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Abstract

In this paper, Wright’s equation formulated in 1931 is proven and applied to evolutionary
computation. Wright’s equation shows that evolution is doing gradient ascent in a landscape
de1ned by the average 1tness of the population. The average 1tness W is de1ned in terms
of marginal gene frequencies pi. Wright’s equation is only approximately valid in population
genetics, but it exactly describes the behavior of our univariate marginal distribution algorithm
(UMDA). We apply Wright’s equation to a speci1c 1tness function de1ned by Wright. Further-
more we introduce mutation into Wright’s equation and UMDA. We show that mutation moves
the stable attractors from the boundary into the interior. We compare Wright’s equation with
the diversi1ed replicator equation. We show that a fast version of Wright’s equation gives very
good results for optimizing a class of binary 1tness functions. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The purpose of this paper is twofold. First we analyze a powerful evolutionary
algorithm using univariate marginal distributions (UMDA) instead of recombination and
mutation of strings as done by genetic algorithms. The behavior of a speci1c instance
of this algorithm can be mathematically described by a set of di@erence equations for
the marginal distributions. We later found that these equations have been proposed in
population genetics by Wright as early as 1931 [14]. Therefore our second purpose is
to relate our analysis to the discussion of these equations in population genetics.
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Wright himself [17] gave a short historical overview about the di@erence equation
which later was termed Wright’s equation. “Only single-gene distributions were dealt
with mathematically in the 1931 paper [14] but these were merely considered to be
indications of the sort of thing that is happening in the many dimensions to which the
verbal discussion was devoted. In a later paper [15], a formula was given for Ip in
cases of multi-factorial heredity and an intermediate optimum. This was taken up more
generally in 1937 [16] with the introduction of the symbol W for selective value of
the genotypes as a whole. It was assumed that the local population in question was
breeding at random and that it was suJciently accurate that all loci were combined
random”. For binary alleles the key formula is as follows:

Ipi = pi(t + 1) − pi(t) = pi(t)(1 − pi(t))
@W=@pi

W
; (1)

where i denotes a locus, and pi is the frequency of allele= 1. Wright’s extension to
multiple alleles is wrong and therefore omitted.

In 1970 Wright [18] remarked: “The appearance of this formula is deceptively simple.
Its use in conjunction with other components is not such a gross oversimpli1cation in
principle as has sometimes been alleged. Obviously, calculations can be made only
from rather simple models, involving only a few loci or simple patterns of interaction
among many similarly behaving loci. Apart from application to simple systems, the
greatest signi1cance of the general formula is that its form brings out properties of
systems that would not be apparent otherwise”.

Wright’s equation was especially criticized by Fisher [4]. His main argument was that
the evaluation of W needs on the order of 2n terms. The interpretation of Wright’s
equation is debated till today [3]. For our UMDA the di@erence equation is exact,
whereas it is an approximation in population genetics.

The outline of the paper is as follows. In Section 2 we prove Wright’s equation.
Then the landscape metaphor in evolutionary computation is discussed. We give a
simple formula for computing the average 1tness W . In Section 4 we use Wright’s
original illustration as a numerical example. Then mutation is discussed. In Section 6
the relation between Wright’s equation and the replicator equation is investigated. Then
numerical results of the di@erent approaches are discussed. We summarize the paper
in Section 9 by discussing three royal roads for evolutionary optimization.

2. Univariate marginal distribution algorithm

Let x= (x1; : : : ; xn) denote a vector, xi∈�i = {0; 1; 2; : : : ; mi}. We use the following
conventions. Capital letters Xi denote variables, small letters xi assignments. Let a func-
tion f :X→R¿0 be given. We consider the optimization problem xopt = argmax f(x).

De�nition. Let p(x; t) denote the probability of x in the population at generation t.
Then pi(xk ; t) =

∑
x; Xi=xk p(x; t) de1nes the univariate marginal distributions of variable

Xi.
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Note that
∑

xk∈�i
pi(xk ; t) = 1. This means that the univariate marginal distributions

are not independent. For notational simplicity we will consider pi(0) to be the depen-
dent parameter, which can be eliminated, if appropriate. We write pi(xk) if just one
generation is discussed. We recall two popular recombination=crossover operator used
in genetic algorithms.

De�nition. Let two strings x and y be given. In one-point crossover the string z is
created by randomly choosing a crossover point 0¡l¡n and setting zi = xi for i6l
and zi =yi for i¿l. In uniform crossover zi is randomly chosen with equal probability
from {xi; yi}.

In order to derive Wright’s equation, we have to introduce a special distribution.

De�nition. Robbins’ proportions are de1ned by the distribution

�p(x; t) :=
n∏

i=1
pi(xi; t): (2)

A population in Robbins’ proportions is called to be in linkage equilibrium in popula-
tion genetics.

In [7,12] we have shown: All complete recombination schemes lead to the same uni-
variate marginal distributions after one step of selection and recombination. If recom-
bination is used for a number of times without selection, then the genotype frequencies
converge to linkage equilibrium. This means that all genetic algorithms are identical if
after one selection step recombination is done without selection a su<cient number of
times. This fundamental algorithm keeps the population in linkage equilibrium. Wright
also assumed linkage equilibrium to derive his equation.

