
203

Heart-like fair queuing algorithms (HLFQA)

Radu Dragos and Martin Collier
e-mail: {dragosr, collierm}@eeng.dcu.ie

School of Electronic Engineering, Dublin City University, Ireland

Abstract-We propose a new family of fair, work conserving,
traffic scheduling mechanisms that imitate the behavior of the
human heart in the cardiovascular system. The algorithms have
MAX (where MAX is the maximum packet size) fairness and
O(logN) complexity and thus compare favorably with existing
algorithms. The algorithms are simple enough to be implemented
in hardware.

I. INTRODUCTION

One important feature in packet-switching (store-and-
forward) networks is the mechanism that determines which
packet will be transmitted next on the output link. This mech-
anism is referred to as the traffic scheduling algorithm [16].

The role of traffic scheduling in the Internet QoS scheme is
to guarantee the requirements specified in SLAs (Service Level
Agreements). Hence, traffic schedulers must assure predictable
delays as well as a fair share of the link bandwidth for
concurrent traffic classes'. Such mechanisms must be able to
guarantee the reserved traffic rate without packet loss indepen-
dent of the behavior of other classes.

Traffic scheduling is principally required in the following
situations:

. When multiple organizations share bandwidth over the
same link;

. When different communication protocols share the same
link;

* When different traffic types such as ftp, e-mail or real-time
traffic share bandwidth on the same link.

Packet-switch architectures are in general classified into two
main categories: input-buffered and output-buffered [8]. In this
paper we refer only to switching in output-buffers.

A. Traffic classes
In [2], Demers et al. apply the term "user" to identify

individual traffic classes that compete for the same resource
(e.g. output interface). User could refer to the source address
of a packet, the destination address, the pair source-destination,
a TCP conversation, etc. What defines a user, is irrelevant for
a traffic scheduler. The behavior of a traffic scheduler remains
the same whatever the interpretation of user.

However, the effectiveness and complexity of a scheduler,
depends on the number of users. The execution time of a
scheduling algorithm increases with the number of concurrent
users. Reducing the number of users will consequently increase
the performance of a traffic scheduler.

1The concept of "traffic class" in this context will be explained in subsec-
tion I-A.

QoS technologies such as diffserv [1] solve the above men-
tioned scalability issue by grouping users into classes and at any
router/switch along the path, each user inside a class receiving
the same behavior. Therefore, a whole class of users becomes
a single user. In Multi Protocol Label Switching (MPLS) [13],
a class of users forwarded in the same manner and carrying the
same label is called a Forwarding Equivalence Class (FEC). We
will refer to competing classes of users as FECs by analogy
with MPLS.

B. Best-effort traffic scheduling

In best-effort Internet service, packets that need to exit a
router (or switch) through an interface share the same output
queue. They are processed in a FCFS (first come first served)
manner. This is the least complex and easiest to implement
queuing discipline. However, it cannot offer fair or preferential
services for traffic flows. Moreover, a single bursty FEC will
have a negative impact on all competing FECs.

Although there are proposals to alleviate this issue whilst
maintaining FCFS service (such as RED [4] and FRED [10]),
fair bandwidth allocation can only be provided using multiple
output queues.

C. Fair traffic scheduling
In order to prevent malicious FECs from affecting the well

behaved ones, some level of isolation must be provided. This
can be performed using a separate FCFS queue for each FEC.

The simplest approach to provide fair queuing is round
robin processing of queues (RR) [11]. The main advantage
of this method is its simplicity. A packet from each queue is
processed in a round-robin fashion (empty queues lose their
turn). However, if a queue consistently has larger packets than
the others, that particular FEC will get a larger portion of
the bandwidth. Improvements to the basic RR scheme include
Deficit Round Robin (DRR) [15] and Hierarchical-Round-
Robin [7].

Several other fair queuing mechanisms have also been pro-
posed, all of which use a separate FCFS queue for each
FEC. They are classified as work-conserving and non-work-
conserving:

Work-conserving schedulers are never idle when a packet
is buffered in the system. Such algorithms include Gen-
eralized Processor Sharing (GPS) [12], Weighted Fair
Queueing (WFQ) [2], VirtualClock [17], Delay-Earliest-
Due-Date (Delay-EDD) [3] and Deficit Round-Robin
(DRR) [15].

Proceedings of the Seventh IEEE International Symposium on Computer Networks (ISCN'06)
1-4244-0491-6/06/$20.00 © 2006 IEEE

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:37:30 UTC from IEEE Xplore. Restrictions apply.

