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Abstract

Human brain dynamics are radically altered under the influence of anaesthetics.
However, despite their widespread clinical use, the whole-brain mechanisms by which
anaesthetics alter consciousness are still not fully understood and clinical translation
of existing insights is limited. This thesis presents several lines of investigation aimed
to improve our understanding of spatiotemporal brain states under the anaesthetics

propofol and ketamine.

First, slow-wave activity saturation (SWAS) was studied across the brain and in
relation to existing depth of anaesthesia markers. Local propofol concentration needed
to achieve SWAS in healthy volunteers correlated with GABAAa receptor density
(Spearman p=-0.69, P=0.0018), providing more evidence for the importance of the
neurophysiological state of SWAS. The average Bispectral Index at SWAS across

volunteers was 49+4, but its value varied significantly over time.

Second, relevant cortico-cardiac interactions were studied. A slow propofol infusion
increased heart rate in a dose-dependent manner (increase of +4.2+1.5 bpm/(ugml?),
P<0.001). Individual cortical slow waves were coupled to the heartbeat (P<0.001), with
heartbeat incidence peaking about 450ms before slow-wave onset. A ketamine case
study showed decreased amplitude of heartbeat-evoked potentials, suggesting

impaired interoceptive signalling may have a part in dissociative phenomenology.

Third, novel methodology was developed, validated, and applied throughout the thesis.
Iterated Masking Empirical Mode Decomposition was used to identify three types of
low-frequency propofol waves with different spatiotemporal maps and dose-responses.
Hidden Markov Modelling of propofol showed a shift to anterior alpha states and a
reduced switching rate (P<0.01); with ketamine states exhibiting low alpha power and

decreased connectivity became more prominent (P<0.001).

Fourth, the potential of translating electroencephalographic markers from high- to low-
density montages was studied. Posterior montages were best at capturing the reduced
state switching under propofol. A patient study of antidepressant ketamine treatment
demonstrated reduced temporal lobe alpha and theta power were associated with
dissociation (P=0.0109).
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1 Background

his thesis aims to improve our understanding of the brain under the

influence of the general anaesthetics. Specifically, this is done by studying

brain states as captured by non-invasive neurophysiological imaging in
humans during propofol and ketamine administration. Along the way, the thesis is
developed with three key themes present. Firstly, there is a focus on analyses that
may support future clinical translation, for instance by comparing results to current
clinical practice or by studying the same effects in both volunteers and patients.
Secondly, novel data-driven methodology is developed and applied to gain new
insights. Finally, combined heart-brain effects are considered in order to highlight the
complex physiological feedback loops in the human body. This chapter provides a
broad (yet brief) overview of general anaesthesia before narrowing down to propofol
and ketamine, as well as introduces some of the relevant methodology and thesis

structure.

1.1 General anaesthesia and its effects on physiology

1.1.1 General overview

Millions of general anaesthetics are administered every year in the United Kingdom
(UK) and beyond, enabling safe and life-changing surgical procedures!. From James
Young Simpson and John Snow first pioneering the use of chloroform in the UK in the

1840s?, anaesthesia has grown to be the largest hospital specialty in the UK,



comprising a diverse and highly innovative specialty’. Modern anaesthetic practice
uses multiple concomitant drugs (i.e. balanced general anaesthesia) to achieve the
anaesthetic triad: unconsciousness, analgesia, and muscle relaxation®. Local and
regional anaesthesia, whilst also essential in clinical practice, are beyond the scope
of this thesis. In practice, substantial heterogeneity exists between different types of
procedures, patient populations, and preferences between anaesthetists. Broadly, the
anaesthetic process can be subdivided into three parts: induction (i.e. achieving initial
loss of patient consciousness and securing their airway), maintenance (i.e. ensuring
continued anaesthesia adequate for any surgical stimuli present), and emergence (i.e.

waking the patient up at the end of surgery).

Despite leaps in clinical practice, the brain mechanisms underlying the effects of
general anaesthetics have remained elusive for over a century since their introduction
into clinical practice, and a complete explanation of anaesthetic loss of consciousness
is still yet to be formulated. This remains a problem for patient safety, particularly when
muscle relaxants are used and in the context of the rising use of total intravenous
anaesthesia, which presents an increased risk of accidental patient awareness®.
Intraoperative vital sign monitoring has grown in sophistication, allowing precise
delivery of drug concentrations and volumes. However, even though the brain is the
likely seat of consciousness and the main hypnotic effect-site, until recently the use of
brain-based depth of anaesthesia monitoring has been rare. In 2013, their use was
reported in only 2.8% in a large sample UK estimate?, though recent data published in

March 2023 as part of the 7" National Audit Project (NAP7) shows an increase to

i Interestingly, on top of being voted the “greatest doctor of all time” by Hospital Doctor
magazine in 2003, John Snow was also part of the Temperance movement and a vegetarian,
avoiding all animal products in his diet®*.



19%’. The use of brain-based monitoring devices has been hindered in part because
they are based on population-derived indices, are susceptible to muscle and motion
artifacts, and are unreliable for some drugs (e.g. ketamine®). A clear need for better
markers and monitors of adequate depth of anaesthesia therefore exists. Under-
anaesthesia can lead to accidental patient awareness during surgery and surgical pain,
which can lead to negative postoperative outcomes including post-traumatic stress
disorder (PTSD)°. Accidental awareness under general anaesthesia is rare (estimated
overall around 1 in 20,000 anaesthetics in NAP5?Y), but the rate of PTSD in patients
after an accidental awareness episode is approximately 15%°%1°. The low incidence of
awareness is in part because anaesthetists tend to administer higher hypnotic doses
to minimise the risk of awareness. However, the negative brain consequences of over-
anaesthesia are also being increasingly recognised, particularly in vulnerable groups
such as the elderly and those in development!!. These postoperative cognitive
disorders mainly include postoperative delirium (POD) and postoperative cognitive
dysfunction (POCD), with for example POD incidence in patients over age 60 after
major surgery between 20%-50%*2, and overall POCD incidence estimated between