Instead of performing recombination a number of times in order to converge to
linkage equilibrium, one can achieve this in one step by gene pool recombination [11].
In gene pool recombination a new string is computed by randomly taking for each loci
a gene from the distribution of the selected parents. This means that gene xi occurs
with probability ps(xi) in the next population. ps(xi) is the distribution of xi in the
selected parents. Thus, new strings x are generated according to the distribution

p(x; t + 1) =
n∏

i=1
ps

i (xi; t): (3)

One can simplify the algorithm still more by directly computing the univariate marginal
frequencies from the data. Then Eq. (3) can be used to generate new strings. This
method is used by the univariate marginal distribution algorithm (UMDA).
UMDA
STEP 0: Set t⇐ 1. Generate N�0 points randomly.
STEP 1: Select M6N points according to a selection method. Compute the marginal

frequencies ps
i (xi; t) of the selected set.

STEP 2: Generate N new points according to the distribution p(x; t + 1) =
∏n

i=1
ps(xi; t). Set t⇐ t + 1.
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STEP 3: If termination criteria are not met, go to STEP 1.
Let v =

∑n
i=1 (mi + 1). UMDA formally depends on v parameters, the marginal

distributions pi(xk). We now consider the average Pf(t) =
∑

x p(x; t)f(x) as a function
which depends on pi(xk). To emphasize this dependency we write (in accordance with
Wright)

W (p1(x1); p1(x2); : : : ; pn(xmn)) := Pf(t): (4)

We can now formulate di@erence equations, describing the dynamic behavior of pi(xk).

Theorem 1. For in>nite populations and proportionate selection UMDA changes the
gene frequencies as follows:

pi(xk ; t + 1) = pi(xk ; t)
Pfi(xk ; t)
W (t)

; (5)

where Pfi(xk ; t) =
∑

x; Xi = xk f(x)
∏n

j �=i p(xj; t). Using a formal derivative @W=@pi(xk),
the equations can also be written as

pi(xk ; t + 1) = pi(xk ; t) + pi(xk ; t)
@W=@pi(xk) −W (t)

W (t)
: (6)

Furthermore the average >tness W never decreases.

W (t + 1)¿W (t): (7)

The theorem has been proven in [7]. Note that the derivatives of W are obtained by
formal di@erentiation of Eq. (4).

Example. f(x) =
∑

i aixi; xi∈{0; 1}.
After some tedious manipulations one obtains:

W (p) =
∑
i

aipi(1);

@W
@pi(1)

= ai +
∑
j �=i

ajpj(1):

This gives the di@erence equation

Ipi(1) = pi(1; t)(1 − pi(1; t))
ai∑

i aipi(1; t)
: (8)

This equation has been approximately solved in [8].
This example shows that the expressions for W and its derivatives can be surprisingly

simple. W (p) can be obtained from f(x) by exchanging xi with pi(1). But the formal
derivation of W (p) cannot be obtained from the simple W (p) expression! We will
investigate the computation of W and its gradient in the following section. Next we
formulate and prove Wright’s equation. It is obtained by using real derivatives in
Euclidian spaces. Thus we have to eliminate one parameter for each locus. In order to
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minimize possible confusion later we denote the average 1tness Pf(t) with parameters
pi(0) eliminated as W̃ .

De�nition. Let P�i =�i\{0}. If we eliminate pi(Xi = 0; t) in W (p) by inserting 1 −∑
k∈ P�i

pi(xk ; t) then we obtain W̃ (p).

We can now formulate the main theorem.

Theorem 2 (Wright’s Equation). For in>nite populations and proportionate selection
UMDA changes the gene frequencies as follows:

pi(xk ; t + 1) = pi(xk ; t) + pi(xk ; t)

×@W̃ =@pi(xk) −
∑

j∈ P�i
pi(xk ; t)@W̃ =@pi(xk)

W̃ (t)
: (9)

Proof. Note that

@W̃
@pi(xk)

= Pfi(xk ; t) − Pfi(0; t):

Furthermore we have∑
k∈�i

pi(xk ; t) Pfi(xk ; t) = W̃ (t):

We next compute

Pfi(xk ; t) − W̃ (t) =
@W̃ (t)
@pi(xk)

+ Pfi(0; t) −
∑
j∈�i

pi(xj; t) Pfi(xj; t);

∑
j∈�i

pi(xj; t) Pfi(xj; t) =
∑
j∈ P�i

pi(xj; t)
@W̃ (t)
@pi(xj)

+ Pfi(0; t):

Inserting this equation into the di@erence Eq. (5) gives the conjecture after some simple
manipulations.

This is the exact formulation of Wright’s equation for multiple alleles at n loci. For
binary alleles we obtain Eq. (1). The above equations completely describe the dynamics
of UMDA with proportionate selection.

There has been a 1erce battle between Wright and Fisher concerning the importance
of Wright’s equation. Fisher especially criticized Wright’s average 1tness function W .
He wrote [4]: “Prof. Wright confuses the number of genotypes, e.g. 31000, 1 (for 1000
loci) which may be distinguished among individuals, with the continuous 1eld of vari-
ation of gene frequencies. Even if a potential function, such as W is supposed to
be, really existed, the large number of genotypes supplies no reason for thinking that

1 Diploid organism have on each loci 4 genotypes with 3 independent frequencies.
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even one peak, maximal for variations of all gene ratios should occur in this 1eld of
variation”.

Wright was not able to refute this argument. In 1963 he wrote [17]: “The summation
in the formula for W̃ has, however, as many terms as there are kinds of genotypes, 31000

for 1000 pairs of alleles. This, of course, points to a practical diJculty in calculating
Ip for more than two or three pairs of interacting factors, unless a regular model is
postulated. There was no confusion”.

We will show in the next section that both, Fisher and Wright, overlooked that if
the 1tness function is simple, W̃ can be easily computed. This is discussed next.

