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Abstract 
 

Human brain dynamics are radically altered under the influence of anaesthetics. 

However, despite their widespread clinical use, the whole-brain mechanisms by which 

anaesthetics alter consciousness are still not fully understood and clinical translation 

of existing insights is limited. This thesis presents several lines of investigation aimed 

to improve our understanding of spatiotemporal brain states under the anaesthetics 

propofol and ketamine. 

First, slow-wave activity saturation (SWAS) was studied across the brain and in 

relation to existing depth of anaesthesia markers. Local propofol concentration needed 

to achieve SWAS in healthy volunteers correlated with GABAA receptor density 

(Spearman ρ=-0.69, P=0.0018), providing more evidence for the importance of the 

neurophysiological state of SWAS. The average Bispectral Index at SWAS across 

volunteers was 49±4, but its value varied significantly over time. 

Second, relevant cortico-cardiac interactions were studied. A slow propofol infusion 

increased heart rate in a dose-dependent manner (increase of +4.2±1.5 bpm/(μgml-1), 

P<0.001). Individual cortical slow waves were coupled to the heartbeat (P<0.001), with 

heartbeat incidence peaking about 450ms before slow-wave onset. A ketamine case 

study showed decreased amplitude of heartbeat-evoked potentials, suggesting 

impaired interoceptive signalling may have a part in dissociative phenomenology.  

Third, novel methodology was developed, validated, and applied throughout the thesis. 

Iterated Masking Empirical Mode Decomposition was used to identify three types of 

low-frequency propofol waves with different spatiotemporal maps and dose-responses.  

Hidden Markov Modelling of propofol showed a shift to anterior alpha states and a 

reduced switching rate (P<0.01); with ketamine states exhibiting low alpha power and 

decreased connectivity became more prominent (P<0.001).   

Fourth, the potential of translating electroencephalographic markers from high- to low- 

density montages was studied. Posterior montages were best at capturing the reduced 

state switching under propofol. A patient study of antidepressant ketamine treatment 

demonstrated reduced temporal lobe alpha and theta power were associated with 

dissociation (P=0.0109). 
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1 Background 

 
his thesis aims to improve our understanding of the brain under the 

influence of the general anaesthetics. Specifically, this is done by studying 

brain states as captured by non-invasive neurophysiological imaging in 

humans during propofol and ketamine administration. Along the way, the thesis is 

developed with three key themes present. Firstly, there is a focus on analyses that 

may support future clinical translation, for instance by comparing results to current 

clinical practice or by studying the same effects in both volunteers and patients. 

Secondly, novel data-driven methodology is developed and applied to gain new 

insights. Finally, combined heart-brain effects are considered in order to highlight the 

complex physiological feedback loops in the human body. This chapter provides a 

broad (yet brief) overview of general anaesthesia before narrowing down to propofol 

and ketamine, as well as introduces some of the relevant methodology and thesis 

structure. 

 

1.1 General anaesthesia and its effects on physiology  

1.1.1 General overview 

Millions of general anaesthetics are administered every year in the United Kingdom 

(UK) and beyond, enabling safe and life-changing surgical procedures1. From James 

Young Simpson and John Snow first pioneering the use of chloroform in the UK in the 

1840s2, anaesthesia has grown to be the largest hospital specialty in the UK, 

T 
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comprising a diverse and highly innovative specialtyi. Modern anaesthetic practice 

uses multiple concomitant drugs (i.e. balanced general anaesthesia) to achieve the 

anaesthetic triad: unconsciousness, analgesia, and muscle relaxation5. Local and 

regional anaesthesia, whilst also essential in clinical practice, are beyond the scope 

of this thesis. In practice, substantial heterogeneity exists between different types of 

procedures, patient populations, and preferences between anaesthetists. Broadly, the 

anaesthetic process can be subdivided into three parts: induction (i.e. achieving initial 

loss of patient consciousness and securing their airway), maintenance (i.e. ensuring 

continued anaesthesia adequate for any surgical stimuli present), and emergence (i.e. 

waking the patient up at the end of surgery).  

Despite leaps in clinical practice, the brain mechanisms underlying the effects of 

general anaesthetics have remained elusive for over a century since their introduction 

into clinical practice, and a complete explanation of anaesthetic loss of consciousness 

is still yet to be formulated. This remains a problem for patient safety, particularly when 

muscle relaxants are used and in the context of the rising use of total intravenous 

anaesthesia, which presents an increased risk of accidental patient awareness6. 

Intraoperative vital sign monitoring has grown in sophistication, allowing precise 

delivery of drug concentrations and volumes. However, even though the brain is the 

likely seat of consciousness and the main hypnotic effect-site, until recently the use of 

brain-based depth of anaesthesia monitoring has been rare. In 2013, their use was 

reported in only 2.8% in a large sample UK estimate1, though recent data published in 

March 2023 as part of the 7th National Audit Project (NAP7) shows an increase to 

 
i  Interestingly, on top of being voted the “greatest doctor of all time” by Hospital Doctor 
magazine in 2003, John Snow was also part of the Temperance movement and a vegetarian, 
avoiding all animal products in his diet3,4.  
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19%7. The use of brain-based monitoring devices has been hindered in part because 

they are based on population-derived indices, are susceptible to muscle and motion 

artifacts, and are unreliable for some drugs (e.g. ketamine8). A clear need for better 

markers and monitors of adequate depth of anaesthesia therefore exists. Under-

anaesthesia can lead to accidental patient awareness during surgery and surgical pain, 

which can lead to negative postoperative outcomes including post-traumatic stress 

disorder (PTSD)9. Accidental awareness under general anaesthesia is rare (estimated 

overall around 1 in 20,000 anaesthetics in NAP51), but the rate of PTSD in patients 

after an accidental awareness episode is approximately 15%9,10. The low incidence of 

awareness is in part because anaesthetists tend to administer higher hypnotic doses 

to minimise the risk of awareness. However, the negative brain consequences of over-

anaesthesia are also being increasingly recognised, particularly in vulnerable groups 

such as the elderly and those in development11. These postoperative cognitive 

disorders mainly include postoperative delirium (POD) and postoperative cognitive 

dysfunction (POCD), with for example POD incidence in patients over age 60 after 

major surgery between 20%-50%12, and overall POCD incidence estimated between 

10%-18%13,14. 

A surprisingly wide variety of drugs can affect a patient’s consciousness level. The 

following three sections will outline the known mechanisms of action of the most 

common hypnotic drugs (often simply referred to as anaesthetics), analgesics, and 

muscle relaxants (paralytics). Anaesthetics can be categorised based on their main 

target binding site. Broadly, it is thought that to achieve hypnotic effects, most 

commonly used anaesthetics either potentiate inhibitory γ-aminobutyric acid type A 

(GABAA) channels or antagonise N-methyl-D-aspartate (NMDA) channels. Other 

classes of hypnotic agents exist, e.g. α2-adrenergic receptor agonists such as 
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dexmedetomidine. For many drugs, the ultimate mechanism likely goes beyond 

NMDA/GABAA and may also involve constitutively active potassium channels (e.g. 

two-pore-domain TREK-115) or hyperpolarisation-activated currents (Ih produced by 

activation of hyperpolarization-activated cyclic nucleotide-gated potassium channel 1, 

HCN-116). Anaesthetics, particularly the volatile hypnotics, are thus highly 

promiscuous in their binding targets. However, in this simplified framework, 

anaesthetics exerting GABAergic action include the intravenous anaesthetics 

etomidate, propofol, and barbiturates, as well as inhalational anaesthetics such as 

sevoflurane, halothane, isoflurane, and desflurane17. NMDA agonist hypnotics include 

phencyclidine, ketamine, nitrous oxide, and elemental xenon. As typical examples of 

these classes and due to their wide-spread clinical use, propofol and ketamine are 

studied most in this thesis, and thus presented in more detail below.  

Finally, anaesthesia shares commonalities with non-rapid eye movement sleep. In 

particular, hypnotic anaesthetic action originates in part from action on endogenous 

neural circuits involved in sleep-wake control18,19. This includes effects on subcortical 

regions involved in arousal control of the conscious level, such as the activation of 

sleep-promoting centres (e.g. the GABAergic ventrolateral preoptic nucleus, VLPO, of 

the hypothalamus) and depression of arousal-promoting sites (e.g. the noradrenergic 

locus coeruleus and cholinergic neurons of the basal forebrain). Broadly, it is thought 

anaesthetics may affect either the top-down thalamocortical mechanisms, or the 

above bottom-up arousal networks. However, the full description is likely more 

nuanced, as cortical regions (in particular the medial prefrontal cortex, mPFC) have 

been found to constitute an important part of the endogenous arousal network as 

well222.  

 



5 
 

1.1.2 GABAergic anaesthetics and propofol  

GABAA receptors are ligand-gated ion channels that are ubiquitous in the human brain. 

GABA binding to the receptor causes a conformational change and increased 

permeability to anions (mainly chloride ions). This causes membrane 

hyperpolarisation and neuronal inhibition, making GABAA receptors the main inhibitory 

receptors in the human brain. Each GABAA receptor is a pentametric complex 

composed of subunits that determine its pharmacological properties. Subunit 

composition, e.g. α, β, and γ in a ratio of 2:2:1, differs across the brain and determines 

sensitivity to anaesthetics and their different behavioural endpoints including memory 

loss, sedation, and hypnosis20. 

Propofol (2,6-diisopropylphenol) is the most common anaesthetic induction drug21. 

First approved in the 1980s, its favourable kinetics and side effect profile have made 

propofol the intravenous anaesthetic of choice for most practitioners. It is a highly lipid-

soluble drug prepared as an oil-water emulsion. Its pharmacokinetic properties are 

detailed in Chapter 4. Briefly, it exhibits rapid plasma clearance, with emergence after 

a typical 2mg/kg bolus induction dose usually occurring within 8 to 10 minutes21. This 

efficient plasma clearance makes it suitable for use as a continuous intravenous 

infusion, often as part of total intravenous anaesthesia (TIVA). Such systems most 

often utilise a mathematical three-compartment model to guide target-controlled 

infusions (TCI)22. Brain effect-site concentrations vary between sedation and deep 

anaesthesia in the therapeutic range of roughly 1.5-5µg/ml. 

In terms of autonomic effects, anaesthetic doses of propofol produce a large decrease 

in arterial blood pressure with significant vasodilatation and disruption of the 

baroreflex23. Propofol is also a respiratory depressant and it reduces upper airway 
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reflexes. It shows antiemetic activity, potentially because of its effects on 5HT3 

receptors21.  

Hypnotic effects of propofol in the central nervous system (CNS) are largely a result 

of potentiating GABAergic inhibition which leads to neuronal hyperpolarisation. 

Hypnotic effects appear dependent on propofol binding to the β subunits of the GABAA 

receptor24,25. Propofol slows the decay rate of inhibitory synaptic currents by 

prolonging the opening of GABAA channels and allowing greater influx of Cl- ions into 

a cell26. It also enhances extrasynaptic tonic inhibition caused by GABAA receptors 

outside the synapse being continuously activated by ambient GABA27,28. Different 

aspects of propofol effects – e.g. memory blockade, loss of consciousness, depression 

of reflexes – may be due to these phasic (synaptic) and tonic (extrasynaptic) changes, 

with consciousness loss perhaps preferentially due to tonic inhibition enhancement in 

specific areas29. 

On the network-level, functional neuroimaging studies (e.g. positron emission 

tomography (PET), functional magnetic resonance imaging (FMRI) and 

electroencephalography (EEG)) of propofol have revealed reduced activity in key 

regions likely to play a part in supporting consciousness, including the thalamus and 

precuneus30,31, as well as reduced information processing capacity in the default mode 

network32,33 and impaired frontoparietal connectivity34. This is further discussed in 

Chapter 2 and Chapter 5. 

 

1.1.3 NMDA-acting anaesthetics and ketamine  

NMDA receptors are a subclass of ion-permeable glutamate receptors and the major 

excitatory neurotransmitter receptors in the human brain. They are permeable to Na+, 
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K+, and Ca2+ ions when activated. However, at resting membrane potential and lower, 

the channel is blocked by a Mg2+ ion. Membrane depolarisation repels the magnesium 

ion and allows ion flux. Activation of NMDA receptors requires both glutamate and 

glycine / D-serine binding. Each NMDA receptor is a complex made of four subunits 

of three types: GluN1, GluN2, and GluN3. As with GABAA receptors above, subunit 

composition varies between cell types and determines pharmacological properties of 

the receptor35.  

Ketamine (RS-2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone) is a phencyclidine 

derivative first used in humans in 196436. It is a remarkably unique substance that, 

depending on the dose, produces analgesic, antidepressant, psychedelic, or 

anaesthetic effects. It is partially water-soluble and highly lipid-soluble, leading to rapid 

onset of effects and distribution. High clearance results in a short elimination half-life 

of approximately 2-3 hours with hepatic metabolism into norketamine and 

hydroxynorketamine before changing to water-soluble molecules excreted in urine. 

Ketamine is a racemic mixture of two stereoisomers, R (rectus) – ketamine and S 

(sinister) – ketamine. Of these, S-ketamine is more potent and shows faster clearance 

and recovery. Efficient clearance allows for continuous ketamine infusions, with target 

effect site concentrations in a therapeutic range of 0.5-2.2µg/ml. A typical induction 

bolus of 2mg/kg produces about 10 minutes of surgical anaesthesia21.  

Unlike most anaesthetics, anaesthetic doses of ketamine do not produce significant 

respiratory depression and preserve airway reflexes. Ketamine also increases arterial 

blood pressure, heart rate, and skeletal muscle tone, likely by central sympathetic 

stimulation. Undesirable tachycardia and hypertension can be blunted by 

coadministration of benzodiazepines. It does not show antiemetic properties and may 

worsen nausea37. The preservation of airway tone, analgesic properties, and 



8 
 

increased sympathetic activity during ketamine anaesthesia make it particularly useful 

for emergency settings and in rural areas of developing countries. However, 

undesirable emergence reactions in about 20% of patients limit its use38. These 

include vivid dreams, hallucinations, and out-of-body experiences, which can cause 

fear and confusion. These psychomimetic effects in sub-anaesthetic doses (typically 

<1mg/kg) have however found uses in psychiatric settings and are discussed together 

with antidepressant effects in Chapters 6 and 7. 

Ketamine is classically considered a non-competitive NMDA antagonist, but its 

pharmacological profile is complex. Apart from NMDA, it also acts on opioid and 

monoaminergic receptors39. The full molecular mechanism behind ketamine hypnosis 

is likely complex. This can be seen when ketamine is compared to other NMDA 

antagonists with low anaesthetic potency, such as memantine and MK-801. 

Differences in NMDA subtype potency (e.g. GluN2A/B vs GluN2C) and off-rate (i.e. 

being able to escape the channel before closing) may explain some of the 

discrepancies, but action at other receptors (e.g. HCN1) is likely involved40. 

At the network level, ketamine shows differences and similarities to GABAergic 

anaesthetics. Similar to propofol anaesthesia, at doses past loss of responsiveness,  

dysfunction in communication between cortical areas captured by resting state FMRI 

connectivity is seen (e.g. fronto-parietally within the default mode network)41, with loss 

of EEG-derived fronto-parietal connectivity34. Unlike propofol, the repertoire of brain 

states remains similar to disconnected conscious states such as dreams and 

hallucinations, perhaps due to preserved cross-modal sensory transfer34,41,42. Brain 

states underlying ketamine effects are discussed in more detail in Chapter 6. 
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1.1.4 Beyond hypnotics: opioids and muscle relaxants  

A full review of the mechanisms underlying pain, analgesia, and neuromuscular 

blockade is beyond the scope of this thesis, and has been done elsewhere43.  

Briefly, whilst their role in anaesthesia is coming under scrutiny due to the opioid 

epidemic44, opioids still form a key part of most perioperative analgesia plans. By 

acting as spinal and brain µ-opioid agonists, opioids inhibit ascending transmission of 

nociceptive signals, exert an antinociceptive effect, and alter central affective 

responses to pain. A wide variety of synthetic and natural opioids are present in clinical 

practice and include short-acting (remifentanil, alfentanil), intermediate-acting 

(sufentanil, fentanyl) and long-acting (morphine, oxycodone, codeine) opioids. They 

act synergistically with hypnotics and reduce hypnotic drug requirements45. However, 

reduction in anaesthetic concentrations is not complete and opioids are not complete 

anaesthetics. Side effects include bradycardia, respiratory depression, post-operative 

nausea and vomiting, development of tolerance, and opioid-induced hyperalgesia46. 

Neuromuscular blockade to achieve skeletal muscle relaxation forms a key part of safe 

anaesthetic practice enabling tracheal intubation and optimal surgical conditions. 

Since introduction of succinylcholine in 1952, a variety of muscle relaxants have been 

introduced into clinical practice. Neuromuscular blocking drugs (NMBDs) exert their 

paralytic effect by blocking transmission of nerve impulses at the neuromuscular 

junction. They can be classed into two main groups, depolarising NMBDs that mimic 

acetylcholine (e.g. succinylcholine) and nondepolarizing NMBDs that interfere with 

cholinergic action (e.g. pancuronium, rocuronium, cisatracurium).  
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1.2 Electroencephalography and its uses in 

anaesthesia monitoring  

Due to its ability to capture brain activity non-invasively with excellent temporal and 

moderate spatial resolution, as well as its potential for clinical translation, 

electroencephalography data was chosen as the main modality for this thesis. This 

technique and some common output metrics are introduced in this section. 

 

1.2.1 General and historical overview  

Localisation of mental faculties in the brain was already by accepted by some classical 

physicians including Hippocrates and Galen. However, for centuries, functional 

localisation was erroneously linked to the ventricles47. Even as human understanding 

of anatomy progressed, in vivo human neurophysiology lagged behind, largely due to 

a lack of non-invasive imaging techniques.  

The electroencephalogram (EEG) was one of the first tools to dramatically change this. 

Neural communication in the brain happens through small ionic electrical currents that 

lead to measurable (albeit small, on the order of µV) differences in electric potential 

on the scalp. Once it was understood that not only is the ‘seat of the soul’ in the brain, 

but also that it communicates and organises electrically, the electric brain was born48. 

The typical historical narrative of EEG and its use during anaesthesia goes as follows. 

First, in 1875, Richard Caton noted electrical activity in monkey and rabbit brains49. 

Half a century later, after decades of trying unsuccessfully, Hans Berger first recorded 

electrical activity from a human brain in 1924 (published in 192950) and coined the 

term ‘EEG’. His findings were not taken seriously until Adrian and Matthews replicated 
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his findings in 193451. Shortly after, EEG research expanded into different pathological 

and pharmacological conditions. In 1937, Gibbs, Gibbs, and Lennox were the first to 

suggest EEG could be useful during monitoring of surgical anaesthesia52, but early 

systems were too cumbersome to use clinically. It wasn’t until 1996 that the first 

widespread commercial EEG depth of anaesthesia monitor, the proprietary Bispectral 

Index (BISTM) was approved in the United States53. Since then, several other monitors 

have appeared (e.g. Narcotrend54, GE Entropy55) although their use remains limited. 

This is in part due to the monitors not tracking certain anaesthetics (e.g. ketamine, 

nitrous oxide)8 accurately, and research into individualised brain-based anaesthetic 

markers is ongoing.  

The above account is richer than it may seem. Hans Berger’s motivations were partly 

pseudoscientific, as he had a belief in telepathic communication stemming from a 

traumatic horse fall where his sister supposedly felt he was in a bad condition despite 

being far away56. Berger was described by others as introverted and anxious in social 

situationsii. Whilst it was Gibbs, Gibbs, and Lennox (1937) who first suggested its use 

as part of surgical anaesthesia monitoring, it was Berger who first recorded EEG 

during human anaesthesia, first with chloroform and then with hexobarbital in 193360, 

with Grey Walter recording ether and nitrous oxide EEG in 193661,iii. The first automatic 

 
ii Berger’s historical record may meet key modern diagnostic criteria for autistic spectrum 
disorder. He showed persistent deficits in social communication (“avoidant of social contact, 
found it difficult to communicate with staff and patients alike”57) and restricted / repetitive 
patterns of behaviour (“his days resembled one another like two drops of water”56). Not enough 
is known about his childhood to confirm this, but he also suffered from conditions significantly 
more common in autistic adults without intellectual disability (congestive heart failure and 
severe depression leading to his suicide in 1941)58. It should also be noted he collaborated 
with the Nazi regime, though he was not a party member59. 
iii Erna Leonhardt Gibbs was in fact another interesting character, obtaining the 1958 Woman 
of the Year from the American Woman’s Association as a result “the most comprehensive 
study ever made by a single individual in specialized brain research”62.   
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control of anaesthesia through EEG was proposed in 195063,64, though, as mentioned, 

EEG did not gain in clinical prominence until the 2000s. 

Electroencephalography offers a unique view into the brain. Simultaneous action of 

millions of neurons is associated with synchronous postsynaptic currents that can be 

volume-conducted to the scalp, producing the observed EEG signals. In theory, it can 

offer a very high (kilohertz) temporal resolution that captures direct neuronal 

communication, unlike functional magnetic resonance imaging and related techniques 

that rely on the (slower) blood flow or metabolic response. Furthermore, unlike 

magnetoencephalography, it can be used in freely-moving subjects in rooms without 

shielding and is relatively inexpensive.  

However, like all other brain recording methods, EEG comes with significant limitations. 

Intrinsically, it is biased towards synchronised cells, and the signal thus likely 

represents the activity of less than 5% of active neurons, possibly much less65. 

Furthermore, due to volume conduction, spatial resolution of EEG is poor, at best a 

few centimetres. Because of the small magnitude of brain signals, EEG is also 

susceptible to a large number of artifacts; chiefly ocular potentials and muscle noise 

from the frontalis and temporalis muscles, but also the skin potentials, cardiac 

potentials, and external electric fields (e.g. 50Hz mains noise or a surgical diathermy). 

Experiments with paralysed but awake subjects have demonstrated that the EEG 

signal above ~30Hz is dominated by muscle noise66,67. Quality of the EEG recording 

can be improved by various pre-processing methods including band-pass filtering 

(typically 0.5-30Hz), removing gross movement artifacts, and performing pre-

processing with blind source separation techniques (chiefly independent component 

analysis, ICA) to remove eyeblink, cardiac, and muscle artifacts68. 
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Apart from analysing the EEG in the time domain, a standard frequency domain 

approach is to divide the signal into canonical frequency bands. These include the 

slow and delta bands (<4Hz), theta (4-8Hz), alpha (8-13Hz), beta (14-30Hz), and 

gamma (>30Hz), though specific frequency limits vary between studies65. This 

analysis can be extended into the spectrogram, where power in each frequency bin is 

examined over time. Higher-order analyses exist, such as looking at cross-frequency 

coupling or measures of statistic dependence, also known as functional connectivity. 

These include measures of phase coherence, such as the phase locking value or 

phase lag index, which are motivated by the theoretical efficiency of using coherent 

signals for communication in the brain69. 

 

1.2.2 EEG changes under general anaesthesia 

Pharmacological alterations of EEG are in general complex and depend on the drug 

combination, dose, and cortical location studied. However, for GABAergic 

anaesthetics, there exists a set of common dose-dependent frontal EEG patterns 

displayed in the majority of patients – though with significant between-patient 

variability (Figure 1.1)70,71.  

First, at mild sedation levels, paradoxical excitation of the EEG can be observed, 

characterised by beta activity around 12-20Hz. As the patient loses responsiveness, 

the EEG slows and shows frontal alpha-spindles around 8-12Hz. This anteriorisation 

of the EEG was first described in 197772 and is one of the reasons why frontal EEG 

monitoring is not only convenient, but potentially useful. After loss of responsiveness, 

slow / delta waves (<4Hz) become more prominent. This alpha-delta pattern was 

already identified by the early pioneers mentioned above52,60, with the slow (<1Hz) 
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oscillation studied by Steriade and colleagues73. At deep anaesthetic concentrations, 

burst-suppression occurs, leading to periods of EEG suppression (low amplitude <5µV 

for seconds to minutes) and bursts of high-amplitude activity lasting a few seconds. At 

even deeper concentrations, the EEG becomes continuously suppressed until it 

becomes isoelectric. Burst-suppressed and isoelectric traces are pathological patterns 

also seen in hypoxic injury and severe hypothermia74. Burst-suppression may be 

reflective of metabolic conditions75 and may occur in a limited cortical region76 with 

asynchronous bursts77. Intra-operative burst-suppression has been associated with a 

higher incidence of postoperative delirium78. However, it is not clear whether this 

association is causal, or simply reflective of underlying patient vulnerability79.  

The slow/delta-spindle pattern observable on the EEG is generated by the 

thalamocortical system80,81. Slow waves measured on the scalp are characterised by 

a large numbers of neurons switching between UP states of high activity and DOWN 

states of relative silence73. The slow oscillation can persist after thalamic lesions and 

can be generated in isolated in vitro cortical slices, so it was initially thought to be 

cortically generated82. However, more recently, an essential contribution of the 

thalamus to in vivo slow oscillations has been revealed83, likely particularly important 

in initiating UP states and determining the oscillation frequency84. Cortical slow waves 

have been shown to be travelling waves on the scalp, predominantly in the anterior to 

posterior direction85,86. Spindles are generated thalamically and travel to the cortex 

anteriorly, forming loops between GABAergic thalamic reticular neurons and 

thalamocortical neurons. With thalamocortical neurons hyperpolarised, sensory 

information gating at the thalamus becomes disrupted87.  
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Figure 1.1: Classical frontal anaesthetic EEG responses 

Figure 1.1: Classical frontal anaesthetic EEG responses. Shown are the raw EEG 

(row 1), power spectra (row 2), spectrogram (row 3), and volatile anaesthetic 

concentration (row 4). With increasing concentrations, the pattern transitions from 

noise (A) to paradoxical beta activity (B), slow/alpha rhythm (C), and burst suppression 

(D). This figure has been reproduced with permission from Figure 2 in 71 (licence 

5536531205123). 

The above patterns hold for commonly used hypnotic drugs, and they form the basis 

for current commercially available proprietary depth of anaesthesia indices88. However, 

care must be taken in real-world anaesthetic scenarios. Firstly, dissociative 

anaesthetics including ketamine and nitrous oxide can have an EEG dominated by 

increased high-frequency activity, likely driven by corticothalamic depolarisation, with 

decreased alpha oscillations89. They can produce slow waves, but sometimes in 

unusual ways, such as transient delta increase on introduction of nitrous oxide90. 
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Secondly, coadministration of opioids and other drugs can further complicate EEG 

interpretation. Depending on the level of surgically induced noxious stimulation, 

opioids may restore the alpha oscillation and modestly increase slow waves, or 

conversely decrease the EEG power71,91. Brainstem arousal modulators including 

atropine, scopolamine, or dexmedetomidine can also increase delta activity, even in 

absence of unconsciousness92. Neuromuscular blockade can decrease muscle 

artifacts in the EEG and can be falsely interpreted as decreased gamma power66. 

Thirdly, EEG patterns change throughout development and aging, with a broad trend 

to lower slow-wave power in older adults, and certain disorders result in high delta 

power even whilst awake93. Fourthly, induction and emergence from anaesthesia are 

not symmetric, and hysteresis (neural inertia) may be present94,95. These factors can 

result in misleadingly high or low values of proprietary EEG-derived depth of 

anaesthesia indices and present a challenge for titrating anaesthesia to the EEG96.  

Novel analyses that move beyond analysing the power spectrum in anaesthesia are 

being increasingly studied in an attempt to unify distinct drug patterns that all lead to 

clinical loss of consciousness. These include examining the ‘noise’ in the EEG, i.e. 

background aperiodic activity (also termed fractal activity or pink / brown noise), which 

may reflect overall balance of cortical inhibition and excitation97. Other approaches 

focus on studying complexity of the EEG, based on theories of consciousness that 

suggest specific forms of information processing with sufficient complexity are 

necessary to maintain consciousness98–100. A potential advantage of such theoretically 

motivated formulations of consciousness is the ability to extend them to different 

imaging modalities and conditions including sleep, disorders of consciousness, and 

altered states of consciousness32,101,102.   
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1.2.3 Slow-wave saturation  

For a variety of anaesthetics including propofol, halogenated ethers, and ketamine, it 

has been shown that slow-wave activity in the EEG (SWA; typically 0.5-1.5Hz) not only 

increases with increased anaesthetic concentration, but saturates and forms a plateau 

past the point of loss of behavioural responsiveness but prior to peak anaesthetic 

concentration (slow-wave activity saturation, SWAS)94,103.  

Existing studies demonstrate the exciting potential of SWAS as an anaesthetic end-

point, but several key areas of ongoing investigation remain. These include 

fundamental scientific questions about how SWAS relates to underlying receptor 

neurobiology, as well as practical investigations into how SWAS compares with 

existing depth of anaesthesia indices and whether surgery at SWAS is feasible and 

improves clinical outcomes. 

 

1.2.4 Autonomic nervous system and cortico-cardiac interactions 

Human neurophysiology is a complex concert that extends beyond the brain, one full 

of recurrent loops and both top-down and bottom-up interactions104. The autonomic 

nervous system is traditionally responsible for involuntary activities essential to 

survival including cardiovascular and gastrointestinal homeostasis105. Managing 

autonomic responses is a key part of anaesthetic management aiming to avoid 

deleterious effects and is routinely carried out as part of monitoring the heart rate and 

blood pressure. The autonomic nervous system is sub-divided into two major branches, 

the sympathetic (“fight or flight”) nervous system and the parasympathetic (“rest and 

digest”) nervous system. Direct effects of propofol and ketamine on autonomic 



18 
 

responses were described above and are discussed further in Chapter 3 and Chapter 

6; here a brief overview of the system is given. 

The sympathetic nervous system originates from thoracolumbar regions of the spine. 

It activates in presence of a challenge to increase the heart rate, arterial pressure, and 

cardiac output, with blood diverted from viscera to skeletal muscle. Endogenously, this 

is achieved chiefly through action of norepinephrine, epinephrine, and dopamine 

action on α- and β-adrenergic receptors at the target organ synapse.  

The parasympathetic nervous system originates in the midbrain, medulla oblongata, 

and sacral part of the spine. Here, the target organs possess muscarinic acetylcholine 

receptors, and muscarinic antagonists can thus also be deployed to increase heart 

rate (anticholinergics including atropine and scopolamine). Most descending 

parasympathetic traffic is mediated by the vagus nerve (cranial nerve X). It supplies 

the heart, respiratory tract, liver, and most of the gastrointestinal system. Curiously, 

contemporary estimates indicate that 70%-90% of vagal fibres are visceral afferents106. 

Through ascending vagal pathways, visceral signals have an important role in shaping 

our conscious experience, including interoception and emotional processing107. 

Complex interactions, beyond just top-down control, between peripheral and central 

physiology have been recognized, with e.g. heart-brain interactions altered under 

anaesthesia108,109.  

 

1.3 Thesis outline  

There are various ways to define a ‘brain state’ under the influence of general 

anaesthetics. Broadly, this thesis uses a recent definition by Greene et al, who define 

a brain state as brain state as “a pattern of brain activity or functional coupling that 



19 
 

emerges from, and has consequences for, physiology and/or behaviour”110. In the first 

few chapters, the focus is on the state of slow-wave activity saturation. Current EEG-

based anaesthetic monitors have been shown to inadequately identify patients who 

are conscious during surgery111–113. This may be due to monitoring of only frontal 

activity, particularly in light of some theories postulating a posterior ‘hot zone’ 

necessary for consciousness114–116, with different dose-dependent frontal / parietal 

behaviour observed117. Slow-wave activity saturation may indicate individualised 

perception loss, but it is not known how SWAS unfolds across the cortex. Furthermore, 

individual slow waves may be linked to low states of cortical complexity, potentially 

having a causal role in disrupting information flow under anaesthesia118,119. In Chapter 

2, I examine slow-wave activity saturation across the cortex, linking it to local GABAA 

receptor density. I further study the relationship between SWAS and other proposed 

anaesthetic indices, the clinically used Bispectral Index and the well-researched 

Lempel-Ziv-Welch complexity.  

Next, the heart shall appear for the first time, challenging how we should think about 

a ‘brain’ state. In sleep, slow waves have been linked to individual heart beats120. In 

Chapter 3, I show this is also the case in propofol anaesthesia. Furthermore, the 

controversial effect of propofol on heart rate and autonomic activity is studied, leading 

to a hypothesis of a common brainstem generator. 

Slow waves are known to be highly non-sinusoidal121. This means standard Fourier-

based analysis may miss important morphological features, such as those that change 

with aging122. In Chapter 4, I develop and validate a new method to decompose 

oscillatory modes, iterated masking empirical mode decomposition (itEMD). Applying 

it to propofol EEG suggests three low-frequency oscillators may be present, linking it 

to multiple types of slow waves proposed in sleep123–125.  
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Traditionally, brain activity has been seen as continuously unfolding. However, 

recently, it has been shown brain activity can be represented as switching between 

discrete states that can be found using techniques such as Hidden Markov 

Models126,127. These states have been shown to have physiological relevance, 

including in sleep128 and ketamine anaesthesia129. In Chapter 5, I apply Hidden Markov 

Modelling (HMM) to study state switching during propofol anaesthesia. I then explore 

data-driven heart-brain HMM states. Finally, I push the HMM methodology to test 

simulated low-density EEG montages that would be easier to use in clinical settings. 

Finally, we turn to ketamine. It has been proposed that the acute dissociative ketamine 

state may mediate its antidepressant effects130, but this remains controversial131,132. In 

addition, ketamine administration in psychiatric settings is currently most often done 

without any monitoring of the brain. In Chapter 6, I examine the neurobiology 

underlying sub-anaesthetic ketamine dissociation and find HMM brain states 

underlying dissociative phenomenology, as well as consider how these translate to 

low-density EEG montages. Building on this, in Chapter 7 I present results from an 

observational clinical study of EEG recorded during routine ketamine treatment of 

depression, which I devised and ran in collaboration with Oxford Health Foundation 

Trust.  

In the final chapter, I explore recurrent themes in the thesis and synthesise my results 

with existing literature and clinical practice. I consider limitations and future directions 

of the work, as well as its significance for the wider project of explaining the neural 

mechanisms of anaesthetics and using this to improve anaesthetic patient care.  
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2    Neurobiology of slow-

wave saturation and its 

relationship with existing 

anaesthetic markers  
 

2.1 Introduction 

Several commercially available EEG-based depth of anaesthesia monitors exist. 

These include the Bispectral Index (BIS, Covidien, Mansfield, MA, USA), Entropy 

module (GE Healthcare, Medical Diagnostics, Amersham, UK), and Narcotrend 

monitor (MonitorTechnik, Bad Bramstedt, Germany). Their proprietary software differs, 

but broadly they track the reduction in higher EEG frequencies and increases in low-

frequency activity88.  

However, the currently available depth of anaesthesia monitors may not be better than 

traditional vital sign monitoring at preventing accidental awareness133. Their use 

remains limited, with only about 2.8% of general anaesthetics in the UK being 

monitored with processed EEG in 20131, rising to 19% in 20237. This rise may be in 

part due to 2012 National Institute for Health and Care Excellence (NICE) and 2018 

guidelines from the Association of Anaesthetists (AAGBI) recommending the use of 

EEG monitoring in at-risk patients and in all cases of total intravenous anaesthesia 

(TIVA)134. A recent survey of predominantly European anaesthetists showed that 

hypnotic monitoring is considered important and appetite for such monitoring is 

present, but a lack of knowledge of relevant algorithms exists135.  
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Next-generation individualised EEG signatures of adequate hypnosis and loss of 

perception are needed. Slow-wave activity saturation (SWAS) is being investigated as 

one such potential marker31,94. At SWAS, sensory processing revealed by functional 

MRI was found to be severely impaired, suggesting that SWAS may represent an 

individualised loss of perception marker31,136. Slow-wave activity saturation is 

characterized by two key parameters; firstly, power at SWAS (PSWAS), which correlates 

with grey matter volume and decreases with age31,94 suggesting it is reflective of the 

number of neurons undergoing a slow oscillation, and secondly, the hypnotic 

concentration at SWAS (CSWAS). In a large routinely collected clinical dataset with 

N=393 individuals induced into general anaesthesia, SWAS was identified in 92% of 

patients, with failed fitting largely attributable to artefacts or insufficient anaesthetic 

doses. These patients received a variety of co-induction agents including paralytics 

and opioids, suggesting SWAS is potentially a robust clinical target for anaesthesia 

titration. However, in order to support clinical translation of SWAS, more needs to be 

known about its neurobiological basis and relationship with existing depth of 

anaesthesia measures. For instance, frontal monitoring has been shown inadequate 

at recognising covert consciousness111, which could be due to relevant features not 

being frontal114.  