10%-18%1314,

A surprisingly wide variety of drugs can affect a patient’s consciousness level. The
following three sections will outline the known mechanisms of action of the most
common hypnotic drugs (often simply referred to as anaesthetics), analgesics, and
muscle relaxants (paralytics). Anaesthetics can be categorised based on their main
target binding site. Broadly, it is thought that to achieve hypnotic effects, most
commonly used anaesthetics either potentiate inhibitory y-aminobutyric acid type A
(GABAA) channels or antagonise N-methyl-D-aspartate (NMDA) channels. Other

classes of hypnotic agents exist, e.g. az-adrenergic receptor agonists such as



dexmedetomidine. For many drugs, the ultimate mechanism likely goes beyond
NMDA/GABAA and may also involve constitutively active potassium channels (e.g.
two-pore-domain TREK-1%°) or hyperpolarisation-activated currents (In produced by
activation of hyperpolarization-activated cyclic nucleotide-gated potassium channel 1,
HCN-16). Anaesthetics, particularly the volatile hypnotics, are thus highly
promiscuous in their binding targets. However, in this simplified framework,
anaesthetics exerting GABAergic action include the intravenous anaesthetics
etomidate, propofol, and barbiturates, as well as inhalational anaesthetics such as
sevoflurane, halothane, isoflurane, and desflurane!’. NMDA agonist hypnotics include
phencyclidine, ketamine, nitrous oxide, and elemental xenon. As typical examples of
these classes and due to their wide-spread clinical use, propofol and ketamine are

studied most in this thesis, and thus presented in more detail below.

Finally, anaesthesia shares commonalities with non-rapid eye movement sleep. In
particular, hypnotic anaesthetic action originates in part from action on endogenous
neural circuits involved in sleep-wake control*®19, This includes effects on subcortical
regions involved in arousal control of the conscious level, such as the activation of
sleep-promoting centres (e.g. the GABAergic ventrolateral preoptic nucleus, VLPO, of
the hypothalamus) and depression of arousal-promoting sites (e.g. the noradrenergic
locus coeruleus and cholinergic neurons of the basal forebrain). Broadly, it is thought
anaesthetics may affect either the top-down thalamocortical mechanisms, or the
above bottom-up arousal networks. However, the full description is likely more
nuanced, as cortical regions (in particular the medial prefrontal cortex, mPFC) have
been found to constitute an important part of the endogenous arousal network as

well?22,



1.1.2 GABAergic anaesthetics and propofol

GABAAa receptors are ligand-gated ion channels that are ubiquitous in the human brain.
GABA binding to the receptor causes a conformational change and increased
permeability to anions (mainly chloride ions). This causes membrane
hyperpolarisation and neuronal inhibition, making GABAAa receptors the main inhibitory
receptors in the human brain. Each GABAa receptor is a pentametric complex
composed of subunits that determine its pharmacological properties. Subunit
composition, e.g. a, B, and y in a ratio of 2:2:1, differs across the brain and determines
sensitivity to anaesthetics and their different behavioural endpoints including memory

loss, sedation, and hypnosis?°.

Propofol (2,6-diisopropylphenol) is the most common anaesthetic induction drug?L.
First approved in the 1980s, its favourable kinetics and side effect profile have made
propofol the intravenous anaesthetic of choice for most practitioners. It is a highly lipid-
soluble drug prepared as an oil-water emulsion. Its pharmacokinetic properties are
detailed in Chapter 4. Briefly, it exhibits rapid plasma clearance, with emergence after
a typical 2mg/kg bolus induction dose usually occurring within 8 to 10 minutes?t. This
efficient plasma clearance makes it suitable for use as a continuous intravenous
infusion, often as part of total intravenous anaesthesia (TIVA). Such systems most
often utilise a mathematical three-compartment model to guide target-controlled
infusions (TCI)?2. Brain effect-site concentrations vary between sedation and deep

anaesthesia in the therapeutic range of roughly 1.5-5ug/ml.

In terms of autonomic effects, anaesthetic doses of propofol produce a large decrease
in arterial blood pressure with significant vasodilatation and disruption of the

baroreflex?3. Propofol is also a respiratory depressant and it reduces upper airway



reflexes. It shows antiemetic activity, potentially because of its effects on 5HT3

receptors?.

Hypnotic effects of propofol in the central nervous system (CNS) are largely a result
of potentiating GABAergic inhibition which leads to neuronal hyperpolarisation.
Hypnotic effects appear dependent on propofol binding to the 8 subunits of the GABAAa
receptor?42>. Propofol slows the decay rate of inhibitory synaptic currents by
prolonging the opening of GABAA channels and allowing greater influx of CI- ions into
a cell®. It also enhances extrasynaptic tonic inhibition caused by GABAAa receptors
outside the synapse being continuously activated by ambient GABA?728, Different
aspects of propofol effects — e.g. memory blockade, loss of consciousness, depression
of reflexes — may be due to these phasic (synaptic) and tonic (extrasynaptic) changes,
with consciousness loss perhaps preferentially due to tonic inhibition enhancement in

specific areas?°.

On the network-level, functional neuroimaging studies (e.g. positron emission
tomography (PET), functional magnetic resonance imaging (FMRI) and
electroencephalography (EEG)) of propofol have revealed reduced activity in key
regions likely to play a part in supporting consciousness, including the thalamus and
precuneus®%3, as well as reduced information processing capacity in the default mode
network3232 and impaired frontoparietal connectivity3*. This is further discussed in

Chapter 2 and Chapter 5.

1.1.3 NMDA-acting anaesthetics and ketamine

NMDA receptors are a subclass of ion-permeable glutamate receptors and the major

excitatory neurotransmitter receptors in the human brain. They are permeable to Na*,



K*, and Ca?* ions when activated. However, at resting membrane potential and lower,
the channel is blocked by a Mg?* ion. Membrane depolarisation repels the magnesium
ion and allows ion flux. Activation of NMDA receptors requires both glutamate and
glycine / D-serine binding. Each NMDA receptor is a complex made of four subunits
of three types: GIluN1, GIuN2, and GIuN3. As with GABAa receptors above, subunit
composition varies between cell types and determines pharmacological properties of

the receptor.

