2 research outputs found

    Spatiotemporal brain dynamics induced by propofol and ketamine in humans

    Get PDF
    Human brain dynamics are radically altered under the influence of anaesthetics. However, despite their widespread clinical use, the whole-brain mechanisms by which anaesthetics alter consciousness are still not fully understood and clinical translation of existing insights is limited. This thesis presents several lines of investigation aimed to improve our understanding of spatiotemporal brain states under the anaesthetics propofol and ketamine. First, slow-wave activity saturation (SWAS) was studied across the brain and in relation to existing depth of anaesthesia markers. Local propofol concentration needed to achieve SWAS in healthy volunteers correlated with GABA-A receptor density (Spearman ρ=-0.69, P=0.0018), providing more evidence for the importance of the neurophysiological state of SWAS. The average Bispectral Index at SWAS across volunteers was 49±4, but its value varied significantly over time. Second, relevant cortico-cardiac interactions were studied. A slow propofol infusion increased heart rate in a dose-dependent manner (increase of +4.2±1.5 bpm / (μg ml-1), P<0.001). Individual cortical slow waves were coupled to the heartbeat (P<0.001), with heartbeat incidence peaking about 450ms before slow-wave onset. A ketamine case study showed decreased amplitude of heartbeat-evoked potentials, suggesting impaired interoceptive signalling may have a part in dissociative phenomenology. Third, novel methodology was developed, validated, and applied throughout the thesis. Iterated Masking Empirical Mode Decomposition was used to identify three types of low-frequency propofol waves with different spatiotemporal maps and dose-responses. Hidden Markov Modelling of propofol showed a shift to anterior alpha states and a reduced switching rate (P<0.01); with ketamine states exhibiting low alpha power and decreased connectivity became more prominent (P<0.001). Fourth, the potential of translating electroencephalographic markers from high- to low- density montages was studied. Posterior montages were best at capturing the reduced state switching under propofol. A patient study of antidepressant ketamine treatment demonstrated reduced temporal lobe alpha and theta power were associated with dissociation (P=0.0109)

    P300-Based Brain-Computer Interface Channel Selection using Swarm Intelligence

    Full text link
    [ES] Los sistemas Brain-Computer Interface (BCI) se definen como sistemas de comunicación que monitorizan la actividad cerebral y traducen determinadas características, correspondientes a las intenciones del usuario, en comandos de control de un dispositivo. La selección de canales en los sistemas BCI es fundamental para evitar el sobre-entrenamiento del clasificador, reducir la carga computacional y aumentar la comodidad del usuario. A pesar de que se han desarrollado varios algoritmos con anterioridad para tal fin, las metaheurísticas basadas en inteligencia de enjambre aún no han sido suficientemente explotadas en los sistemas BCI basados en potenciales P300. En este estudio se muestra una comparativa entre cinco métodos de enjambre, basados en el comportamiento de sistemas biológicos, aplicados con el objetivo de optimizar la selección de canales en este tipo de sistemas. Los métodos se han evaluado sobre la base de datos de la “III BCI Competition 2005”, reportando precisiones similares o, en algunos casos, incluso más altas que las obtenidas sin realizar ningún tipo de selección. Dado que los cinco métodos se han demostrado capaces de disminuir drásticamente los 64 canales originales a menos de la mitad sin comprometer el rendimiento del sistema, así como de superar el conjunto típico de 8 canales y el método backward elimination, se concluye que todos ellos son adecuados para su aplicación en la selección de canales en sistemas P300-BCI.