The BIS monitor is the most widely used clinically137. It aims to capture anaesthetic 

depth with a single parameter, the Bispectral Index, a number ranging from 0 to 100 

with 40-60 considered adequate anaesthetic depth. Due to the popularity and use in 

existing research and clinical practice of this index, it was chosen here for a 

comparison with SWAS. The exact Bispectral Index algorithm remains proprietary, but 

insights into its workings have been made. The BIS index is the weighted sum of three 

parameters: the ‘Beta ratio’, quantifying relative loss of high-frequency power, the 
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‘Synch-Fast-Slow’, measuring relative increase in delta power, and the ‘Suppression 

Ratio’, which tracks the percentage of time for which the EEG is suppressed at high 

anaesthetic doses88. Importantly, the BIS algorithm was recently reverse-engineered 

into an open-source implementation that was virtually indistinguishable compared to 

the native BIS values when applied to real anaesthetic EEG data138. This 

implementation suggests the BIS is largely dependent on the relative high- to low- 

frequency power, without computation of the bispectrum being necessary.  

The dependence on high-frequency activity makes the BIS index especially 

susceptible to electromyographic (EMG) muscle noise. In a rare study of volunteers 

(anaesthetists) undergoing awake paralysis with rocuronium or suxamethonium, the 

BIS decreased to <60 (suggesting adequate anaesthesia), sometimes for several 

minutes, despite no changes to awareness96. This is concerning, as cases of 

accidental awareness can be most traumatic and difficult to recognise during uses of 

neuromuscular blockade drugs1. As BIS is based on population averages and not a 

scientifically sound hypnotic end-point, BIS also increases with age, further 

complicating its interpretation139. 

Brain complexity has also been linked to conscious processing and awareness, with 

decreased global complexity observed across a range of unconscious states including 

anaesthesia, sleep, and coma98,99. Measures of brain complexity that reliably track 

consciousness are under development and include the validated perturbation 

complexity index (PCI)102.  Using such measures clinically to monitor possible covert 

states of consciousness in coma and anaesthesia remains a key translational goal of 

both neuroscience and anaesthesiology140–142. Electrically, as outlined in Chapter 1, 

brain activity under propofol is characterized by large-scale cortical oscillations 

between up states of neuronal firing and down states of relative neuronal silence. Such 
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oscillations give rise to low-frequency (~1Hz) slow waves observable on spontaneous 

EEG73. These slow oscillations (and down states in particular) are associated with low 

complexity states, and may play a causal role in disrupting complexity117,118,143.  

Lempel-Ziv complexity is a measure of data compressibility and relates to the number 

of non-redundant patterns in the signal144,145. It has emerged as a leading method to 

track brain complexity across different states of consciousness, either using changes 

in brain activity evoked by stimulation99,102 or in the spontaneous EEG146. Changes in 

Lempel-Ziv complexity have also been shown across different vigilance states in 

sleep147 and between hemispheres in patients where only half the brain is 

anaesthetized148. Lempel-Ziv complexity varies between brain regions during light 

sedation, with frontal areas having the largest increases in complexity149. This spatial 

organisation of complexity thus likely has important implications for clinical monitoring 

as well as for our understanding of brain complexity structures that support 

consciousness.  

In this chapter, I investigated aspects of SWAS relevant for clinical translation. SWAS 

is defined in terms of the drug concentration (CSWAS) required to achieve SWAS, and 

the slow wave power when held at this EEG endpoint (PSWAS). However, it is unknown 

how these SWAS parameters vary across different brain regions; this may have 

important implications for optimal depth of anaesthesia monitoring. Using a dataset of 

an ultra-slow propofol infusion in healthy volunteers published previously31, I examined 

how SWAS varies spatially. A preliminary analysis of SWAS across the scalp was 

undertaken during my MPhys project, focusing on hysteresis modelling150. Here, that 

analysis was re-done to correct for minor hypnotic dosing errors and extended as 

outlined below.  
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I was interested if spatial variation of SWAS was linked to underlying anaesthetic 

receptor targets. Propofol, the most commonly used agent for surgical anaesthesia 

induction, is a key example of a hypnotic drug acting on gamma-aminobutyric acid A 

(GABAA) receptors and was chosen as the model for this chapter. GABAA receptors 

are heterogeneously distributed throughout the brain151–153. Thus, I hypothesised 

potential topographical differences in slow-wave parameters would be explicable by 

differing local GABAA receptor density, the main receptor target for propofol.  Regional 

metabolic reductions caused by propofol are significantly linked to local ex vivo 

collected GABA receptor density measurements154. Recently, a quantitative in vivo 

high-resolution atlas of local GABAA receptor density was developed using 

[11C]flumazenil Positron Emission Tomography (PET)155. These GABAA binding 

values have been used to model brain dynamics extracted from functional magnetic 

resonance imaging (FMRI) in propofol anaesthesia156 and disorders of 

consciousness157, suggesting differences in regional GABAA expression are important 

for explaining propofol’s effects on the brain. I combined the results from this in vivo 

atlas with a recent EEG-MRI co-localisation study158 to compute a scalp projection of 

GABAA receptor density in cortical regions corresponding to the standard 10-20 EEG 

montage, enabling for a test of my hypothesis by direct comparison with SWAS metrics 

across the scalp. 

Finally, to investigate SWAS in relation to known depth of anaesthesia measures, I 

compared it to the two important metrics introduced above. First, as slow oscillations 

may mediate low complexity states, I compared SWAS with brain complexity 

(quantified by Lempel-Ziv-Welch complexity). Second, due to its prevalence and 

understanding by clinicians, I compared SWAS with the Bispectral Index (BIS). 
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2.2 Materials and Methods 

2.2.1 Data 

Data collection: This dataset came from the original SWAS study where an ultra-slow 

propofol infusion was administered in healthy volunteers31. A local Research Ethics 

Committee approved the original experiment and subsequent reanalyses of the data. 

The data were acquired using a 32-electrode EEG cap (BrainCap MR, Easycap GmbH) 

at 5kHz sampling rate referenced to FCz (standard 10-20 system. This was collected 

in N=16 healthy subjects (8 female) during intravenous induction of propofol up to an 

estimated effect-site concentration of 4 µg/ml. Electrode impedances were kept under 

5kΩ. The experiment was separated into 4 main periods: 10 minutes awake, 48 

minutes induction, 10 minutes peak anaesthesia and 48 minutes emergence. For 

details, see the original publication31. There were two key behavioural endpoints: the 

time when the participant lost (LOBR) and recovered behavioural responsiveness 

(ROBR) to a cognitive auditory word task. Time when the subject achieved slow-wave 

activity saturation (TSWAS)94 was also calculated, as detailed in the slow wave activity 

saturation analysis section below.  

Data pre-processing: EEG data pre-processing was carried out with BrainVision 

Analyzer version 2.1 (BrainProduct GmbH), custom written MATLAB code (MATLAB 

2020a, Math Works Inc.), and the EEGLAB (v2019.1) analysis toolbox. The EEG data 

were re-referenced to the common average of signals from all EEG channels, leaving 

31 independent channels. Bad channel rejection was performed by Dr Di Zang to 

remove channels with excessive noise or bridging (mean 0.25 channels per subject, 

range 0-3). All data were down-sampled to 250Hz and band-pass filtered using a 

phase-preserving third order Butterworth filter (0.5 to 90Hz).  
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2.2.2 Slow-wave activity saturation analysis 

To compare changes in complexity and slow-wave power, I analysed the pre-

processed broadband EEG data from induction (48 minutes) of each subject. Slow-

wave power (0.5-1.5Hz) was calculated using the short-time Fourier Transform 

spectrogram (4 second windows, 3 second overlap as per previous work94). A 4-

parameter sigmoid curve (Equation 1; SWA = slow-wave activity; x = propofol 

concentration in μg/ml; r, s, t, u are constants)94 was fitted to the power trace of each 

electrode from each subject using MATLAB’s interior point method (fmincon).  

SWA(𝑥) = 𝑟 +
𝑠 − 𝑟

1 + exp⁡(−
𝑥 − 𝑡

𝑢 )
 

Power at slow-wave activity saturation (PSWAS) was defined as 95% of the sigmoid 

maximum. Concentration at SWAS (CSWAS) was defined as the propofol effect-site 

concentration at SWAS. The baseline slow-wave power was quantified by the r 

parameter (hereafter referred to as ‘baseline’). An electrode fit was excluded if CSWAS 

was well above the propofol concentration used in the experiment (CSWAS>4.5μg/ml), 

or if CSWAS was in the lowest 1st percentile and not a real number (CSWAS<0.8μg/ml). 

Subjects with more than 4 excluded electrodes were excluded from subsequent 

analysis entirely (N=1).  Topographies of group-mean values of relevant fit parameters 

were plotted using EEGLAB (baseline, PSWAS, PSWAS-baseline, CSWAS).  

 

2.2.3 Lempel-Ziv Complexity analysis 

There are various ways of computing Lempel-Ziv complexity (e.g. LZ77, LZ78, LZW) 

that have minor differences in how they build up a dictionary of patterns. In this study, 

Lempel-Ziv Welch complexity (LZW) was used. This is a version designed for larger 

[1] 
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datasets145,159 that has previously been used to identify a potential prodrome of 

Parkinson’s disease160.  

The Lempel-Ziv-Welch (LZW) complexity metric145,161 was extracted by Dr Di Zang to 

describe complexity of the EEG signal, and was used for this analysis with permission. 

The code to compute LZW is available at https://github.com/giulioruffini/StarLZW. 

Using the pre-processed EEG signal, LZW complexity matrices were calculated in 

sliding windows (9s window length, 4s overlap) to explore the temporal dynamics of 

complexity. Signal was binarized around the mean and normalised by word length 

(also known as ρ0
161). In local LZW analyses, complexity of each channel was 

calculated separately. 

 

2.2.4 Topographical relationship of complexity and slow-wave saturation  

To explicate connections between slow waves and brain complexity, I compared each 

electrode’s mean LZW complexity and SWAS fit parameters for (i) a baseline period 

of first 10 minutes of the experiment (propofol effect-site concentration less than 

1μg/ml, baseline parameter r vs mean LZW) and (ii) a 10-minute SWAS period around 

the peak of effect-site concentration (PSWAS, PSWAS-baseline, CSWAS vs mean LZW). 

Spearman correlation and associated P-values (after appropriate False Discovery 

Rate multiple comparisons correction; FDR) were used to compare both effects on 

each electrode (correlation across subjects, N=15) and similarities of spatial patterns 

(correlation across channels, N=31).  
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2.2.5 Linking SWAS and LZW to local gamma-aminobutyric acid receptor 

density 

To test my hypothesis that SWAS parameters would be linked to propofol’s GABAA 

receptor targets, I used a recently developed open-access brain atlas of human 

GABAA benzodiazepine receptor density155. To estimate GABAA receptor density 

under each 10-20 EEG electrode, I used previous work localising EEG positions on 

the cortical surface of the standard MNI-52 brain158. Using FMRIB Software Library 

v6.0 (FSL)162, I found the mean GABAA receptor density in a 10mm radius sphere 

centred on the cortical projection point of each surface electrode. Midline and TP 

electrodes were excluded as the receptor density atlas did not cover those areas. The 

relationship between the mean GABAA density and other parameters of interest 

(baseline slow-wave power, CSWAS, PSWAS, PSWAS-baseline, LZW at SWAS, LZW at 

baseline) was tested across N=26 electrodes by computing the Spearman rank 

correlation coefficient and associated Bonferroni-corrected permutation P-value in 

MATLAB (function corr).  

 

2.2.6 Comparison of SWAS with the Bispectral Index (BIS) 

BIS index values were computed using a custom MATLAB implementation of a 

recently developed and validated emulator163. Fz EEG signal was first resampled to 

128Hz and re-referenced to TP9 to emulate the BIS montage. Five BIS values were 

extracted for each subject using the emulator: mean BIS during 10min awake baseline, 

BIS at loss of behavioural responsiveness (LOBR), BIS when SWAS was achieved, 

mean BIS during 10min at peak propofol, and BIS at return of behavioural 

responsiveness (ROBR). These were compared using repeated-measures ANOVA 
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with post-hoc Tukey's tests. Within-subject variability of BIS during 10min at SWAS 

was also examined, as was the Spearman correlation of BIS values and power at 

SWAS across participants. 

The dataset analysed in this chapter is available on reasonable request via 

https://zenodo.org/record/1168447.  

 

2.3 Results 

2.3.1 Slow-wave activity saturation (SWAS) across brain regions 

Slow-wave activity saturation is a potential individualised marker of loss of 

perception31,94. To explore how this phenomenon varies across the brain, I computed 

slow-wave power (0.5-1.5Hz) and fitted a sigmoid slow-wave saturation curve for each 

electrode in each participant (Figure 2.1, also see Methods). This way the baseline 

slow-wave power, power at SWAS (PSWAS), and concentration required to reach the 

slow-wave plateau (CSWAS) were extracted at each electrode (Figure 2.2A). In the 

baseline period, slow wave power was low across the brain but highest pre-frontally 

(Figure 2.2A(i)). During deep anaesthesia, slow-wave power drastically increased but 

was still frontally dominant (Figure 2.2A(ii)). Compared to baseline, central and lateral 

parietal regions showed the largest increases in slow-wave power (Figure 2.2A(iii)).  

https://zenodo.org/record/1168447
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Figure 2.1: Slow-wave activity saturation 

sigmoid modelling 

The concentration required to reach the slow-wave plateau varied across brain regions 

(within-subject CSWAS range 0.85±0.21, median ± median absolute deviation; Figure 

2.2A(iv)). This effect was consistent between subjects with a repeated-measures 

ANOVA effect of Channel on CSWAS F=12.55, P<0.001. Fronto-central regions required 

the highest dose to reach slow-wave activity saturation. The spatial distribution of 

CSWAS across the brain was significantly correlated with power change from baseline 

(PSWAS-Baseline, Spearman ρ=0.8988, P<0.001) and its baseline topography (ρ=-

0.7298, P<0.001), but had a weaker correlation with power at SWAS (ρ=-0.4194, 

P=0.0263). After correcting for multiple comparisons, correlations at individual 

electrodes did not show significant associations between CSWAS and the other slow-

wave curve fitting parameters (i.e. Baseline, PSWAS or PSWAS-Baseline). 

Figure 2.1: Slow-wave activity saturation sigmoid modelling. Time-varying slow-wave 

power (0.5-1.5Hz, 1 red dot = 4s window) is plotted against propofol effect-site 

concentration. A sigmoid is fitted to find power at slow-wave activity saturation (PSWAS, 

95% saturated), baseline power, and concentration at SWAS (CSWAS).  
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Figure 2.2: Local slow-wave parameter  topography 

 

Figure 2.2: Local slow-wave parameter  topography (A) and its relationship with local 

complexity (B). (A) shows the spatial distribution of the (i) baseline slow-wave power, 

(ii) power at slow-wave activity saturation (PSWAS), (iii) increase in power at SWAS 

compared to baseline, and (iv) concentration required to reach SWAS, CSWAS. (B) 

shows the Spearman correlation between the slow-wave parameters and local broad-

band LZW complexity at each electrode location. Red triangles indicate significant 

single-electrode correlations (FDR-corrected P<0.05).  

 

 

8 
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2.3.2 Topographical relationship of complexity and slow-wave saturation  

Low brain complexity has been previously linked with low-frequency brain 

oscillations118. I therefore hypothesised high slow-wave power should be associated 

with low Lempel-Ziv-Welch complexity at each electrode location. I compared mean 

LZW in the baseline and deep anaesthesia conditions with the slow wave activity 

saturation sigmoid parameters (Figure 2.2B). In the baseline condition, individual 

electrodes did not demonstrate a significant correlation between the local LZW 

complexity and baseline slow-wave power (Figure 2.2B(i)). 

In deep anaesthesia, high slow-wave activity saturation power was significantly 

associated with low local complexity across subjects (FDR-corrected P<0.05 across 

almost all electrodes, Figure 2.2B(ii)). Additionally, the average spatial patterns of 

power at SWAS and local LZW complexity showed a moderate, significant negative 

correlation (Spearman ρ=-0.5375, P=0.0021). When comparing the change from 

baseline to SWAS, local complexity displayed a negative correlation with the 

accompanying slow-wave power increases, though this was not significant after FDR-

correction (Figure 2.2B(iii)) and the spatial patterns were not significantly correlated 

(ρ=0.2133, P=0.2482). Concentration needed to reach SWAS (CSWAS) was not 

significantly related to peak anaesthesia LZW at any electrode (Figure 2.2B(iv)), 

though their spatial patterns were significantly correlated (spatial correlation 

Spearman ρ=0.7645, P<0.001). 
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2.3.3 Links with local gamma-aminobutyric acid receptor density 

To test the hypothesis of topographical differences in SWAS being linked to differing 

local GABAA density, I used a recent in vivo atlas of GABAA receptor density. 

Associations between the regional binding site density and the baseline, PSWAS, PSWAS-

baseline, and CSWAS topographies were tested. I found the concentration needed to 

achieve local slow wave activity saturation (CSWAS, Figure 2.3B) was significantly 

negatively associated with local GABAA receptor density (N=26 electrodes, Spearman 

ρ=-0.6861, Bonferroni-corrected P=0.0018, Figure 2.3B). There was no significant 

correlation with GABAA receptor density and the power at SWAS topography 

(P=0.4361), though there was a significant correlation between the slow-wave power 

at baseline (ρ=0.58611, P=0.0187) and for the increase in slow-wave activity from 

baseline (ρ=-0.6287, P=0.0077). Correlation between GABAA receptor density and 

Lempel-Ziv complexity was also present during slow-wave saturation and peak 

anaesthesia stages (Supplementary Figure 2.1 with permission of Dr Di Zang; at peak 

anaesthesia Spearman ρ=-0.70, Bonferroni-corrected P=0.0013). 
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Figure 2.3: Spatial differences in SWAS correlate with GABAA receptor 

density 

Figure 2.3: Spatial differences in slow wave activity saturation and complexity 

correlate with local GABAA receptor (GABAAR) density. (A) Local brain distribution of 

GABAA receptor density, obtained from 155. (B) Correlation of CSWAS with GABAA 

receptor density (N=26 electrodes, Spearman ρ=-0.69, Bonferroni-corrected 

P=0.0018). The black dots indicate the individual electrode averages and the linear 

best fit line is shown in red. The insets indicate where data comes from, i.e., (i) group-

average CSWAS topography and (ii) local GABAAR density from (A) projected onto the 

standard 10-20 EEG system. 
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2.3.4 Comparison with the Bispectral Index (BIS) 

Finally, I was interested in how slow-wave activity relates to the commonly used 

Bispectral Index depth of anaesthesia measure. In this ultra-slow propofol infusion 

experiment, BIS values changed significantly (Figure 2.4, repeated measures ANOVA 

P<0.001). BIS dropped from 86±7 when awake to 76±9 at LOBR (P=0.012), 49±4 at 

SWAS (P<0.001), 49±9 at peak concentration (n.s.), rising to 86±12 at ROBR 

(P<0.001; subsequent stages compared). This pattern of BIS decreasing before 

reaching a floor was observed in every subject (Supplementary Figure 2.2).  

For subjects that achieved SWAS, during 10 minutes at SWAS, within-subject BIS 

values fluctuated, with standard deviation of σ=4.7 (Figure 2.5). The mean BIS value 

at SWAS correlated with slow-wave power at SWAS across individuals (Spearman 

ρ=-0.675, P=0.010, Figure 2.6). A linear best fit indicated BIS at SWAS = 72 – 1.6 * 

PSWAS [dB].  
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Figure 2.4: Bispectral Index (BIS) and Slow-wave power (SWP). 

Figure 2.4: Bispectral Index (BIS) and Slow-wave power (SWP). (A) Group-mean BIS, 

SWP, and estimated propofol effect-site concentration through the entire experiment, 

with mean loss (return) of behavioural responsiveness (LOBR / ROBR) indicated. (B) 

Average BIS values for each subject at different experimental stages: awake baseline, 

LOBR, slow-wave activity saturation (SWAS), peak propofol concentration, and ROBR. 

A 

B 
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Figure 2.5: Variability of BIS during 10 minutes at SWAS 

 

Figure 2.5: Variability of the Bispectral (BIS) Index value during 10 minutes at slow-

wave activity saturation (SWAS) for each participant that achieved SWAS in the 

experiment. 

 

 

Figure 2.6: Bispectral Index at slow-

wave activity saturation (BIS at 

SWAS) against power at slow-wave 

activity saturation (PSWAS). 

Figure 2.6: BIS at SWAS against 

PSWAS. 
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2.4 Discussion 

In this chapter, slow-wave activity saturation (SWAS) was analysed across the cortex 

and in relation to two existing EEG-based markers of anaesthesia: the Lempel-Ziv-

Welch complexity and the Bispectral Index (BIS).  

 

2.4.1 SWAS across the cortex  

There is an ongoing debate about the distinct roles of frontal and parietal regions in 

supporting consciousness115,117,146,149. Slow waves have traditionally been considered 

as a frontally dominant phenomenon86,164. Identifying regional differences in the SWAS 

parameters adds nuance to this view. It was indeed observed that slow-wave power 

(0.5-1.5Hz) at SWAS was highest (pre)frontally both in the awake and deep 

anaesthesia states. However, the increase in slow-wave power with propofol 

anaesthesia was greatest across central and lateral parietal regions. These central 

and lateral brain regions also achieved slow-wave activity saturation at higher doses, 

with propofol concentrations needed to achieve SWAS varying across the brain on 

average by 0.85μg/ml. Given the average effect-site concentration at SWAS was 

around 2.8μg/ml, this is a variation of about 30%, a change in concentration 

comparable to dose reductions when co-administering ketamine or magnesium as an 

adjunct165, and can thus be considered clinically significant. 

Slow-wave activity saturation has been proposed as an individualised loss of 

perception marker31 with the slow wave power at saturation (PSWAS) linked to the 

number of neurons undergoing the bistable slow oscillation. Here, this was extended 

by showing that the regional variation in the concentration needed to reach full 

bistability (CSWAS) is related to target receptor density within those regions. By 
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projecting a recent in vivo atlas of receptor density onto relevant cortical locations, it 

was showed this reduced regional susceptibility to propofol anaesthesia was 

attributable to lower local GABAA receptor density, as would be expected with GABAA 

as the primary hypnotic target. Effectively, the spatial differences in anaesthetic effect 

could be explained by differences in local receptor target densities, suggesting a link 

between this non-invasive brain activity-derived measure and the underlying 

neurobiology.  

Evidence for such receptor-function relationships such as this is growing. For example, 

changes in GABAA have been shown to allow for better modelling of functional 

magnetic resonance imaging (FMRI) results during anaesthesia156 and, similarly, 

serotonin 2A receptor (5HT2AR) effects on brain complexity have been shown in 

psychedelic states166. A relationship between regional receptor density and metabolic 

changes under anaesthesia has also been noted previously154, but here the underlying 

molecular target is linked to an EEG-based anaesthesia marker for the first time.  

This finding is supported by other work that has demonstrated broadband slow-wave 

modulation envelopes posterior regions first after loss of responsiveness117. It may 

therefore be the case that although slow-wave effects start appearing in posterior 

regions at low doses, higher doses are needed to achieve full bistability of the cortex 

and the subsequent disruption of fronto-parietal communication34,117,167. Furthermore, 

if whole-brain slow-wave activity saturation is required for complete loss of perception, 

frontal EEG monitoring, as is commonly used clinically, may underestimate the dose 

required to achieve complete disconnection from the environment. This may explain 

some of the ‘black swan’ cases of positive isolated forearm test (IFT) responses under 

seemingly adequate alpha-delta frontal EEG patterns111,112. The spatial variation is 

also pertinent in light of recently proposed ‘islands of awareness’ in patients with 
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disorders of consciousness168,169 and work showing local sleep dynamics co-occurring 

with conscious states170. 

 

2.4.2 Brain complexity and slow waves  

Slow oscillations in the brain may offer a causal explanation of the disrupted 

information flow and lower complexity observed in anaesthesia117–119,171. This can be 

interpreted within leading theories of consciousness, where information and 

complexity in the system are hypothesised to underlie features of phenomenal 

consciousness98,102,159,172,173. To support this, it was observed that as the anaesthetic 

dose increased, the drop in brain complexity tracked the increase in slow-wave power. 

A significant negative correlation between the spatial organisation of maximal slow-

wave power and brain complexity was also found. This is consistent with the idea that 

slow-wave activity can act as a controlling mechanism for the cortical circuits 

responsible for the integration of high complexity information from top-down priors and 

bottom-up data streams159,174–177.  

Local concentration to reach SWAS demonstrated a statistically significant association 

with local drug target binding site density. However, there may be multiple types of 

slow waves with distinct generators and functional roles123,124,178, sometimes leading 

to the appearance of wakeful slow-wave power in certain syndromes179. The possibility 

of distinguishing different oscillation types is explored in Chapter 4. Despite this, slow-

wave activity saturation is directly interpretable in terms of cortical slow oscillations 

and may be easier to compute in real time31. Taken together with the fact that there 

are many ways to compute complexity with slightly differing results100, SWAS may 
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potentially prove more robust to use as an individualised, brain-based depth of 

anaesthesia index than measures of complexity94. 

 

2.4.3 Slow waves and the Bispectral Index 

Comparing novel metrics to currently used clinical measures of depth of anaesthesia 

is important, as it allows for better interpretability and easier understanding for 

anaesthetists without an interest in research. In this work, I showed for the first time 

that in a cohort of young healthy volunteers undergoing a slow propofol infusion, slow-

wave activity saturation (SWAS) corresponds to around BIS 50 at the group average, 

with significant within-subject and between-subjects variability within a range of around 

BIS 30 to BIS 70.  

It is reassuring to see that most of the time, people at SWAS fall into the manufacturer 

recommended zone of BIS 40 to BIS 60. However, there are several reasons why the 

BIS should not be seen as the gold-standard and SWAS may be a superior measure. 

In this experiment, all participants at SWAS can be taken to be in the same brain state, 

as supported e.g. by concurrent FMRI31. Despite this, BIS at SWAS was linearly 

related to the slow-wave power plateau. This makes sense in the context of existing 

literature, as BIS is also higher in older adults, who tend to have lower EEG power139. 

Furthermore, unlike BIS, SWAS is specific for each individual, relating to their number 

of cortical neurons and GABAA receptor densities. In this dataset, SWAS was a well-

defined stable end point, with BIS being variable despite the brain likely being in the 

same physiological state. If anaesthesia was titrated using the BIS 40-60 range, 6/14 

of these subjects would have likely experienced either over- or under-anaesthesia. 

Finally, unlike BIS, SWAS is not as susceptible to high-frequency muscle artifacts or 
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changes brought on by neuromuscular blockade. However, as the BIS emulator does 

not incorporate artifact detection and subjects were not paralysed, this could not be 

directly shown in the present dataset. 

 

2.4.4 Limitations of the study 

In this work, I assessed Lempel-Ziv-Welch complexity as it is a well-understood and 

robust measure102,146,149,161. However, it comes with certain limitations. Firstly, it is 

affected by linear signal properties such as frequency changes180. By a phase shuffling 

surrogate analysis, it was shown this is not the case in our data (data from Dr Di Zang, 

currently being prepared for a publication). However, LZW is still a so-called type 1 

complexity, where maximum randomness is equated with maximum complexity100. 

Other alternative metrics where maximal complexity falls near the critical point 

between order and chaos exist181. They behave similarly in propofol, but for other non-

GABAergic agents (e.g. ketamine), this difference may be important and the results 

here may not generalise. Also, average GABAA receptor density and anaesthetic dose 

response were linked here, but further work would be needed to establish to what 

extent differences between GABAA receptor expression between subjects lead to 

different individual anaesthetic susceptibility182, or whether the former can be used to 

optimise clinical monitoring. Lastly, different analysis methods may be better suited at 

finding discrete short-lived states in the data (for instance the Hidden Markov Model183 

explored in Chapter 5). This may be relevant for identifying properties of states 

associated with worse postoperative prognosis such as burst-suppression78, which 

was only present in one subject in our dataset. 
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3    Effect of propofol on 

heart rate and its coupling 

to cortical slow waves in 

humans 
 

3.1 Introduction 

In the previous chapter, I explored the variation of slow-wave saturation across the 

scalp, its links to GABAA receptor density, and a comparison to existing depth of 

anaesthesia metrics. Monitoring of the heart and lungs is still the most common 

method used by anaesthetists to assess anaesthetic depth. Cardiac monitoring 

therefore forms a key part of anaesthetic practice, and heart physiology has known 

effects on the brain108,184. Thus, in this chapter, I aimed to link the two together and 

explore propofol’s effect on heart rate and its links to slow waves.   

Propofol is the most widely used intravenous anaesthetic hypnotic drug185. In contrast 

to halogenated ether anaesthetics, it causes significant cardiovascular depression 

manifesting mainly as arterial hypotension186. However, despite decades of clinical 

and laboratory use, the effect of propofol on heart rate (HR) remains controversial. In 

clinical settings, propofol administration has been reported to carry a risk of 

bradycardia185,187 and several texts state propofol decreases the heart rate as an 

accepted fact188,189. Others however find propofol to have no effect on the heart 

rate186,190, and much of the literature, especially in laboratory settings, appears to show 

significant increases in heart rate31,191–195. Clinical research is complicated by common 
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co-administration of opioids with bradycardic effects. On theoretical grounds, 

propofol’s effect on the heart rate may be due to modulation of GABAergic 

neurotransmission to cardiac parasympathetic neurons in the brainstem194.  

Propofol also affects peripheral nervous activity. This can be indexed by heart rate 

variability (HRV), i.e. the beat-to-beat variation in heart rate (distinct from the mean 

heart rate, HR). Specifically, propofol appears to decrease heart rate variability, in part 

through lowered parasympathetic tone190.  

In the brain, propofol causes neuronal hyperpolarisation by prolonging GABA-

activated opening of chloride channels. At the network level, this causes the cortex to 

switch between up states of relatively high activity and silent down states. This 

switching can be observed as slow (~1Hz) waves on the electroencephalogram73. As 

propofol dose is increased, power in the slow-wave band (typically 0.5-1.5Hz) 

saturates, at which point the thalamocortical system becomes largely isolated from 

environmental stimuli31. By disrupting information processing, these slow waves may 

have a causal role in sustaining unconsciousness118. Similar slow waves are observed 

in non-rapid eye movement sleep86. In sleep, individual slow waves have been linked 

to changes in autonomic activity including individual heartbeats120,196,197. 

For this chapter, I first performed an advanced secondary analysis of 

electroencephalographic (EEG) and electrocardiographic (ECG) data collected in the 

study presented in Chapter 2. As effects of propofol may depend on induction speed, 

the ultra-slow infusion provides a unique perspective on propofol effects in this 

context198. My first aim was to study the propofol ECG data. I hypothesised that in this 

study, free of concomitant medication, propofol would increase the mean heart rate 

and decrease parasympathetic effects as indexed by high-frequency heart-rate 
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variability (HRV). My second aim was to explore a possible link between ECG activity 

and frontal cortical slow waves seen in the EEG. I hypothesised that similar to non-

rapid eye movement sleep, slow waves would preferentially occur time-locked to 

individual heart beats. Finally, to aid clinical translation and see if the heart rate 

findings held validity in patients, I also analysed clinical EEG and heart rate data from 

N=96 ASA-2/3 patients collected as part of the AlphaMax study199. 

 

3.2 Materials and methods 

3.2.1 Data collection 

This dataset is the same as that studied in Chapter 2. In brief, 32-electrode EEG and 

single-channel ECG was collected in N=16 healthy subjects (8 female, age 28.6±7 

years) during slowly increasing intravenous infusion of propofol up to an estimated 

effect-site concentration of 4 µg/ml. The experiment was separated into 4 main periods: 

10 minutes awake, 48 minutes induction, 10 minutes peak anaesthesia and 48 

minutes emergence. Informed written consent was obtained from all participants; 

details of this experiment have been published previously31. 

 

3.2.2. Data pre-processing 

EEG data pre-processing was carried out with BrainVision Analyzer version 2.1 

(BrainProducts GmbH), custom written MATLAB code (MATLAB 2020a, Math Works 

Inc.), and the EEGLAB (v2019.1) analysis toolbox. The EEG and ECG data were re-

referenced to the common average of signals from all EEG channels. This was done 

as theoretical reasons suggest scalp average to be a robust null reference which 
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decreases volume conduction effects200. Independent component analysis and bad 

channel rejection was performed to remove EEG data with blinks and ocular 

movements. EEG data were band-pass filtered with a phase-preserving third order 

0.5Hz-45Hz Butterworth filter. EEG data was down-sampled to 100Hz and ECG to 

500Hz. 

 

3.2.3 Time-series ECG analysis 

Heart rate, ECG waveform templates, and R-wave amplitudes were extracted using 

the biosspy toolbox (https://github.com/PIA-Group/BioSPPy/) which uses Hamilton 

segmentation201 to identify individual R-wave peaks, the heart rate, and ECG 

waveform templates. This was used on each subject to extract an instantaneous heart 

rate trace and ECG properties, which were subsequently Spearman-correlated to the 

propofol effect-site concentration. 

 

3.3.4 Heart rate variability ECG analysis 

To explore correlates of autonomic activity, standard heart rate variability metrics were 

extracted for 5-minute segments in each subject using the pyHRV toolbox202 and 

Spearman-correlated with propofol effect-site concentration at the group level. These 

included root-mean-square successive difference between R peaks as well as 

frequency domain metrics. These were ratio of low-frequency (0.04Hz-0.15Hz) and 

high-frequency (0.15Hz-0.4Hz) heart rate variability and peak frequency in the high 

frequency band.  

 

https://github.com/PIA-Group/BioSPPy/
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3.3.5 Slow-wave analysis 

Slow-wave activity (SWA) was found as the spectral power in the 0.5Hz-1.5Hz band 

on the frontal Fz channel. Correlation between SWA and heart rate / effect-site 

concentration was found using Spearman correlation and its P-value in 5-minute 

segments. Individual slow waves were identified using standard methodology based 

on amplitude and duration thresholding implemented in the yasa toolbox86,120,203. In 

brief, each slow wave had to have amplitude in the 99th percentile of the 0.5-4Hz 

amplitude and negative duration between 0.25s and 1.25s. Slow-wave frequency was 

extracted as inverse of slow-wave period. 

 

3.3.6 Cortico-cardiac coupling analysis 

Once heartbeats and slow waves were identified, I aimed to test whether heartbeats 

occur at preferential times in the slow wave cycle. For each slow wave detected, the 

time delay relative to the slow wave start (initial downward zero crossing) was noted 

for 8 heartbeats closest to it. Eight beats were chosen at this fully covers a potential 

0.5Hz slow wave without overlapping with neighbouring slow waves. This resulted in 

8 R-wave to slow wave (RS) intervals, using methodology similar to previous cardio-

respiratory analyses204,205.  

I wanted to know if ECG R-wave to EEG slow wave timings were distributed randomly 

or in phase with the slow wave onset. For robustness, this was tested against a 

surrogate null distribution in several ways. First, I utilised the same method that has 

previously been used to study cardiorespiratory coupling206. This method compares 

the RS-1 interval (time interval between slow-wave start and preceding R-wave peak) 

to a uniformly random null distribution. Starting from the beginning of each subject’s 
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RS-1 time-series, I used a moving window of 40 slow waves, and placed the 

corresponding RS-1 intervals in a 10-bin histogram with outer limits of 0 and the mean 

heart period for that window. From the histogram, the proportional Shannon entropy 

is calculated as follows: 

Shannon entropy = SH = ∑ 𝑃𝑏 × log𝑃𝑏
𝑁
𝑏=1  

Maximum Shannon entropy = SHmax = − log
1

𝑁
 

Proportional Shannon entropy = SHP = SH / SHmax, 

Where Pb is the histogram probability of bin b and N is the number of histogram bins.  

During perfect coupling, all RS-1 intervals fall into one bin and SHP=0. In the absence 

of coupling, RS-1 intervals are distributed randomly, producing maximum entropy with 

SHP=1. For each subject, the mean SHP across the whole experiment was computed. 

To determine a significance threshold, SHP was computed for N=10,000 surrogate 

series of 200 random numbers each, drawn from a uniform distribution between 0 and 

1 (mean heart rate of 60bpm). The 0.1st percentile was used to indicate significance 

at the P=0.001 level (SHP=0.970). Finally, for a preliminary multivariate extension, the 

analysis was repeated on all channels and SHP and mean RS-1 extracted. 

Additionally, for each slow wave identified, ±2s of EEG and ECG activity were saved 

around the slow wave start. This was then averaged across slow waves and subjects 

to reveal any coherent ECG patterns during a slow wave. 

 

Further tests of robustness 

As the Galletly et al. method only tests RS-1 intervals, I wanted to perform further 

robustness tests to verify the presence of an ongoing oscillation, not just RS-1. To test 
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this in each subject and at the group-mean level, a histogram of RS timings (range  

-3s to 3s) was computed and adjusted for between-subject heart rate differences by 

multiplying it by the mean heart rate across the entire experiment for each subject. 

Next, the histogram’s autocorrelation calculated. Significant, sine-like autocorrelation 

would signify an ongoing ECG oscillation around the slow-wave onset. To assess 

significance, autocorrelation for the same histogram but with uniformly random RS 

timings in the (-3s, 3s) interval was computed for N=1000 surrogate distributions. To 

further assess whether autocorrelation showed sinusoidal behaviour, and to find the 

delay between this possible ECG oscillation and slow wave, an exponentially decaying 

sinusoid was fitted to it (scipy.optimize.curve_fit) and significance established using 

the Bartlett test on residuals compared to the mean. Additional methods using 

simulations were used to further verify that this result does not follow trivially from 

having two oscillations both around 1Hz (slow waves and heart rate, Appendix 2). 

