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a b s t r a c t

We examine the model-building issue related to multi-objective estimation of distribution algorithms 
(MOEDAs) and show that some of their, as yet overlooked, characteristics render most current MOEDAs 
unviable when addressing optimization problems with many objectives. We propose a novel model-
building growing neural gas (MB-GNG) network that is specially devised for properly dealing with that 
issue and therefore yields a better performance. Experiments are conducted in order to show from an 
empirical point of view the advantages of the new algorithm.

1. Introduction

Most human endeavors involve the creation of artifacts with
properties that must be tuned to be as efficient as possible. This
fact has prompted the creation of a number of interrelated research

y (expressed as x ≺ y) iff ∀fj, fj(x) ≤ fj(y) and ∃fi such that
fi(x) < fi(y).

Definition 2 (Non-Dominated Subset). In problem (1) and having
the set A ⊆ S. Â, the non-dominated subset of A, is defined as
areas like optimization, mathematical programming, operational
research and decision-making. Although these areas share some
of their goals, each of them differs from the others in the
approaches put forward by their respective communities and the
characteristics of the problems they deal with.

Many real-world optimization problems involvemore than one
goal to be optimized. This type of problems is known as multi-
objective optimization problems (MOPs). A MOP can be expressed
as the problem in which a set of objective functions f1(x), . . . , fM(x)
should be jointly optimized;

min F(x) = ⟨f1(x), . . . , fM(x)⟩; x ∈ S; (1)

where S ⊆ Rn is known as the feasible set and could be expressed
as a set of restrictions over the decision set, Rn. The image set of
S produced by function vector F(·), O ⊆ RM , is called feasible
objective set or criterion set.

The solution to this type of problem is a set of trade-off points.
The optimality of a solution can be expressed in terms of the Pareto
dominance relation.

Definition 1 (Pareto Dominance Relation). For the optimization
problem specified in (1) and having x, y ∈ S, x is said to dominate
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Â =

x ∈ A | @ x′

∈ A : x′
≺ x


.

The solution of (1) is Sˆ, the non-dominated subset of S. Sˆ is 
known as the efficient set or Pareto-optimal set [4]. If problem (1) 
has certain characteristics, e.g., linearity or convexity of the 
objective functions or convexity of S, the efficient set can be 
determined by mathematical programming approaches [4]. 
However, in the general case, finding the solution of (1) is an 
NP-complete problem [2]. In this case, heuristic or metaheuristic 
methods can be applied in order to have solutions of practical value 
at an admissible computational cost.

A broad range of heuristic and metaheuristic approaches 
has been used to address MOPs [4]. Of these, multi-objective 
evolutionary algorithms (MOEAs) [5] have been found to be a 
competent approach in a wide variety of application domains. 
Their main advantages are ease of use, inherent parallel search 
and lower susceptibility to the shape or continuity of the image 
of the efficient set, compared with traditional mathematical 
programming techniques for multi-objective optimization [4].

There is a class of MOPs that are particularly appealing because 
of their inherent complexity: the so-called many-objective prob-
lems. These are problems with a relatively large number of 
objectives (normally, four or more). Although somewhat counter-
intuitive and hard to visualize for a human decision maker, these 
problems are not uncommon in real-life engineering practice. For 
example, [14] details some relevant real problems of this type.
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The scalability issues of traditional MOEAs in these problems
have triggered a sizable amount of research, aiming to provide
alternative approaches that can properly handle many-objective
problems and perform reasonably well.

Estimation of distribution algorithms (EDAs) are one such 
approaches [11]. EDAs have been hailed as a paradigm shift in 
evolutionary computation. They build a model of the population 
instead of applying evolutionary operators. This model is then used 
to synthesize new individuals. EDAs have been extended to the 
multi-objective optimization problem domain as multi-objective 
EDAs (MOEDAs).