Ketamine (RS-2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone) is a phencyclidine
derivative first used in humans in 19643, It is a remarkably unique substance that,
depending on the dose, produces analgesic, antidepressant, psychedelic, or
anaesthetic effects. Itis partially water-soluble and highly lipid-soluble, leading to rapid
onset of effects and distribution. High clearance results in a short elimination half-life
of approximately 2-3 hours with hepatic metabolism into norketamine and
hydroxynorketamine before changing to water-soluble molecules excreted in urine.
Ketamine is a racemic mixture of two stereoisomers, R (rectus) — ketamine and S
(sinister) — ketamine. Of these, S-ketamine is more potent and shows faster clearance
and recovery. Efficient clearance allows for continuous ketamine infusions, with target
effect site concentrations in a therapeutic range of 0.5-2.2ug/ml. A typical induction

bolus of 2mg/kg produces about 10 minutes of surgical anaesthesia?’.

Unlike most anaesthetics, anaesthetic doses of ketamine do not produce significant
respiratory depression and preserve airway reflexes. Ketamine also increases arterial
blood pressure, heart rate, and skeletal muscle tone, likely by central sympathetic
stimulation. Undesirable tachycardia and hypertension can be blunted by
coadministration of benzodiazepines. It does not show antiemetic properties and may
worsen nausea®’. The preservation of airway tone, analgesic properties, and

7



increased sympathetic activity during ketamine anaesthesia make it particularly useful
for emergency settings and in rural areas of developing countries. However,
undesirable emergence reactions in about 20% of patients limit its use3. These
include vivid dreams, hallucinations, and out-of-body experiences, which can cause
fear and confusion. These psychomimetic effects in sub-anaesthetic doses (typically
<1mg/kg) have however found uses in psychiatric settings and are discussed together

with antidepressant effects in Chapters 6 and 7.

Ketamine is classically considered a non-competitive NMDA antagonist, but its
pharmacological profile is complex. Apart from NMDA, it also acts on opioid and
monoaminergic receptors®®. The full molecular mechanism behind ketamine hypnosis
is likely complex. This can be seen when ketamine is compared to other NMDA
antagonists with low anaesthetic potency, such as memantine and MK-801.
Differences in NMDA subtype potency (e.g. GIuN2A/B vs GIuN2C) and off-rate (i.e.
being able to escape the channel before closing) may explain some of the

discrepancies, but action at other receptors (e.g. HCN1) is likely involved“°.

At the network level, ketamine shows differences and similarities to GABAergic
anaesthetics. Similar to propofol anaesthesia, at doses past loss of responsiveness,
dysfunction in communication between cortical areas captured by resting state FMRI
connectivity is seen (e.g. fronto-parietally within the default mode network)*!, with loss
of EEG-derived fronto-parietal connectivity34. Unlike propofol, the repertoire of brain
states remains similar to disconnected conscious states such as dreams and
hallucinations, perhaps due to preserved cross-modal sensory transfer344142, Brain

states underlying ketamine effects are discussed in more detail in Chapter 6.



1.1.4 Beyond hypnotics: opioids and muscle relaxants

A full review of the mechanisms underlying pain, analgesia, and neuromuscular

blockade is beyond the scope of this thesis, and has been done elsewhere*3,

Briefly, whilst their role in anaesthesia is coming under scrutiny due to the opioid
epidemic*, opioids still form a key part of most perioperative analgesia plans. By
acting as spinal and brain p-opioid agonists, opioids inhibit ascending transmission of
nociceptive signals, exert an antinociceptive effect, and alter central affective
responses to pain. A wide variety of synthetic and natural opioids are present in clinical
practice and include short-acting (remifentanil, alfentanil), intermediate-acting
(sufentanil, fentanyl) and long-acting (morphine, oxycodone, codeine) opioids. They
act synergistically with hypnotics and reduce hypnotic drug requirements*®. However,
reduction in anaesthetic concentrations is not complete and opioids are not complete
anaesthetics. Side effects include bradycardia, respiratory depression, post-operative

nausea and vomiting, development of tolerance, and opioid-induced hyperalgesia“.

Neuromuscular blockade to achieve skeletal muscle relaxation forms a key part of safe
anaesthetic practice enabling tracheal intubation and optimal surgical conditions.
Since introduction of succinylcholine in 1952, a variety of muscle relaxants have been
introduced into clinical practice. Neuromuscular blocking drugs (NMBDs) exert their
paralytic effect by blocking transmission of nerve impulses at the neuromuscular
junction. They can be classed into two main groups, depolarising NMBDs that mimic
acetylcholine (e.g. succinylcholine) and nondepolarizing NMBDs that interfere with

cholinergic action (e.g. pancuronium, rocuronium, cisatracurium).



1.2 Electroencephalography and its uses in

anaesthesia monitoring

Due to its ability to capture brain activity non-invasively with excellent temporal and
moderate spatial resolution, as well as its potential for clinical translation,
electroencephalography data was chosen as the main modality for this thesis. This

technique and some common output metrics are introduced in this section.

1.2.1 General and historical overview

Localisation of mental faculties in the brain was already by accepted by some classical
physicians including Hippocrates and Galen. However, for centuries, functional
localisation was erroneously linked to the ventricles*’. Even as human understanding
of anatomy progressed, in vivo human neurophysiology lagged behind, largely due to

a lack of non-invasive imaging techniques.