3. Average �tness and the landscape metaphor

Wright is also the originator of the landscape metaphor now popular in evolutionary
computation and population genetics. Unfortunately Wright used two quite di@erent
de1nitions for the landscape, apparently without realizing the fundamental distinction
between them. The 1rst landscape describes the relation between the genotypes and
their 1tness, while the second describes the relation between the allele frequencies in
a population and its mean 1tness.

The 1rst de1nition is just the 1tness function f(x) used in evolutionary computation,
the second one is the average 1tness W̃ (p). The second de1nition is much more useful,
because it lends to a quantitative description of the evolutionary process, i.e. Wright’s
equation.

For notational simplicity we only derive the relation between f(x) and W̃ for binary
alleles. Let � = (�1; : : : ; �n) with �i∈{0; 1} be a multi-index. We de1ne 00 := 1:

x� :=
∏
i

x�i
i :

De�nition. The representation of a binary discrete function using the ordering accord-
ing to function values is given by

f(x) = f(0; : : : ; 0)(1 − x1) · · · (1 − xn) + · · · + f(1; : : : ; 1) x1 · · · xn: (10)

The representation using the ordering according to variables is

f(x) =
∑
�

a�x� (11)

max{|�|1 =
∑

i �i: a� �= 0} is called the order of the function.
In both representations the function is linear in each variable xi. The following lemma

is obvious.

Lemma. The two representations are unique. There exist a unique matrix A of di-
mension 2n ∗ 2n such that

a� = (Af)�

We now use this result for W̃ .
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Lemma. W̃ (p) := Pf(t) is an extension of f(x) to S. There exist two representations
for W̃ (p). These are given by

W̃ (p) = f(0; : : : ; 0)(1 − p1) · · · (1 − pn) + · · · + f(1; : : : ; 1)p1 · · ·pn; (12)

W̃ (p) =
∑
�

a�p�: (13)

If the function is given in analytical form (Eq. (11)) and the order of the function
is bounded by a constant independent of n, then W̃ (p) can be computed in polyno-
mial time. The proofs in this section are somewhat informal. The above lemma can
rigorously be proven by Moebius inversion.

We will now characterize the attractors of UMDA. Let Si = {qi|
∑

k∈ P�i
qi(xk)61;

06qi(xk)61} and S =
∏

i Si the Cartesian product. For simplicity we consider the
binary alleles xi∈{0; 1}. Then S = [0; 1]n.

Theorem 3. The stable attractors of Wright’s equation are at the corners of S, i.e.
pi∈{0; 1} i = 1; : : : ; n. In the interior there are only saddle points or local minima
where grad W (p) = 0. The attractors are local maxima of f(x) according to one bit
changes. Wright’s equation solves the continuous optimization problem argmax{W̃ (p)}
in S by gradient ascent.

Proof. W is linear in pi. Therefore it cannot have any local maxima in the interior.
Points with gradW (p) = 0 are unstable 1xpoints of UMDA.

We next show that boundary points which are not local maxima of f(x) cannot be at-
tractors. We prove the conjecture indirectly. Without loss of generality, let the boundary
point be p̂ = (1; : : : ; 1). We now consider an arbitrary neighbor, i.e. p∗ = (0; 1; : : : ; 1).
The two points are connected at the boundary by

p(z) = (1 − z; 1; : : : ; 1); z∈[0; 1]:

We know that W̃ is linear in the parameters pi. Because W̃ (p∗) =f(0; 1; : : : ; 1) and
W̃ (p̂) =f(1; : : : ; 1) we have

W̃ (p(z)) = f(1; : : : ; 1) + z · [f(0; 1; : : : ; 1) − f(1; : : : ; 1)]: (14)

If f(0; 1; : : : ; 1)¿f(1; : : : ; 1) then p̂ cannot be an attractor of UMDA. The mean 1tness
increases with z.

Eq. (13) can also be used to compute the derivative. It is given by

@W̃ (p)
@pi(1)

=
∑

�|�i=1
a�p�′ (15)

with �′i = 0; �′j = �j.
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The extension of the above lemma to multiple alleles and multivariate distributions
is straightforward, but the notation becomes diJcult.

4. Wright’s simple illustration

From 1963 Wright used the same example to illustrate his theory. Wright’s example
consists of a diploid organism with four loci with binary alleles {A; a;B; b;C; c;D; d}.
We have to transform this example to a haploid organism. We just map (A; A); (B; B);
(C; C); (D;D) to allele 1 and the other three combinations to 0. Furthermore we multiply
the 1tness values by 8 in order to obtain integer values. Then Wright’s 1tness function
can be mathematically be written as

f(x1; x2; x3; x4) = 7(x1 + x2) + 6(x3 + x4)

− 4(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4): (16)

We abbreviate pi :=pi(1). Then we obtain

W̃ (p1; p2; p3; p4) = 7(p1 + p2) + 6(p3 + p4)

− 4(p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4): (17)

The derivatives are given by

@W̃
@p1

= 7 − 4(p2 + p3 + p4);
@W̃
@p2

= 7 − 4(p1 + p3 + p4);

@W̃
@p3

= 6 − 4(p1 + p2 + p4);
@W̃
@p4

= 6 − 4(p1 + p2 + p3):

Now Wright’s equation can be used for analysis. Setting gradW = 0 we obtain a
saddle point at p1 =p2 = 5

12 and p3 =p4 = 2
3 . Wright gives in his 1gures some curious

numbers about local saddle points, despite he obviously used his formulae not in a
mathematical sense.