AlthoughMOEDAs have yielded some encouraging results, their
introduction has not lived up to a priori expectations. This can be
attributed to a number of different causes. We have recognized
three of them, in particular, those derived from the incorrect
treatment of population outliers; the loss of population diversity,
and that too much computational effort is being spent on finding
an optimal population model.

A number of works have dealt with the issues listed above,
particularly with loss of diversity. Nevertheless, in our opinion, the
community has failed to acknowledge that the underlying cause for
all those problems could, perhaps, be traced back to the algorithms
used for model building in EDAs.

In this paper we examine the model-building issue of current
MOEDAs and show that some of its characteristics, which have
been disregarded so far, render most current approaches unsuit-
able for tackling MOPs. We then propose a novel model-building
algorithm, based on the growing neural gas (GNG) network. This
model-building GNG (MB-GNG) is the main contribution of this
paper. It has been devised with this particular problem in mind,
and therefore addresses the problems of current approaches.

The remainder of this paper is organized as follows. Section 2 
serves as a brief introduction to MOEDAs and the issues present 
in current model-building algorithms. After this, MB-GNG is 
described in Section 4. Then, in Section 5, a comparative study is 
carried out in order to establish from an experimental point of view 
the improvements introduced by MB-GNG with respect to similar 
algorithms. Finally, some conclusive remarks are put forward.

2. Multi-objective estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) are population-
based optimization algorithms that rely on machine learning
methods. The introduction of machine learning implies that these
new algorithms lose the straightforward biological inspiration of
their predecessors. Nonetheless, they gain the capacity of scalably
solving many challenging problems, in some cases significantly
outperforming standard EAs and other optimization techniques.

Most multi-objective EDAs (MOEDAs) consist of a modification
of existing EDAs whose fitness assignment function is substituted
by one taken from an existing MOEA.

In general terms, MOEDAs follow a common algorithmic
scheme. At a given iteration t , a MOEDA has a population Pt of
individuals, each one representing a point in the search space. In
every iteration,Pt elements are ranked according to a given fitness
assignment function. A subset Mt , with the best elements of Pt is
computed. The model-building algorithm relies on Mt to create a
model of the best part of the population. This model is sampled
in order to create new elements which are combined with Pt to
create the population to be used in the next iteration, Pt+1.

A given stopping criterion determines when the optimization
process should be interrupted. When this happens, P̂ , the non-
dominated subset of Pt , is returned as the solution.

Although there are different approaches for determining Mt
and Pt+1, MOEDAs are better characterized by their two main
components, the fitness assignment function and the model-
building algorithm.

Fitness functions have beenmostly taken fromMOEAs. It should
be noted that the Pareto dominance-based approach proposed by
the NSGA-II algorithm is, by far, the most popular in the current
literature.

The model-building algorithm is the kernel of an EDA. There
are two main types of methods for addressing this problem:
those based on graphical models and those based on mixture
distributions.

2.1. Graphical model MOEDAs

Most EDAs based on graphical models rely on Bayesian net-
works. From these, the Bayesian optimization algorithm (BOA) [11] 
is the specific approach that has been extrapolated to the multi-
objective domain. The exhaustive synthesis of a Bayesian network 
from the algorithm’s population is an NP-hard problem [7]. There-
fore, these EDAs must employ heuristic alternatives for build-
ing their networks while keeping the computational cost under 
reasonable margins.

BOA-based MOEDAs combine the Bayesian model-building 
scheme with an already existing Pareto-based fitness assignment. 
This is the case of the multi-objective BOA (mBOA) that exploits 
the fitness assignment used in NSGA-II. Another algorithm based 
on hierarchical BOA (hBOA), called mhBOA, also uses the same 
form of fitness assignment but introduces clustering in the feasible 
objective set. A similar idea is proposed by combining the mixed 
BOA (mBOA) with SPEA2’s selection scheme [5] to form the 
multi-objective mBOA (mmBOA). The multi-objective real BOA 
(MrBOA) [1] also extends a preexisting EDA, namely, the real BOA 
(rBOA). MrBOA combines the fitness assignment of NSGA-II with 
rBOA.