204

. Non-work-conserving schedulers may remain idle even
if there are available packets to transmit if higher prior-
ity packets are expected to arrive. Non-work-conserving
schedulers include Hierarchical-Round-Robin [7] and
Stop-and-go queueing [5].

D. Fairness of a scheduling algorithm
The fairness of a scheduling algorithms is measured by

comparing it with the fairness of an ideal scheme called
Generalized Processor Sharing (GPS). In GPS packets are
considered infinitely divisible and during one cycle, an equal
amount of data is processed from each queue. While this is
an ideally fair algorithm, it is not suitable for packet switched
networks where packets have various sizes and they are not
divisible.

Therefore, the perfect fairness of GPS can not be achieved in
a packet based network. However, the best approximation to the
GPS algorithm is achieved when the difference in throughput
at any time in any queue for any arrival pattern between the
algorithm and the GPS discipline will never exceed MAX
(MAX is the maximum packet size) [14]. For example, the
fairness of WFQ is MAX, of DRR is 3MAX and of FQRR
(Fair Queuing with Round Robin [14]) is 2MAX. Based on
this metric, we will measure the fairness of our algorithm in
section II-B.

II. THE HEART-LIKE SCHEDULING ALGORITHM

In this section we present a work conserving traffic schedul-
ing algorithm inspired by the principles of the human heart.
First we explain the main concepts of our scheduling algorithm
and the similarity with the atrium-ventricle model in the human
heart. Then, we evaluate the fairness and complexity of the
algorithm using an analytical model of our algorithm and
computer simulations. An extended algorithm for weighted fair
queuing is presented at the end of this section.
Then we derive a lighter version of this algorithm, easier to

implement and having better storage complexity. This simpli-
fied version is also suitable for weighted scheduling.

A. The atrium-ventricle model
Our scheduling algorithm is based on the atrium-ventricle

model of the heart in the cardiovascular system. The output
queue of an interface is divided into an atrium section where
packets are buffered and a ventricle section where packets are
sent out by applying pressure to the ventricle.

Atrioventricular valves allow packets to move from the
atrium to the ventricle during the atrial systole and prevent
packets from running back from the ventricle to the atrium
during the ventricular systole.
Whereas the human heart is quadric-cameral, in this model

we have two chambers for each FEC: one atrial and one
ventricular, as depicted in Fig. 1. The atrial and ventricular
chambers for each FEC will be referred to as the holding queue
and submit queue respectively.

Atrium Ventricle

valves

Fig. 1. Atrium-ventricle model

When the ventricle is contracted, packets are sent out through
the output interface (aorta). The first packet to emerge is the
one from the submit queue with the highest pressure2. After
one packet (or more) is released from that submit queue, the
pressure decreases sufficiently so that another submit queue
will have the highest pressure and the next packet will be sent
from this queue.
When one or more submit queues are empty, the packets

are moved from holding queues into submit queues through
atrioventricular valves.

1) Ventricular systole: Pressure in submit queues is a pos-
itive rational value. Before the first ventricular systole, the
pressure is equalized by being set to unity for all submit queues
so that each FEC starts with an equal chance of transmission.
That is:

where
Rko
N
Q

pk < 1; for 0 < k < N0 _

is the initial pressure for FEC k
is the number of FECs;
is the maximum submit queue size.

(1)

At step i, a packet is selected from the queue with the highest
pressure (max(Pik)). When the jth packet of size Sik is released
from queue k, the pressure becomes:

pk<~~~~~~~~~~~~~~Skpk (2pk < sk-__C

2) Ventricular diastole and atrial systole: These two phases
are simultaneous. This happens when one or more submit
queues are empty and the ventricle needs to relax so the packets
from the atrium can be pushed into the ventricle through the
atrioventricular valves.

The counter is reset to 0 and the pressure in all submit queues
is reset to PR <- 1 + Pi, where Pk is the pressure for FEC k
before the ventricular diastole.

3) Atrial diastole: The atrium must be able to receive pack-
ets continuously. Therefore, the atrium will be in a permanent
diastole. The short systolic contractions will take place during
the atrial diastole phase.

The hold and submit queues have limited buffer capacity
similar to the human heart. In the cardiovascular system if the

2The interpretation of the term pressure in this context will be described
later.

(2)

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:37:30 UTC from IEEE Xplore. Restrictions apply.