[EN] Brain-Computer Interfaces (BCI) are direct communication pathways between the brain and the environment that translate certain features, which correspond to users’ intentions, into device control commands. Channel selection in BCI systems is essential to avoid over-fitting, to reduce the computational cost and to increase the users’ comfort. Although several algorithms have previously developed for that purpose, metaheuristics based on swarm intelligence have not been exploited yet in P300-based BCI systems. In this study, a comparative among five different swarm methods, based on the behavior of biological systems, is shown. Those methods have been applied in order to optimize the channel selection procedure in this kind of systems, and have been tested with the ‘III BCI Competition 2005’ database II. Results show that the five methods can achieve similar or even higher accuracies than that obtained without performing any channel selection procedure. Owing to the fact that all the applied methods are able to drastically reduce the required number of channels without compromising the system performance, as well as to overcome the common 8-channel set and the backward elimination algorithm, we conclude that all of them are suitable for use in the P300-BCI systems channel selection procedure.Este estudio se ha financiado parcialmente mediante el proyecto TEC2014-53196-R del Ministerio de Economía y Competitividad (MINECO) y FEDER, y el proyecto VA037U16 de la Consejería de Educación de la Junta de Castilla y León. V. Martínez-Cagigal se encuentra financiado por un contrato de “Promocion de Empleo Joven e Implantación de la Garantía Juvenil del MINECO y la Universidad de Valladolid.Martínez-Cagigal, V.; Hornero, R. (2017). Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre. Revista Iberoamericana de Automática e Informática industrial. 14(4):372-383. https://doi.org/10.1016/j.riai.2017.07.003OJS372383144Bhattacharjee, K. K., Sarmah, S. P., 2015. A binary firefly algorithm for knapsack problems. En: 2015 Int. Conf. Ind. Eng. Eng. Manag. pp. 73-77. DOI: 10.1109/IEEM.2015.7385611Blankertz, B., Muller, K.-R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., Pfurtscheller ¨ , G., Millan, ' J. D. R., Schroder ¨ , M., Birbaumer, N., 2006. The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2), 153-159. DOI: 10.1109/TNSRE.2006.875642Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm intelligence: from natural to artificial systems. Oxford University Press. DOI: 10.1007/s13398-014-0173-7.2Brownlee, J., 2011. Clever Algorithms: Nature-Inspired Programming Recipes, 2nd Edition. DOI: 10.1017/CBO9781107415324.004Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Bertrand, O., Maby, E., Mattout, J., 2011. A robust sensor-selection method for P300 brain-computer interfaces. J. Neural Eng. 8 (1), 016001. DOI: 10.1088/1741-2560/8/1/016001Clerc, M., Kennedy, J., 2002. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput. 6 (1), 58-73. DOI: 10.1109/4235.985692Colwell, K. A., Ryan, D. B., Throckmorton, C. S., Sellers, E. W., Collins, L. M., 2014. Channel selection methods for the P300 Speller. J. Neurosci. Methods 232, 6-15. DOI: 10.1016/j.jneumeth.2014.04.009Dorigo, M., Di Caro, G., 1999. The Ant Colony Optimization Meta-Heuristic. New Ideas Optim. 2, 11-32. DOI: 10.1109/CEC.1999.782657Dorigo, M., Stutzle, ¨ T., 2004. Ant Colony Optimization. The MIT press.Farwell, L. A., Donchin, E., 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70 (6), 510-523. DOI: 10.1016/0013-4694(88)90149-6Gonzalez, A., Nambu, I., Hokari, H., Iwahashi, M., Wada, Y., 2013. Towards the classification of single-trial event-related potentials using adapted wavelets and particle swarm optimization. Proc. - 2013 IEEE Int. Conf. Syst. Man, Cybern. SMC 2013, 3089-3094. DOI: 10.1109/SMC.2013.527Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3 (3), 1157-1182. DOI: 10.1016/j.aca.2011.07.027Jin, J., Allison, B. Z., Brunner, C., Wang, B., Wang, X., Zhang, J., Neuper, C., Pfurtscheller, G., 2010. P300 Chinese input system based on Bayesian LDA. Biomed. Tech. 55 (1), 5-18. DOI: 10.1515/BMT.2010.003Jobson, J. D., 1991. Applied multivariate data analysis. Volume I: Regression and Experimental Design, 4th Edition. Vol. 1. Springer.Karaboga, D., 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Tech. rep., Erciyes University.Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., 2014. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42 (1), 21-57. DOI: 10.1007/s10462-012-9328-0Kee, C.-Y., Ponnambalam, S., Loo, C.-K., 2015. Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161, 120-131. DOI: 10.1016/j.neucom.2015.02.057Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE Int. Conf. 4, 1942-1948 vol.4. DOI: 10.1109/ICNN.1995.488968Kennedy, J., Eberhart, R., 1997. A Discrete Binary Version of the Particle Swarm Algorithm. 