2.2. Mixture distribution MOEDAs

Another approach to modeling the subset with the best 
population elements is to apply a distribution mixture approach. 
Bosman and Thierens [3] proposed several variants of their multi-
objective mixture-based iterated density estimation algorithm 
(MIDEA). They are based on their IDEA framework. They also 
introduced a novel Pareto-based and diversity-preserving fitness 
assignment function. The model construction is inherited from the 
single-objective version. The proposed MIDEAs considered several 
types of probabilistic models for both discrete and continuous 
problems.

MIDEAs do not provide a specific mechanism to ensure equal 
coverage of the Pareto-optimal front if the number of representa-
tives in some parts of the front is much larger than the number 
of representatives in some other parts. The clustering algorithms 
applied for this task include the randomized leader algorithm, 
the k-means algorithm and the expectation maximization (EM) 
algorithm [15].

2.3. Other MOEDA approaches

There are some other approaches for model building. For ex-
ample, the regularity model-based multi-objective estimation of 
distribution algorithm (RM-MEDA) [16] is based on the regular-
ity property derived from the Karush–Kuhn–Tucker condition. Co-
variance matrix adaptation evolution strategies (CMA-ES) [9] have 
been also used in the multi-objective context. CMA-ES consists of 
a method for updating the covariance matrix of the multivariate 
normal mutation distribution used in an evolution strategy. They 
can be viewed as EDAs, as new individuals are sampled according 
to the mutation distribution.
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3. Model-building in the multi-objective case

Regardless of the many efforts at providing usable model-
building methods for EDAs, the nature of the problem itself
has received relatively little attention. Generally, model-building
algorithms are off-the-shelf machine learning methods that were
originally intended for other classes of problems. On the other
hand, the model-building problem has particular requirements
that the above methods do not meet and may even go against.

In this paper we argue that themodel-building problem has not
been properly identified. For this reason, it has been treated like
other previously existing problems overlooking that this problem
has particular requirements. Thismatter did not showup as clearly
in single-objective EDAs. Thanks to the extension to the multi-
objective domain this issue has become more evident, as we will
debate in the remainder of this section.

There are at least three properties of current model-building
approaches that hinder their performance, in particular,

1. the incorrect treatment of data outliers;
2. the loss of population diversity; and
3. the excess of computational effort devoted to finding an optimal

population model.

The data outliers’ issue is a good example of the defective
understanding of the nature of themodel-building problem, and is,
in our opinion the cornerstone for reaching a better understanding
of the problem.

In machine-learning practice, outliers are handled as noisy,
inconsistent or irrelevant data. Therefore, outlying data is expected
to have little influence on the model or it is just disregarded.
However, this behavior is not appropriate for model building. In
this case, it is known beforehand that all elements in the data set
should be taken into account, as they represent newly discovered
or candidate regions of the search space and, therefore, must be
explored. Therefore, these instances should be at least equally
represented by the model and perhaps even reinforced.

Another weakness of most MOEDAs (and most EDAs, for that 
matter) is the loss of population diversity. This is a point that 
has already been made, and some proposals for addressing the 
issue have been laid out [1,13]. This loss of diversity can be traced 
back to the above outliers’ issue of model-building algorithms. 
The repetitive application of an algorithm that disregards outliers 
tends to generate more individuals in areas of the search space 
that are more densely represented. Although there have been some 
proposals to circumvent this problem, we take the view that the 
ultimate solution is the use of an appropriate algorithm.

The third issue to be dealt with is the computational resources
wasted on finding an optimal description for the subpopulation
being modeled. In the model-building case, optimal model
complexity can be sacrificed in the interests of a faster algorithm.
This is because the only constraint is to have a model that is
sufficiently, but not necessarily optimal in terms of complexity, in
order to represent the data in a correct manner.