The electroencephalogram (EEG) was one of the first tools to dramatically change this.
Neural communication in the brain happens through small ionic electrical currents that
lead to measurable (albeit small, on the order of uV) differences in electric potential
on the scalp. Once it was understood that not only is the ‘seat of the soul’ in the brain,

but also that it communicates and organises electrically, the electric brain was born?,

The typical historical narrative of EEG and its use during anaesthesia goes as follows.
First, in 1875, Richard Caton noted electrical activity in monkey and rabbit brains*°.
Half a century later, after decades of trying unsuccessfully, Hans Berger first recorded
electrical activity from a human brain in 1924 (published in 1929%) and coined the

term ‘EEG’. His findings were not taken seriously until Adrian and Matthews replicated
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his findings in 1934°%, Shortly after, EEG research expanded into different pathological
and pharmacological conditions. In 1937, Gibbs, Gibbs, and Lennox were the first to
suggest EEG could be useful during monitoring of surgical anaesthesia®?, but early
systems were too cumbersome to use clinically. It wasn’t until 1996 that the first
widespread commercial EEG depth of anaesthesia monitor, the proprietary Bispectral
Index (BIS™) was approved in the United States®3. Since then, several other monitors
have appeared (e.g. Narcotrend®*, GE Entropy®®) although their use remains limited.
This is in part due to the monitors not tracking certain anaesthetics (e.g. ketamine,
nitrous oxide)® accurately, and research into individualised brain-based anaesthetic

markers is ongoing.

The above account is richer than it may seem. Hans Berger’s motivations were partly
pseudoscientific, as he had a belief in telepathic communication stemming from a
traumatic horse fall where his sister supposedly felt he was in a bad condition despite
being far away®®. Berger was described by others as introverted and anxious in social
situations’’. Whilst it was Gibbs, Gibbs, and Lennox (1937) who first suggested its use
as part of surgical anaesthesia monitoring, it was Berger who first recorded EEG
during human anaesthesia, first with chloroform and then with hexobarbital in 1933¢°,

with Grey Walter recording ether and nitrous oxide EEG in 19366%i, The first automatic

i Berger’s historical record may meet key modern diagnostic criteria for autistic spectrum
disorder. He showed persistent deficits in social communication (“avoidant of social contact,
found it difficult to communicate with staff and patients alike™”) and restricted / repetitive
patterns of behaviour (“his days resembled one another like two drops of water”®). Not enough
is known about his childhood to confirm this, but he also suffered from conditions significantly
more common in autistic adults without intellectual disability (congestive heart failure and
severe depression leading to his suicide in 1941)%. It should also be noted he collaborated
with the Nazi regime, though he was not a party member®®.

i Erna Leonhardt Gibbs was in fact another interesting character, obtaining the 1958 Woman
of the Year from the American Woman’s Association as a result “the most comprehensive
study ever made by a single individual in specialized brain research”?,
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control of anaesthesia through EEG was proposed in 19509364, though, as mentioned,

EEG did not gain in clinical prominence until the 2000s.

Electroencephalography offers a unique view into the brain. Simultaneous action of
millions of neurons is associated with synchronous postsynaptic currents that can be
volume-conducted to the scalp, producing the observed EEG signals. In theory, it can
offer a very high (kilohertz) temporal resolution that captures direct neuronal
communication, unlike functional magnetic resonance imaging and related techniques
that rely on the (slower) blood flow or metabolic response. Furthermore, unlike
magnetoencephalography, it can be used in freely-moving subjects in rooms without

shielding and is relatively inexpensive.

However, like all other brain recording methods, EEG comes with significant limitations.
Intrinsically, it is biased towards synchronised cells, and the signal thus likely
represents the activity of less than 5% of active neurons, possibly much less®°.
Furthermore, due to volume conduction, spatial resolution of EEG is poor, at best a
few centimetres. Because of the small magnitude of brain signals, EEG is also
susceptible to a large number of artifacts; chiefly ocular potentials and muscle noise
from the frontalis and temporalis muscles, but also the skin potentials, cardiac
potentials, and external electric fields (e.g. 50Hz mains noise or a surgical diathermy).
Experiments with paralysed but awake subjects have demonstrated that the EEG
signal above ~30Hz is dominated by muscle noise®67. Quality of the EEG recording
can be improved by various pre-processing methods including band-pass filtering
(typically 0.5-30Hz), removing gross movement artifacts, and performing pre-
processing with blind source separation techniques (chiefly independent component

analysis, ICA) to remove eyeblink, cardiac, and muscle artifacts®®.
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Apart from analysing the EEG in the time domain, a standard frequency domain
approach is to divide the signal into canonical frequency bands. These include the
slow and delta bands (<4Hz), theta (4-8Hz), alpha (8-13Hz), beta (14-30Hz), and
gamma (>30Hz), though specific frequency limits vary between studies®®. This
analysis can be extended into the spectrogram, where power in each frequency bin is
examined over time. Higher-order analyses exist, such as looking at cross-frequency
coupling or measures of statistic dependence, also known as functional connectivity.
These include measures of phase coherence, such as the phase locking value or
phase lag index, which are motivated by the theoretical efficiency of using coherent

signals for communication in the brain®°.

1.2.2 EEG changes under general anaesthesia

Pharmacological alterations of EEG are in general complex and depend on the drug
combination, dose, and cortical location studied. However, for GABAergic
anaesthetics, there exists a set of common dose-dependent frontal EEG patterns
displayed in the majority of patients — though with significant between-patient

variability (Figure 1.1)7071,

First, at mild sedation levels, paradoxical excitation of the EEG can be observed,
characterised by beta activity around 12-20Hz. As the patient loses responsiveness,
the EEG slows and shows frontal alpha-spindles around 8-12Hz. This anteriorisation
of the EEG was first described in 197772 and is one of the reasons why frontal EEG
monitoring is not only convenient, but potentially useful. After loss of responsiveness,
slow / delta waves (<4Hz) become more prominent. This alpha-delta pattern was

already identified by the early pioneers mentioned above®2€°, with the slow (<1Hz)
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oscillation studied by Steriade and colleagues’®. At deep anaesthetic concentrations,
burst-suppression occurs, leading to periods of EEG suppression (low amplitude <5uV
for seconds to minutes) and bursts of high-amplitude activity lasting a few seconds. At
even deeper concentrations, the EEG becomes continuously suppressed until it
becomes isoelectric. Burst-suppressed and isoelectric traces are pathological patterns
also seen in hypoxic injury and severe hypothermia’®. Burst-suppression may be
reflective of metabolic conditions’® and may occur in a limited cortical region’® with
asynchronous bursts’’. Intra-operative burst-suppression has been associated with a
higher incidence of postoperative delirium”. However, it is not clear whether this

association is causal, or simply reflective of underlying patient vulnerability ”°.

