409 research outputs found

    Multi-objective traffic signal optimization using 3D mesoscopic simulation and evolutionary algorithms

    Full text link
    © 2018 Elsevier B.V. Modern cities are currently facing rapid urban growth and struggle to maintain a sustainable development. In this context, “eco-neighbourhoods” became the perfect place for testing new innovative ideas that would reduce congestion and optimize traffic flow. The main motivation of this work is a true and stated need of the Department of Transport in Nancy, France, to improve the traffic flow in a central eco-neighbourhood currently under reconfiguration, reduce travel times and test various traffic control scenarios for a better interconnectivity between urban intersections. Therefore, this paper addresses a multi-objective simulation-based signal control problem through the case study of “Nancy Grand CƓur” (NGC) eco-neighbourhood with the purpose of finding the optimal traffic control plan to reduce congestion during peak hours. Firstly, we build the 3D mesoscopic simulation model of the most circulated intersection (C129) based on specifications from the traffic management centre. The simulation outputs from various scenario testing will be then used as inputs for the optimisation and comparative analysis modules. Secondly, we propose a multi-objective optimization method by using evolutionary algorithms and find the optimal traffic control plan to be used in C129 during morning and evening rush hours. Lastly, we take a more global view and extend the 3D simulation model to three other interconnected intersections, in order to analyse the impact of local optimisation on the surrounding traffic conditions in the eco-neighbourhood. The current proposed simulation-optimisation framework aims at supporting the traffic engineering decision-making process and the smart city dynamic by favouring a sustainable mobility

    Multi-objective Optimization in Traffic Signal Control

    Get PDF
    Traffic Signal Control systems are one of the most popular Intelligent Transport Systems and they are widely used around the world to regulate traffic flow. Recently, complex optimization techniques have been applied to traffic signal control systems to improve their performance. Traffic simulators are one of the most popular tools to evaluate the performance of a potential solution in traffic signal optimization. For that reason, researchers commonly optimize traffic signal timing by using simulation-based approaches. Although evaluating solutions using microscopic traffic simulators has several advantages, the simulation is very time-consuming. Multi-objective Evolutionary Algorithms (MOEAs) are in many ways superior to traditional search methods. They have been widely utilized in traffic signal optimization problems. However, running MOEAs on traffic optimization problems using microscopic traffic simulators to estimate the effectiveness of solutions is time-consuming. Thus, MOEAs which can produce good solutions at a reasonable processing time, especially at an early stage, is required. Anytime behaviour of an algorithm indicates its ability to provide as good a solution as possible at any time during its execution. Therefore, optimization approaches which have good anytime behaviour are desirable in evaluation traffic signal optimization. Moreover, small population sizes are inevitable for scenarios where processing capabilities are limited but require quick response times. In this work, two novel optimization algorithms are introduced that improve anytime behaviour and can work effectively with various population sizes. NS-LS is a hybrid of Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a local search which has the ability to predict a potential search direction. NS-LS is able to produce good solutions at any running time, therefore having good anytime behaviour. Utilizing a local search can help to accelerate the convergence rate, however, computational cost is not considered in NS-LS. A surrogate-assisted approach based on local search (SA-LS) which is an enhancement of NS-LS is also introduced. SA-LS uses a surrogate model constructed using solutions which already have been evaluated by a traffic simulator in previous generations. NS-LS and SA-LS are evaluated on the well-known Benchmark test functions: ZDT1 and ZDT2, and two real-world traffic scenarios: Andrea Costa and Pasubio. The proposed algorithms are also compared to NSGA-II and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D). The results show that NS-LS and SA-LS can effectively optimize traffic signal timings of the studied scenarios. The results also confirm that NS-LS and SA-LS have good anytime behaviour and can work well with different population sizes. Furthermore, SA-LS also showed to produce mostly superior results as compared to NS-LS, NSGA-II, and MOEA/D.Ministry of Education and Training - Vietna

    Planning UAV Activities for Efficient User Coverage in Disaster Areas

    Get PDF
    Climate changes brought about by global warming as well as man-made environmental changes are often the cause of sever natural disasters. ICT, which is itself responsible for global warming due to its high carbon footprint, can play a role in alleviating the consequences of such hazards by providing reliable, resilient means of communication during a disaster crisis. In this paper, we explore the provision of wireless coverage through UAVs (Unmanned Aerial Vehicles) to complement, or replace, the traditional communication infrastructure. The use of UAVs is indeed crucial in emergency scenarios, as they allow for the quick and easy deployment of micro and pico cellular base stations where needed. We characterize the movements of UAVs and define an optimization problem to determine the best UAV coverage that maximizes the user throughput, while maintaining fairness across the different parts of the geographical area that has been affected by the disaster. To evaluate our strategy, we simulate a flooding in San Francisco and the car traffic resulting from people seeking safety on higher ground

    A genetic programming system with an epigenetic mechanism for traffic signal control