In conclusion, we can deduce that understanding the nature
of the model-building problem and the application of suitable
algorithms seem to point the way forward in this area.

4. Model-building growing neural gas

Clustering algorithms [15] have been used as part of the 
model-building algorithms of EDAs and MOEDAs. However, as we 
discussed in the previous section, a custom-made algorithm might 
be one of the ways of achieving a significant improvement in this 
field.

The growing neural gas (GNG) network [8] has been chosen 
as a starting point after surveying the literature for suitable
candidates. GNG networks are intrinsic self-organizing neural 
networks based on the neural gas [10] model. The term ‘‘neural 
gas’’ refers to the behavior of the center of the nodes during the 
adaptation process, which distribute themselves like a gas within 
an imaginary container defined by the bounds implicitly given by 
the dataset on which the network is being trained.

Among the vast number of existing clustering methods we
decided to base our approach on GNG because of its interesting
properties, in particular:

• the network has been shown to be sensitive to outliers [12],
something undesirable in typical applications but suitable for
model-building;

• the network adapts its topology automatically to meet the
complexity of the problem being solved;

• it has a fast convergence to low distortion errors and these 
errors are better than those yielded by ‘‘standard’’ algorithms
like k-means clustering, maximum-entropy clustering and 
Kohonen’s self-organizing feature maps [10];

• although it benefits from the topological ordering of the nodes
it does not suffer the problem associated to Kohonen networks,
and;

• the introduction of a novel cluster repulsionmechanism fosters
the exploration of the input space.

Our model-building GNG (MB-GNG) is an extension of the
original GNG. It introduces a cluster repulsion term that fosters 
a better spread of the clusters along the training dataset, as 
explained in [12].

MB-GNG is a one-layer network that defines each class as a local
Gaussian density and adapts them using a local learning rule. The
layer contains a set of nodes C = {c1, . . . , cN∗}, with N0 ≤ N∗

≤

Nmax. Here N0 and Nmax represent initial and maximal number of
nodes in the network. The network receives inputs x ∈ I in its
input set, I. In our case this input set is the decision set: I = Rn.

A node ci describes a local multivariate Gaussian density that
consists of a center, µi, and a standard deviations vector, σ i. It also
has an accumulated error, ξi, and a set of edges that define the set of
topological neighbors of ci, Vi. Each edge has an associated age, νij.

The network is initialized with N0 nodes with their centers
set to randomly chosen inputs. A training iteration starts after an
input x is randomly selected from the training data set. Then, two
nodes are selected for being the closest ones to x. The best-matching
node, cb,

b = arg min
i=1,...,N∗

d

µi, x


,

is the closest node to x. Consequently, the second best-matching
node, cb′ , is determined as

b′
= arg min

i=1,...,N∗;i≠b
d

µi, x


.

Here d (a, b) is a metric, in our case, the Euclidean one.
If cb′ is not a neighbor of cb then a new edge Vb is established

between them, where Vb = Vb ∪ {cb′} with zero age, νbb′ = 0. If,
on the other hand, cb′ ∈ Vb the age of the corresponding edge is
reset to νbb′ = 0.

At this point, the age of all edges is incremented by one. If an
edge is older than the maximum age, νij > νmax, then the edge
is removed. If a node becomes isolated from the rest of the nodes
because no edges connecting it remain, it is also deleted.

The clustering error is then added to the best-matching node
error accumulator,

∆ξb = d

µi, x

2
.

After that, learning takes place in the best-matching node and
its neighbors with rates ϵbest and ϵvic (ϵbest > ϵvic), respectively.
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These two rates control the movement of the centers of the nodes with the covariance matrices Σi defined as a diagonal matrix

involved towards the current input x.

For cb, adaptation follows the rule originally used by GNG,

∆µb = ϵbest

x − µb


.

However, for the neighbors of cb, a cluster repulsion term is
added to the original formulation. This repulsion term avoids
the meaningless concentration of nodes in the data space and
therefore, promotes a proper representation of the data set with
fewer nodes.

