443 research outputs found

    Joint Multi-Pitch Detection Using Harmonic Envelope Estimation for Polyphonic Music Transcription

    Get PDF
    In this paper, a method for automatic transcription of music signals based on joint multiple-F0 estimation is proposed. As a time-frequency representation, the constant-Q resonator time-frequency image is employed, while a novel noise suppression technique based on pink noise assumption is applied in a preprocessing step. In the multiple-F0 estimation stage, the optimal tuning and inharmonicity parameters are computed and a salience function is proposed in order to select pitch candidates. For each pitch candidate combination, an overlapping partial treatment procedure is used, which is based on a novel spectral envelope estimation procedure for the log-frequency domain, in order to compute the harmonic envelope of candidate pitches. In order to select the optimal pitch combination for each time frame, a score function is proposed which combines spectral and temporal characteristics of the candidate pitches and also aims to suppress harmonic errors. For postprocessing, hidden Markov models (HMMs) and conditional random fields (CRFs) trained on MIDI data are employed, in order to boost transcription accuracy. The system was trained on isolated piano sounds from the MAPS database and was tested on classic and jazz recordings from the RWC database, as well as on recordings from a Disklavier piano. A comparison with several state-of-the-art systems is provided using a variety of error metrics, where encouraging results are indicated

    Defining Fundamental Frequency for Almost Harmonic Signals

    Full text link
    In this work, we consider the modeling of signals that are almost, but not quite, harmonic, i.e., composed of sinusoids whose frequencies are close to being integer multiples of a common frequency. Typically, in applications, such signals are treated as perfectly harmonic, allowing for the estimation of their fundamental frequency, despite the signals not actually being periodic. Herein, we provide three different definitions of a concept of fundamental frequency for such inharmonic signals and study the implications of the different choices for modeling and estimation. We show that one of the definitions corresponds to a misspecified modeling scenario, and provides a theoretical benchmark for analyzing the behavior of estimators derived under a perfectly harmonic assumption. The second definition stems from optimal mass transport theory and yields a robust and easily interpretable concept of fundamental frequency based on the signals' spectral properties. The third definition interprets the inharmonic signal as an observation of a randomly perturbed harmonic signal. This allows for computing a hybrid information theoretical bound on estimation performance, as well as for finding an estimator attaining the bound. The theoretical findings are illustrated using numerical examples.Comment: Accepted for publication in IEEE Transactions on Signal Processin

    A Pitch Salience Function Derived from Harmonic Frequency Deviations for Polyphonic Music Analysis

    Get PDF
    In this paper, a novel approach for the computation of a pitch salience function is presented. The aim of a pitch (considered here as synonym for fundamental frequency) salience function is to es- timate the relevance of the most salient musical pitches that are present in a certain audio excerpt. Such a function is used in nu- merous Music Information Retrieval (MIR) tasks such as pitch, multiple-pitch estimation, melody extraction and audio features computation (such as chroma or Pitch Class Profiles). In order to compute the salience of a pitch candidate f , the classical approach uses the weighted sum of the energy of the short time spectrum at its integer multiples frequencies hf. In the present work, we pro- pose a different approach which does not rely on energy but only on frequency location. For this, we first estimate the peaks of the short time spectrum. From the frequency location of these peaks, we evaluate the likelihood that each peak is an harmonic of a given fundamental frequency. The specificity of our method is to use as likelihood the deviation of the harmonic frequency locations from the pitch locations of the equal tempered scale. This is used to cre- ate a theoretical sequence of deviations which is then compared to an observed one. The proposed method is then evaluated for a task of multiple-pitch estimation using the MAPS test-set

    Exploiting correlogram structure for robust speech recognition with multiple speech sources

    Get PDF
    This paper addresses the problem of separating and recognising speech in a monaural acoustic mixture with the presence of competing speech sources. The proposed system treats sound source separation and speech recognition as tightly coupled processes. In the first stage sound source separation is performed in the correlogram domain. For periodic sounds, the correlogram exhibits symmetric tree-like structures whose stems are located on the delay that corresponds to multiple pitch periods. These pitch-related structures are exploited in the study to group spectral components at each time frame. Local pitch estimates are then computed for each spectral group and are used to form simultaneous pitch tracks for temporal integration. These processes segregate a spectral representation of the acoustic mixture into several time-frequency regions such that the energy in each region is likely to have originated from a single periodic sound source. The identified time-frequency regions, together with the spectral representation, are employed by a `speech fragment decoder' which employs `missing data' techniques with clean speech models to simultaneously search for the acoustic evidence that best matches model sequences. The paper presents evaluations based on artificially mixed simultaneous speech utterances. A coherence-measuring experiment is first reported which quantifies the consistency of the identified fragments with a single source. The system is then evaluated in a speech recognition task and compared to a conventional fragment generation approach. Results show that the proposed system produces more coherent fragments over different conditions, which results in significantly better recognition accuracy

    Physical Models for Fast Estimation of Guitar String, Fret and Plucking Position

    Get PDF

    Multiple-F0 estimation of piano sounds exploiting spectral structure and temporal evolution

    Get PDF
    This paper proposes a system for multiple fundamental frequency estimation of piano sounds using pitch candidate selection rules which employ spectral structure and temporal evolution. As a time-frequency representation, the Resonator Time-Frequency Image of the input signal is employed, a noise suppression model is used, and a spectral whitening procedure is performed. In addition, a spectral flux-based onset detector is employed in order to select the steady-state region of the produced sound. In the multiple-F0 estimation stage, tuning and inharmonicity parameters are extracted and a pitch salience function is proposed. Pitch presence tests are performed utilizing information from the spectral structure of pitch candidates, aiming to suppress errors occurring at multiples and sub-multiples of the true pitches. A novel feature for the estimation of harmonically related pitches is proposed, based on the common amplitude modulation assumption. Experiments are performed on the MAPS database using 8784 piano samples of classical, jazz, and random chords with polyphony levels between 1 and 6. The proposed system is computationally inexpensive, being able to perform multiple-F0 estimation experiments in realtime. Experimental results indicate that the proposed system outperforms state-of-the-art approaches for the aforementioned task in a statistically significant manner. Index Terms: multiple-F0 estimation, resonator timefrequency image, common amplitude modulatio

    Estimation of Guitar String, Fret and Plucking Position Using Parametric Pitch Estimation

    Get PDF

    Multi-Pitch Estimation Exploiting Block Sparsity

    Get PDF
    We study the problem of estimating the fundamental frequencies of a signal containing multiple harmonically related sinusoidal components using a novel block sparse signal representation. An efficient algorithm for solving the resulting optimization problem is devised exploiting a novel variable step-size alternating direction method of multipliers (ADMM). The resulting algorithm has guaranteed convergence and shows notable robustness to the f 0 vs f0/2f0/2 ambiguity problem. The superiority of the proposed method, as compared to earlier presented estimation techniques, is demonstrated using both simulated and measured audio signals, clearly indicating the preferable performance of the proposed technique
    • …
    corecore