The slow/delta-spindle pattern observable on the EEG is generated by the
thalamocortical system881, Slow waves measured on the scalp are characterised by
a large numbers of neurons switching between UP states of high activity and DOWN
states of relative silence’®. The slow oscillation can persist after thalamic lesions and
can be generated in isolated in vitro cortical slices, so it was initially thought to be
cortically generated®. However, more recently, an essential contribution of the
thalamus to in vivo slow oscillations has been revealed®, likely particularly important
in initiating UP states and determining the oscillation frequency?®. Cortical slow waves
have been shown to be travelling waves on the scalp, predominantly in the anterior to
posterior direction®6. Spindles are generated thalamically and travel to the cortex
anteriorly, forming loops between GABAergic thalamic reticular neurons and
thalamocortical neurons. With thalamocortical neurons hyperpolarised, sensory

information gating at the thalamus becomes disrupted?”.
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Figure 1.1: Classical frontal anaesthetic EEG responses. Shown are the raw EEG
(row 1), power spectra (row 2), spectrogram (row 3), and volatile anaesthetic
concentration (row 4). With increasing concentrations, the pattern transitions from
noise (A) to paradoxical beta activity (B), slow/alpha rhythm (C), and burst suppression
(D). This figure has been reproduced with permission from Figure 2 in " (licence

5536531205123).

The above patterns hold for commonly used hypnotic drugs, and they form the basis
for current commercially available proprietary depth of anaesthesia indices®. However,
care must be taken in real-world anaesthetic scenarios. Firstly, dissociative
anaesthetics including ketamine and nitrous oxide can have an EEG dominated by
increased high-frequency activity, likely driven by corticothalamic depolarisation, with
decreased alpha oscillations®. They can produce slow waves, but sometimes in

unusual ways, such as transient delta increase on introduction of nitrous oxide®°.
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Secondly, coadministration of opioids and other drugs can further complicate EEG
interpretation. Depending on the level of surgically induced noxious stimulation,
opioids may restore the alpha oscillation and modestly increase slow waves, or
conversely decrease the EEG power’191, Brainstem arousal modulators including
atropine, scopolamine, or dexmedetomidine can also increase delta activity, even in
absence of unconsciousness®. Neuromuscular blockade can decrease muscle
artifacts in the EEG and can be falsely interpreted as decreased gamma power®®,
Thirdly, EEG patterns change throughout development and aging, with a broad trend
to lower slow-wave power in older adults, and certain disorders result in high delta
power even whilst awake®3. Fourthly, induction and emergence from anaesthesia are
not symmetric, and hysteresis (neural inertia) may be present®%. These factors can
result in misleadingly high or low values of proprietary EEG-derived depth of

anaesthesia indices and present a challenge for titrating anaesthesia to the EEG9.

Novel analyses that move beyond analysing the power spectrum in anaesthesia are
being increasingly studied in an attempt to unify distinct drug patterns that all lead to
clinical loss of consciousness. These include examining the ‘noise’ in the EEG, i.e.
background aperiodic activity (also termed fractal activity or pink / brown noise), which
may reflect overall balance of cortical inhibition and excitation®’. Other approaches
focus on studying complexity of the EEG, based on theories of consciousness that
suggest specific forms of information processing with sufficient complexity are
necessary to maintain consciousness®-1%_ A potential advantage of such theoretically
motivated formulations of consciousness is the ability to extend them to different
imaging modalities and conditions including sleep, disorders of consciousness, and

altered states of consciousness32:101,102,
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1.2.3 Slow-wave saturation

For a variety of anaesthetics including propofol, halogenated ethers, and ketamine, it
has been shown that slow-wave activity in the EEG (SWA, typically 0.5-1.5Hz) not only
increases with increased anaesthetic concentration, but saturates and forms a plateau
past the point of loss of behavioural responsiveness but prior to peak anaesthetic

concentration (slow-wave activity saturation, SWAS)94103,

Existing studies demonstrate the exciting potential of SWAS as an anaesthetic end-
point, but several key areas of ongoing investigation remain. These include
fundamental scientific questions about how SWAS relates to underlying receptor
neurobiology, as well as practical investigations into how SWAS compares with
existing depth of anaesthesia indices and whether surgery at SWAS is feasible and

improves clinical outcomes.

1.2.4 Autonomic nervous system and cortico-cardiac interactions

Human neurophysiology is a complex concert that extends beyond the brain, one full
of recurrent loops and both top-down and bottom-up interactions'®*. The autonomic
nervous system is traditionally responsible for involuntary activities essential to
survival including cardiovascular and gastrointestinal homeostasis'®®. Managing
autonomic responses is a key part of anaesthetic management aiming to avoid
deleterious effects and is routinely carried out as part of monitoring the heart rate and
blood pressure. The autonomic nervous system is sub-divided into two major branches,
the sympathetic (“fight or flight”) nervous system and the parasympathetic (“rest and

digest”) nervous system. Direct effects of propofol and ketamine on autonomic
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responses were described above and are discussed further in Chapter 3 and Chapter

6; here a brief overview of the system is given.

The sympathetic nervous system originates from thoracolumbar regions of the spine.
It activates in presence of a challenge to increase the heart rate, arterial pressure, and
cardiac output, with blood diverted from viscera to skeletal muscle. Endogenously, this
is achieved chiefly through action of norepinephrine, epinephrine, and dopamine

action on a- and B-adrenergic receptors at the target organ synapse.

