43 research outputs found

    A Survey of Spiking Neural Network Accelerator on FPGA

    Full text link
    Due to the ability to implement customized topology, FPGA is increasingly used to deploy SNNs in both embedded and high-performance applications. In this paper, we survey state-of-the-art SNN implementations and their applications on FPGA. We collect the recent widely-used spiking neuron models, network structures, and signal encoding formats, followed by the enumeration of related hardware design schemes for FPGA-based SNN implementations. Compared with the previous surveys, this manuscript enumerates the application instances that applied the above-mentioned technical schemes in recent research. Based on that, we discuss the actual acceleration potential of implementing SNN on FPGA. According to our above discussion, the upcoming trends are discussed in this paper and give a guideline for further advancement in related subjects

    Brain fame:From FPGA to heterogeneous acceleration of brain simulations

    Get PDF
    Among the various methods in neuroscience for understanding brain function, in-silico simulations have been gaining popularity. Advances in neuroscience and engineering led to the creation of mathematical models of networks that do not simply mimic biological behaviour in an abstract fashion but emulate its in significant detail, even to the level of its biophysical properties. Such an example is the Spiking Neural Network (SNN) that can model a variety of additional behavioural features, like encoding data and adapting according to a spike train`s amplitude, frequency and general precise pattern of arrival of spiking events on a neuron. As a result, SNNs have higher explanatory power than their predecessors, thus brain simulations based on SNNs become an attractive topic to explore. In-silico simulations of SNNs can have beneficial results not only for neuroscience research but breakthroughs can also potentially benefit medical, computing and A.I. research. SNNs, though, computationally depending workloads that traditional computing might not be able to cover. Thus, the use of High Performance Computing (HPC) platforms in this application domain becomes desirable. This dissertation explores the topic of HPC-based in-silico brain simulations. Initially, the effort focuses on custom hardware accelerators, due to their potential in providing real-time performance alongside support for large-scale non-real-time experiments and specifically Field Programmable Gate Arrays (FPGAs). The nature of FPGA-based accelerators provides specific benefits against other similar paradigms like Application Specific Integrated Circuit (ASIC) designs.Firstly, we explore the general characteristics of typical SNNs model types to identify their computational requirements in relation to their explanatory strength. We also identify major design characteristics in model development that can directly affect its performance and behaviour when ported to an HPC platform. Subsequently, a detailed literature review is made on FPGA-based SNN implementations. The HPC porting effort begins with the implementation of an extended-Hodgkin-Huxley model of the Inferior-olivary nucleus featuring advanced connectivity. The model is quite demanding and complex enough to act as a realistic benchmark for HPC implementations, while also being scientifically relevant in its own right. FPGA development shows promising performance results not only when doing custom designs but also using High-level synthesis (HLS) toolflows that significantly reduce development time. FPGAs have proven suitable for small-scale embedded-HPC uses as well. The various efforts, though, reveal a very specific weakness of FPGA development that has less to do with the silicon itself and more with its programming environment. The FPGA tools are very inaccessible to non-experts, thus any acceleration effort would require the engineer (and the FPGA development time) to be in the critical path of the research process. An important question to be answered is how the FPGA platform would compare to other popular software-based HPC solutions such as GPU- and CPU-based platforms. A detailed comparison of the best FPGA implementation with GPU and manycore-CPU ports of the same benchmark is conducted. The comparison and evaluation shows that, when it comes to real-time performance, FPGAs have a clear advantage. But for non-real-time, large scale simulations, there is no single platform that can optimally support the complete range of experiments that could be conducted with the inferior olive model. The comparison makes a clear case for BrainFrame, a platform that supports heterogeneous HPC substrates. This dissertation, thus, concludes with the proposal of the BrainFrame system. The proof-of-concept design supports standard and extended Hodgkin-Huxley models, , such as the original inferior-olive model. The system integrates a GPU-, CPU- and FPGA-based HPC back-end while also using a standard neuroscientific language front-end (PyNN) that can score best-in-class performance, alleviate some of the development hurdles and make it far more user-friendly for the typical model developer. Additionally, the multi-node potential of the platform is being explored. BrainFrame provides both a powerful heterogeneous platform for acceleration and also a front-end familiar to the neuroscientist