The local maxima and therefore the attractors of UMDA are the six genotypes with
two bits on and two bits o@. We have (0; 0; 1; 1) with 1tness 8; (1; 0; 1; 0); (1; 0; 0; 1);
(0; 1; 1; 0); (0; 1; 0; 1) with 1tness 9, and (1; 1; 0; 0) with 1tness 10. One would be inter-
ested to characterize the attractor regions for these six maxima. But this is a formidable
task in four dimensions.

In order to get some results, we make a simpli1cation. The equations are symmetric
in p1; p2 and p3; p4. If we start with equal probabilities p1 =p2 and p3 =p4, then
the dynamics depends on two variables only. But note that with this constraint the four
intermediate local maxima are not accessible for the dynamics.

Fig. 1 is a plot of the W̃ landscape. The saddle point p1 = 5
12 and p3 = 2

3 can
be clearly recognized. There are two attractors at the boundary, (0,1) and (1,0), the
global optimum. Even using the picture it is very diJcult to determine the attractor
regions. The following two regions are easy to determine. If p1¿ 5

12 and p3¡ 2
3 then
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Fig. 1. W̃ landscape for p1 = p2 and p3 = p4.

the attractor is (1,0). If p1¡ 5
12 and p3¿ 2

3 then the attractor is (0,1). For the remaining
area the attractor has to be determined by actual simulation.

But the assumption p1 =p2 and p3 =p4 is very restrictive and unstable. Small
di@erences in the initial values may have a dramatic impact. Wright’s equation is
deterministic. It behaves unstable if the initial points are at the boundary of two at-
tractor regions. At these points the behavior of UMDA and Wright’s equation are very
di@erent.

Despite its importance for theoretical population genetics. Wright’s equation was
seldom used quantitatively. To the best of our knowledge, only Barton [1] has nu-
merically applied Wright’s equation. Unfortunately he did not use Wright’s original
example, but a simpler function with only one level of local optima. Furthermore, he
computed the average 1tness with a complicated approximation valid only for Gaussian
1tness values.

We now turn to another problem in evolutionary computation—the introduction of
randomness by mutation.

5. Mutation, Bayes prior, and population size

There exist many investigations to compute good mutation rates for genetic algo-
rithms. Our approach allows to investigate the problem from a dynamic perspective. In
Wright’s equation all local optima are attractors at the boundary. Any evolution will
stop at the boundary. This is not desirable. Therefore, Wright included mutation into
his equation as a background operator. With mutation the local attractors are not at the
boundary any more, but move into the interior.
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Wright [15] included mutation with a recurrent symmetric mutation rate of 06 '¡1
as follows into his equation:

Ipi = pi(t)(1 − pi(t))
@W̃ =@pi

W̃
− '(pi(t) − (1 − pi(t))): (18)

This is a simpli1cation of the biological process to be modeled. Mutation is selective
neutral, i.e. it occurs after selection. Nevertheless, the equation ful1ls its goal. Muta-
tion changes the landscape. The attractors are now de1ned by a dynamic equilibrium
between mutation and selection. For '�0 we have a stable attractor at pi = 0:5, for
' = 0 we have the multi-modal landscape with attractors at the boundary discussed
before.

Let us take OneMax =
∑

xi as example. Without mutation the only stable attractor is
obviously pi = 1; i = 1; : : : ; n. With mutation the attractor is obtained by setting Ipi = 0
in Eq. (18). The attractor is given by

p∗
i = 1 − '

2' + (1=n)
: (19)

If we set ' = 1=n we obtain pi = 2
3 . For ' = 0:5=n we have pi = 0:75. These attractors

are far away from the global optimum pi = 1. At the attractor the optimum will be
generated with probability

p(xopt) = pn
i :

Even for small n= 20 the probability is very small, p = 0:0032. The mutation rate has
to be much smaller. From Eq. (19) we easily obtain the result.

Corollary. For any '¿0 we have for OneMax

lim
n→∞ p(xopt) = 0:5 (20)

The above result shows again that proportionate selection selects very weak. For large
n the mutation rate has to be 0. If the selection is stronger, a higher mutation rate can
be used. We give a result for truncation selection. For OneMax we have earlier derived
an approximate di@erence equation [7]. If we add mutation to the approximation we
obtain

Ip =
I
n

√
np(t)(1 − p(t)) − 2'p + ':

Tournament selection can be approximated similarly. For binary tournament selection
we have I = 1=

√
� = 0:56. Setting Ipi = 0 we obtain the expression

p∗ =
1
2

+
I

2
√

I 2 + 4'2n
:

For n= 64 and ' = 1=n we obtain p = 0:959. For ' = 0:5=n we obtain p = 0:988. Both
values are in excellent agreement with actual simulation runs with UMDA. We next
compute the probability that at this attractor the optimum is generated.
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Theorem 4. Let the mutation rate be ' = k=n. Then for tournament selection and the
linear >tness function OneMax we have

lim
n→∞p(xopt) = e−k2=I2

: (21)

Proof. For ' = k=n and keeping only factors with 1=n we obtain

lim
n→∞

(
1
2

+
I

2
√

I 2 + 4'2n

)n

≈ lim
n→∞

(
1 − k2

I 2n

)n

≈ e−k2=I2
: (22)

Thus, truncation selection can support a mutation rate of ' = 1=n. This mutation rate
we have recommended earlier [7]. We will now introduce mutation into UMBA in a
concise statistical manner. The technique is called Bayes prior. Usually the empirical
probabilities are computed by the maximum likelihood estimator. For N samples with
m6N instances of x the estimate is de1ned by

p̂(x) =
m
N

:

For m=N we obtain p(x) = 1 and for m= 0 we obtain p(x) = 0. This leads to the gene
1xation problem, because both values are attractors. The 1xation problem is reduced
if p̂(x) is restricted to an interval 0¡pmin6p̂(x)6 1−pmin¡1. This is exactly what
results from the Bayesian estimation. The estimate p̂(x) is the expected value of the
posterior distribution after applying Bayes formula to a prior distribution and the given
data. For binary variables x the estimate

p̂(x) =
m + r
N + 2r

(23)

is used with r¿0. r is derived from a Bayesian prior. r = 1 is the result of the uniform
Bayesian prior. The larger r, the more the estimates tend towards 1

2 . The reader inter-
ested in a derivation of this estimate in the context of Bayesian networks is referred
to [6].