The parasympathetic nervous system originates in the midbrain, medulla oblongata,
and sacral part of the spine. Here, the target organs possess muscarinic acetylcholine
receptors, and muscarinic antagonists can thus also be deployed to increase heart
rate (anticholinergics including atropine and scopolamine). Most descending
parasympathetic traffic is mediated by the vagus nerve (cranial nerve X). It supplies
the heart, respiratory tract, liver, and most of the gastrointestinal system. Curiously,
contemporary estimates indicate that 70%-90% of vagal fibres are visceral afferents°6.
Through ascending vagal pathways, visceral signals have an important role in shaping
our conscious experience, including interoception and emotional processing®’.
Complex interactions, beyond just top-down control, between peripheral and central
physiology have been recognized, with e.g. heart-brain interactions altered under

anaesthesial08.109,

1.3 Thesis outline

There are various ways to define a ‘brain state’ under the influence of general
anaesthetics. Broadly, this thesis uses a recent definition by Greene et al, who define

a brain state as brain state as “a pattern of brain activity or functional coupling that
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emerges from, and has consequences for, physiology and/or behaviour™19, In the first
few chapters, the focus is on the state of slow-wave activity saturation. Current EEG-
based anaesthetic monitors have been shown to inadequately identify patients who
are conscious during surgery!'*-113, This may be due to monitoring of only frontal
activity, particularly in light of some theories postulating a posterior ‘hot zone’
necessary for consciousness'4-11¢ with different dose-dependent frontal / parietal
behaviour observed!'’. Slow-wave activity saturation may indicate individualised
perception loss, but it is not known how SWAS unfolds across the cortex. Furthermore,
individual slow waves may be linked to low states of cortical complexity, potentially
having a causal role in disrupting information flow under anaesthesial*®11°, In Chapter
2, | examine slow-wave activity saturation across the cortex, linking it to local GABAA
receptor density. | further study the relationship between SWAS and other proposed
anaesthetic indices, the clinically used Bispectral Index and the well-researched

Lempel-Ziv-Welch complexity.

Next, the heart shall appear for the first time, challenging how we should think about
a ‘brain’ state. In sleep, slow waves have been linked to individual heart beats!?. In
Chapter 3, | show this is also the case in propofol anaesthesia. Furthermore, the
controversial effect of propofol on heart rate and autonomic activity is studied, leading

to a hypothesis of a common brainstem generator.

Slow waves are known to be highly non-sinusoidal*?!. This means standard Fourier-
based analysis may miss important morphological features, such as those that change
with aging?2. In Chapter 4, | develop and validate a new method to decompose
oscillatory modes, iterated masking empirical mode decomposition (itEMD). Applying
it to propofol EEG suggests three low-frequency oscillators may be present, linking it
to multiple types of slow waves proposed in sleep!?3-125,
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Traditionally, brain activity has been seen as continuously unfolding. However,
recently, it has been shown brain activity can be represented as switching between
discrete states that can be found using techniques such as Hidden Markov
Models'?6:127, These states have been shown to have physiological relevance,
including in sleep'?® and ketamine anaesthesia'?®. In Chapter 5, | apply Hidden Markov
Modelling (HMM) to study state switching during propofol anaesthesia. | then explore
data-driven heart-brain HMM states. Finally, | push the HMM methodology to test

simulated low-density EEG montages that would be easier to use in clinical settings.

Finally, we turn to ketamine. It has been proposed that the acute dissociative ketamine
state may mediate its antidepressant effects'20, but this remains controversial*3132, In
addition, ketamine administration in psychiatric settings is currently most often done
without any monitoring of the brain. In Chapter 6, | examine the neurobiology
underlying sub-anaesthetic ketamine dissociation and find HMM brain states
underlying dissociative phenomenology, as well as consider how these translate to
low-density EEG montages. Building on this, in Chapter 7 | present results from an
observational clinical study of EEG recorded during routine ketamine treatment of
depression, which | devised and ran in collaboration with Oxford Health Foundation

Trust.

In the final chapter, | explore recurrent themes in the thesis and synthesise my results
with existing literature and clinical practice. | consider limitations and future directions
of the work, as well as its significance for the wider project of explaining the neural

mechanisms of anaesthetics and using this to improve anaesthetic patient care.
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2 Neurobiology of slow-
wave saturation and its
relationship with existing
anaesthetic markers

2.1 Introduction

Several commercially available EEG-based depth of anaesthesia monitors exist.
These include the Bispectral Index (BIS, Covidien, Mansfield, MA, USA), Entropy
module (GE Healthcare, Medical Diagnostics, Amersham, UK), and Narcotrend
monitor (MonitorTechnik, Bad Bramstedt, Germany). Their proprietary software differs,
but broadly they track the reduction in higher EEG frequencies and increases in low-

frequency activity®8.

However, the currently available depth of anaesthesia monitors may not be better than
traditional vital sign monitoring at preventing accidental awareness'®. Their use
remains limited, with only about 2.8% of general anaesthetics in the UK being
monitored with processed EEG in 20131, rising to 19% in 2023". This rise may be in
part due to 2012 National Institute for Health and Care Excellence (NICE) and 2018
guidelines from the Association of Anaesthetists (AAGBI) recommending the use of
EEG monitoring in at-risk patients and in all cases of total intravenous anaesthesia
(TIVA)'34, A recent survey of predominantly European anaesthetists showed that
hypnotic monitoring is considered important and appetite for such monitoring is

present, but a lack of knowledge of relevant algorithms exists!3®,
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Next-generation individualised EEG signatures of adequate hypnosis and loss of
perception are needed. Slow-wave activity saturation (SWAS) is being investigated as
one such potential marker3.-94, At SWAS, sensory processing revealed by functional
MRI was found to be severely impaired, suggesting that SWAS may represent an
individualised loss of perception marker3:3¢, Slow-wave activity saturation is
characterized by two key parameters; firstly, power at SWAS (Pswas), which correlates
with grey matter volume and decreases with age3'%* suggesting it is reflective of the
number of neurons undergoing a slow oscillation, and secondly, the hypnotic
concentration at SWAS (Cswas). In a large routinely collected clinical dataset with
N=393 individuals induced into general anaesthesia, SWAS was identified in 92% of
patients, with failed fitting largely attributable to artefacts or insufficient anaesthetic
doses. These patients received a variety of co-induction agents including paralytics
and opioids, suggesting SWAS is potentially a robust clinical target for anaesthesia
titration. However, in order to support clinical translation of SWAS, more needs to be
known about its neurobiological basis and relationship with existing depth of
anaesthesia measures. For instance, frontal monitoring has been shown inadequate
at recognising covert consciousness!!, which could be due to relevant features not

being frontal''4.