    Get PDF
    Traffic congestion is an increasing problem in most cities around the world. It impacts businesses as well as commuters, small cities and large ones in developing as well as developed economies. One approach to decrease urban traffic congestion is to optimize the traffic signal behaviour in order to be adaptive to changes in the traffic conditions. From the perspective of intelligent transportation systems, this optimization problem is called the traffic signal control problem and is considered a large combinatorial problem with high complexity and uncertainty. A novel approach to the traffic signal control problem is proposed in this thesis. The approach includes a new mechanism for Genetic Programming inspired by Epigenetics. Epigenetic mechanisms play an important role in biological processes such as phenotype differentiation, memory consolidation within generations and environmentally induced epigenetic modification of behaviour. These properties lead us to consider the implementation of epigenetic mechanisms as a way to improve the performance of Evolutionary Algorithms in solution to real-world problems with dynamic environmental changes, such as the traffic control signal problem. The epigenetic mechanism proposed was evaluated in four traffic scenarios with different properties and traffic conditions using two microscopic simulators. The results of these experiments indicate that Genetic Programming was able to generate competitive actuated traffic signal controllers for all the scenarios tested. Furthermore, the use of the epigenetic mechanism improved the performance of Genetic Programming in all the scenarios. The evolved controllers adapt to modifications in the traffic density and require less monitoring and less human interaction than other solutions because they dynamically adjust the signal behaviour depending on the local traffic conditions at each intersection

    The Real Deal: A Review of Challenges and Opportunities in Moving Reinforcement Learning-Based Traffic Signal Control Systems Towards Reality

    Full text link
    Traffic signal control (TSC) is a high-stakes domain that is growing in importance as traffic volume grows globally. An increasing number of works are applying reinforcement learning (RL) to TSC; RL can draw on an abundance of traffic data to improve signalling efficiency. However, RL-based signal controllers have never been deployed. In this work, we provide the first review of challenges that must be addressed before RL can be deployed for TSC. We focus on four challenges involving (1) uncertainty in detection, (2) reliability of communications, (3) compliance and interpretability, and (4) heterogeneous road users. We show that the literature on RL-based TSC has made some progress towards addressing each challenge. However, more work should take a systems thinking approach that considers the impacts of other pipeline components on RL.Comment: 26 pages; accepted version, with shortened version published at the 12th International Workshop on Agents in Traffic and Transportation (ATT '22) at IJCAI 202

    Numerical Computation, Data Analysis and Software in Mathematics and Engineering

    Get PDF
    The present book contains 14 articles that were accepted for publication in the Special Issue “Numerical Computation, Data Analysis and Software in Mathematics and Engineering” of the MDPI journal Mathematics. The topics of these articles include the aspects of the meshless method, numerical simulation, mathematical models, deep learning and data analysis. Meshless methods, such as the improved element-free Galerkin method, the dimension-splitting, interpolating, moving, least-squares method, the dimension-splitting, generalized, interpolating, element-free Galerkin method and the improved interpolating, complex variable, element-free Galerkin method, are presented. Some complicated problems, such as tge cold roll-forming process, ceramsite compound insulation block, crack propagation and heavy-haul railway tunnel with defects, are numerically analyzed. Mathematical models, such as the lattice hydrodynamic model, extended car-following model and smart helmet-based PLS-BPNN error compensation model, are proposed. The use of the deep learning approach to predict the mechanical properties of single-network hydrogel is presented, and data analysis for land leasing is discussed. This book will be interesting and useful for those working in the meshless method, numerical simulation, mathematical model, deep learning and data analysis fields

    Modelling mixed autonomy traffic networks with pricing and routing control

    Full text link
    Connected and automated vehicles (CAVs) are expected to change the way people travel in cities. Before human-driven vehicles (HVs) are completely phased out, the urban traffic flow will be heterogeneous of HVs, CAVs, and public transport vehicles commonly known as mixed autonomy. Mixed autonomy networks are likely to be made up of different route choice behaviours compared with conventional networks with HVs only. While HVs are expected to continue taking individually and selfishly selected shortest paths following user equilibrium (UE), a set of centrally controlled AVs could potentially follow the system optimal (SO) routing behaviour to reduce the selfish and inefficient behaviour of UE-seeking HVs. In this dissertation, a mixed equilibrium simulation-based dynamic traffic assignment (SBDTA) model is developed in which two classes of vehicles with different routing behaviours (UE-seeking HVs and SO-seeking AVs) are present in the network. The dissertation proposes a joint routing and incentive-based congestion pricing scheme in which SO-seeking CAVs are exempt from the toll while UE-seeking HVs have their usual shortest-path routing decisions are subject to a spatially differentiated congestion charge. This control strategy could potentially boost market penetration rate of CAVs while encouraging them to adopt SO routing behaviour and discouraging UE-seeking users from entering congested areas. The dissertation also proposes a distance-based time-dependent optimal ratio control scheme (TORCS) in which an optimal ratio of CAVs is identified and selected to seek SO routing. The objective of the control scheme is to achieve a reasonable compromise between the system efficiency (i.e., total travel time savings) and the control cost that is proportional to the total distance travelled by SO-seeking AVs. The proposed modelling frameworks are then extended to bi-modal networks considering three competing modes (bus, SO-seeking CAVs, and UE-seeking HVs). A nested logit-based mode choice model is applied to capture travellers’ preferences toward three available modes and elasticity in travel demand. A dynamic transit assignment model is also deployed and integrated into the mixed equilibrium SBDTA model to generate equilibrium traffic flow under different scenarios. The applicability and performance of the proposed models are demonstrated on a real large-scale network of Melbourne, Australia. The research outcomes are expected to improve the performance of mixed autonomy traffic networks with optimal pricing and routing control

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link
    • 

    corecore