Following that, the learning rule for those nodes can be
expressed as, ∀cv ∈ Vb,

∆µv = ϵvic (x − µv) + βe

−

d(µv ,µb)
ζ

 ∑
cu∈Vb

d

µu, µb


|Vb|


µv − µb


d

µv, µb

 .

This approach was already used as part of the robust GNG [12] 
and it has proven itself useful for obtaining a good spread of the 
clusters in the inputs’ space. In the aforementioned work, it was 
stated that the adaptation rule is not sensitive to its parameters. 
We have set them to β = 2 and ζ = 0.1 as suggested in [12].

After a given number, T+, of dataset iterations have taken place,
it can be assumed that there is enough information stored in the
error accumulators, ξi. This information is used to determinewhere
to add new nodes to the network. In particular, if the current
iteration is an integer multiple of T+ and the network has not
reached itsmaximumsize (N∗ < Nmax) then a newnode is inserted
in the network.

First, the node with the largest error, ce, is selected. Then,
the worst node among its neighbors, ce′ , is located. Then N∗ is
incremented and the new node, cN∗ , is inserted between the two
nodes,

µN∗ = 0.5

µe + µe′


; ξN∗ = 0.5(ξe + ξe′).

The edge between ce and ce′ is removed and two new edges
connecting cN∗ with ce and ce′ are created. The accumulated errors
are decreased

ξe = δIξe, ξe′ = δIξe′ ,

by a rate 0 ≤ δI ≤ 1. Finally, the errors of all nodes are decreased
by a factor δG,

ξi = δGξi, i = 1, . . . ,N∗.

The algorithm stops after a learning epoch if the standard
deviation of the accumulated errors is smaller than a certain
threshold, ρ, 1

N∗

N∗−
i=1

(ξi − ξ)2 < ρ.

This means that it will stop when the outliers are as well
represented as possible.

After training has ended the deviations, σ i, of the nodesmust be
computed. For this task we employ the unbiased normal estimator
of the deviations. The local Gaussian densities resulting from the
described algorithm can be combined to synthesize the Gaussian
mixture with parameters Θ,

P (x|Θ) =
1
N∗

N∗−
i=1

P

x|µi, σ i


.

Each Gaussian density is formulated as

P

x|µi, σ i


=

1
(2π)n/2|Σi|

1/2

× exp


−
1
2


x − µi

⊤
Σ−1

i (x − µi)


,

with its non-zero elements set to the values of the deviations
σ i. The Gaussian mixture can be used by the EDA to generate
new individuals. These new individuals are created by sampling
P (x|Θ).

5. Experimental study

A comprehensive comparative study is essential in order
to verify that the novel MB-GNG actually yields a substantial
improvement. In these experiments we compare MB-GNG and
some of the alternative model-building algorithms under a
common EDA framework like the one presented in Section 2.
The model-building algorithms that also take part in the tests
are: Bayesian networks, as used in MrBOA; randomized leader
algorithm, k-means algorithm and EM algorithm, as described for
MIDEAs; (1 + λ)-CMA-ES as described in [9]; and the original
GNG. Furthermore, the NSGA-II and SPEA2 MOEAs were also
involved in the experiments in order to provide a baseline for
the comparisons. The performance of each algorithm is assessed
in terms of approximation to the Pareto-optimal front and the
computational cost of each one.

Six well-known community-accepted problems are addressed: 
the WFG4 to WFG9 problems [5]. These problems pose different 
classes of challenges, like local-optima, parameter-bias, uni- and 
multi-modality, etc., to the optimizer. See the corresponding paper 
for a full description of each one. Each problem is configured with 
3, 5, 7 and 9 objective functions. For all cases, the decision space 
dimension was set at 15. All the algorithms were executed 30 times 
for each problem/dimension pair.