--L shared FIFO

_Z I I LT T

FiCFiS DRR WFQ HLIQA
fairness - 3MAX MAX MAX
complexity 0(1) 0(1) O(log N) O(log N)

TABLE I
COMPARISON OF SCHEDULING ALGORITHMS

Fig. 2. Using a shared output FIFO as the aorta.

rate of blood from the veins increases, so will the heart rate and
the amount of blood entering the atrium equals the amount that
leaves the ventricle. In a similar way in a network switch, the
input traffic rate almost equals the output rate (small variations
may be accepted, depending on the size of the holding queue).
Consequently, HLFQA will not accept packets if the holding
queue is full and must be able to decide which packets to drop
before entering the atrium.

4) Aorta: The output interface resembles the aorta in the
cardiovascular system. However, the packets that leave the
submit queues could be pre-buffered before sending them out
through the interface. This is to avoid the idle times when the
ventricle is in diastole and does not push out packets. Therefore,
the output interface will always have packets to process in the
buffer. In this model the shared output buffer is now the aorta
as seen in Fig 2.

B. Evaluating the algorithm
The fairness of our scheduling mechanism comes from

the fluid model of our approach. Compressing the ventricle
equalizes the pressure in all the submit queues (although the
equalization is never exact, given that the packet is the smallest
unit we can transmit).

Let k and I be two FECs. Tk and T,f are the total amount
of data sent for FECs k and I up to (and including) step i.

(3)

At the beginning of each ventricular systole we have
Tok = To' = 0. At each step a single packet is sent out through
the aorta. Therefore:

lTk-Tfi < MAX (4)

where MIAX is the maximum packet size. Now, assuming that:

IT, 1 - Ttl 1 |< MAX (5)
we want to prove that pk- Ttl < MAX.

If at step i no packet is sent out either from queue k
or 1, we have Tt,=1 Tik and Til' = Til and therefore
Tk-T = it 1-T; 1| < MAX.
If at step i a packet is sent from one of the two queues, for

instance queue 1, it means that the pressure in queue I is greater
than in queue k. That is:

Pi_1 < Pil_1 and therefore,
Ti1 > T>- and iiT 1>-Ttl_1T> , 1 -Tl1.
Because a packet is sent from queue I and no packet is sent

from queue k we have: Tk = T and T <- + S

Hence:

Tk TI = T1-Tt' -S, < |MAX-S,' < MAX. (6)

We have proved (4) and from assumption (5) we derived
(6) to be true. Hence, using mathematical induction, we have
proven that for any two queues, at any step i,

ITk-Ti'~<MAX. (7)
Now, if we consider the total service provided until the

moment i to be T then, the service of the ideal GPS discipline
for each FEC will be N. But the total amount of service is also
the sum of service of all FECs:

T- Ti
j=l ,N

(8)

In the worst case (and using (7)) we have a FEC k so that

(9)T>3=NxTk±NxMAX
j=l ,N

From 8 and 9 we have:

T = N x Tik ± N x MAX (10)

Hence, in the worst case, the difference between the service
of GPS and the service of FEC k is:

T k _ NxTkr±NxMAX Tk -
N Ni -
= Tki MAX-±Tk= ±MAX (1 1)

Therefore, the fairness of our algorithm is MAX.
An additional feature to the fairness of this algorithm is

that if one (or more) FECs are idle, the unused bandwidth is
evenly (proportional) distributed among the remaining FECs.
And since the algorithm does not keep state of previous events,
the FECs are not penalized for using excess bandwidth when
other FECs were idle unlike VirtualClock [17].

1) Complexity of the algorithm: The complexity of schedul-
ing is given by the number of operations required to send one

packet. In our approach the pressure for each submit queue is
stored in a sorted array. The head of the array is the highest
pressure value. A packet is sent from the submit queue with
the highest pressure then, the pressure is recalculated for that
queue. This requires (based on (2)) only two basic operations
having constant complexity. The complexity of the algorithm
derives from the operation of inserting the new pressure value
in a sorted array which is of O(logn) complexity. Table JI-

B. 1 shows the relation between fairness and complexity of our

algorithm and other popular scheduling algorithms.

205

Tk = Y: S. s171 j=l,i 3; Til = Ei=l,i i

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:37:30 UTC from IEEE Xplore. Restrictions apply.