We now incorporate this estimate into UMDA with proportionate selection. The
frequencies are changed as follows:

pi(t + 1) =
ps

i (t)N + r
N + 2r

;

where ps
i (t) is given by Wright’s equation (1). Setting += r=N we obtain

Ipi(t) = pi(t) + pi(t)(1 − pi(t))
@W̃

W̃
+

2+
1 + 2+(

pi(t) − pi(t)(1 − pi(t))
@W̃

W̃

)
+

+
1 + 2+

: (24)

Note that Eq. (24) is quite similar to Eq. (18) if we set the mutation rate ' = +=(1+2+).
The mutation rate is now multiplied by pi(t + 1) instead of pi(t).



156 H. M0uhlenbein, Th. Mahnig / Theoretical Computer Science 287 (2002) 145–165

Table 1
Attractors for di@erent mutation rates, proportionate and tournament selection

Sel. r=N p1 p2 p3 p4 pa
1 pa

2 pa
3 pa

4

Prop 0.02 0.7 0.7 0.3 0.3 0.92 0.93 0.09 0.08
Prop 0.03 0.1 0.1 0.9 0.9 0.89 0.89 0.12 0.13
Prop 0.04 0.1 0.9 0.1 0.9 0.86 0.84 0.16 0.18
Prop 0.04 0.1 0.1 0.9 0.9 0.86 0.83 0.16 0.15
Prop 0.06 0.1 0.1 0.9 0.9 0.82 0.81 0.22 0.31

Tour 0.04 0.1 0.1 0.9 0.9 0.02 0.02 0.97 0.96
Tour 0.06 0.1 0.1 0.9 0.9 0.94 0.94 0.08 0.07
Tour 0.08 0.1 0.1 0.9 0.9 0.92 0.92 0.12 0.12

We are now able to compute the attractors for Wright’s equation, given a Bayes
prior r. The attractors can be computed by setting Ipi = 0. This de1nes a nonlinear
system of four equations. We compute a numerical example by setting r = 20 and
N = 1000. If we assume p1 =p2 and p3 =p4 we obtain three solutions at (0:158871;
0:889656); (0:349797; 0:723039), and (0:932256; 0:0914656). The second solution is un-
stable, so we have two attractors. Next we increase r from 20 to 40. Now we obtain
only one attractor at (0:864838; 0:171577). This attractor is nearby the global opti-
mum! Thus mutation is able to Uatten the multi-modal landscape. This can easily be
concluded from Eq. (24). For +�0 we have a unique attractor at pi = 0:5, for += 0
all local maxima are attractors at the corners.

We compare the analytical results with UMDA simulation runs in Table 1. For a
population size of N = 1000 the coincidence of the analytical results with the simulation
results is very good. We also show numerical results for tournament selection.

Tournament selection can handle a higher mutation rate than proportionate selection.
For r=N = 0:04 we still have an attractor at the smallest local optimum. For r=N = 0:06
this attractor has vanished.

The above investigations will now be used to obtain estimates for the population size
and the mutation rate for tournament selection. From statistical arguments N should be
some multiple of n for large n (i.e. n¿30) [10]. In order to determine r we observe
the following. If r is too low, the attractors are changed only a little. If r is too large,
then the attractor is in the interior, far away from the global optimum. But we do
not want to move the attractors so far into the interior, that it is highly improbable
to generate the optimum. This argument gives our goal. r should be so large that the
attractors are far enough away from the attractors. But the attractor nearby the global
optimum should be near enough, so that the optimum will be generated with certain
probability.

Because it is too diJcult to analytically compute the attractors for each given 1tness
function, we use the result for OneMax. This gives our rule of thumb.

Rule of thumb. For UMDA with tournament or truncation selection use a population
size of N ≈ 3n and a Bayes prior of r = 1=n for a problem of size n.
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6. The replicator equation

In this section we investigate the relation between Wright’s equation and a popular
equation called replicator equation. Replicator dynamics is a standard model in evolu-
tionary biology to describe the dynamics of growth and decay of a number of species
under selection. Let S = {1; 2; : : : ; s} be a set of species, pi the frequency of species i
in a 1xed population of size N . Then the replicator equation is de1ned on a simplex
Ss = {p:

∑
pi = 1; 06pi61}

dpi

dt
= pi(t)

(
fi(p) −

s∑
i=1

pi(t)fi(p)
)

; (25)

fi gives the 1tness of species i in relation to the others. The replicator equation is
discussed in detail in [5]. For the replicator equation a maximum principle can be
shown.

Theorem 5. If there exists a potential V with @V=@pi =fi(p), then dV=dt¿0, i.e. the
potential V increases using the replicator dynamics.

If we want to apply the replicator equation to a binary optimization problem of size
n, we have to set s = 2n. Thus the number of species is exponential in the size of the
problem. The replicator equation can be used for small size problems only.

