5,275 research outputs found

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Jointly Optimal Channel Pairing and Power Allocation for Multichannel Multihop Relaying

    Full text link
    We study the problem of channel pairing and power allocation in a multichannel multihop relay network to enhance the end-to-end data rate. Both amplify-and-forward (AF) and decode-and-forward (DF) relaying strategies are considered. Given fixed power allocation to the channels, we show that channel pairing over multiple hops can be decomposed into independent pairing problems at each relay, and a sorted-SNR channel pairing strategy is sum-rate optimal, where each relay pairs its incoming and outgoing channels by their SNR order. For the joint optimization of channel pairing and power allocation under both total and individual power constraints, we show that the problem can be decoupled into two subproblems solved separately. This separation principle is established by observing the equivalence between sorting SNRs and sorting channel gains in the jointly optimal solution. It significantly reduces the computational complexity in finding the jointly optimal solution. It follows that the channel pairing problem in joint optimization can be again decomposed into independent pairing problems at each relay based on sorted channel gains. The solution for optimizing power allocation for DF relaying is also provided, as well as an asymptotically optimal solution for AF relaying. Numerical results are provided to demonstrate substantial performance gain of the jointly optimal solution over some suboptimal alternatives. It is also observed that more gain is obtained from optimal channel pairing than optimal power allocation through judiciously exploiting the variation among multiple channels. Impact of the variation of channel gain, the number of channels, and the number of hops on the performance gain is also studied through numerical examples.Comment: 15 pages. IEEE Transactions on Signal Processin

    Interference Cancellation at the Relay for Multi-User Wireless Cooperative Networks

    Full text link
    We study multi-user transmission and detection schemes for a multi-access relay network (MARN) with linear constraints at all nodes. In a (J,Ja,Ra,M)(J, J_a, R_a, M) MARN, JJ sources, each equipped with JaJ_a antennas, communicate to one MM-antenna destination through one RaR_a-antenna relay. A new protocol called IC-Relay-TDMA is proposed which takes two phases. During the first phase, symbols of different sources are transmitted concurrently to the relay. At the relay, interference cancellation (IC) techniques, previously proposed for systems with direct transmission, are applied to decouple the information of different sources without decoding. During the second phase, symbols of different sources are forwarded to the destination in a time division multi-access (TDMA) fashion. At the destination, the maximum-likelihood (ML) decoding is performed source-by-source. The protocol of IC-Relay-TDMA requires the number of relay antennas no less than the number of sources, i.e., RaJR_a\ge J. Through outage analysis, the achievable diversity gain of the proposed scheme is shown to be min{Ja(RaJ+1),RaM}\min\{J_a(R_a-J+1),R_aM\}. When {\smallMJa(1J1Ra)M\le J_a\left(1-\frac{J-1}{R_a}\right)}, the proposed scheme achieves the maximum interference-free (int-free) diversity gain RaMR_aM. Since concurrent transmission is allowed during the first phase, compared to full TDMA transmission, the proposed scheme achieves the same diversity, but with a higher symbol rate.Comment: submitted to IEEE Transaction on Wireless Communicatio

    Network coded modulation for two-way relaying

    No full text
    Network coding compresses multiple traffic flows with the aid low-complexity algebraic operations, hence holds the potential of significantly improving both the power and bandwidth efficiency of wireless networks. In this contribution, the novel concept of Network Coded Modulation (NCM) is proposed for jointly performing network coding and modulation in bi-directional/duplex relaying. Each receiver is colocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. As in classic coded modulation, the Euclidian distance between the symbols is maximized, hence the Symbol Error Ratio (SER) is minimized. Specifically, we conceive NCM methods for PSK, PAM and QAM based on modulo addition of the normalized phase or amplitude. Furthermore, we propose low complexity decoding algorithms based on the corresponding conditional minimum distance criteria. Our performance analysis and simulations demonstrate that NCM relying on PSK is capable of achieving a SER at both receivers of the NCM scheme as if the relay transmitted exclusively to a single receiver only. By contrast, when our NCM concept is combined with PAM/QAM, an SNR loss (<1.25dB) is imposed at one of the receivers, usually at the one having a lower data rate in a realistic different rate scenario. Finally, we will demonstrate that the proposed NCM is compatible with existing physical layer designs

    Network-Coded Multiple Access

    Full text link
    This paper proposes and experimentally demonstrates a first wireless local area network (WLAN) system that jointly exploits physical-layer network coding (PNC) and multiuser decoding (MUD) to boost system throughput. We refer to this multiple access mode as Network-Coded Multiple Access (NCMA). Prior studies on PNC mostly focused on relay networks. NCMA is the first realized multiple access scheme that establishes the usefulness of PNC in a non-relay setting. NCMA allows multiple nodes to transmit simultaneously to the access point (AP) to boost throughput. In the non-relay setting, when two nodes A and B transmit to the AP simultaneously, the AP aims to obtain both packet A and packet B rather than their network-coded packet. An interesting question is whether network coding, specifically PNC which extracts packet (A XOR B), can still be useful in such a setting. We provide an affirmative answer to this question with a novel two-layer decoding approach amenable to real-time implementation. Our USRP prototype indicates that NCMA can boost throughput by 100% in the medium-high SNR regime (>=10dB). We believe further throughput enhancement is possible by allowing more than two users to transmit together

    Decentralized Dynamic Hop Selection and Power Control in Cognitive Multi-hop Relay Systems

    Full text link
    In this paper, we consider a cognitive multi-hop relay secondary user (SU) system sharing the spectrum with some primary users (PU). The transmit power as well as the hop selection of the cognitive relays can be dynamically adapted according to the local (and causal) knowledge of the instantaneous channel state information (CSI) in the multi-hop SU system. We shall determine a low complexity, decentralized algorithm to maximize the average end-to-end throughput of the SU system with dynamic spatial reuse. The problem is challenging due to the decentralized requirement as well as the causality constraint on the knowledge of CSI. Furthermore, the problem belongs to the class of stochastic Network Utility Maximization (NUM) problems which is quite challenging. We exploit the time-scale difference between the PU activity and the CSI fluctuations and decompose the problem into a master problem and subproblems. We derive an asymptotically optimal low complexity solution using divide-and-conquer and illustrate that significant performance gain can be obtained through dynamic hop selection and power control. The worst case complexity and memory requirement of the proposed algorithm is O(M^2) and O(M^3) respectively, where MM is the number of SUs

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective
    corecore