206

Although there are scheduling algorithms such as Emulated
Weighted Fair Queueing (EWFQ) [9] or Self-Clocked Fair
Queuing (SCFQ) [6] having lower complexity (0(1)), the price
paid is the reduced level of isolation among the sessions,
causing the end-to-end delay bounds to grow linearly with the
number of FECs [16].

C. Weighted scheduling

The algorithm can be modified to provide weighted fair
scheduling. If we have N concurrent FECs requesting pk
percent of available bandwidth, where Zk=1,N pk = 100 then
the initial pressures in submit queues can be set to:

0
1 pk <-- 1-

pk<
Q

and it it1 pk x Q
100 Q00

This will provide service for FECs proportional with their
requested pk percent of the available bandwidth.

III. IMPLEMENTING THE ALGORITHM

A. Storing packets

For each FEC we need 2 queues (hold and submit). Sin-
gle linked lists can be used to implement the FIFO queues.

Although, in the human heart, blood cells in the atrium are

separated from those in the ventricle, in our implementation
the linked lists of packets from the atrium are linked with
those in the ventricle. Therefore, moving packets through the
atrioventricular valve is seamless. Pointers are used to identify
the first and the last packet in both hold and submit queues.

A doubly linked list stores the values of pressure in each
submit queue. This is an ordered list; the values are stored in
descending order.

B. Operations

1) Atrial diastole (receiving packets): The algorithm is in
a permanent atrial diastole phase because the system must be
able to receive packets continuously.
We make the assumption that packets are already classified

into FECs. Therefore, buffering packets means linking every

new packet at the end of its corresponding linked list.
2) Atrial systole and ventricular diastole (moving packets

from atrium to ventricle):. When one or more submit queues

are empty, packets from the atrium will flow into the ventricle.
In the actual implementation, only a few pointers are changed.

The pressure must be recomputed for each queue. The
complexity of this operation is O(N). However this operation
is performed only when a ventricular queue is empty and it is
not required for the simplified version of the algorithm.

3) Ventricular systole: The head of queue of the sorted
doubly linked list of pressure values represents the submit
queue with the highest pressure. The head of queue packet is
selected from that submit queue and sent out via the network
interface.

The pressure is recomputed only for that particular queue

and the value inserted in the sorted list of pressure values. The
complexity of this operation is 0 (log N).

IV. SIMULATION RESULTS

We performed two simulations. In the first, three FECs share
a link equally. Their average rate will stabilize at one third
(33.3°0) of the bandwidth as shown in Fig. 3.

In the second test we weighted the flows with weights 1, 2,
and 3, so they take 16.6%, 33.3°0 and respectively 50°0 of the
bandwidth. After a while the third flow stops sending packets,
then the second. In Fig.4 it can be seen that after FEC3 stops
sending packets, the remaining flows share the bandwidth with
weights 1 and 2 representing now 33.3 and respectively 66.6
percent of the bandwidth. When FEC1 remains alone it will
use the entire bandwidth. The second simulation showed that
if one (or more) FEC is idle, the unused bandwidth is evenly
(proportional by) distributed among the remaining FECs.

V. SIMPLIFIED HLFQA (s-HLFQA)
The analogy of the HLFQA algorithm with the operation of

the human heart is attractive, but brings the disadvantage that
two queues must be maintained per FEC. It is possible to reduce
this to a single queue by appropriately modifying HLFQA to
obtain a simplified (s-HLFQA) algorithm.

In the simplified version, there is only one queue per FEC,
a unified hold and submit queue. In this context, since packets
enter arbitrarily into the queue (the heart is always open) we

cannot use queue pressures in making the scheduling decision.
Hence, we use another measure to decide which packet will be
sent next and from which queue. While in HLFQA we send a

packet from the queue with the highest pressure, in s-HLFQA
we send a packet from the queue which has received the least
amount of service.

Therefore at step i, a packet will be sent from queue k if
and only if:

(12)

where Tk is the total amount of data sent for FEC k until step
i as described in 3.

1

0.8

v:

ct

ct
54.

0.6

0.4

0.2

0

0 500 1000 1500 2000 2500
packets

3000

Fig. 3. 3 FECs sharing equally 33.3% of the link

FEC 1
FEC 2 -----------
FEC 3

,_~~~~~~~~~~~~~E 3

kT =,min(Ti3), '= 1, 2 ...N;i 3

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:37:30 UTC from IEEE Xplore. Restrictions apply.