The BIS monitor is the most widely used clinically*®’. It aims to capture anaesthetic
depth with a single parameter, the Bispectral Index, a number ranging from 0 to 100
with 40-60 considered adequate anaesthetic depth. Due to the popularity and use in
existing research and clinical practice of this index, it was chosen here for a
comparison with SWAS. The exact Bispectral Index algorithm remains proprietary, but
insights into its workings have been made. The BIS index is the weighted sum of three

parameters: the ‘Beta ratio’, quantifying relative loss of high-frequency power, the
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‘Synch-Fast-Slow’, measuring relative increase in delta power, and the ‘Suppression
Ratio’, which tracks the percentage of time for which the EEG is suppressed at high
anaesthetic doses®. Importantly, the BIS algorithm was recently reverse-engineered
into an open-source implementation that was virtually indistinguishable compared to
the native BIS values when applied to real anaesthetic EEG data'®®. This
implementation suggests the BIS is largely dependent on the relative high- to low-

frequency power, without computation of the bispectrum being necessary.

The dependence on high-frequency activity makes the BIS index especially
susceptible to electromyographic (EMG) muscle noise. In a rare study of volunteers
(anaesthetists) undergoing awake paralysis with rocuronium or suxamethonium, the
BIS decreased to <60 (suggesting adequate anaesthesia), sometimes for several
minutes, despite no changes to awareness®. This is concerning, as cases of
accidental awareness can be most traumatic and difficult to recognise during uses of
neuromuscular blockade drugs®. As BIS is based on population averages and not a
scientifically sound hypnotic end-point, BIS also increases with age, further

complicating its interpretation®°.

Brain complexity has also been linked to conscious processing and awareness, with
decreased global complexity observed across a range of unconscious states including
anaesthesia, sleep, and coma®9. Measures of brain complexity that reliably track
consciousness are under development and include the validated perturbation
complexity index (PCI1)192, Using such measures clinically to monitor possible covert
states of consciousness in coma and anaesthesia remains a key translational goal of
both neuroscience and anaesthesiology'4%-142, Electrically, as outlined in Chapter 1,
brain activity under propofol is characterized by large-scale cortical oscillations
between up states of neuronal firing and down states of relative neuronal silence. Such
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oscillations give rise to low-frequency (~1Hz) slow waves observable on spontaneous
EEG”3. These slow oscillations (and down states in particular) are associated with low

complexity states, and may play a causal role in disrupting complexity117:118.143,

Lempel-Ziv complexity is a measure of data compressibility and relates to the number
of non-redundant patterns in the signal*#414>, It has emerged as a leading method to
track brain complexity across different states of consciousness, either using changes
in brain activity evoked by stimulation®%192 or in the spontaneous EEG!#¢, Changes in
Lempel-Ziv complexity have also been shown across different vigilance states in
sleep!*’ and between hemispheres in patients where only half the brain is
anaesthetized#®. Lempel-Ziv complexity varies between brain regions during light
sedation, with frontal areas having the largest increases in complexity'#°. This spatial
organisation of complexity thus likely has important implications for clinical monitoring
as well as for our understanding of brain complexity structures that support

consciousness.

In this chapter, | investigated aspects of SWAS relevant for clinical translation. SWAS
is defined in terms of the drug concentration (Cswas) required to achieve SWAS, and
the slow wave power when held at this EEG endpoint (Pswas). However, it is unknown
how these SWAS parameters vary across different brain regions; this may have
important implications for optimal depth of anaesthesia monitoring. Using a dataset of
an ultra-slow propofol infusion in healthy volunteers published previously3!, | examined
how SWAS varies spatially. A preliminary analysis of SWAS across the scalp was
undertaken during my MPhys project, focusing on hysteresis modelling*®°. Here, that
analysis was re-done to correct for minor hypnotic dosing errors and extended as

outlined below.
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| was interested if spatial variation of SWAS was linked to underlying anaesthetic
receptor targets. Propofol, the most commonly used agent for surgical anaesthesia
induction, is a key example of a hypnotic drug acting on gamma-aminobutyric acid A
(GABAA) receptors and was chosen as the model for this chapter. GABAAa receptors
are heterogeneously distributed throughout the brain?®-153, Thus, | hypothesised
potential topographical differences in slow-wave parameters would be explicable by
differing local GABAA receptor density, the main receptor target for propofol. Regional
metabolic reductions caused by propofol are significantly linked to local ex vivo
collected GABA receptor density measurements'®*. Recently, a quantitative in vivo
high-resolution atlas of local GABAa receptor density was developed using
[*1C]flumazenil Positron Emission Tomography (PET)'*°. These GABAa binding
values have been used to model brain dynamics extracted from functional magnetic
resonance imaging (FMRI) in propofol anaesthesial® and disorders of
consciousness®®’, suggesting differences in regional GABAAa expression are important
for explaining propofol’s effects on the brain. | combined the results from this in vivo
atlas with a recent EEG-MRI co-localisation study*®® to compute a scalp projection of
GABAA receptor density in cortical regions corresponding to the standard 10-20 EEG
montage, enabling for a test of my hypothesis by direct comparison with SWAS metrics

across the scalp.