Voigt [13] had the idea to generalize the replicator equation by introducing con-
tinuous variables 06pi(xk)61 with

∑
k pi(xk) = 1. Thus pi(xk) can be interpreted as

univariate probabilities.

De�nition. The diversi>ed replicator equation DRP is given by

pi(xk)
dt

= pi(xk)
(
fik(p) −

∑
xk

pi(xk)fik(p)
)

: (26)

For n= 1 the pure replicator equation is obtained. The DRP equation can be used as
the dynamic of a binary optimization problem by setting mi = 2 and xk ∈{0; 1}.

Theorem 6. If there exist potentials Vi with @Vi=@pi(xk) =fik(p), then dVi=dt¿0, i.e.
the, potential Vi increases using the replicator dynamics.

Proof. One easily shows that

dVi

dt
=

m∑
k=1

pi(xk)

(
fik(p) −

m∑
j=1

pjfij(p)

)2

¿0: (27)

The conjecture follows from pi(xk)¿0 and
∑

xk pi(xk) = 1.

DRP is a di@erential equation. Voigt [13] proposed the following discrete version.
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De�nition. The discrete diversi>ed replicator equation DDRP is given by

pi(xk)(t + 1) − pi(xk)(t) = pi(xk)(t)
fik(p) −

∑
xk pi(xk)fik(p)∑

xk pi(xk)fik(p)
: (28)

The name discrete diversi1ed replicator equation was not a good choice. The DDRP is
more similar to Wright’s equation than to the replicator equation. This is the content
of the next theorem.

Theorem 7. If the average >tness W (p) is used as potential, then Wright’s equation
and the discrete diversi>ed replicator equation are identical.

Proof. The average 1tness is de1ned as

W (p) = V (p) =
∑
x

ax

n∏
i=1

pi(xi):

We compute the derivatives

@V (p)
@pi(1)

=
∑

x|xi=1
ax

n∏
j �=i

pj(xj);

@V (p)
@pi(0)

=
∑

x|xi=0
ax

n∏
j �=i

pj(xj):

Obviously,

pi(1)
@V

@pi(1)
+ pi(1)

@V
@pi(1)

= V (p):

The conjecture now follows from the proof of Wright’s equation.

We recently discovered that Baum and Eagon [2] have proved a discrete maximum
principle for certain instances of the DDRP.

Theorem 8 (Baum and Eagon [2]). Let V (p) be a polynomial with nonnegative coef-
>cients homogeneous of degree d in its variables pi(xj) with pi(xj)¿0 and

∑
xj pi(xj)

= 1. Let p(t + 1) be the point given by

pi(xj; t + 1) =
pi(xj; t)@V=@pi(xj)∑
xk pi(xk)@V=@pi(xk)

: (29)

The derivatives are taken at p(t). Then V (p(t + 1))¿V (p(t)) unless p(t + 1) = p(t).

Eq. (29) is exactly the DDRP with a potential V . Thus the DDRP could be called
the Baum–Eagon equation. From the above theorem the discrete maximum principle
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for Wright’s equation follows by setting V =W and d= n. Thus the potential is the
average 1tness, which is homogeneous of degree n.

7. The system dynamics approach to optimization

Theorem 8 shows that both, Wright’s equation and the DDRP, maximize some po-
tential. This means that both equations can be used for maximization. But there is a
problem: both equations are deterministic. For diJcult optimization problems, there
exists a huge number of attractors, each with a corresponding attractor region. If the
iteration starts at a point within the attractor region, it will converge to the corre-
sponding attractor at the boundary. But if the iteration starts at points which lie at the
boundary of two or more attractors, i.e. on the separatrix, the iteration will be con1ned
to the separatrix. The deterministic system cannot decide for one of the attractors.

UMDA with a 1nite population does not have a sharp boundary between attractor
regions. We model this behavior by introducing randomness. The new value pi(xj; t+1)
is randomly chosen from the interval

[(1 − c)p′
i(xj; t + 1); (1 + c)p′

i(xj; t + 1)];

where p′
i (xj; t + 1) is determined by the deterministic equation, c is a small number.

For c = 0 we obtain the deterministic equation. In order to use the di@erence equation
optimally, we do not allow the boundary values pi = 0 or pi = 1. We use pi =pmin

and pi = 1 − pmin instead.
A second extension concerns the determination of the solution. All dynamic equations

presented use variables, which can be interpreted as probabilities. Thus instead of
waiting that the dynamic system converges to some boundary point, we terminate the
iteration at a suitable time and generate a set of solutions. Thus, given the values for
pi(xj) we generate points x according to the UMDA distribution p(x) =

∏n
i=1 pi(xi).

We can now formulate a family of optimization algorithms, based on di@erence
equations (DIFFOPT).
DIFFOPT
STEP 0: Set t⇐ 0 and pi(xj; 0) = 0:5 Input pmin.
STEP 1: Compute p′

i (xj; t + 1) according to a dynamic di@erence equation. If
p′

i (xj; t + 1)¡pmin then p′
i (xj; t + 1) =pmin. If p′

i (xj; t + 1)¿1 − pmin then p′
i (xj; t +

1) = 1 − pmin

STEP 2: Compute randomly pi(xj; t + 1) in the interval (1 − c)p′
i (xj; t + 1); (1 +

c)p′
i (xj; t + 1). Set t⇐ t + 1
STEP 3: If termination criteria are not met, go to STEP 1.
STEP 4: Generate N solutions according to p(x; t) =

∏n
i=1 pi(xi; t) and compute

max f(x) and argmax f(x)

DIFFOPT is not restricted to Wright’s equation or DDRP. We propose a third one. Its
rationale is as follows. From the analysis of UMDA we know that Wright’s equation
models proportionate selection. But this method converges very slowly when approach-
ing the boundary. We have not been able to derive dynamic equations for truncation
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selection. Therefore we experimented with a number of faster versions of Wright’s
equation. The following di@erence equation was ultimately chosen.

