826 research outputs found

    MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm

    Get PDF
    The Extension Of Estimation Of Distribution Algorithms (Edas) To The Multiobjective Domain Has Led To Multi-Objective Optimization Edas (Moedas). Most Moedas Have Limited Themselves To Porting Single-Objective Edas To The Multi-Objective Domain. Although Moedas Have Proved To Be A Valid Approach, The Last Point Is An Obstacle To The Achievement Of A Significant Improvement Regarding "Standard" Multi-Objective Optimization Evolutionary Algorithms. Adapting The Model-Building Algorithm Is One Way To Achieve A Substantial Advance. Most Model-Building Schemes Used So Far By Edas Employ Off-The-Shelf Machine Learning Methods. However, The Model-Building Problem Has Particular Requirements That Those Methods Do Not Meet And Even Evade. The Focus Of This Paper Is On The Model- Building Issue And How It Has Not Been Properly Understood And Addressed By Most Moedas. We Delve Down Into The Roots Of This Matter And Hypothesize About Its Causes. To Gain A Deeper Understanding Of The Subject We Propose A Novel Algorithm Intended To Overcome The Draw-Backs Of Current Moedas. This New Algorithm Is The Multi-Objective Neural Estimation Of Distribution Algorithm (Moneda). Moneda Uses A Modified Growing Neural Gas Network For Model-Building (Mb-Gng). Mb-Gng Is A Custom-Made Clustering Algorithm That Meets The Above Demands. Thanks To Its Custom-Made Model-Building Algorithm, The Preservation Of Elite Individuals And Its Individual Replacement Scheme, Moneda Is Capable Of Scalably Solving Continuous Multi-Objective Optimization Problems. It Performs Better Than Similar Algorithms In Terms Of A Set Of Quality Indicators And Computational Resource Requirements.This work has been funded in part by projects CNPq BJT 407851/2012-7, FAPERJ APQ1 211.451/2015, MINECO TEC2014-57022-C2-2-R and TEC2012-37832-C02-01

    MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms

    Get PDF
    We examine the model-building issue related to multi-objective estimation of distribution algorithms (MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs unviable when addressing optimization problems with many objectives. We propose a novel model-building growing neural gas (MB-GNG) network that is specially devised for properly dealing with that issue and therefore yields a better performance. Experiments are conducted in order to show from an empirical point of view the advantages of the new algorithm.assigned to this paper for their comments and suggestions. They helped to substantially improve the paper. They also wish to thank Prof. Elisenda Molina for her assistance in the preparation of the manuscript. LM, JG, AB and JMM were supported by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM CONTEXTS S2009/TIC-1485 and DPS2008-07029- C02-02. CACC was supported by CONACyT project 103570.Publicad

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Real-valued evolutionary multi-modal multi-objective optimization by hill-valley clustering

    Get PDF
    In model-based evolutionary algorithms (EAs), the underlying search distribution is adapted to the problem at hand, for example based on dependencies between decision variables. Hill-valley clustering is an adaptive niching method in which a set of solutions is clustered such that each cluster corresponds to a single mode in the fitness landscape. This can be used to adapt the search distribution of an EA to the number of modes, exploring each mode separately. Especially in a black-box setting, where the number of modes is a priori unknown, an adaptive approach is essential for good performance. In this work, we introduce multi-objective hill-valley clustering and combine it with MAMaLGaM, a multi-objective EA, into the multi-objective hill-valley EA (MO-HillVallEA). We empirically show that MO-HillVallEA outperforms MAMaLGaM and other well-known multi-objective optimization algorithms on a set of benchmark functions. Furthermore, and perhaps most important, we show that MO-HillVallEA is capable of obtaining and maintaining multiple approximation sets simultaneously over time
    • …
    corecore