 

3.3.7 Clinical dataset analysis 

In order to explore whether the heart rate results could be replicated in clinical data, I 

performed a post-hoc analysis of heart rate and drug concentrations in N=96 patients 

collected as part of the AlphaMax study (median age 74yrs (range 61 to 86yrs), 66 

male, ASA 2/3, variety of procedures)199. These patients received a standardised 

desflurane and fentanyl-based maintenance general anaesthesia that was titrated to 

maximise the EEG alpha power in the intervention group. For each patient, heart rate, 

and drug concentrations (propofol, fentanyl, desflurane) were sampled every 5 

seconds. Individual ECG waveforms from this dataset were not available, so heart rate 

variability or R-wave to slow wave time intervals could not be determined. The heart 

rate was smoothed with a 2min moving median window to suppress artifacts and any 
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heart rate above 250bpm or below 10bpm was not used. A large mixed-effects general 

linear model was constructed with heart rate, drug concentrations, and demographic 

variables. Specifically, the fixed effects of propofol, fentanyl, and desflurane (+ their 

linear interaction terms), as well as age, BMI, ASA status, and sex were studied. A 

random effect of each individual’s mean heart rate was included. In summary, the 

model equation was 

HR[bpm] = β0 + β1*age + β2*BMI + β3*ASA + β4*(sex=F) + β5*prop + β6*fent + β7*des 

+ β8*prop*fent + β9*prop*des + β10* fent*des + (1 | patient number), 

Where βi are model coefficients, prop=propofol, des=desflurane, fent=fentanyl. To 

compare some of the slow wave results, individual slow waves were extracted from 

intraoperative EEG (from first incision to the end of closing up) and mean slow-wave 

frequency per subject extracted and compared with the mean heart rate. 

 

3.3.8 Statistical analyses 

As these analyses were all post hoc analyses of previously collected and published 

data, no power calculation was done. Spearman correlation and its P-value were used 

to test associations between ECG/EEG parameters (heart rate, R-wave amplitude, 

root-mean-square successive difference, low frequency to high frequency ratio, peak 

high frequency, slow-wave power) and propofol concentration. Repeated-measures 

analysis of variance (RM-ANOVA) was performed on ECG/EEG-derived parameter 

traces in 5-minute segments to further test for significant changes. For display 

purposes, mean ± standard error across participants is shown, except where the data 

was not normally distributed (tested with D’Agostino and Pearson’s test). In these non-

normally distributed cases, median ± bootstrapped 95% confidence interval (10,000 
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iterations) are shown. Mean ± SD (or median [25th, 75th percentile]) are given in the 

text. Significance was set at the P=0.05 level unless otherwise specified. Custom code 

used in this study is available at gitlab.com/marcoFabus/fabus2022_brain_heart.  

 

3.3 Results 

3.3.1 Time-series ECG analysis 

First, I tracked the heart rate and time-series ECG properties across a slow propofol 

cycle in N=16 healthy volunteers (Figure 3.1). At higher propofol doses, a shortening 

of the QT segment and decrease in R-wave amplitude was observed (Figure 3.2.1A). 

In every subject, the heart rate increased and very robustly tracked the propofol dose 

with Spearman correlation of ρ=0.923, P<0.001 (Figure 3.1B). Heart rate increased 

from 58.2±10bpm at baseline to 73.4±8.8bpm at peak anaesthesia, an increase of 

4.2±1.5 bpm/(μg ·ml-1) The maximum effect size comparing HR at baseline and peak 

propofol was Cohen’s d=1.546. A linear regression showed the heart rate / propofol 

relationship to be HR [bpm] = 56.1 (54.9, 57.2) + 4.23 (3.75, 4.80) * propofol [µg/ml], 

where brackets show 95% confidence intervals. Similarly, the R-wave amplitude was 

also strongly inversely correlated with the propofol effect-site concentration 

(Spearman ρ=−0.902, P<0.001, Figure 3.1C). R-wave amplitude decreased from 966 

[707, 1133] μV at baseline to 742 [627, 1068] μV at peak anaesthesia, a decrease of 

-83 [-245, -28] μV.  

 

https://gitlab.com/marcoFabus/fabus2022_brain_heart
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Figure 3.1: Propofol increased HR and changed ECG 

shape in healthy volunteers 

3.3.2 Heart rate variability analysis 

Next, I studied autonomic activity through heart-rate variability (HRV; Figure 3.2). The 

root-mean-square successive difference between heartbeats, which indexes 

parasympathetic tone, decreased in proportion to propofol concentration, and 

rebounded on emergence (Figure 3.2A; Spearman ρ=−0.785, P<0.001, Cohen’s 

d=1.296 for baseline vs peak concentration). This was confirmed by a repeated 

measures ANOVA (RM-ANOVA) with P<0.001.  

 

Figure 3.1: Propofol increased heart rate and changed ECG shape in healthy 

volunteers. (A) Mean ECG waveform for all heart beats across N=16 subjects across 

propofol doses. High propofol concentration (pink) was characterized by a decrease 

in R-wave amplitude (top inset) and an earlier T-wave (lower inset). (B) Propofol 

increased the heart rate. Group-level heart rate results (purple; mean ± SEM) and 

propofol effect-site concentration (black; Spearman ρ=0.923, P<0.001). (C) At the 

group level, R-wave amplitude (RWA; purple; mean ± SEM) inversely tracked propofol 

concentration (black; Spearman ρ=−0.902, P<0.001) 

R 

T 
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Figure 3.2: Propofol decreased 

parasympathetic activity in healthy 

volunteers 

 

 

Figure 3.2: Propofol decreased parasympathetic activity, as indexed by heart rate 

variability in healthy volunteers. (A) Root-mean-square successive difference 

(RMSSD) between heart beats (blue; median ± 95% CI) that is a measure of 

parasympathetic activity inversely tracks propofol concentration (black) and rebounds 

on emergence. (B) The low to high frequency ratio (green; median ± 95% CI), which 

is a metric thought to index balance of sympathetic and parasympathetic activity, is 

noisy but suggests an increase with propofol (black). (C) Peak frequency in the high-

frequency heart rate variability band that indexes the respiratory vagal peak (blue; 

median ± 95% CI) tracks propofol concentration (black). 

 

With regard to the frequency domain metrics, the low frequency to high frequency ratio 

showed higher between-subject variability, but the group average confirmed the shift 

towards a relative predominance of sympathetic activity with increasing propofol 

concentration (Figure 3.2B; Spearman ρ=−0.763, P<0.001), and the RM-ANOVA 

result also showed a significant change with P=0.003 with Cohen’s d=0.539 between 

baseline and highest propofol concentration. The peak frequency in the high-

frequency parasympathetic HRV range also tracked with propofol concentrations 

(Spearman ρ=0.885, P<0.001; RM-ANOVA P<0.001).  
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Figure 3.3: Propofol slow-wave activity increase tracked HR increase. 

 

3.3.3 Slow-wave analysis 

Cortical activity during propofol anaesthesia is known to be associated with sleep-like 

slow-wave activity (Figure 3.3). I first confirmed the previous finding of saturation of 

frontal slow-wave activity with propofol dose (Figure 3.3A). However, more strikingly, 

this slow-wave activity increase correlated very strongly with the increasing heart rate 

(Figure 3.3B; Spearman ρ=0.910, P<0.001).  

 

 

Figure 3.3: Propofol increased frontal cortical slow-wave activity and this increase 

tracked heart rate increases in healthy volunteers. (A) Group-level Fz slow-wave 

activity results (purple; mean ± SEM) against propofol concentration (black). Slow-

wave activity increases and plateaus with drug dose. (B) On the group level, increases 

in heart rate correlate with increases in slow-wave power (Spearman ρ=0.910, 

P<0.001). Each purple dot represents a 5-minute segment of the experiment with 

standard errors across subjects shown. 
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3.3.4 Cortico-cardiac coupling 

The observed association between slow-wave activity and heart rate in conjunction 

with previous literature describing their coupling in sleep, led to a focus on quantifying 

the presence of any time-related coupling between individual slow waves and 

heartbeats (Figure 3.4). After identifying individual slow waves, I studied the 

distribution of heartbeats around each slow-wave onset (defined as the initial zero 

crossing of the wave). As observed in previous work on cardio-respiratory coupling204, 

the distribution of time intervals between R-waves and slow wave (RS intervals; Figure 

3.4B) was non-uniform and concentrated around specific phases in the slow-wave 

cycle. This appeared as a residual low-frequency oscillation in the ECG, after 

averaging around the slow-wave onset (Figure 3.4C); and as peaks in the distribution 

of heartbeat timings (Figure 3.4D). This effect was also present and significant at the 

group level (Figure 3.5). The group-average lag between the ECG peak and slow-

wave onset was 447 [392, 510] ms (Figure 3.5B). The slow-wave/R-wave coupling, as 

measured by entropy in relation to a uniform null distribution was SHP=0.866±0.05 

(P<0.001 compared to a uniform null hypothesis, see Methods). Additional tests to 

verify this is not a random effect were carried out and are described below together 

with Supplementary Figures 3.1-3.3. Furthermore, at the group level, the subjects’ 

mean heart rates and slow-wave frequencies were significantly linearly correlated 

(Pearson r=0.519, P=0.0395).  

The above analysis results were qualitatively unchanged when EEG data was re-

referenced to linked mastoids and when ECG was time-locked to slow-wave trough 

instead of downward zero crossing – full results of these control analyses will be 

included in the forthcoming publication based on the work in this chapter. 
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Figure 3.4: Single-subject low-frequency cortico-cardiac coupling. 

 

Figure 3.4: Single-subject low-frequency cortico-cardiac coupling. (A) Example 15s 

of EEG and ECG data at high propofol concentrations. Slow-wave starts are shown 

with blue dots. For each slow-wave start, duration of intervals to nearest heartbeats is 

determined (RS intervals, R-wave/Slow wave). Individual R-waves are marked with 

red vertical lines. (B) Example raster plot of RS intervals during 10 minutes of peak 

anaesthesia. Heartbeats cluster in horizontal lines, demonstrating non-random 

coupling to slow-wave onset (proportional entropy SHP=0.890). (C) Single-subject 

average slow wave (blue; mean ± SEM across all slow waves) and ECG (red = 

broadband, purple = 0.5Hz-1.5Hz only) time-locked to slow-wave onset. The ECG 

pattern is not uniform random noise but shows a clear ongoing low-frequency ECG 

oscillation. (D) Histogram of R-wave timings relative to slow-wave onset. Individual 

heartbeats preferentially occur in phase with the slow wave, explaining the oscillatory 

appearance of (C) and stripes seen in (B). 
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Figure 3.5: Group-level cortico-cardiac coupling in healthy volunteers. 

 

Figure 3.5: Group-level cortico-cardiac coupling in healthy volunteers. (A) Mean slow 

wave detected (blue) with each subject mean in grey. (B) Group-average ECG (red = 

broadband, purple = 0.5Hz-4Hz only) time-locked to slow-wave (black) onset. The 

ongoing low-frequency ECG oscillation is also present at the group-level. (C) Slow-

wave onset is significantly linked to the preceding heartbeat. Proportional entropy of 

intervals between slow-wave start and previous R-wave. Mean is in red, each of N=16 

subjects is shown with a grey vertical line, surrogate distribution assuming random 

timings is in blue. (D) Individual heart rate and slow-wave frequency are related 

(Pearson r=0.519, P=0.0395). 
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Figure 3.6: Multivariate extension of the analysis. 

For a preliminary analysis to explore potential spatial differences in cortico-cardiac 

coupling, the group-average lag between the ECG peak and slow-wave onset was 

extracted for each electrode, as was the coupling strength measured by entropy SHP 

(Figure 3.6). 

The coupling strength and R-wave / slow-wave delay were similar across the scalp. 

The only trending exception was a difference in the temporo-parietal R-wave/slow-

wave difference between the left and right hemispheres, where some electrodes had 

a significantly different delay compared to the mean (P<0.1 on permutation test with 

N=1000 random shuffled permutations of delays between electrodes in each subject). 

For the significant electrodes, the mean delay was 446 ± 15ms on the average of 

TP9/T7/CP5 and 462 ± 17ms on P8/CP6 (uncorrected Wilcoxon P=0.025, average 

left-right difference of 16.5ms).  

Figure 3.6: Multivariate extension of the analysis. (A) Coupling strength across 

channels shows virtually no significant differences (permutation P>0.1). (B) R-wave / 

Slow wave delay shows potential small differences between right and left 

temporoparietal regions (permutation P<0.1).  

B 

C
o

u
p

lin
g
 s

tr
e

n
g

th
 

A 

R
S

 d
e

la
y
 [
s
] 



62 
 

Further robustness analyses  

The method introduced by Galletly et al207 was used above to test the presence of 

coupling against a uniformly random distribution. An alternative autocorrelation-based 

test was also used to verify the robustness of this result (see Methods). It revealed the 

presence of an ongoing oscillation at the group level (Supplementary Figure 3.1), 

present strongly in 10 out of 16 subjects (Supplementary Figure 3.2). In these subjects, 

the mean P-value for a sinusoidal fit was P=0.0012 with R2=0.723±0.056. On the group 

level across all participants, the distribution of heartbeat timings in relation to the slow-

wave onset showed significant autocorrelation with P<0.001 and R2=0.857 to a 

decaying sinusoid fit with exponential half-life of 2.51s (Supplementary Figures 3.1C, 

D).  

I also wanted to know if the strength of coupling varies with dose or is a general slow-

wave phenomenon (Supplementary Figure 3.3). When plotting the proportional 

entropy SHP across time, no significant effect was observed, i.e. no dose-dependent 

effects could be detected (P>0.5).  

Finally, simulations were used to check this coupling does not arise trivially in 

presence of two oscillators around 1Hz (the heart rate and slow oscillation). These 

confirmed that the effect seen here only arises when the two waves are coupled 

(Appendix 9.2.1).  

 

3.3.5 Clinical dataset analysis 

In order to explore whether the above heart rate results hold in a clinical setting, I 

analysed the association between effect-site drug concentration and heart rate using 

a large general linear model with N=96 older patients collected as part of the AlphaMax 
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Table 3.1: GLM coefficients for HR in 

the clinical study. 

trial (Table 3.1, Supplementary Figure 3.4). After adjusting for age, BMI, sex, and ASA 

status, all agents (propofol, fentanyl, and desflurane) had a significant effect on the 

heart rate (P<0.001). Propofol led to a mild increase in heart rate, on average with a 

coefficient of +1.3 bpm / (μg ml-1) (95%CI 1.1, 1.5). Fentanyl however led to a decrease 

in the heart rate, on average −2.6 (95%CI −2.7, −2.5) bpm / (ng ml-1), as did desflurane 

with average of −1.84 (95%CI −1.90, −1.78) bpm / (1%ET).  The interaction terms 

were also significant though with smaller coefficients. With mean individual heart rate 

included as a regressor, no demographic parameters were significant, suggesting that 

the drug effects on the heart rate may be independent of these. The effect size 

comparing HR with propofol <0.5µg/ml and >3µg/ml was Cohen’s d=0.796. 

Interestingly, at the group level, mean intraoperative slow-wave frequency was not 

related to the mean heart rate in this dataset (P=0.65). 

Name Estimate Lower Upper 
Standard 

Error 

t-

statistic 

P-

Value 

Intercept 45.444 17.620 73.267 14.196 3.201 0.001 

Age 0.213 -0.142 0.568 0.181 1.177 0.239 

BMI 0.122 -0.288 0.532 0.209 0.584 0.559 

ASA 1.976 -2.853 6.806 2.464 0.802 0.423 

Sex = F 0.367 -4.181 4.915 2.320 0.158 0.874 

Propofol [µg/ml] 1.319 1.120 1.517 0.101 13.016 <0.001 

Fentanyl [ng/ml] -2.604 -2.706 -2.501 0.052 -49.682 <0.001 

Desflurane [%] -1.838 -1.895 -1.780 0.029 -62.566 <0.001 

Propofol*Fentanyl 0.988 0.946 1.030 0.021 46.510 <0.001 

Propofol*Desflurane -0.711 -0.766 -0.656 0.028 -25.266 <0.001 

Fentanyl*Desflurane 0.463 0.437 0.489 0.013 35.018 <0.001 

 

Table 3.1: General linear model coefficients for heart rate in the AlphaMax clinical 

study. Lower / Upper columns indicate 95% confidence intervals. The model confirms 

propofol’s tendency to increase the heart rate independent of other regressors, unlike 

fentanyl and desflurane. 
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3.4 Discussion 

3.4.1 Propofol and the heart rate 

In this chapter, it has been shown that administration of propofol leads to increases in 

the mean heart rate. The ultraslow propofol administration in healthy volunteers led to 

an increase in the mean heart rate of roughly +4 bpm / (μg/ml propofol concentration). 

The effect of propofol on heart rate in the older patient population was about three-fold 

smaller, with an average +1.3 bpm / (µg/ml). These clear and significant mean heart 

rate increases confirmed my hypothesis but are surprising in view of the mixed 

reporting in the existing clinical literature.  

Several experimental studies have seen a heart rate increase across a variety of 

research paradigms191–195,208. I contend the lack of heart rate increase (or heart rate 

decrease) with propofol frequently reported in some clinical studies may be due to 

other drugs given, the patient population, the surgical context, as well as dose and 

rate-dependent effects. Clinically, it is common to administer opioids and other 

premedication, many of which decrease the heart rate and affect cardiovascular 

dynamics208,209. This even includes pre-oxygenation which tends to decrease the heart 

rate210. The smaller heart rate increase observed in the older clinical population could 

be in part due to a previously proposed U-shape relationship between propofol and 

heart rate194. Older patients have higher anaesthetic sensitivity and therefore may be 

more susceptible to a heart rate decrease at relatively high propofol concentrations. 

This is supported by a previous healthy volunteer study where propofol plasma 

concentrations of about 7.4µg/ml increased the heart rate by about 30bpm, consistent 

with the results of this study; but excessively high concentrations up to mean plasma 

levels of 18.3μg/ml reversed the effect and decreased the heart rate compared to 
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lower concentrations195. Additionally, autonomic system balance and baseline activity 

are age-dependent211.  Finally, clinical procedures may provide autonomic stimulation 

which could affect intrinsic heart rate increases with propofol.  

The ultraslow induction rate used in the healthy volunteer study may also affect the 

cardiac changes. This is supported by previous work finding rate-dependent cardiac 

effects of propofol with greater decrease in heart rate in fast induction rates, perhaps 

due to a rate-limiting central nervous system distribution process198,212. 

Some could argue the heart rate increase is due to the presence of anxiety. However, 

this is unlikely to be the case as in the experimental setting, whilst heart rate increased 

from baseline to loss of responsiveness, it continued to increase at the same rate when 

the drug concentration increased beyond the point of loss of consciousness 

(Supplementary Figure 3.5).  

 

3.4.2 Propofol and heart rate variability 

The biological basis for the increase in mean heart rate may be due to propofol 

inhibiting cardioinhibitory vagal neurons in the brainstem194. Studies of propofol’s 

effect on autonomic cardiac influences have also produced mixed results.  

The literature agrees that propofol reduces heart rate variability190,195,213–215, a result 

also confirmed in this experiment. The distinct sympathetic and parasympathetic 

contributions to this are less clear. An early study proposed that propofol mostly 

depresses sympathetic activity and suggested this as a mechanism for propofol 

bradycardia and hypotension. However, opioids were also used in that study214. 

Several studies since have concluded that propofol predominantly decreases high-

frequency heart rate variability, which is thought to reflect parasympathetic vagal 
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influences190,195,213,215. This vagolysis could be an explanation for the increased heart 

rate, especially as it distinguishes propofol from sevoflurane190,195. It is less likely to be 

a reflex tachycardic response to vasodilation, as propofol has been shown to depress 

the baroreflex23. 

 

3.4.3 Propofol and ECG morphology 

Dose-dependent changes in ECG morphology that may reflect both direct cardiac 

effects and central nervous system-mediated changes of propofol were also observed. 

After adjusting for heart rate changes, propofol was found not to affect the QT 

interval216 so the earlier T-wave seen in this study could just reflect a faster heart rate. 

However, the R-wave amplitude decrease seen in the present study might be related 

to previously observed propofol effects on ventricular depolarisation217. Propofol may 

decrease myocardial contractility, possibly due to a direct propofol effect on myocyte 

ability to expel intracellular calcium218. However, another study suggested this only 

happens at doses beyond common clinical ranges219. A change in the mean electrical 

axis or direct vagal effect could also explain the R-wave amplitude decrease; findings 

have been mixed so far217,220.  

 

3.4.4 Cortico-cardiac coupling in propofol 

Low-frequency cortico-cardiac coupling has been observed in sleep120,221. As propofol 

slow waves show some sleep-like properties86, it was hypothesized this effect would 

also be present in anaesthesia. In healthy volunteers, it was found that the increase in 

mean heart rate was strongly correlated with increases in cortical slow-wave power. 

Obviously, this correlation might be explained as being driven by a common cause – 
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that of increasing propofol concentration. However, individual cortical slow waves and 

cardiac R-waves were found to be coupled as hypothesized. A heartbeat was most 

likely to precede the slow-wave onset by about 450ms with another heartbeat near the 

slow-wave nadir, a time interval similar to that seen in sleep120,221. Further robustness 

analyses showed that in 10 out of 16 subjects, this effect was not restricted to just the 

preceding heartbeat, but there was a significant autocorrelation between a slow wave 

and heart beats with a half-life of 2.5s. Interestingly, Mensen et al. also found 

significant results at the single-subject level only in 9-13/16 subjects depending on the 

sub-analysis (ECG vs near-infrared spectroscopy, NIRS). Further studies should 

explore what drives these between-subject differences. Finally, simulations 

demonstrated that the results here are not trivially due to similar heart rate and slow 

wave frequencies, and only hold up when the two waveforms are genuinely coupled 

(Appendix 9.2.1). 

Mensen et al. proposed several hypotheses for why this coupling may occur120. The 

first was a possible metabolic constraint. Overall, neurochemical tone favours 

hyperpolarized down states with heartbeats acting as a potential stimulus to evoke a 

down state. Neurons may enter a hyperpolarized state when their resources are 

depleted. Slightly lower regional blood flow between heart beats could have this effect 

on a few critical neurons leading to an entire network change. However, this seems 

unlikely because the necessary time resolution of changes in metabolic energy 

demand seems shorter than that of a damped feeder capillary blood flow, coupled with 

the diffusion time of energy substrates and the presence of intrinsic neuronal energy 

stores. The other possibility is a third generator controlling both the heart rate and 

slow-wave genesis. Knowing this effect is present both in sleep and propofol 

anaesthesia gives us a clue as to the possible nature of such a generator. Sleep and 
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anaesthesia differ in their noradrenaline levels, but both show low levels of 

acetylcholine222. Combined with the fact that the brainstem projects both in a cephalad 

direction to higher brain areas and, caudally to the heart, here it is proposed as a 

possible place for a common generator. For instance, the nucleus of the solitary tract 

or cholinergic pontine nuclei may project both to fast-spiking GABAergic interneurons 

in the thalamus and to medullar regions controlling the heart rate223,224. Given that the 

thalamus is likely involved in slow-wave generation in vivo, this brainstem connection 

could explain the observed cortico-cardiac coupling, perhaps by weak-coupling 

synchronization81,225. This is supported by the finding that subjects with a faster heart 

rate also had faster slow-wave frequency. Finally, a preliminary analysis of the cortico-

cardiac coupling effect across all electrodes did not reveal any notable differences in 

coupling or delays across the scalp, except for trending left/right heartbeat/slow wave 

delay differences in temporoparietal regions. 

Interestingly, this frequency relationship was not observed during desflurane-fentanyl 

slow waves in the clinical dataset, suggesting volatile anaesthetics may differ in their 

cortico-cardiac coupling effects. Different types of slow waves have also been 

proposed (see 123,124 and Chapter 4). Here a traditional slow wave definition was used 

that allows for comparison with previous literature120,124, but wave sub-types may show 

differences in coupling to the heart rate. 

Further work is needed to explain the relationship between slow waves and cardiac 

activity, especially as pertains to wider coupling of autonomic and central activity196,197. 

The proposed common brainstem generator could be ruled out if patients with 

pacemakers also show this coupling.  
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In summary, slow propofol administration in healthy subjects robustly led to an 

increase in mean heart rate that was strongly proportional to drug concentration, and 

not influenced by changes in behavioural responsiveness. This result was replicated 

in a larger clinical dataset but with a decreased effect size. The heart rate increase 

could be explained with decreased cardiac parasympathetic inputs, as indexed by 

decreased high-frequency heart rate variability. Frontal cortical slow waves 

preferentially occurred coupled to the heart rhythm similarly to cortico-cardiac coupling 

that is seen in sleep, perhaps due to a common brainstem generator. More work is 

needed to elucidate the mechanism and role of these cardiac changes and the clinical 

significance of their coupling to the cortex.  

Thus, in the clinical management of patient haemodynamics, propofol should not be 

assumed to decrease the heart rate. In fact, particularly for slow infusions and younger 

patients, propofol is likely to increase the heart rate. Ultimately, heart rate will be a 

complex result of opioid, hypnotic, and surgical factors. 
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4    Automatic decomposition 

of electrophysiological data 

into distinct non-sinusoidal 

oscillatory modes 
 

4.1 Introduction 

The synchronized activity of neuronal populations can be observed in dynamic 

oscillations recorded in electrophysiology65,226. These oscillations are often visible in 

raw data traces but are challenging to isolate in an objective, data-driven manner. 

Methods for signal isolation must contend with signals being obscured by noise or by 

simultaneous oscillations at different frequencies. Neuronal oscillations are often non-

sinusoidal and change over time, which leads to ambiguities in standard analyses 

based on the Fourier transform227,228. These dynamic and non-sinusoidal features are 

of growing importance in electrophysiological research but remain difficult to analyse 

using existing methods121,126,226,229–231. As such, there is a pressing need for data-

driven methods that can isolate oscillations from noisy time-series whilst preserving 

their non-sinusoidal features. 

In previous chapters, slow waves were analysed using well-established and traditional, 

Fourier-based filtering methods, allowing direct comparison with the wider literature. 

However, brain waves during anaesthesia are non-sinusoidal121,232, and their shape 

may have potential physiological relevance122. To address this, I tackled the problem 
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of non-sinusoidal neural oscillations more broadly, before applying my new data-driven 

analysis technique to propofol anaesthesia.  

Empirical Mode Decomposition (EMD)233 is able to provide a different perspective on 

analysing transient oscillations. It offers a radically different approach to signal 

separation based on a flexible, local, and data-driven decomposition with weaker 

assumptions about stationarity and linearity of the signal. Single channel data is 

decomposed by a sifting process into Intrinsic Mode Functions (IMFs) based on finding 

successively slower extrema. Unlike Fourier or Wavelet methods, EMD does not a-

priori assume the shape of its functions. It is therefore believed IMFs can capture non-

sinusoidal oscillations and may better reflect the underlying processes in physical and 

physiological signals227,233,234. This can especially aid analyses sensitive to waveform 

shape, such as calculations of phase and cross-frequency coupling228,235. 

The original EMD algorithm can in theory produce arbitrarily shaped IMFs, but in noisy 

neural signals it struggles with signal intermittency and high non-sinusoidality. In the 

presence of transient oscillatory bursts, the sifting process may detect extrema on 

different time scales at different times. This is referred to as mode mixing. It presents 

a major challenge in analysis and interpretation of IMFs236,237. This is especially the 

case in analysis of brain signals, where transient states are common and have 

functional significance126,238–240. Furthermore, in the presence of pure Gaussian 

fractional noise, EMD has been shown to act as a dyadic filter bank241,242. This means 

that for highly noisy signals, EMD tends to produce IMFs with fixed bandwidths rather 

than adapting to capture signals present in the data, further complicating analysis.  

Various improvements to the sifting process have been proposed to make EMD more 

applicable to real-world data243–250. A unifying characteristic of the existing approaches 
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is to inject a secondary signal into the data to alter the extrema distribution and 

overcome mode mixing. Noise-assisted methods, as exemplified by Ensemble EMD 

(EEMD)243,245, use white noise as the injected signal. This reduces mode mixing due 

to signal intermittency. However, the use of noise can limit IMF bandwidth, possibly 

making mode mixing worse. Masking methods inject sinusoids into the data before 

sifting244,247. With a suitable mask, this technique can recover non-sinusoidal 

waveforms and/or intermittent bursts in presence of noise. However, the frequency of 

masking signals that should be used is often not known a-priori.  

Mask optimization can become an arduous manual process, prohibiting 

generalizability and introducing uncertainty on analysis outcomes. This is exacerbated 

by the presence of high noise and non-sinusoidal signals near dyadic boundaries, 

where a small change in the masking signal frequency may dramatically alter the 

quality of resulting IMFs. Mask frequency selection can be done semi-automatically by 

choosing an initial frequency based on the number of zero-crossings in the first IMF 

and dividing this successively by two for later IMFs244. If the approximate frequency 

content of the signal is known, then mask frequencies may be directly selected to 

isolate the specific components of interest234. Though effective, the semi-automatic 

method is relatively inflexible, and the direct specification method can be manually 

intensive to validate.  

Finally, multivariate EMD is also a subject of active research251,252. The extension of 

EMD to multi-channel data is not trivial as interpolating extremal envelopes becomes 

computationally expensive in higher dimensions and additional methods are needed, 

such as only sifting along most important directions. Alternatively, pseudo-multivariate 

EMD can be computed by simply performing EMD on each channel separately and 
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checking cross-channel mode correspondence afterwards, for example, by comparing 

their frequency content.   

Existing versions of Empirical Mode Decomposition have been applied to anaesthesia. 

The first application was by Li and colleagues (2008)253, where after standard 

Empirical Mode Decomposition, the Hilbert-Huang transform was computed to obtain 

a spectrum and its entropy was found, the Hilbert-Huang spectral entropy. This 

entropy decreased with increasing sevoflurane concentration and was more resistant 

to noise than commercial M-Entropy. This paper illustrates a common trend in the 

literature on applying EMD to anaesthesia. Because in existing EMD-based methods 

individual cycles are difficult to interpret due to mode mixing, either EMD is used as 

just a pre-processing tool to remove noise, or further analysis is done by using the 

modes as input into entropy, spectral, or neural network measures. This has been 

done with Ensemble EMD254,255 and Multivariate EMD256,257. The validity of extracting 

slow-wave activity during general anaesthesia using EMD has also been 

demonstrated258,259. More recently, masked EMD was used to suggest different 

spectral components of EEG show different rates of return to baseline after burst-

suppression260. The existing work suggests EMD is a promising technique to study 

EEG changes under anaesthesia, but methodological improvements to reduce mode 

mixing are needed. 

In this chapter, I introduce Iterated Masking EMD (itEMD), which is a novel sifting 

technique that I have developed that builds on the masking method. This method 

retains all the advantages of using a masking signal whilst being more generalizable 

and automated. I validated itEMD by comparing it with existing methods using 

simulations and multi-species, multi-modal experimental data, and discuss its range 

of applicability and limitations.  After developing and validating the novel methodology, 
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I applied itEMD to the propofol dataset presented in Chapters 2 and 3. Using itEMD in 

this way, I found three distinct low-frequency modes in the data. These were termed 

high delta, low delta, and slow modes. I hypothesised that these modes should show 

changes in spatiotemporal structure with increased anaesthetic doses of propofol.  

Additionally, to explore changes in the brain following anaesthesia, I adapted a trough-

based traveling wave analysis that has been previously used in anaesthesia and 

sleep85,86. For the first time, I resolved properties of travelling waves across changing 

anaesthetic concentration thanks to the ultra-slow infusion paradigm. I found dose-

dependent changes in globality, frequency, and amplitude for each of the three wave 

types. 

 

4.2 Methods 

The methodological and validation part of this chapter is based on my existing first-

author publication261. 

 

4.2.1 Empirical Mode Decomposition (EMD) Algorithms 

Empirical Mode Decomposition decomposes a signal x(t) into a finite number of 

Intrinsic Mode Functions (IMFs) ci with a sifting algorithm 233. The IMFs are constructed 

to have locally symmetric upper and lower envelopes with no peaks below zero or 

troughs above zero. A smooth signal with these features is well-behaved during 

instantaneous frequency analysis, allowing for a full description of non-sinusoidal 

waveform shape234. 
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Ensemble EMD243 is typical of a class of noise-assisted sifting methods. An ensemble 

of N sift processes is created, each with different white noise injected. The final IMFs 

are computed as the average across this ensemble. The goal is to exhaust all possible 

sifting solutions, leaving only persistent real signals. However, due to a finite size of 

the ensemble, IMFs may contain unwanted residual noise unless further 

improvements are introduced248,249. Furthermore, due to the stochastic nature of white 

noise, signals of interest might shift between modes across the ensemble, leading to 

some mode mixing in the final result. Finally, the use of noise reinforces the dyadic 

filtering behaviour of EMD. This means any signal near dyadic boundaries is likely to 

be split between modes. This effect is especially pronounced for non-sinusoidal 

signals which change in instantaneous frequency, making waveform shape analysis 

difficult as they become smeared over multiple IMFs. 

Masked EMD244 works by injecting a masking signal si(t) into signal x(t) before sifting. 

This reduces mode mixing by making the sift ignore signal content slower than the 

frequency of the masking signal. The masking signal is introduced uniformly across np 

phases at each step to further minimize mode mixing245. The IMFs ci are thus 

calculated with the following algorithm: 

1. Construct a masking signal si(t). 

2. Perform EMD on xk = x(t) + si,k(t + φk), where φk = 2π(k-1) / np, obtaining IMFs 

ci,k(t). 

3. Compute the final IMF as ci(t) = 1/np ∑ci,k. 

4. Compute the residue ri(t) = x(t) – ci(t). 

5. Set x(t) = ri(t) and repeat 1-4 with the next masking signal to extract the next 

IMF. 
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This technique permits analysis with intermittent bursts and non-sinusoidal oscillations 

(Figure 4.1). EMD is locally adaptive, and as such fast bursts get mixed with slower 

activity when bursts are not present. With a mask, any signal content with frequencies 

much lower than the masking frequency will be ignored by the sift in that iteration and 

is replaced by the mask. The mask is finally removed, allowing for correct recovery of 

intermittent activity. In presence of noise, EMD also acts as a dyadic filter241,242. This 

means non-sinusoidal oscillations are often split across multiple IMFs. With a suitable 

mask, the bandwidth of modes can be adapted and more of the waveform shape 

recovered.  

The choice of masking signals remains an area of active research. The original paper 

by Deering and Kaiser suggested the first mask frequency to be the energy-weighted 

mean of instantaneous frequency obtained from the first IMF found by ordinary EMD, 

with subsequent mask frequencies chosen as f0 divided by powers of 2 to account for 

the dyadic nature of EMD244. Other approaches have included computing the mask 

from zero crossings of the first IMF of a standard sift and purely dyadic masks247. 

However, the choice of optimal masks remains a manual process in many cases. This 

requires experience and may introduce subjective bias234,244,250,262. 

 

Iterated Masking EMD (itEMD) technique 

As seen above, noise-assisted and masking approaches to EMD sifting improve mode 

mixing in some cases, but mode mixing may still be present to complicate further 

analysis. Mask choice in noisy datasets is complicated, especially with signal 

frequencies near dyadic boundaries. Iterated masking solves this problem by finding 

and using an adaptive, data-driven mask. 
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In science, it is common to rely on intuition to guide study of complex dynamical 

systems263. Consider then a simple example where there is a signal burst x(t) with 

some base frequency fsig and possible deviation around it due to non-sinusoidality. 

Take as a start the masked EMD process with a single mask of frequency fmask
(0).  A 

good choice of frequency would be near fmask = fsig, as this would extract most of x(t) 

into one IMF, resulting in noise reduction and allowing for a simple IMF interpretation. 

This is because adding a mask at fmask = fsig forces the IMF to ignore any spectral 

content below ~0.67* fmask 
250.  

In real data however, fsig is often unknown. Assume then fmask
(0)

 is chosen with little to 

no knowledge of the system frequency fsig. After applying masked EMD, the resulting 

IMF will contain a part of the burst with some noise or other signal mixed in. However, 

its instantaneous frequency will be fsig for sections of the IMF attributable to the signal. 

Assuming signal amplitude is distinguishable from noise in this IMF, the amplitude-

weighted instantaneous frequency mean (AW-IFM) will be closer to the desired fsig 

than fmask
(0). Thus, if one uses this AW-IFM as the masking frequency for the next 

iteration fmask
(1)

, the resulting mask sift IMF will be even closer to the optimal IMF. This 

is the case both if fmask
(0) is greater and smaller than fsig, as both lead to mode mixing. 