207

1

0.8

v:
0

ct

0.6

0.4

0.2 1

0 50 100 150 200 250 300 350 400 450
packets * lOe-3

Fig. 4. 3 weighted FECs sharing respectively 16.6/33.3/50 % of the link then
2 flows 33.3/66.6 then 1 flow 100%

However, the T, are continuously increasing values and
therefore they can be normalized or reseted to lower values
when they reach an upper bound and each time the value ofN
changes. The procedure is explained below:

. Resetting T to lower values: When the values T are
considered too big, they can be reset to 0. However, to
maintain the perfect fairness of the algorithm we suggest
resetting them based on the following function:
For each k = 1, 2...N;

T <-T~-mimn(§I),jT 1,2...N; (13)

. Normalizing T: Another option is to use a normalized
value for T representing actually the traffic rate:

(14)

A. Fairness ofs-HLFQA
Let k and I be two FECs. Tk and T,f are the total amount

of data sent for FECs k and I until step i.

Tik = Zj= iSTSZ_= Yj=,iSl (15)
Initially we have Tk = To = 0. At each step a single packet

is sent out. Therefore:

Because a packet is sent from queue I and no packet is sent
from queue k we have: Tk- T 1 and TT<- V 1 + S~

Hence:

7T1-V =T
TI1-T' I-S <K MAX-S' <MAX (18)

We have proved (16) and from assumption (17) we derived
(18) to be true. Hence, using mathematical induction, we have
proven that for any two queues, at any step i,

ITk-T,Tl < MAX (19)

This is the same result as in (7) for HLFQA. Therefore, we
can again deduce (11) so the fairness of s-HLFQA is MAX.

B. Complexity ofs-HLFQA

The time complexity of s-HLFQA is given by the number
of operations performed in order to send one packet from N
queues.

The values T are stored in a sorted array (or list). Selecting
the min from that array requires one basic operation. Another
basic operation is required to increase T: T1 <- T + S~.
The new value of T must be inserted in the sorted array.
This operation has 0 (logN) complexity. Therefore s-HLFQA
belongs to the O(logN) class of complexity.

C. Weighted s-HLFQA

s-HLFQA can be used to provide weighted fair scheduling as
well. If we have N concurrent FECs requesting pk percent of
available bandwidth, where Zk=lN pk = 100, the total service
for FEC k will be recorded in this way:

(20)Tk =
kj=1,i ji _p+pk pk

From (19) we have Tik - Til < MAX for any l,k C
1, 2, ..., N. Since T1k > MAX we may consider

T~k T.. (21)

Let Si be the total amount of packets processed for all the
queues until step i. That is:

(22)Si-= E si
j=l,NT1k-Tfi < MAX

where MAX is the maximum packet size. Now, assuming that:

Ik 1-Ti,1 < MAX (17)

we want to prove that yTk - Ttl < MAX.
If at step i no packet is sent out either from queue k or 1,

we have T,1= Tik and Til_1 = Til and therefore Tik -Tl=
IT? 1-T'i-1 < MAX.
If at step i a packet is sent from one of the two queues,

for instance queue 1, it means that T, 1 > Tilf1 and Ti 1 -

Tl-1 -=it1 -Ti-1

From (21) we have: Til TL2- ...TiN and using (20) we

otain:
Ej=l,i i Ej=1is i Ej=l,i V Si _ Si

pI -

p2 p*-- pN r.,

Ei,N p3 - 100-

sk'
Consequently, for any k we have: L 'pk i 100 and
therefore:

E Sjk pk
7=1,i

(23)

Hence, the percentage of packets sent for FEC k is approx-

imately equal with p.

(16)

k T.T <- Z_k= i 2...N;i i .

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:37:30 UTC from IEEE Xplore. Restrictions apply.

208

VI. CONCLUSIONS
A new scheduling algorithm, suitable for deployment in

MPLS networks, has been proposed, based on an analogy
with the workings of the human heart. It has been shown
in the previous sections that the HLFQA class of algorithms
achieve MAX fairness and 0(logN) complexity. This is the
optimal fairness that can be achieved with packet based sched-
ulers. Scheduling algorithms such as EWFQ and SCFQ have
lower computational complexity (0(1)). However, they do not
achieve the same optimal fairness and the price paid is the
reduced level of isolation among the sessions, causing the end-
to-end delay bounds to grow linearly with the number of FECs.
WFQ has similar properties to HLFQA in term of fairness
and complexity. However, the calculations to be performed
are simpler for HLFQA. A simplified implementation (having
the same fairness and complexity) called s-HLFQA has also
been proposed. Both algorithms are simple enough to be im-
plemented in hardware so that wire-speed operation is possible
at high bit rates.
We are currently looking at ways to parallelise the algorithm.

