ARL has designed and built several semi-autonomous free-flying robots that perform numerous tasks in a zero-gravity, drag-free, two-dimensional environment. It is envisioned that future generations of these robots will be part of a human-robot team, in which the robots will operate under the task-level commands of astronauts. To make this possible, the ARL has developed a graphical user interface (GUI) with an intuitive object-level motion-direction capability. Using this interface, the ARL has demonstrated autonomous navigation, intercept and capture of moving and spinning objects, object transport, multiple-robot cooperative manipulation, and simple assemblies from both free-flying and fixed bases. The ARL has also built a number of experimental test beds on which the modelling and control of flexible manipulators has been studied. Early ARL experiments in this arena demonstrated for the first time the capability to control the end-point position of both single-link and multi-link flexible manipulators using end-point sensing. Building on these accomplishments, the ARL has been able to control payloads with unknown dynamics at the end of a flexible manipulator, and to achieve high-performance control of a multi-link flexible manipulator

    Human-automation collaboration in manufacturing: identifying key implementation factors

    Get PDF
    Human-automation collaboration refers to the concept of human operators and intelligent automation working together interactively within the same workspace without conventional physical separation. This concept has commanded significant attention in manufacturing because of the potential applications, such as the installation of large sub-assemblies. However, the key human factors relevant to human-automation collaboration have not yet been fully investigated. To maximise effective implementation and reduce development costs for future projects these factors need to be examined. In this paper, a collection of human factors likely to influence human-automation collaboration are identified from current literature. To test the validity of these and explore further factors associated with implementation success, different types of production processes in terms of stage of maturity are being explored via industrial case studies from the project’s stakeholders. Data was collected through a series of semi-structured interviews with shop floor operators, engineers, system designers and management personnel
    • …
    corecore