Following this reasoning, the natural equilibrium of this iteration process is when fmask 

= fsig, and one can apply this approach to a signal consisting of multiple signal 

frequencies and noise. This leads to the following algorithm: 

1. Choose an initial set of mask frequencies m = {f0}. 

2. Perform masked EMD to obtain IMFs. 

3. Find the instantaneous frequency (IF) for each IMF using the Hilbert transform. 

4. Compute the amplitude-weighted average of each IMF’s IF and set mi = AW-IFM. 
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Figure 4.1: Limitations of EMD. 

5. Repeat 2-4 until a stopping criterion ∑ is reached. 

Figure 4.1: Limitations of EMD. (A) Standard EMD sifting applied on a pure 4Hz 

iterated sine function. With no noise, EMD can accurately identify an Intrinsic Mode 

Function (IMF) that represents the non-sinusoidal signal. (B) In presence of white 

noise and a 30Hz burst (arrow), standard EMD shows heavy mode mixing. (C) EMD 

with an appropriate dyadic mask sift will recover most of the iterated sine (IMF-3) 

and the intermittent burst (IMF-2) signals. (D) Masked EMD and Ensemble EMD can 

better reconstruct non-sinusoidal wave shape in signal with low noise unlike 

standard EMD. The figure shows the phase-aligned instantaneous frequency 

calculated from 100 runs of (B) and (C). Mean ± standard error (shaded) shown.
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Here the stopping criterion was chosen such that the relative difference between 

current and previous mask frequencies is small, i.e. (mi – mi-1) / – mi-1 < ∑. 

Instantaneous frequency averaging was weighted by the square of instantaneous 

amplitude for a given IMF, i.e. by instantaneous power. Mask frequencies were 

initialized by the dyadic masking technique, though it was found that itEMD is not 

sensitive to mask changes and can rapidly identify correct IMFs even with a random 

initial mask (Figure 4.2). Due to rapid convergence (<10 iterations in most cases), 

itEMD is computationally comparable to existing techniques including ensemble EMD 

and uniform phase EMD, each of which requires repeated sifting245. More formally, the 

computational complexity of itEMD is T = 41niter * ns * np * n log2(n) for niter iterations, 

ns sifting steps, np mask phases, and data length n. 

 

4.2.2 Simulations 

I ran simulations to compare the performance of itEMD to existing sifting methods, 

namely Ensemble EMD (EEMD243) and Masked EMD244. Simulations were performed 

along three dimensions that are important to analysis of neural signals: noise, sparsity, 

and waveform shape distortion (non-sinusoidality). These were chosen as they are all 

common features of neurophysiological data which cause issues for extracting neural 

oscillations. In standard EMD, they result in mode mixing and prohibit accurate 

representation of waveform shape and robust interpretation of identified modes. 

All noise and frequency distortion simulations were 10s long and sampled at 512Hz 

with signal amplitude normalized to 1. In each simulation, IMFs were computed using 

three different methods that are used to address mode mixing: Dyadic Mask Sift, 

Ensemble Sift, and the novel iterated masking EMD (itEMD). Dyadic Mask Sift utilized 
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a single set of masking frequencies. The first was computed from zero-crossings of 

first IMF obtained by a standard sift and subsequent masking frequencies were divided 

by powers of 2. Masks were applied with 4 phases uniformly spread across 0 to 2π 

following Wang et al. (2016)245. Ensemble sift was run with 4 noise realizations and 

ensemble noise standard deviation of 0.2. The novel itEMD was run on top of the 

masked EMD implementation with a stopping criterion ∑ = 0.1 and maximum number 

of iterations Nmax = 15. In all simulations, number of IMFs was limited to 6 and the 

sifting threshold was 1e-08. After finding IMFs, individual cycles were found from 

jumps in the instantaneous phase found by the amplitude-normalized Hilbert transform. 

Each set of simulations (noise, distortion, sparsity) was repeated N=100 times with the 

mean +/- standard error results presented. 

Waveform shape was quantified by computing the average phase-aligned 

instantaneous frequency (IF) across cycles234. IF measures how an oscillation speeds 

up or slows down within a cycle. It is computed as the time derivative of the 

instantaneous phase. IF was phase-aligned to correct for differences in timing and 

duration between cycles and allow for comparisons at each phase point. It can 

intuitively be understood as fitting a sinusoid with frequency that of the instantaneous 

frequency at each time point, capturing shape deviations away from a sinusoid with a 

constant frequency264,265. Within-cycle IF variability is thus a measure of how non-

sinusoidal each cycle is. 

Performance of each method was assessed by two methods. The first was finding 

Pearson correlation between reconstructed phase-aligned instantaneous frequency 

(proxy for waveform shape) and its ground truth. The second was computing the 

Pseudo-Mode Splitting Index (PMSI) introduced by Wang et al. (2018)245. PMSI 
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estimates the degree of mode mixing between two adjacent IMFs by computing the 

normalized dot product between them:   

 𝑃𝑀𝑆𝐼𝑖,𝑖+1 = 𝑚𝑎𝑥 (
𝑐𝑖⃗⃗ ⋅ 𝑐𝑖+1⃗⃗ ⃗⃗ ⃗⃗  ⃗

|𝑐𝑖|2 + |𝑐𝑖+1|2
, 0) [1] 

Orthogonal, well-separated modes with no mode mixing thus have PMSI=0. Fully split 

modes have PMSI=0.5. This index was chosen as it can be applied to both simulated 

and real data and is easy to interpret. For simulations with a known ground truth, the 

IMF of interest was taken to be the one with mean instantaneous frequency closest to 

that of the ground truth and calculated PMSI as the sum of PMSIs with the above and 

below IMF. 

 

Noise Simulations 

For analysing noise-dependent properties, white noise was created using the 

numpy.random.normal Python module with zero mean and standard deviation σ (also 

equal to its root-mean-square, RMS). White noise was chosen because performance 

results tested on it are independent of signal frequency. This is because white noise 

has equal power throughout the frequency spectrum. For simulations of 

neurophysiological data, in a supplementary analysis, signals with brown noise were 

also considered. For this set of simulations, white noise RMS σ was varied between 

σ=0.05 and σ=3 in 100 uniformly spaced steps. Waveform shape distortion was held 

constant at FD=68% (see below). 
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Waveform Shape Distortion Simulations 

For analysing waveform shape, signal was simulated as an iterated sine function, i.e. 

sin(sin(...sin(2*π*f0*x))) iterated Nsin times with f0=4Hz. This function was chosen 

because i) it is easy to manipulate its non-sinusoidal distortion by increasing Nsin, ii) it 

is well-understood analytically266, iii) it has been used before in context of EEG time-

frequency analysis267, and iv) it has a well-behaved instantaneous frequency by 

satisfying conditions outlined in Huang et.al. (1998)233. It also qualitatively captures 

parts of waveform shape of the sensorimotor mu oscillation and slow oscillations in 

depth EEG recordings by its ‘flat top’ structure121,268. The base frequency of 4Hz was 

chosen as it is physiologically plausible in the delta range and was near a Nyquist 

boundary, where current EMD sifting methods may have issues. Its non-sinusoidality 

was captured by a frequency distortion metric FD defined by 

 𝐹𝐷 =
𝑚𝑎𝑥(𝐼𝐹) − 𝑚𝑖𝑛(𝐼𝐹)

𝑓0
⋅ 100% [2] 

A signal with FD=0% is a pure sinusoid and FD=100% indicates a waveform with IF 

range equal to that of the original frequency, i.e. 4±2Hz. An example waveform can be 

seen in Figure 4.1 (FD=68%). In this set of simulations, frequency distortion was varied 

between FD= 18% and 101% by repeating simulations with iterated sine order varying 

from Nsin=1 to Nsin=18. White noise RMS was held constant at σ = 1. 

 

Signal Intermittency Simulations 

For analysing effects of signal intermittency on itEMD performance, bursts of different 

length in a 25s segment of data were simulated. Sparsity was measured as the number 

of individual oscillations in the burst. The number of cycles in the burst was varied from 
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5 to 95 in 100 steps. Noise RMS was kept constant at σnoise = 1 and distortion at FD=68% 

(8th order iterated sine).   

Statistical testing was done using one-sided Welch’s t-test corrected for multiple 

comparisons using Bonferroni’s method unless otherwise specified269.  

 

4.2.3 Validation using Experimental Data 

Rat Local Field Potential (LFP) Data 

To validate the method with well-described hippocampal theta oscillations, a publicly 

available data set of Long-Evans rats was used270,271. The full 1000s local field 

potentials (LFP) recording from rat EC-013 sampled at 1250Hz was used for analysis. 

The electrode analysed was implanted in the hippocampal region CA1. EMD cycle 

analysis was the same as during simulations. In short, three types of sifting methods 

were compared: dyadic masking sift with zero-crossing initialization, ensemble sift, 

and the novel itEMD. The recording was split into 20 segments of 50s duration before 

sifting. For itEMD (as in simulations), the stopping criterion was set at ∑=0.1, the 

maximum number of iterations was Nmax=15, the mask was weighted by squared 

instantaneous amplitude, and the iteration process was initialized by the zero-crossing 

dyadic mask result. Instantaneous phase, frequency, and amplitude were computed 

from the IMFs using the amplitude-normalized Hilbert transform with an instantaneous 

phase smoothing window of N=5 timepoints. The theta IMF was chosen as that whose 

average instantaneous frequency was closest to the Fourier spectral theta peak 

estimated using Welch’s method (peak in 4-8Hz, function scipy.signal.welch, 8s 

segment length / 0.125Hz resolution). Cycles were computed from jumps in the 

wrapped instantaneous phase. To discard noisy cycles, only cycles with monotonic 
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instantaneous phase, instantaneous amplitude above the 50th percentile, and 

instantaneous frequency below 16Hz were used for further analysis. Cycles were 

phase-aligned with N=48 phase points and the shape was represented by the mean 

of the phase-aligned instantaneous frequency. To compare mode mixing, the PMSI 

(see above) was also computed as the sum of PMSIs of the theta IMF with the IMF 

above and below it in frequency. 

Finally, the Wavelet transform of the LFP data was also computed for comparison with 

the Hilbert-Huang transform (HHT). This was done using the scipy.signal.cwt function 

with the Complex Morlet wavelet with ω0=4 and N=100 frequency points between 1Hz 

and 64Hz as the widths. HHT was computed using the emd.spectra.hilberthuang 

function in the same frequency range with a gaussian image filter from scipy.ndimage 

with σ=0.5 applied for visualization purposes.  

  

Human Magnetoencephalography (MEG) Data 

Ten resting state MEG recordings were randomly chosen from the CamCAN project 

(www.cam-can.org/)272,273. The participants were randomly chosen from the project 

(mean age 43.5 years, range 18-79, 6 female). The maxfilter processed data were 

downloaded from the server and converted into SPM12 format for further analysis 

using the OHBA Software Library (OSL; ohba-analysis.github.io/osl-docs/). 

Preprocessing was done by Prof Andrew Quinn. Each dataset was down-sampled to 

400Hz and bandpass filtered between 0.1 and 125Hz. Two notch filters were applied 

at 48-52Hz and 98-102Hz to attenuate line noise. Physiological artefacts were 

removed from the data using Independent Components Analysis. 62 components 

were computed from the sensor space data and artefactual components identified by 

http://www.cam-can.org/
https://ohba-analysis.github.io/osl-docs/
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correlation with EOG and ECG recordings. Any independent component with a 

correlation greater 0.35 with either the EOG or ECG was considered artefactual and 

removed from the analysis. This resulted in two to four components removed from 

each dataset. EMD analyses proceeded with the cleaned MEG data from a single 

gradiometer MEG2112 over midline occipital cortex. Each recording was about 10 

minutes (median 565s, range 562s-656s). The power spectrum of the whole recording 

was estimated using Welch’s method (function scipy.signal.welch, 8s segment length 

/ 0.125Hz resolution). The frequency of the spectral alpha peak was then extracted in 

the 8-12Hz range as a local maximum (function scipy.signal.find_peaks). For itEMD 

analysis, each recording was segmented into 10 parts of the same length (median 

segment length 56.2s). EMD was performed with the mask sift, ensemble sift, and 

itEMD. Sift parameters were identical to those used for the rat LFP analysis above. 

The IMF representing alpha oscillations was chosen as the one whose mean 

instantaneous frequency was closest to the alpha peak frequency. Subjects were 

excluded if no alpha peak was present (one subject). After extraction of cycles from 

the Hilbert-computed instantaneous phase jumps, only those with instantaneous 

frequency between 7Hz and 14Hz and instantaneous amplitude above the 50th 

percentile were kept. For further analysis, cycles were phase-aligned to N=48 

uniformly spaced phase points between 0 and 2π and the mean across cycles was 

computed for each subject. To evaluate mode mixing, the PMSI for each sifting 

method was also calculated.
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4.2.4 Application of itEMD to human propofol electroencephalography 

(EEG) data 

itEMD was applied to the propofol EEG dataset presented in Chapters 2 and 3. More 

details about participant recruitment and the experiment can be found in Chapter 2 

and in the original study31. For this analysis, after Independent Component Analysis 

removal of ocular and cardiac artifacts, data was re-referenced to linked earlobes, 

down-sampled to 200Hz, and filtered with an 8th-order zero phase Butterworth filter in 

the 0.1-30Hz band.  

In order to understand the spectral content of the data, itEMD was used on data from 

the anaesthetic induction segmented into one-minute segments. This was done 

because anaesthetic induction is a non-stationary process where dominant 

oscillations change over time274. Iteration was performed until mask frequencies 

stabilised to within 10% with a maximum number of iterations of Nmax=15. After 

applying itEMD to data from each channel, cross-channel and cross-patient mode 

correspondence was checked by comparing the modes’ frequencies. The number of 

IMFs was limited to 6 and the sifting threshold was 10-8.  

 

Trough-based analysis 

The low-frequency spectral modes were analysed using previously utilised 

methods85,86,275. Each intrinsic mode function (IMF) was analysed separately. First, on 

each channel, single cycles were identified from jumps in instantaneous phase 

computed using the amplitude-normalised Hilbert transform. Cycles were filtered and 

only those negative duration of at least 125ms, monotonous instantaneous phase, and 

amplitude in the upper 50th percentile were kept. Those with a trough (minimum) 
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appearing on at least 3 channels within +/- 200ms of an arbitrary reference channel 

were analysed further. The arbitrary reference channel was varied 10 times and only 

unique slow waves with earliest troughs separated by at least 0.75s were kept. For 

each wave, its time / anaesthetic concentration of first detection, peak-to-peak 

amplitude, average instantaneous frequency, and globality were calculated. Globality 

was calculated as the % of channels on which each individual wave was detected. For 

each subject, wave density was found as number of waves detected per minute and 

evaluated on a two-minute bins throughout the induction. Lastly, topographical 

properties were calculated for waves in each mode and anaesthesia level. On each 

channel, the mean wave amplitude, frequency, and frequency difference from scalp 

mean were calculated. Detection probability was the probability that a given channel 

was involved in a detected wave. For statistical analysis, three regions of interest were 

chosen similar to those used by other researchers276. They were frontal (Fz, F3, F4, 

FC1, FC2), posterior (Pz, P3, P4, CP1, CP2), and temporal (T7, T8) regions.  

 

Statistical Testing 

The effects of anaesthetic level (light, medium, deep – each one third of the induction) 

and wave type (high delta, low delta, slow) on properties of waves were tested using 

a two-way repeated measures analysis of variance (ANOVA) followed by post-hoc 

Bonferroni-corrected Wilcoxon signed rank tests. All data was checked for normality 

before performing ANOVAs. In cases where this test indicated non-normality, the data 

was inspected visually to check. This sometimes happened for light anaesthesia levels 

where there are fewer waves and more potential outliers. ANOVA tends to be robust 

to violations of normality277, so in cases where only one sub-group failed the normality 
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test (e.g. light propofol high delta), ANOVA was still performed. If multiple sub-groups 

showed non-normality, outlier subjects outside 3*(interquartile range) for any of the 

ANOVA levels were excluded before proceeding with ANOVA. If any specific ANOVA 

factor in a subject had no data, that subject was excluded from the ANOVA. This 

happened mostly due to light anaesthesia not having many waves, especially in the 

high delta range. This and outlier exclusion reduced the number of subjects for 

ANOVAs down to a minimum of N=14, largely due to the temporal regions lacking light 

anaesthesia waves. Specific N values are given with each test result. ANOVA P-

values were corrected for lack of sphericity. All subjects were included in the non-

parametric post-hoc tests as these do not require normality.  

For testing effects of brain region (frontal, parietal, temporal in trough-based analysis), 

same tests as above were carried out except with brain region as another factor in a 

three-way repeated measures ANOVA. 

Throughout this work, significance was set at P=0.05 (after appropriate multiple 

comparisons corrections) unless otherwise specified. All test were two-sided unless 

otherwise specified. 

 

4.2.5 Data and Code Availability 

Figures and analysis for the validation of iterated masking EMD can be replicated with 

Python code available at gitlab.com/marcoFabus/fabus2021_itemd. Hippocampal LFP 

data is available from the CRCNS platform (https://crcns.org/data-sets/hc/hc-3) and 

human MEG data is available from the Cam-CAN archive (https://camcan-

archive.mrc-cbu.cam.ac.uk/dataaccess/) 272,273. Analyses were carried out in Python 

3.9.4, building on the open-source EMD package (v0.4.0), available with tutorials at 

https://gitlab.com/marcoFabus/fabus2021_itemd
https://crcns.org/data-sets/hc/hc-3
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
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https://emd.readthedocs.io278, which now contains an implementation of itEMD, too. 

Underlying dependency packages were numpy 279, scipy 280, pandas281, pingouin282, 

and statsmodels283 for computation and matplotlib284 for visualization.  

 

4.3 Results 

4.3.1 Simulations 

Iterated masking sift (itEMD) rapidly converged on signal in presence of noise and 

intermittency. An initial ten second data segment with a 30Hz transient burst, a 4Hz 

non-sinusoidal oscillation, and low white noise was first simulated (Figure 4.2).  The 

iteration process was started with a set of six random masks drawn uniformly from 1-

128Hz. Despite this initial complete lack of knowledge about the signal, itEMD 

correctly recovered the non- sinusoidal waveform and the beta-frequency burst. The 

iteration process converged with noise in IMF-1, the 30Hz beta burst in IMF-2, and 

non-sinusoidal 4Hz signal in IMF-3. Subsequently, convergence was determined 

automatically. The convergence criterion was set to the mask stabilizing within 10% 

between iterations with a maximum number of iterations of 15 (see Methods). Further 

simulations were initialized with the zero-crossing masked sift results for faster 

convergence. All simulations were repeated with N=100 different noise realizations.

https://emd.readthedocs.io/
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Figure 4.2: Iterated Masking EMD (itEMD) on simulated data. 

 

Figure 4.2: Iterated Masking EMD (itEMD) on simulated data. (A) Example endpoint 

of itEMD, i.e. IMFs from last of 15 iterations on the same signal as in Figure 4.1B.  

(B) itEMD convergence to equilibrium starting with a mask drawn randomly from a 

uniform distribution of 1-128Hz. Thin gray lines are all 100 individual runs, coloured 

lines are median trajectories with line thickness scaled to maximum value of that IMF. 

itEMD converges rapidly, adapts mask frequencies to the signal content, and correctly 

finds both the non-sinusoidal 4Hz oscillation and intermittent 30Hz burst with no prior 

knowledge about the frequencies contained in the signal.  
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Influence of noise 

It was desirable to establish how different sifting methods reconstruct waveform shape 

in presence of noise (Figure 4.3). Ten seconds of a 4Hz non-sinusoidal iterated sine 

signal with white noise was simulated. The standard deviation of zero-mean white 

noise (root-mean-square of noise, RMS noise) was varied as the shape of the wave 

remained constant with 8th order iterated sine (frequency distortion FD=68%, see 

Methods). Iterated masking was compared to existing dyadic masking and ensemble 

sifting techniques.  

First, performance was measured by computing Pearson correlation of reconstructed 

and ground truth waveform shape measured by the instantaneous frequency (Figure 

4.3A).  

 For low to medium noise amplitudes (σnoise  ⪅  1 with normalized signal 

amplitude of one), existing techniques were sufficient to represent the waveform shape 

well. Ensemble-sift reconstructed waveform shape had a high correlation with the 

ground truth shape with r > 0.75, but its performance quickly deteriorated past σnoise = 

0.1. Dyadic mask sift had poor shape reconstruction for no noise but performed well 

from σnoise = 0.1 onward. The novel iterated masking performed well except for a dip 

in performance around ultra-low noise below σnoise = 0.1. This was found to be the level 

where noise RMS is equal to the amplitude of one of the higher signal harmonics. As 

such, this harmonic was sometimes included in the IMF of interest and sometimes not, 

depending on exact noise details, introducing stochastic mode mixing. Noise levels in 

neurophysiological data are seldom this low. However, these pathological cases could 

be automatically identified because the mask did not reach a stable equilibrium and 

the maximum number of iterations was reached (red shading). 

  For high noise amplitudes (1  ⪅  σnoise  ⪅ 2), the new itEMD significantly 
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outperformed existing techniques. Ensemble sift produced sine waves and failed to 

capture non-sinusoidal waveform behaviour (correlation near zero). Dyadic mask sift 

suffered from mode mixing, with the waveform split across IMF-4 and IMF-5 (Figure 

4.1D). Because of this, dyadic masking failed to accurately reconstruct waveform 

shape, especially above σnoise = 1. In contrast, itEMD accurately isolated the signal 

even at high noise levels (Figure 4.3B). Its reconstructed shape correlated with the 

ground truth significantly better than the existing techniques with P < 0.01 (Bonferroni 

corrected across 100 noise levels) across the high noise range 1 ⪅  σnoise  ⪅ 2.  

  In the region of very high noise with σnoise > 2, all methods behaved as dyadic 

filters and failed to capture waveform shape. This is because higher Fourier harmonics 

encoding shape details became submerged in noise, making it impossible to recover 

the non-sinusoidal shape.  

Mode mixing performance was also evaluated by computing the PMSI (Pseudo-Mode 

Splitting Index, Figure 4.3C), a mode mixing metric previously used in the literature 245. 

A high PMSI value indicates severe mode mixing and poor sift. 

 For low noise amplitudes (σnoise ⪅ 0.3), the dyadic mask sift produced the least 

amount of mode mixing (lowest PMSI). In this region, itEMD was again susceptible to 

stochastic mode mixing due to noise levels matching higher harmonics, increasing the 

PMSI.  Ensemble sift had the most mode mixing in this region. 

 For medium to high noise (0.3 ⪅ σnoise ⪅ 2), itEMD had significantly less mode 

mixing than existing techniques (lowest PMSI P < 0.01, Bonferroni-corrected). 

Ensemble sift had a largely unchanging amount of mode mixing, suggesting it was 

driven by the added noise. Dyadic masking had the most mode mixing in this region. 

 All three methods had similar PMSI in the very high noise region with σnoise > 2 

due to inherent dyadic filtering behaviour of EMD. 
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Figure 4.3: Influence of noise on EMD performance in simulated data. 

Neurophysiological signals typically show auto-correlated 1/f noise (also termed 

aperiodic activity or fractal noise) 285. To verify the technique works with 1/f noise 

simulations, all the main analyses were re-run with brown noise. As with white noise, 

itEMD outperformed existing techniques over a wide range of parameters. 

Finally, mask frequency stability was compared across itEMD iterations for a mode 

known to have signal (IMF-4) and a pure noise mode (IMF-5). The mask frequency 

was significantly less variable when signal was present. 

Figure 4.3: Influence of noise on EMD performance in simulated data.  

(A) Pearson correlation coefficient between reconstructed and ground truth 

instantaneous frequency against increasing white noise amplitude. (B) Example 5s of 

itEMD sift results for σnoise = 0.5, FD=68%. Iterated sine function is captured by IMF-

4. (C) Pseudo-Mode Splitting Index (PMSI) against white noise amplitude, with higher 

PMSI values indicating higher mode mixing.  Mean ± standard error across N=100 
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noise realisations shown. Black line indicates regions where itEMD performs 

significantly better than the best of the other techniques with P<0.01 (Bonferroni 

corrected). Red shaded region shows noise levels where itEMD reached maximum 

number of iterations in >20% of noise realisations. itEMD performs significantly better 

for highly noisy data in the region between σnoise≈1 and σnoise≈2 with reduced mode 

mixing and accurate waveshape reconstruction.  (D) Example dyadic mask sift results 

for σnoise=0.5, FD=68%. IMF-4 shows more mode splitting than itEMD results. 

 

Influence of frequency distortion (non-sinusoidality) 

Highly non-sinusoidal waveforms have been observed across a variety of neural data 

(see Introduction). As such, existing techniques and itEMD performance were 

compared in data with progressively more waveform distortion. Ten seconds of a 4Hz 

non-sinusoidal iterated sine signal with white noise of standard deviation σnoise = 1 was 

simulated. Frequency distortion was varied by iterating the sine function between 1 

and 18 times. Each frequency distortion level was simulated with N=100 different noise 

realizations. Performance was again compared using Pearson correlation to ground 

truth shape and the PMSI. 

Iterated masking performed significantly better than existing methods for highly non-

sinusoidal signals (Figure 4.4, Bonferroni-corrected P<0.01 for lowest PMSI and 

higher Pearson r). Dyadic mask shape correlation with ground truth was not 

significantly different from itEMD for FD < 50%, but severe mode mixing was present. 

This meant the average frequency and amplitude were poorly reconstructed. At this 

noise level, ensemble sift behaved as a dyadic filter and completely failed to capture 

waveform shape. It produced a sinusoid at the dyadic boundary of f=4Hz with no non-



 96  
 

Figure 4.4: Influence of frequency distortion on EMD performance. 

sinusoidality. itEMD performance also improved with increasing frequency distortion. 

This is due to higher frequency harmonics increasing in magnitude with more shape 

distortion, allowing better convergence of itEMD. 

Figure 4.4: Influence of frequency distortion on EMD performance in simulated data. 

(A) Pearson correlation coefficient between reconstructed and ground truth 

instantaneous frequency against increasing frequency distortion. (B) Example 5s of 

itEMD sift results for σnoise = 1, FD=80%.  (C) Pseudo-Mode Splitting Index (PMSI) 

against frequency distortion, with higher PMSI values indicating higher mode mixing. 

Mean ± standard error across N=100 noise realisations (shaded) shown. Black line 

indicates regions where itEMD performs significantly better than the best of the other 

techniques with P<0.01 (multiple comparisons Bonferroni corrected). The novel itEMD 

performs significantly better for highly non-sinusoidal data in the region FD > 50% with 

reduced mode mixing and accurate waveshape reconstruction. (D) Example 5s of 
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dyadic mask sift results for σnoise = 1, FD=80%. IMF-4 shows significantly more mode 

mixing with existing methods than with the novel itEMD. 

 

Reconstructed Waveform 

Next, individual IMFs, reconstructed waveforms, and their instantaneous frequency 

were examined (Figure 4.5). As expected from the Pearson r and PMSI results in 

Figure 4.4, itEMD best reconstructed a highly non-sinusoidal waveform in the 

presence of noise. A noise level of σnoise = 0.1 and 4th order iterated sine were chosen 

as they are qualitatively similar to experimental LFP and MEG recordings analysed 

(cross-reference Figure 4.7). The ensemble sift was able to capture most of the non-

sinusoidality but suffered from heavy mode mixing (PMSI = 0.0943). The dyadic mask 

sift had slightly less mode mixing (PMSI = 0.0923) but failed to capture any non-

sinusoidal waveform shape details. The novel iterated masking captured the waveform 

shape best with the least mode mixing (PMSI = 0.0003). However, the waveform was 

still not perfectly reconstructed. This was due to i) some of the harmonics encoding 

the finer details being lower in spectral density than the noise and ii) due to intrinsic 

finite bandwidth of EMD modes. However, itEMD performed significantly better than 

the other techniques with the root-mean-square error to the ground truth instantaneous 

frequency being significantly lower (P<0.0001 vs dyadic mask, P=0.045 vs ensemble 

sift, Bonferroni-corrected).
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Figure 4.5: Example 2s of sifting results in simulated data. 

Figure 4.5: Example 2s of sifting results for 4th order iterated sine with white noise 

σnoise = 0.1 in simulated data. (A) IMFs for the novel itEMD. Iterated sine is in IMF-3 

with very little mode mixing. (B) IMFs for dyadic mask sifting. Signal is split between 

IMF-3 and IMF-5. (C) IMFs for ensemble sifting. Iterated sine is mostly in IMF-4, but 

mode mixing is present. (D) Top: average reconstructed waveform, bottom: 

reconstructed phase-aligned instantaneous frequency (IF); mean (line) ± standard 

error across cycles (shaded) shown. Dyadic mask sift waveform (orange) fails to 

reconstruct non-sinusoidality. Ensemble sift recovers more shape detail but suffers 

from high mode mixing. itEMD is able to reconstruct more of the waveform shape than 

either existing method whilst lowering mode mixing. 
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Influence of signal sparsity  

Neural activity often consists of intermittent bursts240. To test itEMD performance when 

signal is sparse, 25 seconds of zero-mean white noise with σnoise = 1 were simulated, 

to which a 4Hz non-sinusoidal 8th order iterated sine signal with frequency distortion 

FD = 68% and variable length of 5-100 cycles was added. When reconstructing 

waveform shape of this burst, itEMD performed significantly better than either the 

dyadic mask sift, or the ensemble sift (Figure 4.6). Even in the presence of high noise 

and non-sinusoidality, itEMD was able to extract the burst and identify its waveform 

shape. Its correlation with ground truth waveform shape was significantly higher than 

the other methods for all burst lengths considered (Figure 4.6A, P<0.01, Bonferroni 

corrected across number of cycles in the burst). Mode mixing measured by the PMSI 

was also significantly lower than with existing methods (Figure 4.6C, P<0.01, 

Bonferroni corrected). Performance of itEMD improved as burst length increased.  

Overall, this demonstrates the potential benefits of itEMD when characterizing 

transient bursts, which is increasingly used to describe oscillations in 

electrophysiological data 126.
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Figure 4.6: Influence of signal sparsity on EMD performance in simulated data. 

Figure 4.6: Influence of signal sparsity on EMD performance in simulated data.  

(A) Pearson correlation coefficient between reconstructed and ground truth 

instantaneous frequency against increasing burst length. (B) Example itEMD sift 

results for σnoise = 1, FD=68%, 10 cycles. (C) Pseudo-Mode Splitting Index (PMSI) 

against burst length. Mean ± standard error across N=100 noise realisations (shaded) 

shown. Black line indicates regions where itEMD performs significantly better than the 

best existing technique with P<0.01 (multiple comparisons Bonferroni corrected). The 

novel itEMD performs significantly better for a wide range of burst durations. (D) 

Example dyadic mask sift results for σnoise = 1, FD=60%, 10 cycles in burst. Iterated 

sine function is captured by IMF-4 and IMF-5 due to mode mixing. 
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4.3.2 Validation in experimental datasets  

 

Rat Local Field Potential (LFP)  

The technique was first validated by applying it to the well-understood hippocampal 

theta signal in a 1000s recording of publicly available rat hippocampal LFP data. The 

recording was split into N=20 segments of 50s each. This theta oscillation has been 

previously observed to be non-sinusoidal with, on average, a faster ascending than 

descending edge 230,286,287. The novel iterated masking EMD (itEMD) converged after 

Niter = 6±1 iterations and extracted cycles with a wide instantaneous frequency sweep 

(Figure 4.7). It reproduced the known shape with a faster leading edge (leading edge 

frequency 7.87±0.02Hz, falling edge frequency 7.62±0.02Hz, mean ± SEM, P<0.0001 

on a paired t-test across all cycles). In comparison to itEMD, existing ensemble and 

dyadic mask sifting failed to capture the high non-sinusoidality of this oscillation. 

Existing methods also suffered from higher mode mixing as measured by the PMSI 

(lowest PMSI for itEMD with Bonferroni-corrected P < 0.0001). This was confirmed by 

visualizing the Hilbert-Huang transforms, where theta IMF has the cleanest sweep for 

itEMD. This could allow for improved cross-frequency coupling analysis. 

To compare this analysis with more traditional methods, the Wavelet transform was 

also computed (Figure 4.7G). The spectrum was qualitatively very similar to the itEMD 

HHT except with a smoothed lower time-frequency resolution. The wavelet transform 

also confirmed the artifactual components present in HHTs from existing methods. 

This was as there was no continuous low-frequency component nor high/low 

frequency switching seen in dyadic masking and EEMD respectively due to mode 

mixing.
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Figure 4.7: Rat hippocampal LFP results. 

Figure 4.7: Rat hippocampal LFP results. (A) Power spectrum of the full recording 

showing a theta peak a harmonic. (B) Phase-aligned instantaneous frequency of theta 

cycles (mean ± standard error across all cycles shown). Existing methods including 

dyadic mask sift and ensemble sift fail to capture high non-sinusoidality of theta 

oscillations unlike itEMD. (C) Violin plots of the pseudo-mode splitting index (PMSI, a 

measure of mode mixing) across N=20 segments of the 1000s recording. Iterated 

masking had significantly lower PMSI than both dyadic mask sift and ensemble sift 

(P<0.0001, Bonferroni-corrected across methods). (D) Top - example itEMD sift results 

from two seconds of the LFP recording, bottom – Hilbert-Huang Transform (HHT) for 

the same data. Theta oscillations are well-captured by IMF-4 with minimal mode 
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mixing. (E), (F) Same as (D) but for the dyadic mask sift and ensemble EMD. 

Significant mode mixing is present. (G) Wavelet transform of the same data as in (D)-

(F). Similar dynamics to the HHT in (D) are present but with lower resolution. 

Comparing to (E) and (F), the artifacts in poor sifts are seen (red arrows). (H), (I) 

expanded sections showing mode mixing. 

 

Human Resting-state Magnetoencephalography (MEG)  

For further validation, 10 minutes of occipital resting-state data were analysed in each 

of N=10 subjects (Figure 4.8). One subject was excluded as their spectrum did not 

show an alpha peak. It was found itEMD successfully and rapidly converged on the 

intermittent alpha oscillation around 10Hz (Niter = 5±1 iterations across all subjects, 

mean ± standard deviation). Compared to Dyadic mask sift and ensemble sift, mode 

mixing measured by the PMSI was significantly lower (P<0.0001 vs dyadic mask, 

P=0.0033 vs ensemble sift, Bonferroni-corrected paired t-test).  

Alpha peak frequency is known to vary between people, conditions, and changes with 

age288,289. EMD has the advantage of representing spectral components with fewer 

assumptions about frequency bands unlike traditional Fourier analyses. As such, it 

may be well-suited to represent these inter- and intra-individual spectral differences. 

Variability in alpha peak frequency was also seen in data analysed here. Moreover, 

itEMD was able to replicate this result, with the mean subject phase-aligned 

instantaneous frequency found to be linearly related to spectral peak frequency 

(Figure 4.8D, F = 13.89, P = 0.00739). Recordings also showed the presence of beta-

band elements around 20Hz in IMF-2, which were also present in the Fourier 

spectrograms (Figure 4.8E). 
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Figure 4.8: Human MEG occipital alpha results. 

Figure 4.8: Human MEG occipital alpha results. (A) Group-level violin plots of the 

pseudo-mode splitting index (PMSI, a measure of mode mixing). Iterated masking had 

significantly lower PMSI than both dyadic mask sift (P<0.0001), and ensemble sift 

(P=0.0062, both Bonferroni-corrected). (B) Group-level phase-aligned instantaneous 

frequency (mean± SEM shaded). Both itEMD and EEMD detect the 10Hz occipital 

alpha oscillation with no significant non-sinusoidality. Masked sift fails to capture the 

oscillation well due to mode mixing. (C) 1D HHT for IMFs from an example subject. (D) 

Mean subject phase-aligned instantaneous frequency against peak alpha frequency 

from the Fourier power spectral density. Iterated masking linearly reproduces 

between-subject variability in alpha frequency (P=0.00739, F-test against constant null 

hypothesis). (E) Example 5s of raw itEMD sift results. Alpha oscillations are in IMF-3 

with sharp features in IMF-2 and minimal mode mixing.
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4.3.3 Application to human propofol anaesthesia EEG data  

 

Three different low-frequency modes 

Using traditional hard cut-off frequency bands can lead researchers to miss important 

features of the data290. Instead of using traditional frequency bands, iterated masking 

EMD was applied (itEMD, Figure 4.1). Unlike Fourier or Wavelet decompositions, the 

EEG is decomposed into a handful of non-sinusoidal modes. In this data from an ultra-

slow anaesthetic infusion, data was split into four intrinsic modes. The first was 

dominated by spindle features in the alpha/beta band (10-20Hz), as well as high-

frequency noise in the data. The other three modes were termed high delta (~5Hz), 

low delta (~1.5-2Hz), and slow (<1Hz). These modes were consistently found in each 

subject and each channel. The modes had significantly different frequencies 

(P<0.0001, Bonferroni-corrected), which meant modes had a good between-electrode 

and between-subject correspondence, allowing for analysis of changing 

spatiotemporal patterns for each mode separately. Mode mixing as measured by the 

PMSI was also low, and instantaneous frequency suggested that the slow mode was 

most non-sinusoidal, with square-wave-like features (Appendix 3). 
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Figure 4.9: Iterated EMD sift results in propofol anaesthesia. 