The quality of the solutions is determined by the use of the 
hypervolume indicator [5]. This is the only indicator that has the 
properties of a metric and the only to be strictly Pareto monotonic. 
However, it must be noted that there are other alternatives.

Statistical hypotheses tests have to be applied to establish 
the validity of the results. For this, we perform a Kruskal–Wallis 
test [6] with the indicator values yielded by each algorithm’s run 
for each problem/dimension combination. In the context of these 
experiments, the null hypothesis for the test was that all algo-
rithms were equally capable of solving the problem. If the null 
hypothesis was rejected, which was the case in all the experi-
mental instances, the Conover–Inman procedure [6, pp. 288–290] 
was applied in a pairwise manner to determine if the results of 
one algorithm were significantly better than those of the other. A 
significance level, α, of 0.05 was used for all the tests.

Understanding these results in a one-by-one basis is rather
cumbersome as it implies cross-examining and comparing the
results presented separately and would require larger amounts
of space and effort. That is why we decided to adopt a more
integrative representation.

That is, for a given set of algorithms A1, . . . , AK , a set of P test
problem instances Φ1,m, . . . , ΦP,m, configured with m objectives,
the function δ(·) is defined as

δ

Ai, Aj, Φp,m


=


1 if Ai ≫ Aj solving Φp,m
0 in other case,

where the relation Ai ≫ Aj defines if Ai is significantly better than
Aj when solving the problem instance Φp,m, as computed by the
statistical tests previously described.

Relying on δ(·), the performance index Pp,m(Ai) of a given
algorithm Ai when solving Φp,m is then computed as

Pp,m (Ai) =

K−
j=1;j≠i

δ

Ai, Aj, Φp,m


.
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(a) Pp (), mean values for each problem. (b). Pm (), mean values for each dimension.

Fig. 1. Mean values of the performance index across the different problems and objective space dimensions. Algorithms involved are the leader algorithm (Ldr), the k-means
(k-ms), EM, Bayesian networks (Bays), CMA-ES (CMA), GNG and the model-building GNG (MBG). NSGA-II (NSII) and SPEA2 (SPE2) are also included for comparison reasons.

Fig. 2. Progression of the mean floating-point CPU operations used by the model-
building algorithms as the objective space dimension increases. For each algorithm 
four points are plotted corresponding to M = {3, 5, 7, 9}. See Fig. 1 for a description 
of the acronyms.

This index intends to summarize the performance of each
algorithm with regard to its peers.

Fig. 1 exhibits the results computing the performance indexes. 
Fig. 1(a) represents the mean performance indexes yielded by 
each algorithm when solving each problem in all of its configured 
objective dimensions,

Pp (Ai) =
1

|M|

−
m∈M

Pp,m (Ai) ; M = {3, 5, 7, 9} .

It is worth noticing that GNG and, particularly, MB-GNG have
better overall results than the other algorithms. It is some-
what unexpected that the randomized leader and the k-means
algorithms do not have a very good overall performance for some
problems, like WFG5 and WFG7 for the randomized leader and
WFG8 and WFG9 for k-means. A possible hypothesis is that these
results may be biased by the three-objective problems, where
there are sizable differences comparedwith the results of the other
dimensions.

This situation is clarified in Fig. 1(b), which presents the mean 
values of the index computed for each dimension,

Pm (Ai) =
1
P

P−
p=1

Pp,m (Ai) .

In this representation, it becomes noticeable that MB-GNG
outperforms the other approaches in dimensions larger than three,
with the exception of the nine objectives case, inwhich the original
GNG outperforms MB-GNG.

Another key issue when dealing with high-dimensional prob-
lems is the computational cost of the algorithms. One simple way 
of inspecting this point is to compute the number of CPU opera-
tions dedicated to model building in each case. Fig. 2 summarizes 
these results. NSGA-II and SPEA2 are not included in the analysis,

since they do not performanymodel building. Themain conclusion
in this case is that MB-GNG requires more or less the same amount
of resources to yield better results than the other approaches.
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