1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul. 5, 4-8. DOI: 10.1109/ICSMC.1997.637339Kennedy, J., Eberhart, R. C., Shi, Y., 2001. Swarm Intelligence. Vol. 2. Academic Press. DOI: 10.4249/scholarpedia.1462Kiran, M. S., 2015. The continuous artificial bee colony algorithm for binary optimization. Appl. Soft Comput. J. 33, 15-23. DOI: 10.1016/j.asoc.2015.04.007Konak, A., Coit, D. W., Smith, A. E., 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91 (9), 992-1007. DOI: 10.1016/j.ress.2005.11.018Kong, M., Tian, P., Kao, Y., 2008. A new ant colony optimization algorithm for the multidimensional Knapsack problem. Comput. Oper. Res. 35 (8), 2672- 2683. DOI: 10.1016/j.cor.2006.12.029Kruger, T. J., Davidovic, T., Teodorovi ' c, D., ' Selmi ˇ c, M., 2016. The bee colony ' optimization algorithm and its convergence. Int. J. Bio-Inspired Comput. 8 (5), 340-354.Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J., 2008. Toward enhanced P300 speller performance. J. Neurosci. Methods 167 (1), 15-21. DOI: 10.1016/j.jneumeth.2007.07.017Kubler, A., Birbaumer, N., 2008. Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119 (11), 2658-2666. DOI: 10.1016/j.clinph.2008.06.019Kubler, A., Nijboer, F., Birbaumer, N., 2007. Brain-Computer Interfaces for communication and motor control - perspectives on clinical application. En: Toward Brain-Computer Interfacing, 1st Edition. MA: The MIT Press, pp. 373-391.Martínez-Cagigal, V., Gomez-Pilar, J., Alvarez, D., Hornero, R., 2016. ' An asynchronous P300-based brain-computer interface web browser for severely disabled people. IEEE Transactions on Neural Systems and Rehabilitation Engineering (Aceptado). DOI: 10.1109/TNSRE.2016.2623381Perseh, B., Sharafat, A. R., jun 2012. An Efficient P300-based BCI Using Wavelet Features and IBPSO-based Channel Selection. J. Med. Signals Sens. 2 (3), 128-143.Pham, D. T., Ghanbarzadeh, A., Koc¸, E., Otri, S., Rahim, S., Zaidi, M., 2006. The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. Intell. Prod. Mach. Syst. - 2nd I*PROMS Virtual Int. Conf., 454-459. DOI: 10.1016/B978-008045157-2/50081-XRakotomamonjy, A., Guigue, V., 2008. BCI Competition III: Dataset II - Ensemble of SVMs for BCI P300 Speller. IEEE Trans. Biomed. Eng. 55 (3), 1147-1154.Rivet, B., Cecotti, H., Maby, E., Mattout, J., 2012. Impact of spatial filters during sensor selection in a visual P300 brain-computer interface. Brain Topogr. 25 (1), 55-63. DOI: 10.1007/s10548-011-0193-yRivet, B., Cecotti, H., Phlypo, R., Bertrand, O., Maby, E., Mattout, J., 2010. EEG sensor selection by sparse spatial filtering in P300 speller BrainComputer Interface. 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC'10, 5379-5382. DOI: 10.1109/IEMBS.2010.5626485Salvaris, M., Sepulveda, F., 2009. Visual modifications on the p300 speller bci paradigm. Journal of neural engineering 6 (4), 046011.Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., Wolpaw, J. R., 2004. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51 (6), 1034-1043. DOI: 10.1109/TBME.2004.827072Witten, I. H., Frank, E., 2011. Data Mining: Practical Machine Learning Tools and Techniques, 3rd Edition. Morgan Kaufmann.Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., Vaughan, T. M., 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8 (2), 164-173. DOI: 10.1109/TRE.2000.847807Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., Vaughan, T. M., 2002. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113 (6), 767-91. DOI: 10.1016/S1388-2457(02)00057-3Xu, M., Qi, H., Ma, L., Sun, C., Zhang, L., Wan, B., Yin, T., Ming, D., 2013. Channel Selection Based on Phase Measurement in P300-Based Brain-Computer Interface. PLoS One 8 (4), 1-9. DOI: 10.1371/journal.pone.0060608Yang, X. S., 2009. Firefly Algorithms for Multimodal Optimization. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5792 LNCS, 169-178. DOI: 10.1007/978-3-642-04944-6 14Yang, X.-S., 2014. Nature-Inspired Optimization Algorithms, 1st Edition. Elsevier Inc.Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., Karamanoglu, M., 2013. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, 1st Edition. Elsevier Inc. DOI: 10.1016/B978-0-12-405163-8.00020-XYu, T., Yu, Z., Gu, Z., Li, Y., 2015. Grouped Automatic Relevance Determination and Its Application in Channel Selection for P300 BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. 23 (6), 1068-1077. DOI: 10.1109/TNSRE.2015.241394
    corecore