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    Event-based neuromorphic stereo vision

    Full text link

    Accelerated neuromorphic cybernetics

    Get PDF
    Accelerated mixed-signal neuromorphic hardware refers to electronic systems that emulate electrophysiological aspects of biological nervous systems in analog voltages and currents in an accelerated manner. While the functional spectrum of these systems already includes many observed neuronal capabilities, such as learning or classification, some areas remain largely unexplored. In particular, this concerns cybernetic scenarios in which nervous systems engage in closed interaction with their bodies and environments. Since the control of behavior and movement in animals is both the purpose and the cause of the development of nervous systems, such processes are, however, of essential importance in nature. Besides the design of neuromorphic circuit- and system components, the main focus of this work is therefore the construction and analysis of accelerated neuromorphic agents that are integrated into cybernetic chains of action. These agents are, on the one hand, an accelerated mechanical robot, on the other hand, an accelerated virtual insect. In both cases, the sensory organs and actuators of their artificial bodies are derived from the neurophysiology of the biological prototypes and are reproduced as faithfully as possible. In addition, each of the two biomimetic organisms is subjected to evolutionary optimization, which illustrates the advantages of accelerated neuromorphic nervous systems through significant time savings

    Interconnect technologies for very large spiking neural networks

    Get PDF
    In the scope of this thesis, a neural event communication architecture has been developed for use in an accelerated neuromorphic computing system and with a packet-based high performance interconnection network. Existing neuromorphic computing systems mostly use highly customised interconnection networks, directly routing single spike events to their destination. In contrast, the approach of this thesis uses a general purpose packet-based interconnection network and accumulates multiple spike events at the source node into larger network packets destined to common destinations. This is required to optimise the payload efficiency, given relatively large packet headers as compared to the size of neural spike events. Theoretical considerations are made about the efficiency of different event aggregation strategies. Thereby, important factors are the number of occurring event network-destinations and their relative frequency, as well as the number of available accumulation buffers. Based on the concept of Markov Chains, an analytical method is developed and used to evaluate these aggregation strategies. Additionally, some of these strategies are stochastically simulated in order to verify the analytical method and evaluate them beyond its applicability. Based on the results of this analysis, an optimisation strategy is proposed for the mapping of neural populations onto interconnected neuromorphic chips, as well as the joint assignment of event network-destinations to a set of accumulation buffers. During this thesis, such an event communication architecture has been implemented on the communication FPGAs in the BrainScaleS-2 accelerated neuromorphic computing system. Thereby, its usability can be scaled beyond single chip setups. For this, the EXTOLL network technology is used to transport and route the aggregated neural event packets with high bandwidth and low latency. At the FPGA, a network bandwidth of up to 12 Gbit/s is usable at a maximum payload efficiency of 94 %. The latency has been measured in the scope of this thesis to a range between 1.6 μs and 2.3 μs across the network between two neuron circuits on separate chips. This latency is thereby mostly dominated by the path from the neuromorphic chip across the communication FPGA into the network and back on the receiving side. As the EXTOLL network hardware itself is clocked at a much higher frequency than the FPGAs, the latency is expected to scale in the order of only approximately 75 ns for each additional hop through the network. For being able to globally interpret the arrival timestamps that are transmitted with every spike event, the system time counters on the FPGAs are synchronised across the network. For this, the global interrupt mechanism implemented in the EXTOLL hardware is characterised and used within this thesis. With this, a synchronisation accuracy of ±40ns could be measured. At the end of this thesis, the successful emulation of a neural signal propagation model, distributed across two BrainScaleS-2 chips and FPGAs is demonstrated using the implemented event communication architecture and the described synchronisation mechanism
    corecore