 

Figure 4.9: Iterated EMD sift results in propofol anaesthesia. (A) Decomposition of 

15s of EEG during deep sedation with propofol anaesthesia from an example patient. 

The signal is decomposed in a data-driven way into four IMFs with physiological 

relevance: IMF-1 (spindles), IMF-2 (high delta), IMF-3 (low delta), IMF-4 (slow 

oscillation). (B) Boxplots of mean IMF instantaneous frequencies across N=16 

subjects. Modes are well-separated in frequency and are consistent between subjects 

and between channels (c.f. Fig. 2 (G), P<0.0001, Bonferroni-corrected t-test between 

mode frequencies).  
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 Trough-based analysis 

To get an understanding of traveling waves in the data, a standard wave detection 

method based on finding and aligning oscillation troughs in the data was applied 

(Figure 4.10) 85,86,275.  Traveling waves were found in each of the three low-frequency 

modes. Properties of the waves changed in a dose-dependent and mode-dependent 

manner.  

Wave globality represented the average number of channels implicated in a wave 

(Figure 4.10A). Wave type (N=14, F=124.94, P<0.0001), propofol level (N=14, 

F=31.68, P<0.0001), and their interaction (N=14, F=26.80, P<0.0001) all had 

significant effects on globality. Between the first third of induction (light anaesthesia, 

up to 1.3μg/ml propofol concentration) and the last third of induction (deep anaesthesia, 

up to 4μg/ml propofol concentration), low-delta and slow wave globality decreased 

(N=16, P=0.000275, Bonferroni-corrected post-hoc Wilcoxon signed rank test). In 

contrast, high-delta globality increased from medium (up to 2.67μg/ml propofol) to 

deep anaesthesia (N=16, P=0.00522). Comparing modes, low-delta globality was 

highest, followed by slow waves and high-delta waves. 

Because of using itEMD, each wave had a well-defined mean instantaneous frequency 

(Figure 4.10B). Wave type (N=14, F=2274.47, P<0.0001), propofol level (N=14, 

F=38.28, P<0.0001), and their interaction (N=14, F=4.70, P=0.0246) all had significant 

effects on the wave frequency. All wave types showed significant decrease in 

frequency (light to deep: N=16, P=0.005493, P=0.000275, P=0.000275 for high delta, 

low delta, and slow waves respectively), though wave frequencies remained well-

separated between modes. 
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Figure 4.10: Trough-based wave analysis results. 

Figure 4.10: Trough-based wave analysis results. (A)-(D) show mean ± standard error 

across subjects for properties across changing propofol effective site concentration 

(ESC). Top: Wave detection method – wave trough is detected across channels. (A) 

Mean wave globality (% of channels involved in a wave). Global low delta and slow 

waves become more localised, high delta waves increase in globality. (B) Mean wave 

frequency decreases with increasing concentration, but modes remain well-separated. 

(C) Mean wave amplitude increases with increasing propofol, with low delta and slow 

waves being more dominant at high doses. (D) Wave density (number of waves 

detected per minute) against ESC. All three wave types increase in number but show 

saturation at high doses.   
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 It is well-known EEG power increases and plateaus in the low-frequencies as 

anaesthesia is induced31. This power is in part due to the amplitude of traveling waves 

and their density (number per time). The results here confirmed this. Propofol level 

had a significant effect on wave amplitude N=14, F=35.49, P<0.0001), though wave 

amplitude was not significantly affected by wave type (N=14, F=0.698, P=0.465). 

Waves from all modes showed a significant increase in amplitude (Figure 4.10C, N=16, 

P=0.000092 between light and deep anaesthesia). Interestingly, wave plateau 

appeared at different concentrations for each mode. High-delta amplitude saturated 

first, low-delta next, and slow wave amplitude only saturated in some subjects.  

Wave density was the number of waves detected per minute (Figure 4.10D). Both 

wave type (N=16, F=120.11, P<0.0001) and propofol level (N=16, 134.66, P<0.0001), 

as well as their interaction (N=16, F=37.23, P<0.0001), had a significant effect on the 

wave density. Similar to the amplitude, wave density significantly increased until 

saturation for all wave types. Low-delta waves had the highest wave density (N=16, 

P=0.000092 vs slow and high delta, Bonferroni-corrected Wilcoxon signed rank test). 

I also analysed topographical properties of the traveling waves from each mode 

(Figure 4.11), focusing analysis on the frontal, posterior, and temporal regions.  

Detection probability showed on which channels waves were most likely to be detected 

(Figure 4.11, top). At light propofol doses, high-delta waves were mostly found 

centrally and low-delta / slow waves were predominantly found frontally. This shifted 

at high propofol doses, where high-delta waves were mostly found frontally (N=16, 

P=0.003296 frontal vs posterior detection probability) and low-delta / slow waves 

shifted more centrally. 
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Figure 4.11: Wave topography in trough-based analysis. 

 

Figure 4.11: Wave topography in trough-based analysis. All panels show mean 

topographical wave properties across three wave types in (A) light anaesthesia (first 

third of induction) and (B) deep anaesthesia (last third of induction). (Top) Detection 

probability (probability of any given wave being detected at a channel). Waves become 

more fronto-central in deep anaesthesia. (Middle) Wave amplitude. Waves are 

frontally dominant and increase in amplitude, which slow waves being more fronto-

central than frontal high and low delta. (Bottom) Frequency difference from the scalp 

mean. Early induction has lowest frequency in posterior regions. This shifts to frontal 

regions being lowest frequency in deep anaesthesia.   
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Topographical distribution of wave amplitude also showed differences between wave 

types and anaesthesia levels (Figure 4.11, middle). As seen in Figure 4.10C, here a 

large increase in amplitude was also observed between light and deep propofol doses. 

More interesting were the changes between wave types. High delta waves had largest 

amplitude pre-frontally. Low-delta waves amplitude was also high in central locations. 

Slow wave amplitude was the only one that notably penetrated into posterior regions, 

but only at deep anaesthetic levels. At light doses, frontal amplitude was significantly 

higher than posterior (N=16, P=0.0461). In contrast, at deep doses, frontal and 

posterior amplitude was not different (N=16, Bonferroni-corrected P>0.1). 

Traveling waves had different frequencies across the scalp (Figure 4.11, bottom). 

During light anaesthesia, low-delta wave frequency was highest in temporal regions 

(N=16, P=0.00659 vs frontal and posterior region, Bonferroni-corrected post-hoc 

Wilcoxon test). This changed during deep anaesthesia where frontal regions were 

lowest in frequency and posterior/occipital regions highest (N=16, P=0.023 for frontal 

vs posterior frequency).  
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4.4 Discussion 

 

In this chapter, I introduced a novel way of performing Empirical Mode Decomposition 

(EMD) called iterated masking EMD (itEMD). This technique is capable of robustly 

decomposing signals into spectral components in presence of noisy, sparse, and 

highly non-sinusoidal oscillations. In itEMD, masking signals are introduced at 

frequencies identified by an iterative, data-driven process. I demonstrated the utility of 

this sifting technique in comparison with existing EMD solutions to the mode mixing 

problem. Through extensive simulations, it was shown that itEMD performs 

significantly better than the existing methods in cases with highly noisy and strongly 

non-sinusoidal signals, where the technique significantly reduces mode mixing and 

accurately extracts oscillations and their shape.  

 

The method was further validated using rat LFP and human MEG recordings. itEMD 

reproduces the well-known hippocampal theta waveform shape better than existing 

techniques and successfully reconstructs occipital alpha peak frequency with no a-

priori information about mask frequencies. Rat hippocampal theta was found to be 

highly non-sinusoidal with a faster ascending edge as previously reported230,286,287. 

Intermittent human occipital alpha was found to be nearly sinusoidal with a between-

subject variable peak frequency around 10Hz. Furthermore, itEMD significantly 

reduced mode mixing in both validation datasets studied. Iterated masking EMD has 

the potential to enable more wide-spread use of EMD in neurophysiology and shed 

light on single-cycle dynamics across a wide range of modalities and conditions. It 

automates the selection of mask frequencies and can thus enable a wide range of 
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analyses about bursts of neural activity, genuine cross-frequency coupling, and 

analysis of neural phase.  

 

Non-EMD based analysis methods may complement itEMD. Traditionally, analysis 

has been done by calculating the Hilbert transform on narrowband filtered data230. This 

works well if frequencies of interest are defined a priori. However, it poses limitations 

on how non-sinusoidal oscillations can be and does not allow for large between-

subject variabilities. Furthermore, the use of Fourier filters may introduce bias into the 

analysis233,291. More recently, methods based on detecting phase control points (peaks, 

troughs, etc) have been developed262. These provide important summary statistics for 

cycles, such as peak-trough asymmetry and rise-decay asymmetry. EMD-based 

analysis describes the shape with phase-aligned instantaneous frequency without 

restricting analysis to certain phase points. The cycle-by-cycle approach could thus be 

cross-validated by itEMD detecting asymmetry around the phase points used for its 

statistics. Finally, additional novel algorithms for extracting summary waveforms for a 

whole recording have been developed292,293. Unlike itEMD and the techniques 

described above, these are however not sensitive to changes in waveform within a 

recording. 

 

4.4.1 Limitations of itEMD 

Although itEMD represents a significant step towards extracting non-sinusoidal neural 

oscillations in a data-driven way, there may be situations where other techniques are 

more appropriate. A full description of the limitations is included in the paper261, but a 

brief overview is given here. 
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First, itEMD adapts IMF bandwidth to capture more waveform shape detail. This can 

however also include more noise, and if non-sinusoidal features are not being studied, 

other methods may have better signal-to-noise ratio. 

itEMD was designed to handle sparse oscillations, but it may be necessary to adjust 

the amplitude weighting method if signals of interest are very sparse (<10% of a data 

segment being processed). This can be done by changing the weighting of 

instantaneous frequency when iterating. Here weighting by the square of 

instantaneous amplitude (IA2, instantaneous power) was used at each iteration. Higher 

powers of instantaneous amplitude may help if sparsity is preventing itEMD from 

converging on oscillations of interest.  

In this work, iteration convergence was defined as the point when the relative mask 

change between iterations was under 10%. It was qualitatively observed that only 

minimal changes occurred after the 10% convergence point. However, in datasets not 

studied here, it may be necessary to tune the convergence criterion depending on 

exact noise structure present.  

itEMD implicitly assumes that the mean frequency of oscillations of interest is not 

changing greatly and an equilibrium can be found. Hence, if peak frequencies may 

shift over time, it is recommended to segment the data. Furthermore, I analysed a 

single MEG sensor. This means that the recorded signal may be a superposition of 

multiple underlying sources. To separate sources both spectrally and spatially, other 

methods should be used in conjunction with itEMD, e.g. Independent Component 

Analysis (ICA) or Source Reconstruction. 
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4.4.2 Three distinct low-frequency modes in propofol anaesthesia  

Interpreting the electroencephalogram (EEG) in terms of pre-defined frequency bands 

remains the most common form of analysis, but it comes with serious limitations290,294. 

Splitting the signal into strict bands does not consider the heterogeneity between 

subjects or non-sinusoidality (frequency changes) in the data288,295. This is a particular 

problem for studying low-frequency rhythms in unconscious states including 

anaesthesia. It is known these waves are highly non-sinusoidal121, and the specific 

frequency boundaries used vary between studies, ranging from 0.1Hz all the way to 

6Hz85,86,124,275,296. There are hints in the literature that different parts of the delta / slow 

band may have different function. For instance, during surgical skin incision, it was 

observed that <2Hz activity decreased while 2-4Hz activity increased297. In sleep, two 

types of slow-waves with different frequencies have been proposed123,124. In this 

chapter, an automatic, data-driven spectral decomposition method was used to 

identify physiologically relevant modes in noisy electrophysiological data298. Three 

distinct low-frequency modes were found: high delta (~4Hz), low delta (~2Hz), and 

slow (<1Hz). These modes had different topographical and traveling wave properties 

and showed different behaviour as anaesthesia deepened. High delta waves were 

locally circumscribed, frontal, and appeared last as propofol concentration increased. 

Low-delta waves had the highest density and globality. Slow waves saturated in 

amplitude last, but consisted of large, persistent, and slowest patterns which reached 

into posterior parts of the brain. It is possible these three modes have distinct roles in 

anaesthesia, for instance in mediating noxious response299. Power in the 0.5-1.5Hz 

band has been shown to saturate, producing a potentially individualised marker for 

perception loss31,94. The analysis shows that slow-wave saturation is likely a mix of 

slow and low-delta effects.   
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It is interesting to consider the results in the light of an ongoing debate about the role 

of frontal and posterior regions in consciousness and anaesthesia115–117. Aligning with 

results from Chapter 2, it was shown that the decrease in wave frequency that 

accompanies anaesthesia was initially more present in the posterior regions, but later 

the lowest frequencies were over frontal regions (Figure 4.11). This supports the idea 

that losing consciousness includes several shifts in brain states, which may start in the 

posterior but later envelop most of the cortex117. The DOWN state of neuronal silence 

in the slow oscillation has been implicated in decreasing cortical complexity143. It was 

seen that most slow waves originated frontally, so the fact the slow mode amplitude 

(but not high or low delta) extended to posterior regions may reflect their role in 

disrupting the hot zone or higher frequency frontoparietal communication, both thought 

to be important in maintaining consciousness115.  

 

4.4.3 Limitations of the propofol analysis 

Using EMD to spectrally decompose the data was validated in this chapter and has 

proven fruitful in other studies258,300,301, but other alternatives exist. For instance, EEG 

data can be split into its oscillatory and aperiodic parts285 (which change in 

anaesthesia97), and they could be analysed separately. Moreover, itEMD produces 

modes with large bandwidth298, so the alpha/spindle mode also contained high-

frequency noise, making it unsuitable for analysis. If researchers wanted to focus on 

alpha, other approaches are recommended, such as masked EMD with hypothesis-

driven masks244.  

In this chapter, linked mastoid EEG referencing was chosen. This was because it is 

the standard in anaesthesia and sleep literature when analysing traveling waves, as it 
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reflects the underlying global oscillations well85,86,123,124. However, previously it has 

been shown using other references (e.g. average reference) results in similar key 

topographical properties, even if individual waves may look different302.  

Finally, the potential role of low-frequency subtypes in clinical settings could not be 

explored in this dataset. In the future, applying itEMD to a larger patient dataset with 

behavioural and clinical outcomes would be desirable.  

 

In summary, I have introduced a novel way to robustly extract oscillatory modes from 

neural recordings using iterated masking EMD. The method has all the advantages of 

using EMD whilst resolving limitations of existing sifting techniques by significantly 

reducing the mode mixing and robustly capturing oscillations even in presence of noise, 

sparsity, and high non-sinusoidality. By validating it on extensive simulations and real 

multi-modal, multi-species data, as well as applying it to propofol anaesthesia, I have 

demonstrated its potential to bring the full power of EMD into neurophysiology and 

help elucidate the role of dynamic neural oscillations. 
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5    Spatiotemporal brain 

states in propofol 

anaesthesia 
 

5.1 Introduction 

The phenomenal richness of consciousness is one of the defining features of human 

existence. Whilst a complete theory of consciousness has so far eluded scientists and 

philosophers alike, existing scientific theories of consciousness have tried to link 

phenomenal consciousness with brain function172,303,304. Despite major differences, 

one area of overlap in leading theories is the postulate that in order to support 

consciousness, the brain must possess sufficient complexity to have processes that 

are at once integrated and diverse172,303. For example, in the Global Workspace theory, 

this means broadcasting segregated information in order to produce unified 

experience305, and in the Integrated Information Theory, diversity and integration are 

combined into a quantity of integrated information. Importantly, a wide variety of 

metrics estimating brain complexity and integration have been able to discriminate 

between different levels of consciousness, including anaesthesia and disorders of 

consciousness32,99,102,146,306,307. At present, a dynamic repertoire of brain activity 

appears to be a robust correlate of consciousness independently of the chosen brain 

imaging modality, species, or state of consciousness100,146,307–315.  

Rather than describing brain dynamics as continuously evolving, emerging evidence 

suggests that brain activity can be well-represented as switching between discrete 

metastable spatiotemporal states126,127,240,316,317. These states can be found in a data-
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driven way using Hidden Markov Modelling, as has been done for sleep128, disorders 

of consciousness318, and ketamine anaesthesia183. In this framework, states are 

characterised by mean activity in each brain region, functional connectivity between 

regions, and a transition probability matrix between states. This can complement 

traditional analyses as it allows for modelling of time-varying network behaviour, rather 

than looking at static networks averaged over time319. This time variance appears 

relevant for brain processing, as time spent in states and transitions between states 

have been associated with a wide variety of conditions and cognitive processes 

including sleep stages128, memory replay320, motor impairment in Parkinson’s 

disease321, and cognitive therapy in PTSD322.  

As was demonstrated in Chapter 3, linked heart-brain activity is observed under 

anaesthesia. Cortico-cardiac information is exchanged bi-directionally through the 

sympathetic and parasympathetic nervous system, with the latter chiefly through the 

vagus nerve. This brain-heart connection and associated monitoring of afferent 

visceral signals has been extensively studied in the context of emotional processing, 

where for example anterior cingulate activity associated with emotional regulation 

covaries with cardiac vagal tone184. More recently, it has been suggested heart-brain 

interactions may play a role in the neuroscience of consciousness itself, with the heart-

beat evoked response distinguishing patients with and without covert consciousness 

in disorders of consciousness108, disappearing in a case of ventricular fibrillation 

before death323. Neural monitoring of visceral inputs may shape upstream neural 

dynamics and be involved in forming self-awareness through integration of 

interoceptive information 107,324. Thus, to fully understand states of (un)consciousness 

under anaesthesia, inclusion of cardiac information may be necessary.  
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In order to utilise EEG in routine surgical settings, it is impractical to rely on high-

density montages with dozens of electrodes as they take a long time to set up and 

may overlap with the surgical field. On the other hand, high-density montages are 

commonly deployed in neuroscience to capture underlying neural activity with higher 

accuracy325. In recent years, the possibility of capturing relevant EEG features with an 

intelligently chosen low-density montage has been explored with promising results326–

328. The aim for translational neuroscience in this approach is to find montages capable 

of monitoring relevant brain features in routine clinical settings. 

In this Chapter, using Hidden Markov modelling and EEG, the spatiotemporal brain 

states underlying loss and recovery of consciousness under an ultra-slow infusion of 

propofol are investigated. State dynamics are studied in relation to changing propofol 

concentration as well as behavioural responsiveness. Baseline predictors of 

anaesthetic sensitivity are also analysed. Then, the definition of a ‘state’ is expanded 

to include heart-brain information, presenting combined EEG/ECG HMM (“EXG-HMM”) 

results. Finally, to aid future clinical translation, how the HMM properties translate to 

subsets of EEG electrodes is explored in order to simulate a low-density, potentially 

clinically utilisable system.  

 

5.2 Materials and Methods 

5.2.1 Data Acquisition and Pre-processing 

This dataset was described in detail in the Methods section of Chapter 2. Briefly, N=16 

healthy volunteers (8 female, age 28±6 years) underwent ultra-slow propofol induction 

up to 4µg/ml and subsequent emergence whilst 32-electrode EEG was recorded. For 

analysis in this chapter, after ICA clean-up and re-referencing to the common average 
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as per Chapters 2 and 3, data was re-sampled to 100Hz and bandpass-filtered 0.5-

45Hz. One subject was excluded as they were the only one showing burst-suppression, 

which has a very different frequency signature that would have likely biased the HMM. 

Burst suppression is however not uncommon in clinical settings, particularly during 

induction, so further studies with more burst suppression in their datasets may benefit 

from including it. Hidden Markov Modelling was run on data concatenated across all 

of the experiment. For further analysis, after Hidden Markov Modelling (see below), 

the experimental data was divided into 8 stages matching the original staging of the 

experiment31: 10-minute baseline recording, three 16-minute induction segments, 10-

minute hold at peak propofol concentration, and three 16-minute emergence segments. 

 

5.2.2 Hidden Markov Modelling  

Spatiotemporal brain states were estimated in a data-driven way using the time-delay-

embedded Hidden Markov Model (TDE-HMM) implemented in the MATLAB HMM-

MAR toolbox127,317. This approach describes the data as a sequence of a finite number 

of states, where at each time-point only one state is active and each state has its own 

oscillatory power and connectivity characteristics, linked to the data through a 

probabilistic observation model. It was chosen as it is a flexible, data-driven approach 

that can provide insights beyond static power or connectivity measures commonly 

used. 

In this analysis, K=6 states were chosen. This number of states showed the best 

replication in a split-half matching test (Supplementary Figure 5.1), but K=4-20 states 

were also explored (Supplementary Figures 5.4, 5.5) with broadly similar results. 

Time-embedding was done using 11 lags (100ms window, chosen to capture the alpha 
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rhythm present throughout the data). HMM states were then estimated on the space 

reduced by Principal Component Analysis (24 components, 90% variance captured) 

using stochastic inference127 with batch size of N=8 experimental stages. Robustness 

of results across stochastic effects was verified by repeating the analysis N=5 times 

(Supplementary Table 5.1). 

 

State fractional occupancies and Power spectra estimation 

After state estimation, the state fractional occupancies were computed, defined as the 

temporal proportion of the recording for which an HMM state is active, as well as the 

switching rate, for each stage in each subject. Significance of differences in switching 

rate and fractional occupancies between states and experimental stages were tested 

using 2-way omnibus repeated-measures analysis of variance (ANOVA) with Huynh-

Feldt P-value adjustment for sphericity violations, followed by Tukey’s Honest 

Significant Difference post-hoc tests. 

Power spectra (0.5-45Hz) for each state were estimated using a state-wise multitaper 

approach126. Connectivity patterns were similarly estimated as the demeaned 

broadband coherence. State power maps were then computed using EEGLAB 

topoplot on standard 10-20 electrode locations, relative to the mean weighted by 

across-experiment fractional occupancy329.  States are randomly numbered when 

estimated by the HMM-MAR toolbox. For visualisation and interpretation purposes, 

states were re-ordered by decreasing total (broadband) power. 
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Transition probability matrices  

We were interested in the states’ network graph, i.e. which states transition to which 

other states. Thus, the mean transition probability matrix was computed, as well as 

individual matrices for each stage in each subject. State communities (sub-networks) 

were found using Louvain community detection (MATLAB’s Brain Connectivity 

Toolbox330). Significant changes in transition probabilities between the baseline and 

peak anaesthesia stage were tested using permutation testing. Briefly, the condition 

(baseline / peak stage) was randomly swapped for each subject and state and 

differences re-computed for N=1000 permutations. This produces a null distribution 

across all state transition matrix elements and state transition changes with 

Bonferroni-corrected P<0.05 were kept. For visualisation, the mean transition 

probability graph was plotted (MATLAB’s graphplot) for probabilities >20%. 

 

Associations with behavioural responsiveness and SWAS 

Next, we wanted to know if time spent in a state until a clinically observable outcome 

(loss of behavioural responsiveness, LOBR) was linked with propofol concentrations 

during behavioural and SWAS outcomes. After finding HMM states and their fractional 

occupancies, Spearman correlations and associated FDR-corrected P-values were 

computed between time spent in a given state until LOBR and propofol concentrations 

at LOBR, ROBR, as well as CSWAS and PSWAS at induction and emergence. SWAS 

parameters were calculated as per Chapter 2. 
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5.2.6 EXG-HMM 

In order to explore states in the combined cortico-cardiac system, another HMM was 

estimated. The dataset and HMM hyper-parameters (e.g. the number of states) were 

identical to the original EEG-HMM, except the single-lead ECG channel was included 

in the model, with each channel standardised to mean zero and standard deviation of 

one (HMM-MAR toolbox default). After HMM estimation, model properties across the 

scalp (switching rate, power maps, transition probability matrix) were studied in the 

same way as in the original model. In addition, heart rate in each state was estimated 

as the number of R-peaks occurring whilst that state is active relative to overall time 

spent in each state, with R-peaks identified using biosspy as in Chapter 3. Furthermore, 

an ECG spectrum was computed for each channel following the same multi-taper 

method as above. 

 

5.2.7 Low-density HMM translation 

Finally, an exploratory study of how the 32-electrode HMM states would translate to 

potentially clinically more useful two-electrode montages was undertaken. A single-

channel EEG dataset was created using every possible combination of electrode pairs, 

giving 32*31/2 = 496 total possible unique combinations. An HMM was estimated on 

each of these possible single-channel EEG with hyper-parameters identical to the 

original 32-electrode EEG HMM run.  

Then, correspondence between the HMM fitted to each single-channel EEG dataset   

(i.e. the low-density model) and the HMM fitted to the original 32-channel EEG (i.e. the 

high-density model)  was assessed as follows. First, the Spearman correlation 

between switching rates obtained from the low-density and full models was computed. 



126 
 

Then, the repeated measures ANOVA F-value for the switching rate across segments 

was computed for each model. Finally, the Spearman correlation between fractional 

occupancy in the low-density and full model was computed for each state, with states 

matched between models to maximise this correlation. The results were visualised by 

plotting top 5% of electrode combinations using topoplot_connect in MATLAB. To 

further probe what was driving the strength of switching rate correlation between the 

full and low-density models, scatterplots and associated Spearman correlations were 

computed for distances between electrodes in a given montage (fronto-parietal, left-

right distance, and distance from midline) and associated correlations with the full 

model. 

 

5.3 Results 

5.3.1 32-channel EEG-HMM 

Spatiotemporal brain states during a propofol infusion  

Using EEG data from an ultra-slow propofol infusion estimated effect-site 

concentration of 4µg/ml in 15 healthy volunteers, we estimated six whole-brain states 

using a data-driven Time-Delay-Embedded Hidden Markov Model (TDE-HMM) 

approach (Figure 5.1).  
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Figure 5.1: Z-scored scalp topographical maps of power of Hidden Markov Model 

states across frequency bands, relative to the power across the whole experiment.
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Figure 5.2: State fractional occupancies across time in the 

EEG-HMM model. 

This technique describes brain activity as switching between discrete brain states. 

Each state has its own spectral and spatial activity distribution, and each subject has 

its own state time course. For better interpretability, we re-numbered the states in 

order of decreasing broadband (0.5-45Hz) power. The experiment was split into eight 

stages and the switching rate between states as well as fractional occupancy of each 

state in each stage was computed. In repeated measures ANOVAs, there was a 

significant effect of State (P=0.0166) and State * Stage interaction (P=0.0083) on the 

fractional occupancy (Figure 5.2) and of Stage on the switching rate (P<0.001, Figure 

5.3). 

 

Figure 5.2: State fractional occupancies across time in the experiment (coloured, 

mean across participants ± standard error) and estimated propofol effect-site 

concentrations (black) for each of K=6 Hidden Markov Model states.   
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Figure 5.3: State power spectra and model switching rates. 

Figure 5.3: (A) Average power spectrum across all channels for each Hidden Markov 

Model state. (B) Switching rate between states across the experiment (boxplot across 

participants) and estimated propofol concentration (black line). Switching rate was 

significantly across the experiment (repeated measures ANOVA F=10.1, P<0.001).  

 

State 1 was a high-power state (Figure 5.3A) that only appeared sporadically, most 

often during emergence (Figure 5.2). As it showed high frontal low-frequency and 

gamma activity (Figure 5.1), it is likely this state was driven by residual muscle, 

movement, and ocular noise. State 2 showed high occipital alpha activity as well as 

high frontal theta/delta and was most present during the baseline. State 3 had 

fractional occupancy that increased in line with propofol concentration (across-

subjects Spearman ρ=0.22, P=0.0346, FDR-corrected) and had predominantly frontal 

alpha activity. State 4 was present throughout the infusion and had lateralized 

alpha/beta activity, as well as fronto-central theta/delta activity. State 5 fractional 

occupancy was negatively correlated with propofol concentration (across-subjects 

Spearman ρ=-0.46, P<0.001, FDR-corrected) and had posterior slow/delta activity. 

A B 

Time [min] 
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State 6 had the lowest overall power, occurred most around loss and recovery of 

responsiveness, and showed alpha/beta activity around motor areas. Broadband 

coherence for states is in Supplementary Figure 5.2. 

In summary, we found a likely artifactual state (State 1), a state associated with 

wakefulness (State 5), a state associated with propofol concentration (State 3), a state 

most present around loss and recovery of responsiveness (State 6), and two states 

broadly present throughout the infusion (States 2 and 4).  

 

Associations with behavioural responsiveness and SWAS 

Next, we examined whether cumulative time spent in a particular state before loss of 

responsiveness correlated with propofol concentration at loss / recovery of 

responsiveness (LOBR/ROBR) or the SWAS metrics (power at SWAS, PSWAS and 

propofol concentration at SWAS, CSWAS, for both induction and emergence, Figure 

5.4).  

After a False Discovery Rate correction across these 36 tests (6 states x 6 metrics), 

there was a significant correlation between cumulative time spent in State 2 until LOBR 

and propofol concentration at LOBR and ROBR (Spearman ρ=0.725 and 0.739 

respectively, P=0.0226), as well as CSWAS on emergence (ρ=0.706, P=0.0389). There 

was also a significant correlation between cumulative time spent in State 5 until LOBR 

and propofol concentration at LOBR and ROBR (Spearman ρ=0.800 and 0.732 

respectively, P=0.0197 and P=0.0226). Finally, there was a significant correlation 

between cumulative time in State 6 and PSWAS at emergence (Spearman ρ=0.757, 

P=0.0226). It was also noted there was a significant correlation between propofol 
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Figure 5.4: State associations with behavioural 

responsiveness and SWAS. 

concentration at LOBR and ROBR (ρ=0.639, P=0.0123), though not between propofol 

concentration at LOBR and CSWAS at emergence (ρ=0.437, P=0.120).  

Figure 5.4: (A), (B) Scatter plots of propofol concentration at LOBR against 

cumulative time spent in State 2 and State 5 until LOBR across subjects. (C) CSWAS 

during emergence against cumulative time spent in State 2 until LOBR.  

 

Network state transitions 

Next, we focused on transitions between HMM States (Figure 5.5). Using Louvain 

community detection330, we found the states split into two sub-modules with high-

power States 1-3 and lower-power states 4-6. During peak propofol concentrations, 

State 1 transitioned significantly less into State 6  and significantly more into State 2 

compared to baseline (Figure 5.5B). Looking at the network as a graph, a cycle was 

present with States 2, 3, 4, and 5, with States 1 and 6 on the periphery (Figure 5.5C). 
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Figure 5.5: Transition probability matrices. 

  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.5: (A) Transition probability matrix for the experiment (mean across 

experimental stages). Data-driven community detection identified two modules. (B) 

Significant transition probability changes, peak propofol concentration - baseline 

(Bonferroni-corrected permutation test P<0.05). (C) A graph representation of the 

thresholded state transition matrix in (A). Darker colours represent more probable 

transitions. A cycle between States 2-5 is visible, with States 1 and 6 on the periphery.  
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5.3.2 EXG-HMM 

As was shown in Chapter 3, the electrocardiogram (ECG) also contains information 

that tracks the propofol infusion. As such, I was interested in how a combined EEG-

ECG HMM (EXG-HMM) would compare to an HMM run on the EEG alone.  

Broadly, the model was similar, with notable exceptions (Figures 5.6-5.8). The 

switching rate was still significantly different between experimental stages (RM-

ANOVA F=5.69, P=0.0042). The heart rate differed significantly between states (RM-

ANOVA F=3.61, P=0.0046).  

State 1 was still scarce and likely artifactual based on the topographical map. State 6 

was still most present around LOBR/ROBR and showed motor alpha/beta activity.  

State 3 and State 5 were associated with wakefulness and diminished with increasing 

propofol, though with correlation strengths weaker compared to the EEG-HMM run 

(Spearman ρ=-0.357, P<0.001,  ρ=-0.267, P=0.0049 respectively, FDR-corrected). 

They both showed occipital alpha activity, with State 3 having more frontocentral and 

State 5 more posterior delta activity. Heart rate was also lowest in these states. What 

distinguished them was a strikingly different ECG spectrum (Figure 5.8C). State 5 had 

a broader, higher-activity ECG power spectrum, typically more associated with QRS 

complexes. State 3 had a low-power ECG power spectrum, more associated with 

inter-beat intervals. 

State 2 and State 4 were more present at higher propofol concentrations (State 2 

Spearman ρ=0.356, P<0.001; State 4 ρ=0.149, n.s.). State 2 had higher power, 

particularly in slow, delta, and alpha frequencies, with delta/theta power more frontal. 

Heart rate was higher in these states than State 3 or 5. State 2 had higher, QRS-like 

ECG power (though lower than State 5), with State 4 having lower ECG power. 
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Figure 5.6: Z-scored power maps of propofol EXG-HMM states. 

 

 

Figure 5.6: Z-scored scalp topographical maps of power of Hidden Markov Model 

states across frequency bands for an HMM that included the ECG signal. Most 

topographies look similar to those of Figure 5.1, with State 3 and 4 topographies 

changing the most.
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Figure 5.7: State fractional occupancies across time in the EEG-HMM model. 

 

Figure 5.7: State fractional occupancies across time in the experiment (coloured, 

mean ± standard error) and estimated propofol effect-site concentrations (black) for 

each of K=6 Hidden Markov Model states in the EXG-HMM run.    
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Figure 5.8: Further properties of the EXG-HMM model. 

 

Figure 5.8: (A) Average EEG power spectrum for each state. (B) Switching rate 

between states across the experiment (boxplot) and estimated propofol concentration 

(black). Switching rate was significantly different between experimental stages 

(repeated measures ANOVA F=5.69, P=0.0042). (C) ECG power spectrum for each 

State. (D) Estimated heart rate for each state. Heart rate was significantly different 

between states (repeated measures ANOVA F=3.61, P=0.0046). 

 

 

A 

D C 

B 



137 
 

5.3.3 Low-density HMM translation 

Finally, I wanted to know how the full 32-electrode EEG HMM model would scale to a 

more clinically translatable bipolar montage. Thus, N=496 HMM models were trained 

for each possible bipolar montage (i.e. every possible combination of electrode pairs). 

HMMs estimated on these low-density montages were compared to an HMM 

estimated on the full, 32-electrode montage, using the switching rate and fractional 

occupancy results. 

Overall, there was a high correlation between switching rates in the full 32-

electrodeEEG HMM and the reduced low-density EEG HMMs (Figure 5.9). However, 

there were differences between montages and structure emerged (Figure 5.10). When 

we optimised for switching rate ANOVA F-test significance, the best low-density 

montages were posterior (Figure 5.10A). Optimising instead for maximal correlation 

with the full model, the best low-density montages appeared to have large left-right 

separation and were closer to the midline (Figure 5.10B). This was confirmed by 

studying the switching rate correlation as a function of left-right, front-back, and midline 

distances (Figure 5.10C-E, all Spearman P<0.001). The highest correlation montages 

were at the same front-back level, had larger left-right separation, and were close to 

the midline. 

Finally, optimising for highest correlation between fractional occupancy of a given state 

in the full and reduced models, more structure emerged (Figure 5.10F). Notably, the 

optimal State 5 montage was fronto-parietal near the midline.  

A brief exploratory analysis of including the ECG channel (i.e. 1 EEG + 1 ECG channel) 

was also undertaken (Supplementary Figure 5.7). Broadly, the models appeared more 

driven by the heart rate increase rather than neural dynamics. 
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Figure 5.9: Spearman correlations between state switching rates in 

the full and low-density models. 

 

Figure 5.9: Spearman correlation between state switching rate from an HMM fit to 

the full 32-electrode model and switching rate from an HMM fit to low-density EEG 

montages (corresponding to every possible combination of electrode pairs from the 

full 32-electrode data). Whilst a good correlation (>0.7) between high- and low-

density EEG HMM models is observed overall, certain montages perform 

significantly better. 
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Figure 5.10: Best bipolar montages for optimising various criteria. 

 

Figure 5.10: Best low-density montages for optimising various criteria. (A), (B) Top 5% 

of low-density montages to maximise switching rate (A) F-statistic significance and (B) 

correlation with full model. (C), (D), (E) Switching rate correlation between the full and 

reduced models against normalised distance between electrodes for all possible 

electrode pairs (C) front to back (ρ=-0.31), (D) left to right (ρ=0.45), and (E) from 

midline (ρ=-0.47, all Spearman P<0.001). (F) Top 5% of bipolar montages to maximise 

correlation between state fractional occupancy in the full and reduced 2-electrode 

models.
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5.4 Discussion 

In this chapter, spatiotemporal brain dynamics during propofol anaesthesia was 

studied using Hidden Markov Modelling. First, using 32-electrode EEG date, K=6 

HMM states were estimated and studied in relation to behaviour and slow-wave 

activity saturation. Then, a single-lead electrocardiogram was added to the dataset 

and HMM states re-fitted and analysed. Finally, the possibility of capturing the EEG 

HMM model with only two electrodes was explored and optimal electrode montages 

for different parameters were found.  

 

5.4.1 Spatiotemporal brain states in propofol-mediated unconsciousness 

Hidden Markov Modelling identified states associated with wakefulness, loss / 

recovery of behavioural responsiveness (LOBR/ROBR), and propofol anaesthesia in 

a data-driven way.  

