5,756 research outputs found

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Comparing the Efficiency of IP and ATM Telephony

    Get PDF
    Circuit switching, suited to providing real-time services due to the low and fixed switching delay, is not cost effective for building integrated services networks bursty data traffic because it is based on static allocation of resources which is not efficient with bursty data traffic. Moreover, since current circuit switching technologies handle flows at rates which are integer multiples of 64 kb/s, low bit rate voice encoding cannot be taken advantage of without aggregating multiple phone calls on a single channel. This work explores the real-time efficiency of IP telephony, i.e. the volume of voice traffic with deterministically guaranteed quality related to the amount of network resources used. IP and ATM are taken into consideration as packet switching technology for carrying compressed voice and it is compared to circuit switching carrying PCM (64 Kb/s) encoded voice. ADPCM32 is the voice encoding scheme used throughout most of the paper. The impact of several network parameters, among which the number of hops traversed by a call, on the real-time efficiency is studie

    Resource virtualisation of network routers

    Get PDF
    There is now considerable interest in applications that transport time-sensitive data across the best-effort Internet. We present a novel network router architecture, which has the potential to improve the Quality of Service guarantees provided to such flows. This router architecture makes use of virtual machine techniques, to assign an individual virtual routelet to each network flow requiring QoS guarantees. We describe a prototype of this virtual routelet architecture, and evaluate its effectiveness. Experimental results of the performance and flow partitioning of this prototype, compared with a standard software router, suggest promise in the virtual routelet architecture

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Heart-like fair queuing algorithms (HLFQA)

    Get PDF
    We propose a new family of fair, work conserving traffic scheduling mechanisms that imitate the behavior of the human heart in the cardiovascular system. The algorithms have MAX (where MAX is the maximum packet size) fairness and O(log N) complexity and thus compare favorably with existing algorithms. The algorithms are simple enough to be implemented in hardwar

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Multi-threaded Simulation of 4G Cellular Systems within the LTE-Sim Framework

    Get PDF
    Nowadays, an always increasing number of researchers and industries are putting a large effort in the design and the implementation of protocols, algorithms, and network architectures targeted at the the emerging 4G cellular technology. In this context, multi-core/multi-processor simulation tools can accelerate their activities by drastically reducing the time required to simulate complex scenarios. Unfortunately, today's available tools are mostly single-threaded and they cannot exploit the performance gain offered by parallel programming approaches. To bridge this gap, we have significantly upgraded the LTE-Sim framework by implementing a concurrent scheduling algorithm, namely the Multi-Master Scheduler, aimed at efficiently handling events in a parallel manner, while guaranteeing the correct execution of the simulation itself. Experimental results will demonstrate the effectiveness of our proposal and the performance gain that can be achieved with respect to other classical event scheduling algorithms

    Enhanced Cluster Computing Performance Through Proportional Fairness

    Full text link
    The performance of cluster computing depends on how concurrent jobs share multiple data center resource types like CPU, RAM and disk storage. Recent research has discussed efficiency and fairness requirements and identified a number of desirable scheduling objectives including so-called dominant resource fairness (DRF). We argue here that proportional fairness (PF), long recognized as a desirable objective in sharing network bandwidth between ongoing flows, is preferable to DRF. The superiority of PF is manifest under the realistic modelling assumption that the population of jobs in progress is a stochastic process. In random traffic the strategy-proof property of DRF proves unimportant while PF is shown by analysis and simulation to offer a significantly better efficiency-fairness tradeoff.Comment: Submitted to Performance 201
    corecore