A parallel implementation should enable line rates of 40 Gb/s
to be accommodated. At such rates, the scheduler will typically
interface to a high-speed optical network core, where GMPLS
is used to manage the combined MPLS/optical network. We
are looking at how to combine the pre-buffering in HLFQAs
holding queues to allow packets of the same FEC to be
aggregated in larger frames in order to increase the average
frame size in the Internet core. This will result in less stringent
switching requirements in the Internet core. However, packet
aggregation increases the value ofMAX (the maximum packet
size) and thus adversely affects scheduler fairness. Selective
aggregation (where packets are merged only when it is fair
to do so) can address this difficulty and is a topic for future
research.

REFERENCES

[1] S. BLAKE, D. BLACK, M. CARLSON, E. DAVIES, Z. WANG, AND
W. WEISS, An Architecture for Differentiated Service, RFC 2475, IETF,
December 1998. Status: INFORMATIONAL.

[2] A. DEMERS, S. KESHAV, AND S. SHENKER, Analysis and simulation of
afair queueing algorithm., SIGCOMM Symposium on Communications
Architectures and Protocols, (1989), pp. 1-12.

[3] D. FERRARI AND D. C. VERMA, A Scheme for Real-Time Channel
Establishment in Wide-Area Networks, IEEE Journal on Selected Areas
in Communications, 8 (1990), pp. 368-379.

[4] S. FLOYD AND V. JACOBSON, Random early detection gateways for
congestion avoidance, IEEE/ACM Transactions on Networking, 1 (1993),
pp. 397-413.

[5] S. J. GOLESTANI, A Framing Strategy for Congestion Management, in
INFOCOM, vol. 9, 1991, pp. 1064-1077.

[6] , A Self-Clocked Fair Queueing Scheme for Broadband Appli-
cations, in IEEE Journal on Selected Areas in Communications, 1994,
pp. 636-646.

[7] C. R. KALMANEK AND H. KANAKIA, Rate Controlled Servers for
Very High-Speed Networks, Proceedings of the Conference on Global
Communications (GLOBECOM), (1990), pp. 12-20.

[8] M. KAROL, M. HLUCHYJ, AND S. MORGAN, Input versus Output
Queueing on a Space-Division Packet Switch, IEEE Trans. on Commu-
nications, COM-35 (1997), pp. 1347-1356.

[9] N. - S. Ko AND H. - S. PARK, Emulated Weighted Fair Queuing Algorithm
for High-Speed Packet-Switched Networks., in ICOIN, 2001, pp. 52-60.

[10] D. LIN AND R. MORRIS, Dynamics of Random Early Detection, in
SIGCOMM '97, Cannes, France, september 1997, pp. 127-137.

[11] J. NAGLE, On Packet Switches With Infinite Storage, RFC 0970, IETF,
December 1985.

[12] A. PAREKH AND R. GALLAGER, A generalized procesor sharing ap-
proach to flow control - the single node case, Proceedings of INFO-
COM'92, 2 (1992), pp. 915-924.

[13] E. ROSEN, A. VISWANATHAN, AND R. CALLON, Multiprotocol Label
Switching Architecture, RFC 3031, IETF, January 2001. Status: STAN-
DARDS TRACK.

[14] A. SEN, I. MOHAMMED, R. SAMPRATHI, AND S. BANDYOPADHYAY,
Fair Queuing with Round Robin: A New Packet Scheduling Algorithm
for Routers, in "Proceedings of the Seventh International Symposium on
Computers and Communications (ISCC'02)", 2002.

[15] M. SHREEDHAR AND G. VARGHESE, Efficient Fair Queueing Using
Deficit Round Robin, in SIGCOMM, 1995, pp. 231-242.

[16] D. STILIADIS, Traffic Scheduling in Packet-Switched Networks: Analy-
sis Design and Implementation, PhD Thesis, Department of Computer
Science and Engineering, University of California at Santa Cruz, 1996.

[17] L. ZHANG, VirtualClock: A New Traffic Control Algorithm for Packet
Switching Networks, ACM Transactions on Computer Networks, 9 (1991),
pp. 101-124.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:37:30 UTC from IEEE Xplore. Restrictions apply.