De�nition. F−Wright(�) (Fast Wright) is de1ned by the following di@erence equation:

pi(xi; t + 1) = pi(xi; t) + sign(diC ) ∗ exp(� ln abs(diC )) (30)

diff = pi(xi; t)
@W̃ =@pi(xi) −

∑
yi∈ P�i

pi(yi; t)@W̃ =@pi(yi)

W̃ (p)
: (31)

If a value outside the interval (pmin ; 1 − pmin) is generated, we just set the value
to the corresponding boundary value of the interval. For � = 1 we obtain Wright’s
equation. We usually set � = 0:5. The reason for this choice is that we wanted a
di@erence equation which resembles as much as possible truncation selection. If we
take the 1tness function OneMax, we obtain for F-Wright(0:5) the di@erence equation

p(t + 1) − p(t) =
√

p(t)(1 − p(t)=(np(t))) =
√

(1 − p(t)=n): (32)

This equation is similar to the approximate equation we have computed for UMDA
with truncation selection. Only the multiplication by p is missing. This means that
F-Wright will normally converge faster than UMDA with truncation selection.

We next evaluate the three di@erence equations with optimization problems.

8. Optimization of binary functions

The DDRP opens the possibility to use an arbitrary potential. If the potential is not
a representation of the average 1tness, Wright’s equation and DDRP are di@erent. We
will demonstrate this with a simple example, a quadratic potential.

Example. V (p) =
∑

ij aijpi(1)pj(0) + c
c is chosen such that V (p)¿0: We make the assumption aii = 0. We obtain

@V
@pi(1)

=
∑
j

aijpj(0);

@V
@pi(0)

=
∑
j

ajipj(1);

Vi(p) = pi(1)
@V

@pi(1)
+ pi(0)

@V
@pi(0)

:

Obviously
∑

i pi(1)
∑

j aijpj(0) =
∑

i pi(0)
∑

j ajipj(1). Therefore we obtain.

Proposition. V (p) = 1=2
∑

i Vi(p) if c is suitably chosen.
The DDRP is given by

Ipi(1) = pi(1)

∑
j �=i aijpj(0) − Vi

Vi + ci
;
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ci has to be chosen that Vi(p)+ci¿0. If we eliminate pi(0) = 1−pi(1) and abbreviate
pi :=pi(1) we obtain

Ipi = pi(1 − pi)

∑
j �=i aij(1 − pj) −

∑
j �=i ajipj

Vi + ci
: (33)

We now determine Wright’s equation for the same problem. This means we have to
1nd a 1tness function, which will give V (p) = W̃ (p).

Example. f(x) =
∑

ij aijxi(1 − xj) + c
c is chosen such that f(x)¿0. We compute W̃ (p) using our lemma

W̃ (p) =
∑
ij

aijpi(1 − pj) + c: (34)

Obviously, W̃ (p) =V (p). Wright’s equation is given by

Ipi = pi(1 − pi)

∑
j �=i aij(1 − pj) −

∑
j �=i ajipj

W̃ (p)
: (35)

We now compare the two di@erence equations. We assume that c = ci = 0 and obtain

Ipi = pi(1 − pi)

∑
j �=i aij(1 − pj) −

∑
j �=i ajipj

W̃ (p)
;

Ipi = pi(1 − pi)

∑
j �=i aij(1 − pj) −

∑
j �=i ajipj

pj
∑

j aij(1 − pj) + (1 − pi)
∑

j ajipj
:

The two di@erence equations di@er in the denominator only. The denominator of DDRP
is normally smaller than the denominator of Wright’s equation. Thus DDRP will con-
verge faster. We will compare three di@erent examples.

Problem 1. ai; i+1 = 1; ai; i−1 = 1. All other values are set to 0.
The two global optima of this problem are 1; 0; 1; 0; : : : and 0; 1; 0; 1; : : : with a 1tness

value of n−1. The 1tness function is symmetric. f(x) and f(Px) have the same 1tness
value. Px is the inverted x string. We have an unstable attractor at pi = 0:5.

Problem 2. ai; i+1 = 1; ai; i−1 = 2; an−1; n−2 = 3 All other values are set to 0.
Here the matrix a is not symmetric. The value an−1; n−2 = 3 deceives the system to

set xn−1 = 1. But the optimal solution is xmax = (0; 1; 0; 1; ::) with xn−1 = 0 for n even.
The optimum 1tness value is 1:5n− 1.

Problem 3. ai; j = 1; j¡i All other values are set to 0.
Here the maximum is xmax = (0; 0; ::0; 1::; 1; 1), i.e. the 1rst half of the bits are 0, the

second half of the bits are 1. For n= 30 the optimal value is 225.

