1,252 research outputs found

    Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained "Hard Faces"

    Full text link
    Large-scale variations still pose a challenge in unconstrained face detection. To the best of our knowledge, no current face detection algorithm can detect a face as large as 800 x 800 pixels while simultaneously detecting another one as small as 8 x 8 pixels within a single image with equally high accuracy. We propose a two-stage cascaded face detection framework, Multi-Path Region-based Convolutional Neural Network (MP-RCNN), that seamlessly combines a deep neural network with a classic learning strategy, to tackle this challenge. The first stage is a Multi-Path Region Proposal Network (MP-RPN) that proposes faces at three different scales. It simultaneously utilizes three parallel outputs of the convolutional feature maps to predict multi-scale candidate face regions. The "atrous" convolution trick (convolution with up-sampled filters) and a newly proposed sampling layer for "hard" examples are embedded in MP-RPN to further boost its performance. The second stage is a Boosted Forests classifier, which utilizes deep facial features pooled from inside the candidate face regions as well as deep contextual features pooled from a larger region surrounding the candidate face regions. This step is included to further remove hard negative samples. Experiments show that this approach achieves state-of-the-art face detection performance on the WIDER FACE dataset "hard" partition, outperforming the former best result by 9.6% for the Average Precision.Comment: 11 pages, 7 figures, to be presented at CRV 201

    Selective Refinement Network for High Performance Face Detection

    Full text link
    High performance face detection remains a very challenging problem, especially when there exists many tiny faces. This paper presents a novel single-shot face detector, named Selective Refinement Network (SRN), which introduces novel two-step classification and regression operations selectively into an anchor-based face detector to reduce false positives and improve location accuracy simultaneously. In particular, the SRN consists of two modules: the Selective Two-step Classification (STC) module and the Selective Two-step Regression (STR) module. The STC aims to filter out most simple negative anchors from low level detection layers to reduce the search space for the subsequent classifier, while the STR is designed to coarsely adjust the locations and sizes of anchors from high level detection layers to provide better initialization for the subsequent regressor. Moreover, we design a Receptive Field Enhancement (RFE) block to provide more diverse receptive field, which helps to better capture faces in some extreme poses. As a consequence, the proposed SRN detector achieves state-of-the-art performance on all the widely used face detection benchmarks, including AFW, PASCAL face, FDDB, and WIDER FACE datasets. Codes will be released to facilitate further studies on the face detection problem.Comment: The first two authors have equal contributions. Corresponding author: Shifeng Zhang ([email protected]

    Web-Scale Training for Face Identification

    Full text link
    Scaling machine learning methods to very large datasets has attracted considerable attention in recent years, thanks to easy access to ubiquitous sensing and data from the web. We study face recognition and show that three distinct properties have surprising effects on the transferability of deep convolutional networks (CNN): (1) The bottleneck of the network serves as an important transfer learning regularizer, and (2) in contrast to the common wisdom, performance saturation may exist in CNN's (as the number of training samples grows); we propose a solution for alleviating this by replacing the naive random subsampling of the training set with a bootstrapping process. Moreover, (3) we find a link between the representation norm and the ability to discriminate in a target domain, which sheds lights on how such networks represent faces. Based on these discoveries, we are able to improve face recognition accuracy on the widely used LFW benchmark, both in the verification (1:1) and identification (1:N) protocols, and directly compare, for the first time, with the state of the art Commercially-Off-The-Shelf system and show a sizable leap in performance

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table
    • …
    corecore