Decreased switching between states was a very robust finding in this chapter, present 

in the original model, the model with ECG signal added (although with a lower 

significance), and in all low-density montages. This can be interpreted as further 

evidence for a reduced functional repertoire under anaesthetic-induced 

unconsciousness, which has been demonstrated across a range of species, modalities, 

and unconscious states32,331–334. In a post-hoc analysis, the state switching time-series 

also showed reduced complexity (Supplementary Figure 5.6), supporting results from 

Chapter 1. 

Time spent in States 2 and 5 until LOBR correlated with propofol concentration at 

these stages. This suggests States 2 and 5 were essentially tracking wakefulness, 
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with the ROBR correlation likely due to an overall correlation between concentrations 

at which responsiveness was lost and recovered. Interestingly, more time spent in 

State 2 (but not State 5) before loss of responsiveness correlated with higher CSWAS 

on emergence, and thus potentially regaining perception at higher propofol 

concentrations (i.e. earlier). State 2 had higher overall power, so this could be a marker 

of more resilient brains that are less likely to become ‘stuck’ in the anaesthetic state 

and experience neural inertia94. However, unlike the rest of the results presented, this 

correlation was not robust across stochastic HMM initialisations (Supplementary Table 

5.1) and should thus be taken as preliminary. Both States 2 and 5 were characterised 

by higher fronto-parietal connectivity and occipital alpha activity.  

In contrast, State 3 had lower fronto-parietal connectivity and its fractional occupancy 

correlated with propofol concentration and showed anterior alpha activity. Alpha 

anteriorisation is a known correlate of propofol anaesthesia31,335, likely generated by 

thalamocortical loops336. Impaired fronto-parietal connectivity is a further established 

correlate of anaesthetic unconsciousness across a variety of drugs34. 

In this chapter, Hidden Markov Modelling was used to capture spatiotemporal 

dynamics. This was done as it’s a flexible, data-driven method that has previously 

been successfully used across a range of conscious states including sleep128 and 

ketamine anaesthesia183. However, alternative methods exist. These include 

traditional EEG microstate analyses, which have been applied to propofol anaesthesia 

previously337–339, with one study suggesting a U-shaped dose-response in state 

occurence340. Such a U-shaped state occurrence was not observed in this study. This 

could be due to deeper propofol concentrations in the previous study (achieved in part 

by using opioids at the deepest stage), or due to Hidden Markov Models capturing 

different dynamics to microstates, in part by leveraging full spectral information341. 
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5.4.2 Combined heart-brain states  

In Chapter 3, an exploration of the cardiac effects of propofol and its effects on cortico-

cardiac coupling (as measured by the ECG / EEG) was presented. This indicated there 

was useful dose-dependent information in the ECG, so here including it in the HMM 

was investigated. Despite radically different time-series and origins, the flexible nature 

of the HMM meant a combined EXG-HMM run produced sensible results. Most states 

were not affected by the single ECG channel, and overall the switching rate was still 

reduced, though with a smaller effect size. Including the ECG allowed for heart rates 

to be calculated, which further supported state interpretation with heart rate increasing 

as per Chapter 3. What’s more, calculating the ECG spectra in each state revealed 

states associated with the cardiac QRS complex and those more likely to be present 

in-between R-peaks342. Thus, the fronto-central delta/theta in States 2 and 4 (low ECG 

power) could be interpreted to partially include heartbeat-evoked activity343,344. A 

formal comparison was not undertaken here, but the potential for Hidden Markov 

Models to extract both brain and heart states in a unified, data-driven framework 

warrants further exploration. However, State 3 and 5 associations with propofol dose 

were weaker in the EXG-HMM model, so there may be a trade-off between increased 

state interpretability and association with external variables depending on the cardiac 

response. Anaesthetists routinely monitor cardiac and other peripheral activity in detail, 

and this chapter advocates for advancing in research what is already clear to the 

clinician – that the physiological state does not end at the brainstem. 
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5.4.3 Low-density EEG 

In the last few years, there has been a growing interest in finding optimal low-density 

EEG montages for specific purposes including source localisation326, epilepsy 

monitoring327, sleep stage classification328, and others. In this chapter, studying HMM 

in mocked-up low-density two-electrode EEG montages (obtained by spatially sub-

sampling the full EEG montage) revealed structure in the electrode montage data 

during anaesthesia. 

The switching rate decrease was most prominent in models trained on posterior 

electrodes. Reduced functional diversity in the unconscious brain has been previously 

localised to posterior cortical areas including the posterior cingulate and 

precuneus32,345. The results here suggest that the reduced state switching, at least as 

captured by the Hidden Markov Model, may be captured even with just two electrodes 

in this area. Interestingly, the switching rate change F-test significance on the best 

two-electrode montages was even higher than that of the full 32-electrode model. This 

is in line with recent work showing that low-density EEG montages can perform better 

than high-density montages if chosen optimally326–328.  

Capturing individual states with a low-density montage also proved possible. For 

example, State 3, whose presence correlated with propofol concentration, was best 

captured in a fronto-parietal montage. Recent work has challenged the frontal 

montages commonly used during surgical anaesthesia monitoring112,117. State 3 also 

showed reduced frontoparietal connectivity previously suggested as a robust correlate 

of anaesthetic unconsciousness across a variety of drugs34,346. It remains to be seen 

in future research which anaesthetic effect on brain dynamics (e.g. reduced state 

switching, complexity, or fronto-parietal connectivity) causes consciousness to fade 

and presents clinically optimal conditions. Nonetheless, it is likely that once it is known, 
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a procedure similar to that in this chapter could reveal the optimal EEG montage to 

capture the effect. 

 

5.4.4 Limitations  

Whilst this chapter contributes to our understanding of anaesthetic unconsciousness, 

combined heart-brain states, and low-density EEG montages, it comes with some 

limitations. Firstly, the original EEG montage was only of medium density (32 

electrodes). This means it was not suitable for source localisation and it is possible 

higher-density montages would reveal finer details of relevant HMM states.  

Secondly, only two-electrode low-density montages were explored here. This was 

done as commonly used surgical monitoring systems often only have a single bipolar 

channel and it allowed for a search of the full montage space. However, even though 

these montages yielded models with good correspondence compared to the full 

model, it is possible that low-density montages with more electrodes (say 8-12) could 

be a better trade-off. Combining this with other parameters (e.g. also varying number 

of HMM states) in a multi-optimisation problem, perhaps using a genetic algorithm326, 

is an ongoing research area in the group.  

In summary, unconsciousness caused by propofol is associated with a shift to less 

complex brain dynamics with diminished state switching and fronto-parietal 

connectivity. Hidden Markov Modelling can reveal brain states as well as combined 

heart-brain states under anaesthesia, even with just two electrodes. Translating a 

better understanding of anaesthetic states into clinical settings remains to be achieved 

– but perhaps it starts with moving beyond forehead electrodes.  
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6     Neural correlates of 
ketamine dissociation in 

healthy volunteers  
 

6.1  Introduction 

6.1.1 Psychedelics as novel antidepressants  

Depression is a leading cause of disability in the world and affects around 1 in 6 adults 

in the UK. Up to 30% of patients have a treatment-resistant form of depression, defined 

as failure to respond to two or more antidepressants347. Treatment-resistant 

depression (TRD) presents a major challenge for patients’ lives as well as for the 

healthcare system. In recent years, novel, rapid-acting antidepressants have begun to 

be investigated348. These include classical serotonergic psychedelics (e.g. 

psilocybin349), as well as atypical psychedelics such as subanaesthetic ketamine and 

nitrous oxide350. Their use comes as part of a broader renaissance in psychedelic 

research in the last decade, with various substances being investigated as treatments 

for mental illnesses including 3,4-Methylenedioxymethamphetamine (MDMA) for post-

traumatic stress disorder (PTSD)351 and psychedelics for treatment of substance use 

disorders352. Theories of a common mechanism of action include increased neural 

plasticity (e.g. through activation of mechanistic target of rapamycin, mTOR) and anti-

inflammatory immunomodulation, though placebo effects are large and blinding is 

difficult352,353. Intriguingly, classical anaesthetic agents including propofol354 and 

isoflurane355 have also demonstrated antidepressant properties at anaesthetic levels, 

perhaps due to GABAergic disinhibition or action on NMDA receptor modulation356, 



147 
 

and perioperative ketamine administration may prevent postoperative depressive 

symptoms357,358. 

Low-dose ketamine is a particularly promising option for treatment-resistant 

depression. Since the publication of the first randomised, double-blind study of 

ketamine in depressed patients in 2000359, a large number of randomised control trials 

have established the rapid antidepressant effects of ketamine lasting up to two 

weeks360. S-ketamine nasal spray has been licenced by the Food and Drug 

Administration (FDA) for treatment of depression and racemic ketamine is used in a 

number of specialised clinics as an off-label depression treatment361.  

However, concerns about the use of ketamine remain due to its abuse potential and 

urotoxic effects362. This is particularly important in the context of developing tolerance 

over time that can lead to high doses in patients, with some studies reporting 

anaesthetic-level doses to achieve sub-anaesthetic states in long-term patients (i.e. 

doses >2mg/kg)363. There is a lack of high-quality long-term safety data. Furthermore, 

development of drug liking behaviours in patients treated for depression has been 

reported and more research is needed, particularly given the potential for ketamine to 

affect µ-opioid receptors364,365. All of the above warrants a cautious clinical approach 

with optimising the dose to minimise adverse effects whilst retaining the 

antidepressant response. A defining aspect of ketamine phenomenology is that of 

dissociation. A complete description of the brain dynamics underlying this state and 

its importance for clinical outcomes remains elusive and could benefit from methods 

commonly deployed in anaesthetic research (and in this thesis).  
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6.1.2  Ketamine dissociation  

The psychomimetic effects of sub-anaesthetic ketamine were already recognised by 

Domino and colleagues when the first human was given intravenous ketamine on 

August 3, 1964366. It was soon noted that subjects described feelings of floating and 

being in outer space367. Upon hearing how people become ‘disconnected’ from their 

environment, Antoinette (Toni) Domino coined the term ‘dissociative anaesthetic’368.    

It is important to note that the term ‘dissociation’ had a rich and complex history in 

psychiatry long before the introduction of ketamine, at least since Moreau de Tours’ 

1845 description of personality division and isolation of ideas under hashish369. The 

idea of a ‘split mind’ underlies some theories of clinical dissociative disorders such as 

dissociative identity disorder (DID), conditions often linked to early trauma370. 

In volunteers without a dissociative disorder, sub-anaesthetic ketamine induces key 

dissociative symptoms including amnesia, depersonalization, derealization, 

disembodiment, and temporal distortions371. However, ketamine phenomenology also 

replicates positive (e.g. concept disorganisation, hallucinations) and negative (e.g. 

blunted affect, motor retardation) symptoms of schizophrenia, with ketamine often 

utilized as a model of schizophrenia372 and psychosis373. Furthermore, considered as 

an atypical psychedelic, ketamine can produce a therapeutically useful non-ordinary 

state of consciousness that may feature near-death experiences, ego dissolution, and 

feelings of unity depending on the dose, setting, and person’s mindset374. Capturing 

the full ketamine state of consciousness may be limited by psychometric scales being 

used375,376, as many of them were developed for other purposes, e.g. the Clinician-

Rated Dissociative States Scale (CADSS) for dissociative symptoms in post-traumatic 

stress disorder (PTSD)377. In view of these complexities, this thesis adopts the term 
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‘dissociation’ to broadly describe the dissociative symptomatology produced by 

ketamine, i.e. the perceived separation of mind and body.  

 

6.1.3 Chapter overview  

This chapter focuses on correlates of sub-anaesthetic ketamine infusions, which have 

increasingly been administered by anaesthetists and psychiatrists in the context of 

treating depression359. Unlike traditional antidepressants that take weeks to produce 

effects, ketamine produces rapid antidepressant and anti-suicidal effects within hours 

of administration that last for 1-2 weeks365.  

Recent work has done much to elucidate the brain correlates of sub-anaesthetic 

ketamine infusions. Neural oscillations robustly shift towards less alpha activity89,378–

380 and cortical complexity increases, mirroring effects of more classical 

psychedelics183,381,382. Changes in canonical resting-state networks have been 

observed, especially in the salience and default mode networks (DMN)41,383, and 

functional diversity of metastable states has been shown to increase183,382. However, 

it is less clear how these effects link to dissociative phenomenology. Several studies 

failed to find a significant link between changes in the electroencephalogram (EEG) 

data and dissociation scales380,384. However, others have found associations between 

dissociation psychometric scales and key nodes of the DMN and salience networks, 

including the anterior insula, a region involved in integrating interoception and self-

awareness378,383,385,386. This may be in part due to different instruments used to 

capture dissociation (e.g. 5D-ASC vs CADSS). 

Action of ketamine can be understood in relation to its molecular targets. On the 

molecular level, ketamine is known as an NMDA antagonist, but it also acts on the 
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cholinergic, aminergic, and opioid systems39. NMDA hypofunction has been proposed 

as the source of ketamine’s schizophrenia-like phenomenology383, but action at 

distinct receptors may be responsible for different effects of ketamine, with e.g. the 

antidepressant effects reduced by blocking the opioid system387.  

Novel analyses methods have been used to extract new insights from neural data. For 

instance, a decrease in alpha power may be due to fewer transient alpha bursts or a 

lower-amplitude continuous alpha oscillation, with these different features linked to 

different mechanisms240. In particular, Hidden Markov Modelling (HMM) has emerged 

as a way to describe brain dynamics in a dynamic, data-driven fashion with the brain 

seen as switching between discrete states126,127,317. Such states have been linked to 

altered states of consciousness including sleep 128 and scalp EEG ketamine data183.  

In this chapter, I apply techniques from previous chapters to the case of the dissociated 

brain under the influence of sub-anaesthetic ketamine. I utilise a secondary analysis 

of high-density EEG data collected during sub-anaesthetic ketamine infusions in 

healthy volunteers together with subjective dissociation reports from the 5D-ASC 

questionnaire380. My goal was to use Hidden Markov Modelling on reconstructed 

cortical activity (source-projected) data to identify dynamic brain states during 

ketamine administration. It was hypothesised that state visits and transitions which 

included the default mode and salience network would be predictive of individuals’ 

dissociation scores. Using a recent bank of 19 PET-derived receptor density maps388, 

a preliminary exploration of these states in relation to ketamine’s molecular targets 

was undertaken, hypothesising a role for other receptors beyond NMDA. To explore 

how translatable the states may be, the states were studied in a simulated low-density 

montage. Finally, a case study of altered heartbeat-evoked potentials in a dissociated 
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participant is presented, suggesting a potential role for impaired interoception in 

dissociation. 

 

6.2 Materials and Methods  

A summary of the methods used for the main Hidden Markov Model analysis is 

presented in Figure 6.1. 

 

6.2.1 Data collection 

Details of the data collection have been published previously379,380. Briefly, the study 

was approved by the Institutional Review Board (HUM00061087) of the University of 

Michigan Medical School and written informed consent was obtained from all 

participants. Fifteen healthy volunteers (7 male/8 female, age 20–40 years, BMI <30 

kg m-2, no history of drug use or psychiatric disorders) underwent a sub-anaesthetic 

intravenous infusion of racemic ketamine 0.5 mg kg-1 administered over 40 min, 

followed by a subsequent 30 min pause for rest and psychometric testing using the 

Altered States of Consciousness (5D-ASC) questionnaire389, and then a hypnotic 

induction of bolus i.v. ketamine 1.5 mg kg-1. A 128-channel electroencephalogram 

(EEG; HydroCel nets, NetAmps 400 amplifiers, Net Station 4.5 software; Electrical 

Geodesics Inc, Eugene, OR, USA) was recorded continuously during the experiment, 

sampled at 500Hz and referenced to the vertex.  
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6.2.2 Signal pre-processing 

For this study, only the 5 min closed-eyes awake baseline and 40 min subanaesthetic 

i.v. ketamine infusion were analysed. After trimming the datasets, each subject dataset 

was pre-processed in MATLAB 2020a (MathWorks Inc, Natick, MA, USA) using the 

EEGLAB390 and OSL (https://ohba-analysis.github.io/) toolboxes together with custom 

MATLAB scripts. Briefly, i) the neck and face electrodes were removed leaving 102 

channels, ii) default bad channel rejection was run using excess kurtosis>5, iii) bad 

time segments with excessive EMG noise were automatically rejected (35-128Hz 

power above 10dB, 35s (16s, 55s) rejected; median (quartiles)), iv) the data was 

bandpass-filtered (1-30Hz, eegfiltnew, default zero-phase, Hamming-windowed FIR 

filter), v) data were re-referenced to the scalp average and resampled to 100Hz. I then 

used temporal independent component analysis (pop_runica, 35 components) to 

remove non-neural components (eye, muscle, cardiac, single-trial, or single-channel 

focus). This left a median of 10 independent components (range=7-20) per participant, 

consistent with previously established numbers of retained neural components380,391. 

Data was finally visually inspected to ensure quality control and interpolated back to 

102 channels. This ensured high-quality data necessary for subsequent source 

reconstruction and dynamic brain state modelling. For further analysis, after Hidden 

Markov Modelling (see below) the experimental data was divided into 8 stages (each 

approximately 5 minutes, 320s±28s). Stage 1 was taken as the baseline and stage 8 

as the pharmacological steady-state end-point of the experiment.  
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Figure 6.1: Overview of the ketamine HMM study methodology. 

Figure 6.1: Overview of the study methodology. (A) EEG data from a sub-anaesthetic 

ketamine infusion in N=15 participants is pre-processed. (B) Electrodes (green) are 

co-registered to the MNI-152 template using fiducials (cyan) and a forward model is 

computed. (C) Data is projected into 8mm isotropic voxel source space using an LCMV 

beamformer. (D) Source space data is parcellated into the Yeo 7 networks, 

orthogonalized, and sign-flipped. (E) A 7-state Hidden Markov Model (HMM) is fit to 

the data to capture brain dynamics as switching between discrete, data-driven states. 

State occupancies (coloured time-series) and transitions (red matrix) are then related 

to dissociation scores. 
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6.2.3 Source reconstruction 

As individual structural MRI images were not collected, data was aligned to the MNI-

152 template using fiducial markers (nasion, left/right preaurical points - LPA, RPA; 

Figure 1B). A forward model was created using the boundary element method 

(OSL/SPM12 defaults). Source reconstruction was done using LCMV beamforming to 

8mm isotropic brain voxels (Figure 1C; Westner et al., 2022). Source-space data was 

then parcellated to the 7 Yeo resting-state networks, thresholded at 25% probability393 

and orthogonalized (Figure 1D; Colclough et al., 2015) to minimise source leakage 

caused by volume conduction. A coarse, low-dimensional parcellation was chosen due 

to rank deficiency of the data and to account for potential anatomical differences 

between subjects in absence of MRI images. In this reduced parcellation, the ventral 

attention and salience networks largely overlap, including key nodes such as the 

anterior insula and cingulate, so these are referred to interchangeably. Finally, to 

address the source dipole ambiguity, sign flipping was performed ensuring maximal 

correspondence across participants127. 

 

6.2.4 Hidden Markov Modelling 

Similarly to Chapter 5, data-driven brain state dynamics were found using the time-

delay-embedded Hidden Markov Model (TDE-HMM) implemented in the MATLAB 

HMM-MAR toolbox (Figure 6.1E)127,317. HMM has been successfully applied to detect 

transient brain states across a variety of paradigms including resting-state MEG395 and 

FMRI316, as well as sensor-level EEG in this ketamine dataset183. The stochastic TDE-

HMM approach is especially suited for large amounts of data127. 
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In this analysis, K=7 states were chosen. This number of states showed the highest 

proportion of states well-replicated in a split-half matching test (Supplementary Figure 

6.1) and was a natural choice given the 7-network parcellation, but K=3-12 states were 

also explored (Supplementary Figures 6.2-6.4) with broadly similar results. 

Robustness of results across stochastic effects was verified by repeating the analysis 

N=4 times (Appendix 5). Time-embedding was done using 11 lags (100ms window, 

chosen to capture the alpha rhythm present throughout the data). HMM states were 

then estimated on the top 21 principal components (80% variance captured, chosen 

using the elbow method) using stochastic inference127 with batch size of N=2 subjects.  

 

State fractional occupancies and Power spectra estimation 

State fractional occupancy calculations were identical to those described in Chapter 5. 

Power spectra (1-30Hz) for each state were estimated using a state-wise multitaper 

approach126. State power maps were then computed by projecting total power in a 

state on the cortical surface derived from MNI-152 using the Human Connectome 

Project Workbench, relative to the mean weighted by across-experiment fractional 

occupancy329.  States are randomly numbered when estimated by the HMM-MAR 

toolbox. As in Chapter 5, for visualisation and interpretation purposes, states were re-

ordered by decreasing total power. 

 

Transition probability matrices  

To compute the states’ network graph and visualise which states transition to which 

other states, I used identical methods as those for transition probability matrices in 

Chapter 5.  
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Dissociation associations 

To link HMM brain state dynamics with subjective psychometric reports, the total score 

for the disembodiment 5D-ASC subscale was used as a measure of dissociation389. 

In the N=14 subjects where this score was known, a general linear model was built 

using individual participants’ state fractional occupancies, starting with all states and 

using backward selection396. This was done separately for stage 8 (end of experiment) 

and stage 1 (baseline) to explore both acute dissociation markers and baseline 

predictors of dissociation susceptibility. Post-hoc Spearman correlations and P-values 

for relevant variables were also computed. 

To find exploratory associations between state transitions and dissociation, a 

permutation test was used. Specifically, for both the end of experiment and baseline 

stages separately, Spearman correlation between individuals’ transition probabilities 

between states and disembodiment scores was computed. Then, for each of N=500 

permutations, the subject labels were randomly permuted and the correlations re-

calculated. From this null distribution, transitions with P<0.01 were taken as significant 

and post-hoc Spearman correlations computed for significantly associated transitions. 

 

6.2.5 Receptor fingerprinting  

Finally, to explore how the states related to molecular targets of ketamine, I used a 

recently published neuromaps databank of brain-wide receptor densities derived from 

PET 388. Specifically, the spatial Pearson correlations of 19 receptor maps (serotonin 

(5HT): 5HT1a, 5HT1b, 5HT2a, 5HT4, 5HT6; dopamine (D): D1, D2, dopamine 

transporter (DAT); acetylcholine: alpha-4 beta-2 nicotinic receptor (α4β2), muscarinic 

M1, vesicular acetylcholine transporter (VAChT); norepinephrine transporter (NET); 
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histamine H3; GABAA; cannabinoid CB1; mu-opioid receptor (MOR); glutamate 

metabotropic receptor 5 (mGluR5), NMDA) with each of the 7 states was calculated. 

A significance P-value against a spatial null was then computed, taking autocorrelation 

into account397, and correcting for multiple comparisons across all receptors using the 

Bonferroni method, only keeping state-receptor associations with corrected P<0.05 

and at least a moderate correlation of r>0.3.  

 

6.3 Results 

 

6.3.1 Whole-brain ketamine-associated network states 

Using eyes-closed EEG data from a 40-minute 0.5 mg kg-1 ketamine infusion in 15 

healthy volunteers mapped onto the Yeo-7 parcellation, seven whole-brain states were 

estimated using a data-driven Time-Delay-Embedded Hidden Markov Model (TDE-

HMM) approach (Figure 6.1). Essentially, this technique describes brain activity as 

switching between discrete brain states. Each state has its own spectral and spatial 

activity distribution, and each subject has its own state time course. For better 

interpretability, the states were re-numbered in order of decreasing broadband (1-

30Hz) power. The experiment was split into eight stages of equal length and the 

fractional occupancy of each state in each stage was computed. In a two-way repeated 

measures ANOVA, there was a significant effect of State (F=5.62, P<0.001) and State 

* Stage interaction (F=22.98, P<0.001) on the fractional occupancy. 
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Figure 6.2: Brain states during a sub-anaesthetic ketamine infusion. 

 

Figure 6.2: Data-driven brain states during a sub-anaesthetic ketamine infusion.  

Left, Bottom Right: Broadband (1-30Hz) thresholded power maps for each state 

(relative to temporal average), together with fractional occupancy (fractional time spent, 

mean ± SEM across participants) for each state across the experiment. Ketamine 

causes less time spent in high alpha power states (States 1, 2) and promotes low-

power states (State 7). 

Top Right: Power spectrum for each state. States were re-ordered by total power for 

interpretability.  
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Figure 6.3: Alternative views of broadband state activity. 

Figure 6.3: Alternative views of broadband activity in each state (c.f. Figure 6.2). (A) 

activity relative to mean across the experiment. (B) activity relative to mean across the 

brain in each state. 

 

Regarding the states (Figure 6.2, 6.3), three high-power states were found 

characterised mainly by broadband activity in the visual network (State 1), salience 

(ventral attention) & limbic networks (State 2), and visual & dorsal attention networks 

(State 3). States 1 and 2 were dominant during the baseline with subjects spending 

24.4%±12% and 24.7%±8% in them respectively (mean ± standard deviation).  

As ketamine was induced, time spent in States 1 and 2 reduced significantly (first vs 

last stage post-hoc t-test P<0.001, FDR-corrected).  State 4 had activity close to the 

experimental average, with activity highest in the default mode (DMN) combined with 

A 

B 
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suppression of limbic and ventral attention activity and was present throughout the 

experiment. State 5 showed suppressed visual activity and its fractional occupancy 

increased significantly (P=0.0014, FDR-corrected).  

States 6 and 7 had overall lowest broadband activity, showing suppressed DMN / 

limbic and limbic activity respectively.  They also significantly increased in their 

fractional occupancy (P<0.001, FDR-corrected), with State 7 being the state with 

lowest power overall. Subjects spent 19%±8% and 33.7%±22% of the time in State 6 

and 7 respectively at the last stage of the experiment. No significant effect of stage on 

state switching frequency was observed (P>0.1). 

Functional connectivity of these states as measured by broadband coherence 

(demeaned across states) is presented in Figure 6.4. Strongest connections in states 

suppressed by ketamine were limbic-visual networks, salience–somatomotor 

networks, and default mode–frontoparietal networks (State 1), frontoparietal–

somatomotor and frontoparietal–visual (State 2). State 7 most present at the end of 

infusion had lower than average connectivity between the default mode network and 

salience / somatomotor networks, as well as frontoparietal–somatomotor networks. 

State 6 had decreased limbic and visual / salience networks connectivity, with 

increased dorsal attention–somatomotor coherence. 



161 
 

Figure 6.4: Connectivity in ketamine HMM states. 

 

Figure 6.4: Connectivity (demeaned broadband coherence, top 10% of connections 

shown) in each of K=7 states presented in the main text.  

 

6.3.2 Distinct baseline and ketamine state transitions 

Next, I focused on the probability of transitions between the different HMM states 

(Figure 6.5). A transition probability matrix is calculated directly from the HMM state 

trajectory (Figure 6.5A). Using Louvain community detection, the states were found to 

be split into two sub-modules matching the differences between high-power States 1-

3 and lower-power states 4-7. Module 1 was thus associated with baseline 

wakefulness and Module 2 with the psychedelic ketamine state.  

Comparing transition matrices between the first (baseline) and last experimental stage, 

it was also found there were significantly fewer transitions into Module 1 at the end of 

the experiment and broadly more transitions into Module 2 (Bonferroni-corrected 

permutation test P<0.05, Figure 6.5B). Visualising the state space as a graph (Figure 
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Figure 6.5: Ketamine HMM state transitions and modules. 

6.5C), ketamine shifted brain activity from mainly being an interplay between States 1, 

2, and 3 to being dominated by cycling between states 4, 5, 6, and 7.  

 

Figure 6.5: State transitions and modules. (A) Mean transition probability matrix 

across the entire experiment. Data-driven community detection identified two modules: 

high-power, baseline-associated Module 1 (States 1, 2, 3) and low-power, ketamine-

associated Module 2 (States 4, 5, 6, 7). (B) Significant transition probability changes, 

end of infusion minus baseline (Bonferroni-corrected permutation test P<0.05). States 

transition significantly less into Module 1, and more into Module 2. (C) A graph 

representation of the thresholded state transition matrix in (A). Darker colours 

represent more probable transitions. Two modules are clearly visible, with State 3 

acting as the dominant bridge between them.  
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6.3.3 Brain states associated with dissociative phenomenology  

After estimating dynamic brain states present in the data, I assessed preliminary 

evidence of associations between state occupancies and transitions and the 

disembodiment sub-scale of the Altered States of Consciousness (5D-ASC) 

questionnaire, taken as the measure of dissociation. This psychometric data was 

available in N=14 subjects. Complete analysis of this questionnaire has been 

published before380.  

 

Baseline predictors of dissociation susceptibility  

All participants were given the same weight-adjusted dose (0.5 mg kg-1). Despite the 

dose equivalence, there was a wide range of dissociation scores in the cohort (mean 

20.6, range 9-28 out of 30). Starting with all state occupancies in a general linear 

model and using backward selection, there was a suggestion that subjects that spent 

more time in State 5 experienced less dissociation at the end of the experiment (Figure 

6.6A; Linear model F=7.11, P=0.0205; Spearman ρ=-0.48, P=0.08). Furthermore, a 

higher probability of transitions from State 3 to State 1 also appeared to be correlated 

with lower end-of-infusion dissociation scores (Figure 6.6B; permutation P<0.01 and 

Spearman ρ=-0.79, P<0.001). 

 

Acute markers of dissociation  

Next, the same analyses were run on the last stage of the experiment. The general 

linear model identified was Dissociation [0-30] = 19 – 8.7*FO[1] + 1.6*FO[2], where 

FO[k] indicates fractional occupancy of State k (model F=7.31, P=0.0096, each 
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Figure 6.6: Brain states associated with disembodiment scores. 

parameter P<0.005; Figure 6.6C). As this suggested a joint role with State 1 being 

preventative of and State 2 promoting dissociation, I also post-hoc tested the 

correlation between dissociation scores and the ratio of times spent in State 1 and 

State 2 in the last experimental stage (Spearman ρ=-0.57, P=0.035; Figure 6.6D). No 

significant correlations between end-of-infusion transition probabilities and 

dissociation were found (P>0.1).  

Figure 6.6: Brain states associated with disembodiment scores (max=30). Top plots 

show associations during the baseline period (predictors), bottom plots at the end of 

experiment (acute markers). (A) Observed dissociation scores for each participant 

against fractional occupancy (FO) of State 5 during the baseline period (Spearman 

ρ=-0.48, P=0.08). (B) Same dissociation scores against baseline transition probability 

(TP) from State 3 to State 1 (Spearman ρ=-0.79, P<0.001). (C) Predicted against 
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observed dissociation scores based on a general linear model using last-state 

fractional occupancy of State 1 and State 2 (F=7.31, P=0.0096). (D) Dissociation 

scores against the relative fractional occupancies of State 1 and State 2 at the last 

stage of the experiment (Spearman ρ=-0.57, P=0.0348).  

 

6.3.4 Receptor fingerprinting of dynamic brain states  

Finally, I was interested in a preliminary analysis of how the states relate to underlying 

molecular targets of ketamine. To test this, spatial correlations were computed 

between broadband state activity maps and known local receptor densities for N=19 

receptors using the neuromaps Python package. After testing correlations against a 

spatial null model and Bonferroni-correcting across all receptors, most states were still 

found to have a multi-receptor profile (Figure 6.7). Specifically, State 1 activity was 

high in regions with higher nicotinic α4β2, GABAA, CB1, and NMDA receptor densities, 

as well as in regions with high norepinephrine transporter (NET) density and low 

serotonin transporter (5HTT) density. State 2 activity map was correlated with α4β2, 

CB1, and especially µ-opioid receptor (MOR) density maps. State 3 activity was 

modestly inversely correlated with MOR density. State 4 activity was also modestly 

inversely correlated with GABAA, CB1, and NMDA receptor presence. Areas of 

depressed State 5 activity were strongly correlated with local GABAA density, as well 

as less strongly with α4β2, CB1, NMDA, and NET. State 6 showed a similar receptor 

fingerprint to State 5 except for no NET association. State 7 receptor fingerprint 

appeared as the opposite of State 1.  
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Figure 6.7: Receptor fingerprinting of ketamine HMM states. 

 

Figure 6.7: Receptor fingerprinting of ketamine-associated brain states. Spatial 

correlations between broadband state power maps and local receptor density maps 

computed using neuromaps388 are shown. Only significant and moderate (r>0.3, 

Bonferroni-corrected P<0.05) correlations are shown. States affected by ketamine are 

linked to multiple receptors beyond main NMDA antagonism, including GABAA, 

cannabinoid, nicotinic, and µ-opioid receptors. 
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6.3.5 State appearance in low-density EEG 

In order to translate insights about brain states into routine clinical practice, they 

should be recorded with more convenient EEG montages with fewer channels. For 

Chapter 7, I intended to study EEG in ketamine patients using the ‘off-the-shelf’ Muse-

S headband with four EEG channels (TP9, AF7, AF8, TP10 referenced to FCz)398. 

Thus, using the state time courses estimated using the full high-density montage 

above, I extracted HMM state power spectra on a virtual montage that corresponds to 

the montage used in the Muse-S device (Figure 6.8, Chapter 7). State power spectra 

appeared qualitatively similar to that of the full model (Figure 6.2). This was especially 

true for States 1 and 2 on electrodes TP9 and TP10, where they had the highest signal-

to-noise ratio. These results suggested recording with a low-density EEG device may 

still identify salient features that correlate with dissociation scores. This was confirmed 

in the patient study I undertook (Chapter 7). 
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Figure 6.8: HMM state power spectra in a simulated low-density montage. 

 

Figure 6.8: HMM state power spectra as appearing on a virtual Muse-S montage 

(electrodes AF7, AF8, TP9, TP10 in the international 10-20 system). States still show 

clear ordering based on power, with State 1 and State 2 having highest signal-to-noise 

ratio on channels TP9 and TP10.
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6.3.6 Case study of heartbeat-evoked potentials under ketamine 

Dissociated subjects often report altered perceptions of their body, including that they 

‘have no body’. Ascending visceral signals have an important role in maintaining bodily 

homeostasis and have been suggested to be involved in grounding the bodily self and 

emotions107,324. What’s more, visceral afference can modify neural activity, chiefly 

through ascending vagal pathways converging in the nucleus of the solitary tract, 

thalamus, and the insula197,399. Ketamine has been shown to modify high-level 

interoceptive inference in the rubber hand illusion400, and it affects activity in key 

interoceptive network nodes including the insula401. This all suggests a potential role 

for explaining aspects of dissociative phenomenology (especially disembodiment) 

through impaired interoceptive signalling. Interoceptive signalling is typically quantified 

through cardiac interoceptive signals. This includes the robust heartbeat-evoked 

potential (HEP), the predominantly frontal brain evoked response observed around 

400ms after the cardiac R-wave, source-localised to regions including the insular and 

anterior cingulate cortex344,402. Changes in HEPs have been observed in disorders 

including anxiety, depression, dissociative disorders, and in a variety of interoceptive 

tasks107,343,403,404. The effects of ketamine on cognitive predictive coding have been 

extensively researched405. However, surprisingly, to my knowledge direct ketamine 

effects on cardioception as quantified by HEPs have not been described in the 

literature. In one brief conference note, a single ketamine infusion did not affect the 

heartbeat-counting task, though HEPs were not reported and attention can modulate 

interoception406. Thus, I was interested if the Michigan dataset contained any 

preliminary evidence for this ‘dissociation through altered interoception’ hypothesis. 

Unfortunately, the dataset provided did not contain ECG electrodes, which is a 

limitation of this analysis. However, in one participant (Subject 7), visual inspection of 



170 
 

ICA components identified a clean cardiac component with clearly visible QRS 

complexes throughout all of the infusion. This was used in lieu of an ECG recording 

as a case study. Similar to Chapter 3, R-peaks and instantaneous heart rate were 

identified with the biosspy toolbox and sensor-space EEG activity (filtered 1-7Hz to 

avoid effects from changing alpha activity) from 100ms before the R-peak to 700ms 

after the R-peak was saved for each heartbeat. These were grouped into eight 

segments and averaged as in the main analyses. A clear heartbeat-evoked potential 

around 400ms was observed (Supplementary Figure 6.5). What’s more, the amplitude 

of the HEP decreased as the experiment progressed (Figure 6.9). This subject’s 5D-

ASC disembodiment score was also the second-highest in the group. N=8 other 

subjects showed ICA components with signs of cardiac activity, and the group-level 

result was similar (Supplementary Figure 6.6), though not significant. However, as 

these components were in part contaminated by brain activity and/or changed over 

time, only the N=1 case study is presented here. 
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Figure 6.9: Case study of changing heartbeat-evoked potentials under ketamine. 

