7,739 research outputs found

    Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments

    Get PDF
    Copyright @ Springer-Verlag 2010.In estimation of distribution algorithms (EDAs), the joint probability distribution of high-performance solutions is presented by a probability model. This means that the priority search areas of the solution space are characterized by the probability model. From this point of view, an environment identification-based memory management scheme (EI-MMS) is proposed to adapt binary-coded EDAs to solve dynamic optimization problems (DOPs). Within this scheme, the probability models that characterize the search space of the changing environment are stored and retrieved to adapt EDAs according to environmental changes. A diversity loss correction scheme and a boundary correction scheme are combined to counteract the diversity loss during the static evolutionary process of each environment. Experimental results show the validity of the EI-MMS and indicate that the EI-MMS can be applied to any binary-coded EDAs. In comparison with three state-of-the-art algorithms, the univariate marginal distribution algorithm (UMDA) using the EI-MMS performs better when solving three decomposable DOPs. In order to understand the EI-MMS more deeply, the sensitivity analysis of parameters is also carried out in this paper.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant 60774064, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems

    Get PDF
    Several approaches have been developed into evolutionary algorithms to deal with dynamic optimization problems, of which memory and random immigrants are two major schemes. This paper investigates the application of a direct memory scheme for univariate marginal distribution algorithms (UMDAs), a class of evolutionary algorithms, for dynamic optimization problems. The interaction between memory and random immigrants for UMDAs in dynamic environments is also investigated. Experimental study shows that the memory scheme is efficient for UMDAs in dynamic environments and that the interactive effect between memory and random immigrants for UMDAs in dynamic environments depends on the dynamic environments

    Explicit memory schemes for evolutionary algorithms in dynamic environments

    Get PDF
    Copyright @ 2007 Springer-VerlagProblem optimization in dynamic environments has atrracted a growing interest from the evolutionary computation community in reccent years due to its importance in real world optimization problems. Several approaches have been developed to enhance the performance of evolutionary algorithms for dynamic optimization problems, of which the memory scheme is a major one. This chapter investigates the application of explicit memory schemes for evolutionary algorithms in dynamic environments. Two kinds of explicit memory schemes: direct memory and associative memory, are studied within two classes of evolutionary algorithms: genetic algorithms and univariate marginal distribution algorithms for dynamic optimization problems. Based on a series of systematically constructed dynamic test environments, experiments are carried out to investigate these explicit memory schemes and the performance of direct and associative memory schemes are campared and analysed. The experimental results show the efficiency of the memory schemes for evolutionary algorithms in dynamic environments, especially when the environment changes cyclically. The experimental results also indicate that the effect of the memory schemes depends not only on the dynamic problems and dynamic environments but also on the evolutionary algorithm used

    copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas

    Get PDF
    The use of copula-based models in EDAs (estimation of distribution algorithms) is currently an active area of research. In this context, the copulaedas package for R provides a platform where EDAs based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known optimization problems, and utility functions to study the performance of the algorithms. Newly developed EDAs can be easily integrated into the package by extending an S4 class with generic functions for their main components. This paper presents copulaedas by providing an overview of EDAs based on copulas, a description of the implementation of the package, and an illustration of its use through examples. The examples include running the EDAs defined in the package, implementing new algorithms, and performing an empirical study to compare the behavior of different algorithms on benchmark functions and a real-world problem

    Evolutionary computation and Wright's equation

    Get PDF
    AbstractIn this paper, Wright's equation formulated in 1931 is proven and applied to evolutionary computation. Wright's equation shows that evolution is doing gradient ascent in a landscape defined by the average fitness of the population. The average fitness W is defined in terms of marginal gene frequencies pi. Wright's equation is only approximately valid in population genetics, but it exactly describes the behavior of our univariate marginal distribution algorithm (UMDA). We apply Wright's equation to a specific fitness function defined by Wright. Furthermore we introduce mutation into Wright's equation and UMDA. We show that mutation moves the stable attractors from the boundary into the interior. We compare Wright's equation with the diversified replicator equation. We show that a fast version of Wright's equation gives very good results for optimizing a class of binary fitness functions

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Multimodal estimation of distribution algorithms

    Get PDF
    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima
    • 

    corecore