In Table 2, numerical results are displayed. For Problem 1 with n= 30 the optimum
is found at least once by all three methods. On the average one bit is wrong. This
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Table 2
Numerical results (average over 10 runs). The number in brackets gives the number of times a global
optimum has been found

Algorithm Prob. n Iter. Aver. Maximum (S)

Wright 1 30 250 26.1 28.2(2)
DDRP 1 30 70 25.9 27.8(1)
F-Wright(0.5) 1 30 20 25.4 27.6(1)
Wright 1 60 500 52.2 55.6(0)
DDRP 1 60 140 53.3 55.6(0)
F-Wright(0.5) 1 60 20 52.8 54.5(0)

Wright 2 30 60 39.6 43.0(0)
DDRP 2 30 70 39.2 43.1(1)
F-Wright(0.5) 2 30 20 40.3 43.0(0)
Wright 2 60 500 85.2 88.0(0)
DDRP 2 60 50 83.3 87.7(0)
F-Wright(0.5) 2 60 20 85.3 88.0(0)

Wright 3 30 250 216.3 225.0(10)
DDRP 3 30 250 167.4 204.4(00)
F-Wright(0.5) 3 30 20 40.3 225.0(10)

behavior can be understood because of the parallel search and the symmetry of the
problem. For n= 60 we have 3 bits wrong on the average. In problem 2 bit n − 1
is always set to 1 (because of a(n − 1; n − 3) = 3). Therefore the optimum is missed,
which has a 0 at this place. The same behavior is to be observed for n= 60. The
optimum is missed by one point. A large di@erence in the performance can be seen
for Problem 3. Here the results for the more local DDRP are really bad. DDRP is not
able to set the bits correct in the area where all 1 meets all 0. This problem is the
simplest for Wright’s equation and F-Wright.

Taken all three examples together shows that F-Wright(0:5) is the fastest and most
eJcient algorithm.

In Table 3 numerical results for a microscopic algorithm (a genetic algorithm GA)
and UMDA are shown. The results of UMDA with proportionate selection and Wright’s
equation are fairly similar. The results for Problem 2 are left out because they are
similar to Problem 1. Note that no algorithm is able to locate the global optimum
for Problem 1 with size n= 60. For this problem UMDA has to be extended to use
more complex search distributions, which use conditional marginal distributions. The
corresponding algorithm we call the factorized distribution algorithm, FDA [9].

9. Three royal roads to optimization

In this section we will try to classify the di@erent approaches presented. Population
search methods are based on two components at least—selection and reproduction
with variation. In our research we have transformed genetic algorithms to a family
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Table 3
Numerical results for UMDA with proportionate selection (p) and truncation selection (tr) and a genetic
algorithm with uniform crossover (uc) and one-point crossover (1p).

Algorithm Prob. n N Iter. Maximum (S)

UMDA p. 1 30 300 230 27.2(4)
UMDA tr. 1 30 300 90 26.9(2)
GA uc 1 30 300 100 27.4(1)
GA 1p 1 30 300 100 28.0(2)
UMDA p. 1 60 600 400 53.0(0)
UMDA tr. 1 60 600 150 53.3(0)
GA uc 1 60 600 150 55.3(0)
GA 1p 1 60 600 150 58.0(3)

UMDA p. 1 30 300 200 225.0(10)
UMDA tr. 3 30 300 10 225.0(10)
GA uc 3 30 300 30 225.0(10)
GA 1p 3 30 300 30 225.0(10)

of algorithms using search distributions instead of recombination=mutation of strings.
The simplest algorithm of this family is the univariate marginal distribution algorithm
UMDA.

Wright’s equation describes the behavior of UMDA using an in1nite population and
proportionate selection. The equation shows that UMDA does not primarily optimize
the >tness function f(x), but the average >tness of the population W (p) which de-
pends on the continuous marginal frequencies pi(x). Thus the important landscape for
population search is not the landscape de1ned by the 1tness function f(x), but the
landscape de1ned by W (p). In mathematical terms Wright’s equation transforms the
discrete optimization problem into a continuous one. Thus mathematically we can try
to optimize W (p) instead of f(x). This later approach we (and other researcher) call
the system dynamics approach to optimization.

The two components of population based search methods—selection and reproduction
with variation—can work on a microscopic (individual) or a macroscopic (population)
level. The level can be di@erent for selection and reproduction. It is possible to classify
the di@erent approaches according to the level the components work. The following ta-
ble shows three classes of evolutionary algorithms, each with a representative member.

Algorithm Selection Reproduction

Genetic Algorithm microscopic microscopic
UMDA microscopic macroscopic
System Dynamics macroscopic macroscopic

A genetic algorithm uses a population of individuals. Selection and recombination
is done by manipulating individual strings. UMDA uses marginal distributions to cre-
ate individuals. These are macroscopic variables. Selection is done on a population of
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individuals, as genetic algorithms do. In the system dynamics approach selection is
modeled by a speci1c dynamic di@erence equation for macroscopic variables. We be-
lieve that a fourth class—macroscopic selection and microscopic reproduction—makes
no sense.

Each of the approaches have their speci1c pros and cons. Genetic algorithms are
very Uexible, but the standard recombination operator has limited capabilities. UMDA
can use any kind of selection techniques, which is used in genetic algorithm. UMDA be
extended to an algorithm which uses a more complex factorization of the distribution.
This is done by the factorized distribution algorithm FDA. Selection is very diJcult to
model on a macroscopic level. Wright’s equation are valid for proportionate selection
only. Other selection schemes lead to very complicated system dynamics equations.

Thus for proportionate selection and gene pool recombination all methods will behave
similarly. But each of the methods allows extensions which cannot be modelled with
an approach using a di@erent level.

Mathematically especially interesting is the extension of UMDA to PDA with an
adaptive Boltzmann annealing schedule. For this algorithm, convergence for a large
class of discrete optimization problems can be shown. The interested reader is referred
to [9,10].
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