 

Figure 6.9: Case study of changing heartbeat-evoked potentials under ketamine. (A) 

ICA component activity around detected R-peaks (mean ± SEM across all heartbeats) 

shows a clearly visible, ECG-like cardiac component. (B) Instantaneous heart rate 

showed a modest increase in heart rate throughout the ketamine infusion, as expected 

from its sympathomimetic properties. (C) Amplitude of the sensor-space heartbeat-

evoked potential (HEP, each dot represents the mean across heartbeats for that 

experimental stage) decreased as throughout the ketamine infusion. A linear fit (95% 

confidence intervals shaded) shown in red. (D) Identified HEP had the expected fronto-

central positive topographical peak around 400ms after the cardiac R-wave.
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6.4 Discussion 

In this chapter, I considered brain states under the influence of sub-anaesthetic 

ketamine in healthy volunteers. The rapid-acting antidepressant properties of low-

dose ketamine call for a translation of insights from anaesthetic methodology (e.g. 

brain-based depth of anaesthesia monitoring like the Bispectral index) to a novel 

psychiatric setting in order to improve treatment for patients.  

 

6.4.1 Hidden Markov Modelling of ketamine in healthy volunteers 

First, I applied Hidden Markov Modelling to source-projected high-density 

electroencephalographic data in volunteers in order to identify dynamic network states 

in the brain during a sub-anaesthetic ketamine diffusion. A shift towards lower-power 

states (especially in the alpha band) was found, with reduced connectivity between 

the default mode network and salience and sensory networks. Distinct state modules 

were associated with baseline consciousness and the ketamine-induced state. 

Preliminary associations between state occupancies and transition probabilities with 

subjective dissociative phenomenology were studied, identifying states related to the 

sensory and salience networks as potential markers of both the acute dissociated state 

and baseline dissociation susceptibility. Finally, using a recent PET-derived databank 

for receptor fingerprinting, exploratory correlations were found between state power 

maps and receptor densities beyond NMDA blockade, including significant 

relationships with GABAA, CB1, α4β2, and µ-opioid receptors, as well as serotonin 

and norepinephrine transporters. 

These data driven, dynamic brain states revealed a shift from an awake, high alpha 

power community of states to a different low-power community in a dose-dependent 
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way, both in state occupancies and transitions between states. This is in line with 

existing literature, which shows a robust decrease in low-frequency (<30Hz) activity 

with sub-anaesthetic doses of ketamine, especially in the alpha band378,380,407. In vitro 

studies suggest this may be related to direct NMDA and mGluR1a effects causing 

impaired glutamatergic transmission89. However, the present analysis highlights the 

possible distinct roles of alpha in different brain states. At baseline, more time spent 

in State 5 (suppressed visual alpha) and more transitions from a purely visual alpha 

state to a mixed visual / sensorimotor alpha state correlated with less dissociation at 

the end of the ketamine infusion. Alpha decrease occurs with anticipatory attention408, 

and conversely patients with dissociative disorders show a lack of alpha 

responsiveness409, suggesting more flexible alpha oscillations at baseline may 

indicate less dissociation susceptibility.  

 

However, the full explanation is likely more complex, with more than one ‘alpha’ 

potentially present. At the end of the infusion, the balance of State 1 (high visual alpha) 

and State 2 (high salience & limbic alpha) presence was a neural correlate of acute 

dissociation intensity. Specifically, subjects that spent relatively more time in State 2 

with elevated salience and limbic alpha reported higher disembodiment scores. The 

salience network (especially the anterior insula and anterior cingulate cortex) has a 

key role in linking interoception with the core self324,386,410. Diminished interoceptive 

processing under ketamine as a contributing factor to dissociation should be 

investigated further, and its presence is tentatively supported by the reduced 

heartbeat-evoked potential amplitude case study result. The only literature on this 

subject is one conference abstract where authors did not find a difference in 

interoceptive accuracy as measured by the heartbeat counting task after a ketamine 
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infusion411. However, in patients with depersonalisation / derealisation disorder, 

heartbeat-evoked potentials differed compared to healthy controls403. 

Aberrant functioning in anterior insula and cingulate has been observed during 

classical psychedelics and has been suggested to underlie the experience of ego 

dissolution412,413. A previous study linked the decrease in alpha activity in the right 

anterior insula to depersonalisation scores378. However, in contrast, a recent FMRI 

study found the ketamine decrease in connectivity with the anterior insula was also 

found in sub-anaesthetic doses of propofol, suggesting regions in the temporoparietal 

junction may play a role instead380,414. Here, an overall alpha power decrease in the 

salience regions was observed, and it was found that the increase in salience alpha 

relative to sensory alpha was most predictive of dissociation. The differences with 

existing literature may be due to a different aspect of dissociation being considered 

(e.g. depersonalisation vs disembodiment), or due to the anterior insula not being 

representative of the entire salience network.  

The role of the limbic cortex is less clear, though the limbic system has been implied 

in the pathophysiology of schizophrenia415, it is a known region affected by 

ketamine416,417, and may play a role in ketamine’s antidepressant effects418.  

One may propose that abnormal alpha activity in key nodes of the salience network 

including the anterior insula and cingulate may be an acute marker of disrupted self-

other processing and thus of acute core dissociative phenomenology. On the other 

hand, high baseline alpha flexibility and desynchronisation in the sensory systems may 

potentially be protective against pharmacologically-induced dissociation.    
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Ketamine effects on functional connectivity are more complex and may be modality-

dependent419. In acute functional MRI studies of healthy volunteers, ketamine tends 

to increase between-network and decrease within-network connectivity41,420. In a 

recent publication, ketamine had this in common with nitrous oxide and the classical 

psychedelic LSD414. In electrophysiological studies, ketamine has been shown to 

reduce fronto-parietal connectivity, especially in the alpha band, a finding proposed to 

be linked to NMDA receptor hypofunction89,379,383,421. Similarly to the latter, in this 

analysis, ketamine broadly shifted the brain to states with reduced coherence between 

source-space EEG resting-state networks, notably lower DMN-salience and DMN-

somatomotor coherence in State 7. The exception was increased somatomotor–

ventral attention connectivity in State 6, a finding previously seen in FMRI studies422. 

DMN and salience network isolation have recently been proposed to account for 

ketamine’s psychedelic and dissociative properties401, which is consistent with the 

results presented here.  

A recent study using the same dataset as this one identified ten dynamic states using 

K-means clustering382. Similarly to the analysis presented here, the authors found a 

decrease in occupancy of states with posterior activity. The authors also found an 

increased switching rate and generally a richer functional repertoire in the sub-

anaesthetic ketamine condition. This is in contrast to the present study, where dynamic 

changes in state occupancies were found but without an overall change in the 

switching rate. This may be due to differences in pre-processing. Here, data was low-

pass filtered at 30Hz and ICA was performed to remove muscle noise components. In 

the study by Li et al, the low-pass filter was at 45Hz and ICA was not mentioned. This 

suggests the increase in functional diversity may be primarily driven by the gamma 

frequency range, though other differences (e.g. a different source reconstruction 
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method) may also influence this. Whilst gamma activity has been suggested as 

important during different altered states of consciousness including ketamine183,423 

(and is also observed in MEG and invasive studies424), here the conservative approach 

to avoid muscle noise influence was chosen. Despite extensive clean-up (even with 

ICA), residual muscle noise may remain in EEG data, as shown by in vivo studies of 

awake paralysis66–68. This is especially relevant as ketamine increases the muscle 

tone425, so it remains to be seen how much of the scalp gamma increase is attributable 

to muscle artefacts. In addition, the aforementioned study only analysed the last 5 

minutes of the sub-anaesthetic ketamine condition, whereas here the full infusion was 

analysed. Finally, Li and colleagues focused on amplitude envelopes within canonical 

frequency bands, whereas here a time-delay embedding approach was used, a further 

potential reason for differences in states found.  

 

6.4.2 Receptor fingerprinting  

Receptor fingerprinting of brain networks underlying a sub-anaesthetic ketamine 

infusion in our work suggested a complex picture beyond NMDA blockade. Whilst 

power decreases in States 4-7 spatially matched local NMDA density (and the 

converse was true for high-power State 1), this was non-specific and also true for 

GABAA, CB1, and α4β2 receptors. Whilst these are not the main targets of direct 

ketamine action, significant downstream effects may be present39. For instance, CB1 

blockade attenuates ketamine-induced behaviour in rats426 and GABAA blockade 

reduced ketamine-induced amnesia427, with GABAergic mechanisms potentially 

underlying ketamine disinhibition of the prefrontal cortex428. Interestingly, State 2 with 

high salience alpha was most strongly associated with µ-opioid receptor density. 

Ketamine affects µ-opioid signalling, potentially accounting for some of its 
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antinociceptive properties429. However, in depressed patients, antidepressant effects 

of ketamine have been observed to decrease with opioid antagonists without 

significantly affecting dissociation reported using the Clinician-Administered 

Dissociative States Scale (CADSS)387. The difference with this study, where State 2 

was implicated in acute dissociation, may be due to studying healthy volunteers430, or 

perhaps due to the CADSS capturing different aspects of dissociation than 5D-ASC, 

which is supported by my findings in patients detailed in the next chapter431. In short, 

whilst this study cannot precisely explain the role of distinct neurotransmitter systems 

in ketamine dissociation due in part to the low resolution of EEG and lack of individual 

PET data, it calls for further consideration of non-NMDA mechanisms implicated in 

ketamine phenomenology.  

 

6.4.3 Limitations 

This study has several important limitations. Firstly, due to the lack of individual 

structural brain images, intrinsic EEG spatial resolution limits, and the need for strict 

pre-processing to gain clean data, a low-dimensional brain parcellation was used. As 

such, the results cannot distinguish between roles of individual brain regions and 

network nodes. This low spatial resolution renders the receptor-map associations as 

tentative. It would be interesting to apply a similar framework in data with better spatial 

resolution, e.g. magnetoencephalography421. This could allow for exploration of the 

roles of individual network nodes, such as the right vs left anterior insula385. Secondly, 

the use of the 5D-ASC disembodiment scale as a measure of dissociation might be a 

limitation. Whilst this is a validated and extensively used tool in psychedelic research 

389,432,433, dissociation is a complex experience that can also include derealisation, 

depersonalisation, and other phenomena, so developing more specific dissociation 
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measures is warranted431. Thirdly, whilst correlations between HMM states, 

dissociation scores, and receptor maps were found, causation cannot be inferred from 

the results. For robustness, the association between State 1/2 occupancy and 

disembodiment scores was tested across HMM runs with different numbers of states 

(Supplementary Figures 6.2-6.4), and whilst it was always in the same direction, it did 

not always reach significance, and should thus be interpreted with caution. Further 

work with targeted causal interventions (pharmacological, e.g. by considering 

dissociation induced by different substances, or through neurostimulation, e.g. 

transcranial current stimulation434) could better elucidate the mechanisms underlying 

brain dynamics under the influence of ketamine.  

 

  



179 
 

 

  



180 
 

7  Ketamine dissociation in 
patients with treatment-

resistant depression  
 

7.1  Introduction 

As was outlined in more detail in Chapter 6, ketamine is a novel, rapid-acting 

antidepressant365. However, tolerance development and urotoxicity call for dose 

optimisation. At present, anti-depressant ketamine infusion doses are not informed by 

any objective neural markers. This is unlike traditional anaesthetic settings, where 

complex monitoring (including brain-based monitoring, e.g. the Bispectral Index) is 

used to optimise dosing435. The feasibility of routine EEG-based monitoring of 

antidepressant ketamine treatment should be assessed, with a view to identify 

potential objective markers ketamine effect that could one day be used to determine 

dosing. 

In clinical settings, the role of dissociation has been controversial130–132,436. Some 

authors have argued dissociative symptomatology is an adverse undesirable event 

with no relationship to treatment outcome437,438, whereas other research has 

suggested features of dissociation may be predictive of treatment response130,436. 

Some of the discordant results may be due to limitations in psychometric scales used 

to assess ketamine phenomenology131,365, and more research is needed to 

understand the role of acute subjective experience under ketamine in mediating 

therapeutic effects. Interestingly, a recent trial showed a comparable decrease in 

depression scores for ketamine and placebo when masked by general anaesthesia439, 
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though this may in part reflect intrinsic antidepressant effects of common general 

anaesthetics354,355. 

After studying the neural effects of ketamine in a high-density EEG montage (Chapter 

6), I wanted to see how this could translate to a system more suitable for routine clinical 

use. As Section 6.3.5 demonstrated, the alpha desaturation effect was expected to be 

robust enough to be measurable even with a low-density system, so an observational 

pilot study was designed in collaboration with the Oxford Health Ketamine Clinic. This 

chapter presents initial results from this ongoing study, where we have collected EEG, 

photoplethysmography (PPG), and psychometric data focused on dissociative 

experiences in patients with treatment-resistant depression. We hypothesised 

reduced alpha power would be measurable even in a low-density EEG montage, using 

commercially available ‘off the shelf’ technology.   

 

7.2 Material and Methods 

7.2.1 Study protocol 

In collaboration with the Oxford Health Foundation Trust (OHFT) Interventional 

Psychiatry Service and under the guidance of Prof Rupert McShane, we designed an 

observational pilot study to explore the feasibility of routine EEG monitoring of 

antidepressant ketamine treatment in their clinic. The study ethics were approved by 

a regional research ethics committee (REC reference 22/EM/0226, IRAS ID 306474). 

N=30 patients gave informed consent to participate in the study after having 

procedures explained and a chance to review a Participant Information Sheet and ask 

questions. In brief, the study was purely observational and ketamine infusion 

frequencies and doses were determined clinically. During each in-clinic infusion, 
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patients wore a Muse-S headband (InteraXon) that streamed EEG, gyroscope, 

accelerometer data (all sampled at 256Hz) and PPG data (effectively sampled at 10Hz) 

to a dedicated smartphone device with the MindMonitor app440. This headband was 

chosen as it is relatively cheap (~£300/device), can stream data in real time, has 

frontal and temporal locations implicated in depression, and has been used in previous 

research. Treatment was given at the OHFT ketamine clinic, with each patient in a 

separate bay (Figure 7.1).  

Before each infusion, after a patient entered the bay and was cannulated, they 

completed two baseline questionnaires assessing aspects of patient mindset (“Set”) 

and the physical and social environment (“Setting”) thought to be important to 

psychedelic experiences, using the previously validated Set and Setting visual 

analogue scale (VAS)441 and a dedicated 4-item Light and Noise levels questionnaire. 

After completing these and fitting the EEG headband, a 5-minute baseline was 

recorded. During this baseline, objective noise and light levels were measured using 

a smartphone with the apps Sound Meter (Smart Tools co442) and Light Meter 

(Coolexp). The 40-minute ketamine infusion then proceeded as usual, with the Muse 

headband recording continuously throughout. It was noted whether a participant wore 

headphones or an eye mask during the infusion. Patients were instructed to keep their 

eyes closed throughout the whole recording to minimise eyeblink artifacts.  
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Figure 7.1: Example ketamine clinic treatment bay. 

 

Figure 7.1: Example treatment bay in the OHFT ketamine clinic (photograph taken 

with permission of the clinic staff). 
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After the infusion, the Muse kept recording for at least 15 minutes. Then, the patients 

completed post-infusion questionnaires, either in the bay or recovery room, within 45 

minutes of the infusion ending. This included the 6-item CADSS validated for ketamine 

infusions443, the 5D-ASC389, a single subjective dissociation VAS rating (“I felt 

dissociated”) and open-ended qualitative questions. All questionnaires used can be 

found in Appendix 7.  

For this thesis, as per the original protocol, a preliminary analysis is presented with 

data collection for the full study on-going. Specifically, results from N=18 recordings 

from N=12 patients collected between November 2022 and February 2023 are 

presented here. 

 

7.2.2 Study population  

The study population were private patients undergoing ketamine treatment for 

treatment-resistant depression (TRD) at the OHFT Ketamine clinic. Demographic and 

other patient variables are summarised in Table 7.1.  

Table 7.1: Study demographics  

Variable Median (IQR) Range 

Age [years] 44 (16.5) 33 - 62 

Gender 5 women / 7 men  

Ethnicity  White-British (67%),  
White-Other (17%),  
Other/Prefer not to say (17%) 

 

Weight [kg] 81.1 (13.9) 61 - 152 

Ketamine dose [mg/kg] 0.70 (0.2) 0.5 - 1.0 

Psychiatric medications 
beyond ketamine 

1.5 (0.75, 2.25) 0 - 4  

Known psychiatric  
diagnoses beyond TRD 

0 (1) 0 - 3 
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Table 7.1: OHFT study demographics. 

Inclusion / Exclusion criteria 

Patients had to be scheduled to receive ketamine treatment at the Oxford ketamine 

clinic. This meant initial inclusion / exclusion criteria matched that of the clinic. These 

can be found in detail at www.oxfordhealth.nhs.uk/ketamine-service/. In brief, to be 

eligible for the clinic, patients must be aged 18 years or above and: 

• currently be suffering from depression, 

• have tried at least two different types of antidepressants for at least six 

weeks each at an adequate treatment dose, 

• have tried at least one type of psychological treatment, 

• be referred to the service by a GP or psychiatrist, 

• pass exclusion criteria including severe high blood pressure, raised eye or 

intracranial pressure, any illegal drugs taken in the last two years, 

pregnancy, inability to abstain from alcohol for at least three days. 

In addition to this, for our study inclusion, participants had to be willing and able to give 

informed written consent and to have sufficient knowledge of English language to 

understand and complete study tasks. Patients would not be eligible if they had lesions 

or rashes on forehead that would prevent EEG sensors from being applied, or if they 

were deemed unlikely to comply with the study protocol in the opinion of the clinicians.  

Of note is the fact that none of the patients presented here were ketamine-naïve, as 

they had all had infusions prior to those recorded for the study, often for many months. 

Furthermore, no exclusions were made on the basis of diagnoses secondary to 

treatment-resistant depression, or on the basis of other stable medication (Table 7.1). 

Our criteria were purposefully broad to capture the clinical reality of the Oxford clinic. 

http://www.oxfordhealth.nhs.uk/ketamine-service/
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The most common documented secondary diagnoses were forms of anxiety (mixed 

anxiety/depression, generalised anxiety disorder; 25%), and the most common current 

psychiatric medication beyond ketamine was another antidepressant (50%, most 

commonly a selective serotonin reuptake inhibitor, SSRI, 33%). 

 

7.2.3 Data pre-processing 

Paper-based questionnaires were digitised and visual analogue scales converted to a 

score out of 100%. To explore dissociative phenomenology, Spearman correlations of 

individual dissociation-related items from all the scales used were computed. For the 

5D-ASC, this meant using only the disembodiment sub-scale. 

For physiological recordings (EEG, PPG), simple pre-processing that could in theory 

be performed in real time was done. Specifically, 5s epochs (4s overlap) were rejected 

if the gyroscope data indicated average head movement of above 10 degrees/s. This 

was found to robustly capture gross movement artifacts. In addition, EEG epochs were 

also rejected if their amplitude was above 200µV, and PPG epochs if their amplitude 

was outside 3 standard deviations. Next, recordings were aligned by the infusion start 

time, and data from 5min before infusion start until 55min after (40min infusion + 15min 

post-infusion) was kept. An electrode in a given subject was fully rejected if the 

proportion of rejected epochs was >90%. 

 

7.2.4 Data analysis 

To explore spectral changes, the short-time Fourier transform spectrogram (MATLAB 

spectrogram) was computed on each channel (4s window, 3s overlap, 4-30Hz, 0.25Hz 

resolution) and converted to dB. We chose to further analyse theta (4-8Hz), alpha (8-
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13Hz), and beta (13-25Hz) bands as they are least susceptible to noise, which was 

especially a concern in the context of a routine clinical setting and dry EEG electrodes.  

To calculate the heart rate, R-peaks were found in the infrared PPG channel (high-

pass filtered at 0.5Hz) using MATLAB’s findpeaks (0.5s minimum peak distance), with 

instantaneous heart rate in bpm as 60 / R-R interval. Heart rate was then interpolated 

to 1Hz as well as mean in each 5-minute segment computed. As the PPG data is only 

streamed at 10Hz sampling rate, heart rate variability calculations were not possible. 

Suggestions have been made that alpha asymmetry may be a marker of depression444. 

Thus, as an exploratory, non-prespecified analysis, left-right alpha power asymmetry 

(left – right alpha power in dB) was also computed. 

Finally, this study allows for longitudinal data collection. In this preliminary dataset, the 

median number of recordings per participant was only one, but we had one participant 

with N=4 recordings. Thus, as an exploratory case study, these N=4 recordings and 

associated scales were analysed longitudinally.  

 

7.2.5 Statistical analyses  

Repeated-measures analysis of variance (RM-ANOVA) with Huynh-Feldt P-value 

adjustment for sphericity violations was computed on 5-minute segment means across 

heart rate and all 4 channels and 3 frequency bands of the EEG, with post-hoc Tukey’s 

honest significant P-values examined. Effect sizes for each band were computed as 

Cohen’s d between the baseline and subsequent 5-minute segments. 

For exploratory analyses of links between physiological measures and dissociation 

scores, general linear models (GLMs) were employed. Specifically, for the subjective 
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report (“I felt dissociated”), CADSS-6 total, and 5D-ASD disembodiment total, a GLM 

was to each fitted with baseline / infusion band powers that showed significant 

changes included as regressors. Age, gender, and dose in mg/kg were also included 

as covariate regressors as previous work has suggested these may independently 

affect dissociation445. Significance was set at P=0.05 after appropriate multiple-

comparisons corrections (specified in the text). 

 

7.3 Results  

7.3.1 Pre-infusion measurements and Set & Setting scales 

Objective light and noise levels were available in N=14 recordings. From these, the 

median noise level was 54.5dB (IQR 5.9dB, range 44-64dB). The median light level 

was 86 lux (IQR 71 lux, range 26-224 lux). This places the setting as equivalent to a 

relatively quiet and dark office, quieter than the common 60dB+ of a nursing unit446.  

 

From patient noise and light level ratings, a similar picture emerged (Table 7.2 and 

Figure 7.2). No patient answered that noise or light levels bothered them above 

‘somewhat’, with median response being ‘not at all’. Whilst correlations between 

objectively recorded and patient-reported noise and light levels were positive, these 

correlations were not significant. Importantly, there was no significant differences in 

objective noise and light levels between patients who felt these bothered them ‘not at 

all’, ‘a little bit’, and ‘somewhat’, suggesting it’s likely to be more of a personal 

preference. Furthermore, a large majority of recordings had patients wearing 

headphones (94%) and an eye mask (76.5%). 
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Figure 7.2: Light and noise questionnaire responses and objective measurements. 

Table 7.2: Light and noise questionnaire responses. 

Question 

 

Median (IQR) Range 

Room is noisy 1 (0.25) 0 - 3 

Noise bothers me 0 (1) 0 - 2 

Room is bright 2 (1.25) 0 - 3 

Light bothers me 0 (0) 0 - 2 

 

Table 7.2: Light and noise questionnaire responses   

 

Figure 7.2: Light and noise questionnaire responses against objective measurements. 

In the Set and Setting questionnaire results (Figure 7.3), patients broadly reported 

being comfortable about their upcoming experience (median 82%), feeling well-

prepared (83%), and having a good relationship with the main clinician (85%) and 

clinical staff in general (80%). People varied most in their reporting of anxiety (IQR 

46%), good mood (IQR 31%), and their expectations (IQR 32%) / intentions (IQR 34%). 

Exploratory correlations (not corrected across questions) suggested a negative 

correlation between patient-reported comfort with the upcoming experience and their 

anxiety (Spearman ρ=-0.54, P=0.026), a positive correlation between being 

comfortable about the experience and having a good relationship with people in the 

clinic (Spearman ρ=0.58, P=0.015), and a correlation between reporting a good 
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Figure 7.3: Set & Setting questionnaire responses. 

relationship with the main clinician and people in the clinic in general (Spearman 

ρ=0.74, P=0.0007). There were no significant correlations between any Set & Setting 

items and objective light or noise levels.  

 

 

 

Figure 7.3: Set & Setting questionnaire responses (distribution across all sessions).  
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7.3.2 Post-infusion dissociation scales 

Next, we analysed N=18 responses on the post-infusion dissociation scales: the 

disembodiment subscale of the Altered States of Consciousness (5D-ASC) 

questionnaire, the 6-item version of the Clinician Administered Dissociative States 

Scale (CADSS-6), and a novel single-item subjective visual analogue scale rating (“I 

felt dissociated”) (Figure 7.4). Ketamine induced relatively high dissociation scores, 

with subjective rating of 87% (25%), 5D-ASC disembodiment total of 64% (23%), and 

CADSS-6 total of 13.5 (10) out of 24, median (IQR).  

Next, Spearman correlations and FDR-corrected P-values between individual item 

responses were computed (Figure 7.5). This revealed that subjective patient ratings 

(“I felt dissociated”) correlated strongly and significantly with items describing body 

disconnect. Specifically this was the 5D-ASC items: “It seemed to me as though I did 

not have a body anymore” (ρ=0.798, P=0.0012), “I had the feeling of being outside my 

body” (ρ=0.768, P=0.0018), and the 5D-ASC disembodiment total (ρ=0.611, 

P=0.0367), as well as the CADSS-6 item “Did you feel disconnected from your own 

body?” (ρ=0.644, P=0.0237). Importantly, the CADSS-6 total was not significantly 

correlated with patient-reported dissociation (ρ=0.404, P=0.1 uncorrected), nor with 

the 5D-ASC disembodiment total (ρ=0.237, P=0.34 uncorrected). Within CADSS-6, 

the strongest correlations were between reporting feeling spaced out (“Did you space 

out, or in some other way lost track of what was going on during this experience?”) 

and reporting memory gaps (“Did you have gaps in your memory?”) with ρ=0.745, 

P=0.0031.  

There were no significant correlations between items known at baseline and 

dissociation scores (Set & Setting scores, noise & light levels, age, dose in mg/kg, all 

uncorrected P>0.1). There was a trending difference between subjective dissociation 
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Figure 7.4: Dissociation scales responses. 

reported by men and women (men: median 79.5%, IQR 50%; women: median 93%, 

IQR 9%; Mann-Whitney test P=0.032 uncorrected).  

 

 

 

 

Figure 7.4: Dissociation scales questionnaire responses (distribution across all 

sessions in the dataset). 
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Figure 7.5: Correlation P-values for dissociation items. 

 

Figure 7.5: Spearman correlation P-values (FDR-corrected) for items tracking 

dissociative experiences.  
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Figure 7.6: Group-mean pulse rate 

during infusions. 

7.3.3 Photoplethysmography (PPG) results 

At the group level, there was a significant difference in PPG-derived pulse rate (PR) 

across the 5-minute segments from baseline to post-infusion (RM-ANOVA F=3.62, 

P=0.012, Figure 7.6). The group-median increase in heart rate was +3.1 (+1.4, +8.9) 

bpm (median, quartiles). Upon post-hoc inspection, this effect was heterogeneous 

between patients, with 2/12 patients (17%) showing a pulse rate increase >10bpm. 

There was no significant correlation between self-reported baseline anxiety and the 

intra-infusion pulse rate (P=0.55 uncorrected), but there was a trend for a higher 

baseline pulse rate correlating with higher self-reported baseline anxiety (Spearman 

ρ=0.505, P=0.0325 uncorrected). There was a trend for those subjects who reported 

being more bothered by noise to experience a larger PR increase (Mann-Whitney test 

between bothered=0 and bothered>0, P=0.0152 uncorrected), and for those with a 

greater intra-infusion PR increase to report more subjective “floating” on the 5D-ASC 

(Spearman ρ=-0.584, P=0.011 uncorrected). There were no significant correlations 

between age or dose in mg/kg and intra-operative PR increase, nor any significant 

differences between men and women. 

Figure 7.6: Group-mean pulse rate 

(resampled to 1Hz) during infusions 

(each red dot = 1s) and a 5-minute 

moving median (black). On average, 

pulse rate was slightly increased 

during ketamine infusions (RM-

ANOVA F=3.62, P=0.012). 
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7.3.4 Electroencephalography (EEG) results 

Dry EEG collected in a routine clinical setting was of highly varying quality (see 

Supplementary Figure 7.1 for example individual spectrograms). There was no 

significant difference in fraction of data rejected between recordings where patients 

work an eye mask or headphones. However, significantly more data was rejected on 

the temporal electrodes in women, TP9 (P=0.038) and TP10 (P=0.016), which is very 

likely attributable to more hair. The median fraction of data rejected for each electrode 

was 0.273 (0.03-1) for TP9, 0.042 (0.003-0.92) for AF7, 0.037 (0.003-0.86) for AF8, 

and 0.043 (0.003-0.88) for TP10. In 3/18 recordings (17%), the headband Bluetooth 

disconnected towards the end of experiment without any apparent cause, causing 

some data loss (10, 20, 35min). 

Group-median spectrogram showed a dropout and desaturation of theta, alpha, and 

beta power, with an electronic artifact at 22Hz (Figure 7.7). Repeated measures 

ANOVA on banded power across 5-minute segments of the experiment revealed an 

overall significant time effect (F=3.65, P=0.0105), as well as a significant Channel * 

Time interaction (F=3.80, P<0.001). Post-hoc analyses showed the changes have 

largest effect sizes on the temporal electrodes, particularly TP9 in the alpha and theta 

bands (Table 7.3). In an exploratory, non-prespecified analysis, there was a trend for 

left-right temporal alpha asymmetry to reverse during the ketamine infusion, with RM-

ANOVA P=0.10, post-hoc P=0.047 baseline vs 15min, Cohen’s d=0.20 (Figure 7.8).  

There were no significant univariate correlations between dissociation item scores and 

desaturation minimum of the banded power, absolute or relative to baseline. However, 

when controlling for age, gender, and dose in mg/kg, an exploratory general linear 

model with temporal alpha and theta powers was significantly predictive of the 
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Figure 7.7: EEG spectral results for the OHFT study. 

subjective dissociation report (P=0.0109, Table 7.4), but not 5D-ASC disembodiment 

total (P=0.161) or CADSS-6 total (P=0.475).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: (A) Group-average spectrogram for the OHFT ketamine experiment 

(median across all subjects and channels). (B) Boxplot across all recordings of TP10 

alpha powers showing rapid alpha desaturation within 15 minutes of infusion start. 

A 

B 
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Table 7.3: RM-ANOVA P-values and effect sizes for EEG frequency bands. 

Channel / 

Band 

 

TP9 AF7 AF8 TP10 

Theta 1.16 

(P=0.019) 

0.11 (n.s.) 0.11 (n.s.) 0.42 

(P=0.113) 

Alpha 1.41 

(P<0.001) 

0.12 (n.s.) 0.17 (n.s.) 0.605 

(P=0.113) 

Beta 1.19 

(P=0.112) 

0.03 (n.s.) 0.08 (n.s.) 0.21 (n.s.) 

 

Table 7.3: Effect sizes (Cohen’s d) and FDR-corrected P-values for the RM-ANOVA 

time effect for each channel and frequency band.  

Parameter 

 

Estimate SE t-statistic P-value 

(Intercept) 138 3.0 45.4 0.014 

Age -2.53 0.04 -59.6 0.011 

Gender 26.5 0.98 27.1 0.023 

Theta minimum TP9 23.8 0.43 55.4 0.011 

Alpha minimum TP9 -17.0 0.35 -48.0 0.013 

Theta minimum TP10 -11.5 0.47 -24.5 0.026 

Alpha minimum TP10 -4.08 0.73 -5.60 0.112 

Theta baseline TP9 -2.67 0.22 -12.3 0.051 

Alpha baseline TP9 19.0 0.60 31.6 0.020 

Table 7.4: GLM modelling of the subjective dissociation report. 

Table 7.4: General linear model predictive of subjective dissociation report (“I felt 

dissociated.”; Overall F-test P=0.0109). 
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Figure 7.8: Temporal alpha asymmetry results. 

Figure 7.8:  Boxplot 

across all recordings 

of TP9/TP10 left-right 

alpha asymmetry 

across the 

experiment (RM-

ANOVA P=0.10).  

 

 

 

 

7.3.5 Longitudinal case study 

There was not enough longitudinal data in the preliminary dataset to warrant a full 

longitudinal analysis (only N=4 patients with 2+ recordings), but there was one patient 

with N=4 recordings, which is presented here as a case study. This patient was in their 

‘induction’ phase, where they received 6 initial weekly IV ketamine infusions at the 

clinic, of which 4 were recorded (Infusion 2, 4, 5, 6), at doses 0.5mg/kg, and 3 x 0.7 

mg/kg.  

The patient’s Set & Setting questionnaire indicated their anxiety about the upcoming 

infusion decreased over time, they got more comfortable with the experience, and their 

relationship with the clinical staff and mood at baseline improved (Table 7.5).  



199 
 

From their dissociation scores, the CADSS-6 total appeared to track the dose change 

and possible subsequent tolerance development, particularly with the amnesiac 

(spaced out / memory gaps) items (Table 7.6).  

The patient’s spectrograms showed a poorly connected AF7 electrode, but a 

consistent alpha dropout with a possible frontal high beta increase (Figure 7.9). 

Question Infusion 2 Infusion 4 Infusion 5 Infusion 6 

Comfortable about upcoming 
experience 

76% 81% 98% 99% 

Anxious 58% 21% 0% 1% 

Relationship with people 77% 96% 90% 98% 

Setting feels good 58% 55% 69% 74% 

Feel well-prepared 94% 90% 99% 85% 

Good mood 42% 60% 65% 67% 

Relationship with main person 83% 93% 99% 97% 

Strong expectations 86% 82% 67% 69% 

Clear intention 49% 3% 32% 83% 

Table 7.5: Set & Settings responses in a longitudinal case study. 

Table 7.5: Set & Setting responses from the longitudinal case study. 

Question Infusion 2 Infusion 4 Infusion 5 Infusion 6 

Felt dissociated  86%  86% 73% 88% 

ASC – No body 49%  80% 82% 83% 

ASC – Outside body 40%  0% 89% 68% 

ASC – Floating 83%  90% 93% 89% 

ASC Total  57%  57% 88% 80% 

CADSS – Slow motion  2 2 2 2 

CADSS – Unreal  3 4 4 3 

CADSS – Body disconnect  3 4 2 4 

CADSS – Body size  1 3 1 4 

CADSS – Spaced out  2 4 4 2 

CADSS – Memory gaps  0 3 2 2 

CADSS – Total  11 20 15 17 

Table 7.6: Dissociation scores in a longitudinal case study. 

Table 7.6: Dissociation scores from the longitudinal case study. 
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Figure 7.9: EEG spectral results in a longitudinal case study. 

Figure 7.9: (A) Median spectrogram for each channel across N=4 longitudinal 

recordings for one patient. Alpha dropout and possible increased theta / high beta are 

seen. (B) Temporal alpha power in 5-minute segments is consistent across infusions.
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7.4 Discussion 

In this chapter, the study of dissociation in Chapter 6 was extended to patients with 

treatment-resistant depression using a commercially available low-density EEG 

device, with the goal of informing future EEG-based ketamine monitoring systems that 

could optimise dosing. 

 

7.4.1 Translating EEG markers of dissociation into the clinic 

We chose to work with the 4-channel Muse-S system due to its affordability, ease of 

use, and prior research validation447. Using this system, a decrease in alpha power 

was indeed observed, most strongly on the TP9 and TP10 electrodes (FCz reference). 

In a four-infusion case study, this alpha decrease was consistent within a subject. The 

decreased EEG power, particularly in the alpha band, is thus likely to present a robust, 

potentially clinically translatable EEG marker of acute ketamine effect. Existing 

literature and exploratory analyses here suggest aberrant alpha may be linked to the 

acute dissociative state378,448. However, it remains to be seen which aspects of 

dissociation are most predictive of treatment response, and for which patient groups. 

In addition to this, a suggestion of alpha asymmetry reversal was observed, though 

the effect size was small, the result was not significant, and the use of alpha 

asymmetry as a depression marker has been questioned449. Finally, the PPG channel 

showed a mild increase in heart rate during ketamine infusions consistent with its 

known sympathomimetic properties365. 

In this study, a variety of dissociation scores was collected. We also collected a simple 

patient subjective rating, “I felt dissociated”. In the context of patients with regular 

ketamine infusions, we felt this was warranted as we hypothesised patients would 
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understand what dissociation meant to them. Interestingly, this simple subjective rating 

was most strongly correlated with items related to disembodiment / body disconnect. 

A limitation is that this may be a function of priming, as during preparatory sessions in 

the Oxford clinic ideas of mind/body separation are introduced when explaining 

dissociation. However, it is still notable there was no significant correlation between 

the subjective rating and the clinically validated CADSS-6. The CADSS is the most 

commonly used assessment of dissociation during ketamine infusions, but this and 

previous work suggests it may fail to capture some aspects of dissociation375. Items 

specific to body disconnect (but not e.g. floating438) have been previously linked to 

antidepressant response436, highlighting the importance of better dissociation scales. 

A full phenomenological characterisation of pharmacologically induced dissociation by 

ketamine and related compounds (e.g. nitrous oxide450) would likely help disentangle 

its relationships to the antidepressant (and sedative or potentially antinociceptive451) 

effects of these compounds. 

 

7.4.2 Notes on feasibility of routine brain-based ketamine monitoring 

I spent significant time over several months at the ketamine clinic. This merits a few 

observations on the possibility of introducing routine brain-based monitoring into 

ketamine treatments of depression.  

Firstly, the Muse-S devices were relatively cheap, quick to obtain, and the majority of 

patients were keen to be involved in the study. Patients broadly reported the headband 

did not affect their experience, with the exception of 1 out of 12 patients who chose to 

withdraw from the study as they felt it affected their treatment routine. It took less than 

2 minutes to set up the device each time, and so fitted well into a busy clinical setting. 

At the analysis stage, the gyroscope data proved very useful in detecting movement-
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related EEG artifacts. However, a disadvantage of the dry EEG system was poor 

performance in people with long or thick hair, especially on the temporal channels. 

Furthermore, in 3/18 recordings (17%), the headband Bluetooth disconnected towards 

the end of experiment, causing a few minutes of data loss. A wired, gel-based EEG 

system may be more robust for routine monitoring, as is used in e.g. the BIS system.  

Secondly, whilst it was straightforward to teach clinical staff how to operate the Muse 

system, due to shortages of staff, data was most consistently collected if a dedicated 

person was present. In order for EEG monitoring to become more widespread, it would 

need to be better integrated into existing clinical pathways.  

 

7.4.2 Limitations 

The patient study presented here had significant limitations. The first was that routinely 

collected depression scores were not available due to an ongoing error in the system 

used by the clinic, so no conclusions can be made about links between the EEG, 

dissociation, and treatment response. Second, the patients were not ketamine naïve, 

and had varying numbers of infusions prior to joining the study. This means study 

results may be affected by possible tolerance development. Third, the clinical nature 

of the data meant a high artifact burden, which meant analyses of the delta and gamma 

band were not pursued. Third, the number of patients reported here is low, though the 

cohort was broadly representative of the Oxford Ketamine Clinic population and data 

collection is ongoing. Fourth, this was a purely observational, uncontrolled study 

without randomisation. This meant patients had a variety of ongoing stable secondary 

psychiatric medications and no causal statements can be made. Finally, the PPG 

analysis was limited by the slow 10Hz effective streaming rate, which meant pulse rate 

variability analyses could not be undertaken.  
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8   Concluding remarks  
 

The overarching goal of this thesis was to study brain states brought on by propofol 

and ketamine. In this final chapter, I bring relevant conclusions together and place 

them in context, together with considering general limitations and future directions of 

the work.  

 

8.1 Spatiotemporal brain states identified by data-

driven methods 

The first common theme in the thesis has been exploring spatial, temporal, and 

spectral properties of brain activity in a given state.  

 

In Chapter 2, the state was that of slow-wave activity saturation (SWAS), which has 

previously been demonstrated to be a well-defined anaesthetic end point in both 

experimental and clinical data31,94. We saw that the concentration needed to reach 

SWAS varied across the scalp in ways that correlated with local GABAA receptor 

density. Furthermore, the state of SWAS largely coincided with the Bispectral Index 

(BIS) range of 40-60, though it had the potential to be more individualised as it did not 

depend on population metrics unlike the BIS, presenting a more coherent definition of 

a ‘state’. Similarly, SWAS coincided with a drop in brain complexity computed using 

the Lempel-Ziv-Welch algorithm. Taken together with previous literature on SWAS, 

this suggests that this end-point (or state) is well-primed for clinical translation and has 

a sound neurobiological basis. Ongoing research in the group is developing a real-
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time expert advisory system based on SWAS and validating it in routine surgical 

settingsiv. In Chapter 4, using a newly developed itEMD decomposition framework, we 

saw that the traditional SWAS range (0.5-1.5Hz) is in fact likely composed of two 

modes, termed ‘low delta’ and ‘slow’ in this thesis, with another ‘high delta’ mode also 

present in the low-frequency (<4Hz) range. Travelling waves in these modes had 

different properties, including low delta waves being more global and of higher 

amplitude, but also being more frontal than the slow mode waves. Future research 

should focus on potential differences in physiological and clinical meaning of these 

modes. Existing literature supports this direction as different types of low-frequency 

waves have been suggested previously. Firstly, in sleep, type I and type II slow waves 

have been proposed, with bottom-up type I waves being of large amplitude, steeper 

slope, and lower frequency, and corticocortical type II waves of opposite 

properties123,124. Secondly, in surgical settings, noxious stimulation can lead to 

paradoxical delta arousal, potentially due to visceral pain pathway stimulation299, with 

<2Hz and 2-4Hz activity differing in one study297. However, slow-wave frequencies can 

vary between agents (seen e.g. in Chapter 3 here), so it remains to be seen which 

mode could be optimal for monitoring in a given surgical case. In the theoretical realm, 

the role of itEMD in explaining harmonics in the data could be pursued452, as could a 

multivariate extension251. Given its ability to robustly extract waveform shape, it could 

also be used to shed light on mechanisms behind waveform shape pathologies, e.g. 

in Parkinson’s disease226. 

 

 
iv The present author contributed to several aspects of this system including modelling hypnotic-opioid 
interactions and implementing pharmacokinetic models. This has not been included in the thesis for 
brevity and coherence.  
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In Chapters 5 and 6, the state was defined in a data-driven way using Hidden Markov 

Modelling. Each state had its own distribution of power, connectivity, and transition 

probabilities. We saw that this approach was able to identify physiologically meaningful 

states whose presence correlated with drug concentrations. In the case of propofol 

anaesthesia, the most robust finding was that of reduced switching between states, 

which was not observed for sub-anaesthetic ketamine administration. The functional 

repertoire of brain states thus appears to be a reliable correlate of conscious vs 

unconscious states here, as has been demonstrated for other modalities32,331–334. It is 

possible that at anaesthetic doses of ketamine, the repertoire would again be 

decreased183, in part due to the appearance of slow waves103, which may signify a 

decrease in brain complexity and information processing capacity118 (as for propofol 

in Chapter 2 here).  

 

An anteriorised alpha state was characteristic of propofol anaesthesia, whereas 

ketamine dissociation brought on diminished alpha activity across most of the cortex. 

Recently, using a dataset of human electrocorticography (ECoG) recordings424, the 

alpha decrease in posterior regions was proposed to be due to inhibition of HCN-1 

channels, with prior modelling studies suggesting the hyperpolarisation-activation 

cationic current (Ih) abolishing occipital alpha activity by inhibiting thalamocortical 

cells336. Changes in Ih have further been proposed as the mechanism behind alpha 

anteriorisation in propofol GABAergic inhibition. Thus, future work could combine the 

HMM results from this thesis with maps of local HCN-1 density (or direct causal 

manipulations of HCN-1, e.g. in pre-clinical models16) to test this hypothesis.  

We did not observe significant increases in scalp theta or delta activity in ketamine 

dissociation. HCN-1 mediated activity in the 3Hz range in deeper posteromedial 
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regions has previously been causally linked with dissociation in mice and 

humans424,453. EEG source localisation performs poorly in deep regions, so it may be 

that this rhythm is not observable on the scalp (at least without a specialist montage).  

One further direction for future research would be comparing the present HMM results 

with alternative ways of finding states in data-driven ways. In recent years, there has 

been a renewed interest in microstate analysis during anaesthesia338,454,455. Hidden 

Markov Models capture slightly different dynamics with lower correlations of temporal 

state time courses, but they may also fail to capture very long-term dynamics due to 

the Markovian assumption341. Alternatively, to capture long-range dependencies and 

relax the HMM assumption of only one state being active at one time, Dynamic 

Network Modelling (DyNeMo) has recently been proposed456.  

 

8.2  Translational aspects of EEG analyses  

The ultimate goals of neuroscience of anaesthesia are two-fold: one, to explain the 

anaesthetic state and consciousness in scientific terms for the sake of gaining insight 

into the human condition, and two, to use this knowledge to improve patient care in 

routine manipulations of consciousness and physiology during surgery. The second 

translational goal requires specific methods and analyses, some of which have been 

explored in this thesis.  

First, we saw in Chapter 1 that to achieve SWAS across all of the cortex, frontal 

monitoring is insufficient. This extends previous work which showed that connected 

consciousness can occur in presence of classical frontal depth of anaesthesia markers 

(slow waves, alpha-delta pattern, reduced complexity)111,112. Furthermore, in specific 

cases, consciousness is present despite widespread delta activity, e.g. in Angelman 
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syndrome93. This demonstrates the complexity of the brain and the need to consider 

more specific markers, including specific locations and spatio-spectro-temporal 

properties. This was confirmed in Chapter 5 when considering scaling down HMM 

results to two-electrode montages. Depending on what we want to capture, the best 

montage may for instance be fronto-parietal (for alpha anteriorisation monitoring) or 

posterior (for monitoring reduced state switching).  

 

A key aspect of translational work continues to be the development of more 

individualised markers457,458. At the level of a population average, the existing 

anaesthetic monitors work reasonably, but it is in large part the between-patient 

variability that means current depth of anaesthesia indices often contradict each other 

and produce poor advice459,460. This was seen in Chapter 2, where the emulated 

Bispectral Index varied widely between subjects who were all in the well-defined state 

of SWAS; if anaesthesia had been guided by the BIS, 6/14 of these subjects would 

have likely experienced either over- or under-anaesthesia. Targeting a specific, 

individualised state (e.g. SWAS in Chapter 2, an anteriorised alpha HMM state in 

Chapter 5, or a desaturated alpha state in Chapters 6 & 7) would have the potential to 

provide expert advice even for subjects at the tails of the population curve, and 

ongoing research in our group aims to validate this for SWAS during routine surgery. 

 

Another aspect of translation is moving from healthy volunteers to patients. In Chapter 

6, alpha desaturation under ketamine was a widespread and robust effect in healthy 

volunteers. This agrees with previous work on ketamine neurophysiology89,380. 

Importantly, the effect size was large enough and the effect so widespread that we 
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were able to capture this even in a commercial four-electrode montage in a routine 

clinical setting in depressed patients, suggesting this EEG marker would be suitable 

for translation. Recent work has also demonstrated an alpha decrease after the 

infusion in ketamine patients with a medium-density montage448. However, they also 

saw a similar alpha drop for midazolam. Future work should focus on whether alpha 

desaturation monitoring can improve clinical outcomes and whether it is distinct in 

ketamine and midazolam. Due to the lack of depression scores in our study and its 

observational nature, this was not possible. For now, alpha desaturation remains a 

marker in search of a use. Another limitation of the ketamine analyses in Chapters 6 

and 7 is that there was no EEG data available for the day after the ketamine infusion, 

which is when the antidepressant response tends to peak. It would be interesting to 

know if some of the brain dynamics shifts persist beyond the acute effect. 

Similarly, in Chapter 3, the increase in heart rate attributable to propofol was present 

in both younger healthy volunteers and older patients. However, the effect size was 

notably smaller, and it was overshadowed by bradycardic effects of opioids or 

sympathetic effects of surgical stimulation. This illustrates the importance of 

distinguishing statistical and clinical significance. When considered as a scientific 

question, it really appears propofol increases the heart rate by downregulating 

parasympathetic cardiac control, at least at moderate doses. However, the clinical 

significance is less clear. It is no wonder literature on this phenomenon has been 

mixed, chiefly with laboratory and clinical research at odds, as the clinical setting 

includes concomitant medication that often dwarfs the propofol effect. Future research 

should consider whether markers identified are robust and individualizable enough to 

be translatable.  
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Finally, several publications have recently advocated for optimising low-density EEG 

electrode location selection to aid clinical translation326,327. Rather than considering all 

possible montages as was done in Chapter 5, future work should focus on the full 

multi-objective optimisation problem, perhaps using a genetic algorithm326–328,461. 

Considering how different optimal montages were depending on the goal in Chapter 

5, together with optimal montages differing across sleep328, epilepsy327, and motor 

imagery classification461 both in terms of numbers of channels and their location, it is 

likely this will be a highly domain-specific problem.  

 

8.3 Cardiac influences on brain states  

Possessing a bodily existence has been called the brain’s ‘first prior’462. Amongst the 

plethora of interoceptive signals, the heart is privileged in providing a continuous, 

regular ascending input and engaging in an active dialogue with the brain through 

vagally mediated feed-forward and feed-back signalling. Some have gone as far as 

placing the bodily basis of selfhood in the neural monitoring of visceral signals, 

emphasising the heart463. In this thesis, cortico-cardiac coupling was demonstrated in 

Chapter 3, with slow waves being preferentially preceded by a heartbeat, similarly to 

heartbeat coupling previously observed in sleep120. We hypothesise that this is due to 

a common brainstem generator influencing both slow waves and the heart. However, 

Mensen et al argued this could be a direct result of heartbeats, similarly to how auditory 

stimuli can modulate slow waves in NREM sleep464. Brain-heart interactions have 

recently been proposed to be involved in neurobiology of consciousness itself, 

modulating contents of consciousness, contributing to cognition, and even potentially 

providing a biomarker of phenomenal consciousness108,465. Future work should 
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consider heartbeat-slow wave coupling in patients with pacemakers to test the 

common generator hypothesis.  

Using Hidden Markov Modelling in a novel way to include the ECG signal, in Chapter 

5 we extended the definition of a ‘state’ to include the cardiac state. This worked 

surprisingly well given how different frequency dynamics of EEG and ECG are. EXG-

HMM captured the increase in heart rate with anaesthesia as per Chapter 3, and even 

potentially distinguished between QRS complexes and inter-beat intervals when 

considering the ECG power spectra. In future, this could be investigated as a way to 

automatically extract both brain and heart dynamics from the same dataset and to 

capture heartbeat-evoked activity or bidirectional cortico-cardiac interactions. The 

present dataset was limited to a single-lead ECG and including full 12-lead ECG for 

spatial information may provide more insights.  

As expected for a sympathomimetic agent, ketamine increased the heart rate, both in 

a volunteer case study and in a pilot patient study. The case study of heartbeat-evoked 

potentials showed a decreased HEP amplitude as the infusion progressed, suggesting 

that ketamine may impair cardioception. The analysis was limited by not having access 

to ECG data for all patients. In the future, a full ECG-EEG analysis could test the 

‘dissociation by diminished interoception’ hypothesis. Surprisingly for a dissociative 

agent, literature on this is scarce. One study of heartbeat counting (a measure of 

interoceptive accuracy) did not find any changes after a ketamine infusion411. On the 

other hand, in patients with depersonalization/derealization disorder (DPD) which 

overlaps in dissociative phenomenology with ketamine, HEP amplitude during a 

heartbeat perception task was higher in healthy controls than DPD patients, 

suggesting impaired cortical representation of afferent cardiac signals403. As was 

argued in Chapter 6, this and other research on dissociation may be limited by the 
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psychometric instruments available, with the CADSS-6 and 5D-ASC disembodiment 

scores being unrelated to each other, and a role suggested for a simple subjective 

report, particularly in patients familiar with the dissociative state. The role of heart-

brain interactions in altered states of consciousness should be a subject of future 

research, particularly given the salience of heart signals in as wide of subjects as 

interoception344, attention406, anxiety466, and emotions343. This could be extended to 

wider monitoring of interactions between the body and the brain, with respiration 

coupling having been investigated extensively467. After all, we are (hopefully) not just 

brains in a vat. 

 

Anaesthetics present treasured assets in medicine and neuroscience of 

consciousness. In their tranquil embrace, we find a unique opportunity to study and 

repair the human condition. Depending on the combination of drugs given, we can 

manipulate the brain to one full of synchrony, one with a mind disconnected from the 

body, one that dreams, or one that is blissfully unaware.  

The work of this thesis was to continue uncovering waves in the unconscious brain’s 

mare incognitum and to navigate the state space available in a way that may one day 

improve patients’ lives. To quote Bertrand Russell468: 

“A little of this, but not much, I have achieved.” 
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9    Appendices 
 

Appendix 1: Supplementary Figures to Chapter 2 

 

Supplementary Figure 2.1: Correlation between group-average local complexity 

and GABAA receptor density across experimental stages. A significant negative 

correlation is present during stages without behavioural responsiveness. Figure 

reproduced from Dr Di Zang with permission.
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Supplementary Figure 2.2: BIS index values and slow-wave power throughout the 

experiment for each subject in the study.  
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Appendix 2: Supplementary Figures to Chapter 3 

 

Supplementary Figure 3.1: Group-level cortico-cardiac coupling in healthy 

volunteers. (A) Mean slow wave detected (blue) with each subject mean in grey. (B) 

Group-average ECG (red – broadband, purple – 0.5Hz-1.5Hz only) time-locked to 

slow-wave (black) onset. The ongoing low-frequency ECG oscillation is present at the 

group-level. (C) Group-mean histogram of R-wave timings relative to slow-wave onset, 

with time for each subject adjusted for their mean heart rate. Individual heartbeats 

preferentially occur in phase with the slow wave. (D) Autocorrelation of (C) shows clear 

oscillatory structure (left). This is significant compared to P-values derived from 

N=1000 uniformly random surrogate timing distributions.
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Supplementary Figure 3.2: Autocorrelation of RS histograms in each participant 

(blue) and a decaying sine fit (orange). 10 out of 16 participants showed a significant 

ongoing low-frequency ECG oscillation (red titles).  
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Supplementary Figure 3.3: Dose-dependence of cortico-cardiac coupling. Lower 

entropy means more significant coupling between slow-wave onset and the preceding 

heartbeat. No changes were observed between different propofol doses. 

 

 

  

Supplementary Figure 3.4: Observed 

heart rate (HR) vs that predicted by a 

general linear model in an older, clinical 

population (see Main Text for model 

details). 
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Supplementary Figure 3.5: Heart rate in ultra-slow propofol infusion increases from 

baseline to loss of behavioural response to auditory and laser pain stimuli (LOBR) and 

peak anaesthesia. ** indicates Bonferroni-corrected paired t-test P<0.01, *** indicates 

P<0.001.
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9.2.1 Understanding cortico-cardiac coupling  

I performed extensive simulations to understand where the coupling may come from. 

Naively, one may wonder if two oscillations both around 1Hz (heartbeat and slow 

waves) trivially appear coupled because of their similar frequency. To study this, I 

simulated 10 minute EEG and ECG recordings with 100Hz sampling rate. The ECG 

was simulated with the neurokit2 module to have HR=60bpm (SD 1bpm). The EEG 

was simulated as the sum of aperiodic noise with spectral exponent -1.5 (amplitude 

10µV), a bursty alpha oscillation (frequency 10Hz, probabilities to enter and exit burst 

0.5, amplitude 5µV), and different types of slow waves.  

First, slow waves were modelled as a bursty oscillation at 1Hz, perfectly coherent with 

the heart rate. Trivially, this causes high coupling (Supplementary Figure 3.6A, 

entropy=0.502). Next, slow waves were kept at 1Hz, but were insterted at random 

times. This destroys the coupling despite having the same frequency (Supplementary 

Figure 3.6B, entropy=0.982). Then, slow waves were again made a coherent 

oscillation, but this time at 1.1Hz. This also makes the coupling much weaker 

(Supplementary Figure 3.6C, entropy=0.981). Finally, the 1.1Hz slow waves were 

inserted every 3s. This recovers the coupling despite different frequencies of slow 

waves and heart rate (Supplementary Figure 3.6D, entropy=0.650). 

In short, as the frequency of heart rate and slow waves is not exactly in an integer 

relationship, low entropy points to each slow wave being significantly coupled to a 

heartbeat.  

At a high level, these simulations demonstrate the Main Text results show genuine 

coupling, and are not just methodologically trivial due to similar heart rate and slow 

wave frequencies. 
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Supplementary Figure 3.6: Explaining coupling between slow waves and R-waves. 

(A) Two ongoing 1Hz oscillations with constant phase difference are trivially coupled. 

(B) Coupling is destroyed if slow waves occur at random times, even if both oscillations 

are at 1Hz. (C) Coupling is also much weaker if frequencies do not match even slightly, 

here 1Hz for heartbeats and 1.1Hz for ongoing slow waves. (D) Coupling is restored 

if each slow wave is related to individual heartbeats, even if their frequency is different. 
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Appendix 3: Supplementary Figures to Chapter 4 

  

 

Supplementary Figure 4.1: Further waveform properties of itEMD modes in propofol 

data. (A) Pseudo mode-mixing index (PMSI) was low for all low-frequency modes 

(<0.15), suggesting good decomposition performance. (B) – (D) Mean phase-aligned 

instantaneous frequency across all waves and subjects (mean ± standard error across 

subjects shaded), All waves had slightly faster downward slopes around π phase, but 

this was most prominent for the slow mode. 

A B 

C D 
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Appendix 4: Supplementary Figures to Chapter 5 

 

 

Supplementary Figure 5.1: Split-half validation across 4-20 HMM states. K=6 states 

have the largest proportion of well-matched states in both halves (Matching 

Coefficient > 50% without any very low matching coefficient states).  
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Supplementary Figure 5.2: Scalp connectivity maps (broadband coherence) in each 

state in the full 32-channel EEG HMM model.
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Supplementary Figure 5.3: Scalp connectivity maps (broadband coherence) in each 

state in the EXG-HMM (EEG + ECG) model.
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Supplementary Figure 5.4: Power topographical maps for each state in the K=16 

state HMM model. States are qualitatively similar to the K=6 state model (e.g. artifact 

State 8, occipital alpha States 6 / 12, motor alpha/beta State 9, anterior alpha States 

7/14).
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Supplementary Figure 5.5: Switching rate in the K=16 state HMM run. Similarly to 

K=6 states (Figure 5.3B), switching rate (boxes) differs between experimental stages 

and follows the propofol concentration (orange; repeated measures ANOVA P<0.01). 
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Supplementary Figure 5.6: Lempel-Ziv-Welch complexity of the state switching 

paths across propofol concentrations. For this analysis, the Viterbi path derivative was 

binarized such that each state switch in the time-series represented a 1, 0 otherwise. 

There was a significant difference in this LZW Complexity between experimental 

stages (repeated measures ANOVA F=10.6, P<0.001). For more about LZW 

Complexity, see Chapter 2.
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Supplementary Figure 5.7: Median switching rate across subjects for the N=31 low-

density runs with 1 EEG channel (best channel for each column in the switching rate 

F-value matrix, c.f. Figure 5.9) and 1 ECG channel. The effect of propofol stage on 

switching rate was more significant with the ECG channel included (Wilcoxon 

P=0.0031 vs single EEG channel only), but the effect direction was opposite (switching 

rate increased), likely due to the model being driven by the heart rate increase. 
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Result Main Run Re-run 1 Re-run 2 Re-run 3 Re-run 4 Re-run 5 Mean 

Switching 
rate ANOVA 
F-value 

10.1 6.2 7.4 5.5 8.9 8.5 7.77 

FO ANOVA, 
propofol 
effect F-value 

5.65 10.03 7.33 20.32 2.8 2.22 8.06 

FO ANOVA, 
state effect F-
value 

5.76 8.33 0.89 11.45 0.6 21.03 8.01 

FO ANOVA, 
propofol*state 
F-value 

7.01 12.42 9.07 25.16 3.47 2.75 9.98 

State 1 FO 
correlation 
with ESC 

-0.27 -0.35 -0.33 -0.316 -0.33 -0.3 -0.32 

State 3 FO 
correlation 
with ESC 

0.22 0.33 0.21 0.35 0.24 0.17 0.25 

State 5 FO 
correlation 
with ESC 

-0.46 -0.41 -0.39 -0.48 -0.29 -0.5 -0.42 

Time in State 
2 until LOBR / 
CLOBR 

correlation 

0.725 0.714 0.718 0.732 0.743 0.771 0.73 

Time in State 
5 until LOBR / 
CLOBR 
correlation 

0.8 0.604 0.46 0.575 0.525 0.614 0.60 

Time in State 
2 until LOBR / 
CSWAS 
correlation 

0.706 0.301 0.235 0.613 0.411 0.266 0.42 

 

Supplementary Table 5.1: Results for K=6 states, re-run to validate against 

stochastic variability.  All main results remain in the same direction, and except for one 

poor run (Run 5) and the last two correlations, results also remain significant after 

multiple comparisons correction (corrected P>0.05  in red).
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Appendix 5: Supplementary Figures to Chapter 6 

 

 

Supplementary Figure 6.1: Split-half validation across 3-12 HMM states. K=7 states 

have the largest proportion of well-matched (Matching Coefficient > 50%) states in 

both halves. The only state not well-replicated was lowest-power State 7, which was 

most present in N=3 subjects that happened to all be in the first half of the dataset. 
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Supplementary Figure 6.2: (A) Fractional occupancies, (B) State maps and (C) 

Power spectra for K = 4 HMM states. The main results from the Main Text (one high-

power alpha state that gets suppressed by ketamine, one high-delta state, a medium-

alpha state, one low-power state that subjects spend more time in under ketamine) 

holds across different state numbers.  

Correlation between fractional occupancies in State 1 / State 2 and disembodiment: 

Spearman ρ = -0.071 (P=0.81).  
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Supplementary Figure 6.3: (A) Fractional occupancies, (B) State maps and (C) 

Power spectra for K = 6 HMM states. The main results from the Main Text (one high-

power alpha state that gets suppressed by ketamine, one high-delta state, several 

medium-alpha states, one low-power state that subjects spend more time in under 

ketamine) holds across different state numbers.   

Correlation between fractional occupancies in State 1 / State 2 and disembodiment: 

Spearman ρ = -0.104 (P=0.72). 

 

Same correlation for K = 7 states but re-running due to stochastic state optimisation: 

Run 1: -0.568 (P=0.034), Run 2: -0.260 (P=0.37),  

Run 3: -0.046 (P=0.88), Run 4: ρ =-0.617 (P<0.01).   
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Supplementary Figure 6.4: (A) Fractional occupancies, (B) State maps and (C) 

Power spectra for K = 10 HMM states. The main results from the Main Text (one high-

power alpha state that gets suppressed by ketamine, one high-delta state, several 

medium-alpha states, one low-power state that subjects spend more time in under 

ketamine) holds across different state numbers.  

Correlation between fractional occupancies in State 1 / State 2 and disembodiment: 

Spearman ρ = -0.379 (P=0.18). 
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Supplementary Figure 6.5: Full spatiotemporal evolution of the heartbeat-evoked 

potential (HEP) case study. A consistent HEP around 300ms-500ms after an R-peak 

is seen, but its amplitude diminishes as the ketamine infusion progresses.
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Supplementary Figure 6.6: Heartbeat-evoked potential (HEP) results for N=9 

participants who showed at least a weak ECG ICA component. (A) Group-mean HEP 

topography across the experiment. (B) Group-level ICA component activity around 

detected R-peaks with a visible, ECG-like cardiac component (mean in black, standard 

error shaded, individual participants in grey lines). (C) Peak HEP amplitude across the 

experiment. There was a trend for a decrease in HEP amplitude, but the repeated-

measures ANOVA was not significant (P>0.1). 
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Appendix 6: Supplementary Figures to Chapter 7 

 

 

Supplementary Figure 7.1: Example individual spectrograms. (A) A relatively clean 

recording except for movement artifacts concentrated around the beginning and end 

of the infusion. (B) A bad recording. Clearly artifactual spectral bands are present, 

possibly due to coupling between a poorly connected electrode and patient 

headphones.   

B A A 
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Appendix 7: Questionnaires for the ketamine study 

9.7.1 Set & Setting Questionnaire  

Please rate your feelings right now. 

Draw a vertical line through the horizontal line at a point corresponding to the intensity of your 

experience, from ‘Not at all’ to ‘Extremely’ (see the example below) 

It is important that you make a mark on every line. 

YOUR PARTICIPANT NUMBER:       TODAY’S DATE:  

This is an example: 
Not at                              Extremely       
all 

 _______________________________________ 

  

  
I feel comfortable about the upcoming experience. 

_______________________________________ 

I feel anxious. _______________________________________ 

I have a good feeling about my relationship with the 
people who will be with me during my experience. 

_______________________________________ 

 
The setting feels good for my upcoming experience. 
 

_______________________________________ 

I feel well prepared for the upcoming experience. _______________________________________ 

I am in a good mood. _______________________________________ 

I have a good relationship with the main person who 
will look after me during the upcoming experience. 

_______________________________________ 

I have strong expectations for the upcoming 
experience. 

_______________________________________ 

I have a clear intention for the upcoming experience. _______________________________________ 

  

 

Please check you have entered your participant number, date, and answered all questions.  

Thank you very much for your help. 

 

 



241 
 

Psychometric Scales - Version 2 Date 17/10/2022                                            EEG correlates of dissociation during ketamine treatment 

9.7.2 Subjective noise & light levels 

 

 

 

Please indicate how you feel right now. 

 

YOUR PARTICIPANT NUMBER:    TODAY’S DATE:  

 

  
 
The room is noisy. 

     0  -  Not at all 
1  -  A little bit 

     2  -  Somewhat 
     3 -   A lot  
     4 -   Very much   

 
 
The noise level in the room bothers me. 

     0  -  Not at all 
1  -  A little bit 

     2  -  Somewhat 
     3 -   A lot  
     4 -   Very much   

 
 
The light in the room is bright. 

     0  -  Not at all 
1  -  A little bit 

     2  -  Somewhat 
     3 -   A lot  
     4 -   Very much   

 
 
The light in the room bothers me. 

     0  -  Not at all 
1  -  A little bit 

     2  -  Somewhat 
     3 -   A lot  
     4 -   Very much   

Please check you have entered your participant number, date, and answered 

all questions.  

Thank you very much for your help.
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9.7.3 5D-ASC questionnaire.  

Please rate the experience you had during today’s ketamine infusion. 
Draw a vertical line through the horizontal line at a point corresponding to the intensity of your experience, from 
‘Not at all’ to ‘Extremely’ (see the example below). It is important that you make a mark on every line. 

YOUR PARTICIPANT NUMBER:     TODAY’S DATE:  

 Not at              Extremely       
all 

This is an example: _______________________________________ 

  

I felt like a puppet _______________________________________ 

I had the feeling of being connected to a superior power _______________________________________ 

I enjoyed boundless pleasure _______________________________________ 

I saw regular patterns (in total darkness or with closed eyes) _______________________________________ 

Everything seemed to unify into a oneness  _______________________________________ 

Noises seemed to influence what I saw _______________________________________ 

I saw colours before me (in total darkness or with closed eyes) _______________________________________ 

The shapes of things seemed to be changed by sounds or noises _______________________________________ 

It seemed to me as though I did not have a body any more _______________________________________ 

I had difficulty making even the smallest decision _______________________________________ 

Everyday things gained a special meaning _______________________________________ 

Things around me had a strange new meaning  for me _______________________________________ 

I was afraid that the state I was in would last forever _______________________________________ 

I saw lights or flashes of lights (in total darkness or with closed 
eyes) 

_______________________________________ 

It seemed to me that my environment and I were one _______________________________________ 

I had difficulty in distinguishing important from unimportant 
things 

_______________________________________ 

I saw scenes rolling by (in total darkness or with my eyes closed) _______________________________________ 

I experienced a touch of eternity _______________________________________ 

Conflicts and contradictions seemed to dissolve _______________________________________ 

PLEASE TURN 
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I was afraid without being able to say exactly why _______________________________________ 

I experienced everything terrifyingly distorted _______________________________________ 

I experienced my surroundings as strange and weird _______________________________________ 

I felt as though I was paralysed _______________________________________ 

I felt very profound _______________________________________ 

I experienced past, present and future as a oneness _______________________________________ 

Objects around me engaged me emotionally much more than 
usual 

_______________________________________ 

I felt threatened _______________________________________ 

I had the feeling of being outside my body _______________________________________ 

I felt as though I was floating _______________________________________ 

I felt isolated from everything and everyone _______________________________________ 

I was not able to complete a thought, my thought repeatedly 
became disconnected 

_______________________________________ 

I gained clarity into connections that puzzled me before _______________________________________ 

I could picture scenes from my past or fantasy extremely clearly _______________________________________ 

The colours of things seemed to be changed by sounds or noises _______________________________________ 

I had very original thoughts _______________________________________ 

I had the feeling that I no longer had a will of my own _______________________________________ 

I experienced a kind of awe _______________________________________ 

My imagination was extremely vivid _______________________________________ 

I experienced a profound peace in myself _______________________________________ 

I had the feeling something horrible would happen _______________________________________ 

I experienced an all-embracing love _______________________________________ 

My experience had religious aspects _______________________________________ 

I felt dissociated _______________________________________ 

Please check you have entered your participant number, date, and answered all questions. Thank you very much for your help. 
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9.7.4 CADSS-6 
YOUR PARTICIPANT NUMBER:       TODAY’S DATE: 

Did things seem to be 

moving in slow motion? 

0 - Not at all 

1 - Mild 

2 - Moderate 

3 - Severe 

4 - Extreme 

 

Things seemed slightly slowed down, but not very noticeable.  

Things were moving about twice as slow as normally.  

Things were moving so slowly that they are barely moving.  

Things were moving so slowly, I had the perception that everything had come to a stop, as if time was standing still. 

Did things seem to be 

unreal to you, as if you 

were in a dream? 

0 - Not at all 

1 - Mild 

2 - Moderate 

3 - Severe 

4 - Extreme 

 

Things seemed a little unreal, but I was well aware of where I'm at. 

Things seemed dreamlike, although I knew I was awake. 

Things seemed very dreamlike, although I knew that I was there, I had the feeling like I might be asleep. 

I felt like nothing was real, like I should pinch myself to wake up, or ask someone if this is a dream. 

Did you feel disconnected 

from your own body? 

0 - Not at all 

1 - Mild 

2 - Moderate 

3 - Severe 

4 - Extreme 

 

I felt a little bit disconnected from myself, but I was basically all here. 

I felt somewhat detached from my own body, but I was basically all together 

I felt detached from my own body, but not far removed from my body, and I felt as if it was me there. 

I felt like I was completely out of my body, as if I was looking at my own body from a long way off, as if there was 

another person there or no person there. 

Did your sense of your 

own body feel changed: 

for instance, did your own 

body feel unusually large 

or unusually small? 

0 - Not at all 

1 - Mild 

2 - Moderate 

3 - Severe 

 

4 - Extreme 

 

I had a vague feeling that something about my body had changed, but I can't say exactly what it was. 

I felt like my body had increased or decreased in size slightly, or that it felt somewhat as if it was not my body 

I felt as if my body had increased to twice its normal size, or decreased to twice its normal size, or I very much felt 

as if this was not my body. 

I felt as if my body swelled up to at least ten times its normal size, or as if it was ten times as small, or as if my arms 

became like toothpicks 

Did you space out, or in 

some other way lost track 

of what was going on 

during this experience? 

0 - Not at all 

1 - Mild 

2 - Moderate 

3 - Severe 

4 - Extreme 

 

I had some episodes of losing track of what is going on, but I followed everything for the most part 

I lost at least a minute of time or completely lost track of what was going on at some moments. 

I lost several segments of time of one minute or more. 

I lost large segments of time of at least 15 minutes or more. 

Did you have gaps in your 

memory? 

0 - Not at all 

1 - Mild 

2 - Moderate 

3 - Severe 

4 - Extreme  

 

There were some then-recent things which I could not remember. 

There were a few gaps in my memory which lasted a few minutes. 

There were large gaps in my memory which lasted for more than a few minutes 

I couldn’t piece together what was happening from one moment to the next due to large gaps in my memory. 

Please circle the number which best describes how you felt at the PEAK EXPERIENCE 

of the infusion 
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9.7.5 Open-ended questions 

 

We would like to know more about the experience you had with today’s ketamine infusion.  

Please answer the following questions in as much detail as you’d like to. 

YOUR PARTICIPANT NUMBER:     TODAY’S DATE:  

Do you think that this experience has affected your mood? If so, how? 

 

 

 

 

 

 

 

 

Do you think that this experience has affected your perspective or outlook on life? If so, how? 

 

 

 

 

 

 

 

 

Do you think that this experience has affected your ability to think about past experiences that you might 

find uncomfortable, or even traumatic? If so, how? 
 

 

 

 

 

 

 

 

 

Anything else you’d like to share about the experience? 
 

 

 

 

 

 

 

 

Please check you have entered your participant number, date, and answered all questions.  Thank you for your 

help. 
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9.7.6 Demographic questionnaire. 

  

Please answer the following questions about yourself. 
 

Your  
Participant 
Number 

 
Today’s 
date 

 

Age years   

 
Sex assigned 
at birth 
(Please circle) 
 

Female 
Male 
Other 
Prefer not to say 

 
Gender 
(Please 
circle) 

Man 
Woman 
Non-binary 
Other 
Prefer not to say 

    

 
 
 
Ethnicity 
(Please circle) 

White – British  
White – Irish  
White – Any other 
  
Mixed - White and Black 
Caribbean 
Mixed - White and Black 
African 
Mixed - White and Asian 
Mixed - Any other mixed 
background 

Asian or Asian  
British – Indian 
 
Asian or Asian  
British – Pakistani 
 
Asian or Asian  
British – Bangladeshi 
 
Asian or Asian British – 
Any other  
Asian background 

Black or Black  
British – Caribbean 
Black or Black British – African 
Black or Black British – Any 
other Black background 
 
Other Ethnic Groups –  
Chinese 
Other Ethnic Groups –  
Any other ethnic group 
 
Prefer not to say 

Height                              m Weight                                 kg 

Medication 
taken 

 

Please check you have entered your participant number, date, and answered 
all questions.  Thank you for your help. 
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