Finally, to investigate SWAS in relation to known depth of anaesthesia measures, |
compared it to the two important metrics introduced above. First, as slow oscillations
may mediate low complexity states, | compared SWAS with brain complexity
(quantified by Lempel-Ziv-Welch complexity). Second, due to its prevalence and

understanding by clinicians, | compared SWAS with the Bispectral Index (BIS).
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2.2 Materials and Methods

2.2.1 Data

Data collection: This dataset came from the original SWAS study where an ultra-slow
propofol infusion was administered in healthy volunteers3!. A local Research Ethics
Committee approved the original experiment and subsequent reanalyses of the data.
The data were acquired using a 32-electrode EEG cap (BrainCap MR, Easycap GmbH)
at 5kHz sampling rate referenced to FCz (standard 10-20 system. This was collected
in N=16 healthy subjects (8 female) during intravenous induction of propofol up to an
estimated effect-site concentration of 4 pg/ml. Electrode impedances were kept under
5kQ. The experiment was separated into 4 main periods: 10 minutes awake, 48
minutes induction, 10 minutes peak anaesthesia and 48 minutes emergence. For
details, see the original publication3!. There were two key behavioural endpoints: the
time when the participant lost (LOBR) and recovered behavioural responsiveness
(ROBR) to a cognitive auditory word task. Time when the subject achieved slow-wave
activity saturation (Tswas)% was also calculated, as detailed in the slow wave activity

saturation analysis section below.

Data pre-processing: EEG data pre-processing was carried out with BrainVision
Analyzer version 2.1 (BrainProduct GmbH), custom written MATLAB code (MATLAB
2020a, Math Works Inc.), and the EEGLAB (v2019.1) analysis toolbox. The EEG data
were re-referenced to the common average of signals from all EEG channels, leaving
31 independent channels. Bad channel rejection was performed by Dr Di Zang to
remove channels with excessive noise or bridging (mean 0.25 channels per subject,
range 0-3). All data were down-sampled to 250Hz and band-pass filtered using a

phase-preserving third order Butterworth filter (0.5 to 90Hz).
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2.2.2 Slow-wave activity saturation analysis

To compare changes in complexity and slow-wave power, | analysed the pre-
processed broadband EEG data from induction (48 minutes) of each subject. Slow-
wave power (0.5-1.5Hz) was calculated using the short-time Fourier Transform
spectrogram (4 second windows, 3 second overlap as per previous work%). A 4-
parameter sigmoid curve (Equation 1; SWA = slow-wave activity; x = propofol
concentration in yg/ml; r, s, t, u are constants)®* was fitted to the power trace of each

electrode from each subject using MATLAB’s interior point method (fmincon).

s—r
SWA(x) =r+

1
1+exp(—xT_t) s

Power at slow-wave activity saturation (Pswas) was defined as 95% of the sigmoid
maximum. Concentration at SWAS (Cswas) was defined as the propofol effect-site
concentration at SWAS. The baseline slow-wave power was quantified by the r
parameter (hereafter referred to as ‘baseline’). An electrode fit was excluded if Cswas
was well above the propofol concentration used in the experiment (Cswas>4.5ug/ml),
or if Cswas was in the lowest 15t percentile and not a real number (Cswas<0.8ug/ml).
Subjects with more than 4 excluded electrodes were excluded from subsequent
analysis entirely (N=1). Topographies of group-mean values of relevant fit parameters

were plotted using EEGLAB (baseline, Pswas, Pswas-baseline, Cswas).

2.2.3 Lempel-Ziv Complexity analysis

There are various ways of computing Lempel-Ziv complexity (e.g. LZ77, LZ78, LZW)
that have minor differences in how they build up a dictionary of patterns. In this study,

Lempel-Ziv Welch complexity (LZW) was used. This is a version designed for larger
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datasets'#>15° that has previously been used to identify a potential prodrome of

Parkinson’s diseasel¢9,

The Lempel-Ziv-Welch (LZW) complexity metrict4>161 was extracted by Dr Di Zang to
describe complexity of the EEG signal, and was used for this analysis with permission.
The code to compute LZW is available at https://github.com/giulioruffini/StarLZW.
Using the pre-processed EEG signal, LZW complexity matrices were calculated in
sliding windows (9s window length, 4s overlap) to explore the temporal dynamics of
complexity. Signal was binarized around the mean and normalised by word length
(also known as po'®t). In local LZW analyses, complexity of each channel was

calculated separately.

2.2.4 Topographical relationship of complexity and slow-wave saturation

To explicate connections between slow waves and brain complexity, | compared each
electrode’s mean LZW complexity and SWAS fit parameters for (i) a baseline period
of first 10 minutes of the experiment (propofol effect-site concentration less than
1ug/ml, baseline parameter r vs mean LZW) and (ii) a 10-minute SWAS period around
the peak of effect-site concentration (Pswas, Pswas-baseline, Cswas vs mean LZW).
Spearman correlation and associated P-values (after appropriate False Discovery
Rate multiple comparisons correction; FDR) were used to compare both effects on
each electrode (correlation across subjects, N=15) and similarities of spatial patterns

(correlation across channels, N=31).
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2.2.5 Linking SWAS and LZW to local gamma-aminobutyric acid receptor

density

To test my hypothesis that SWAS parameters would be linked to propofol's GABAA
receptor targets, | used a recently developed open-access brain atlas of human
GABAa benzodiazepine receptor density!®. To estimate GABAa receptor density
under each 10-20 EEG electrode, | used previous work localising EEG positions on
the cortical surface of the standard MNI-52 brain'®8, Using FMRIB Software Library
v6.0 (FSL)*?, | found the mean GABAA receptor density in a 10mm radius sphere
centred on the cortical projection point of each surface electrode. Midline and TP
electrodes were excluded as the receptor density atlas did not cover those areas. The
relationship between the mean GABAa density and other parameters of interest
(baseline slow-wave power, Cswas, Pswas, Pswas-baseline, LZW at SWAS, LZW at
baseline) was tested across N=26 electrodes by computing the Spearman rank
correlation coefficient and associated Bonferroni-corrected permutation P-value in

MATLAB (function corr).

2.2.6 Comparison of SWAS with the Bispectral Index (BIS)

BIS index values were computed using a custom MATLAB implementation of a
recently developed and validated emulator'®3. Fz EEG signal was first resampled to
128Hz and re-referenced to TP9 to emulate the BIS montage. Five BIS values were
extracted for each subject using the emulator: mean BIS during 10min awake baseline,
BIS at loss of behavioural responsiveness (LOBR), BIS when SWAS was achieved,
mean BIS during 10min at peak propofol, and BIS at return of behavioural

responsiveness (ROBR). These were compared using repeated-measures ANOVA
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with post-hoc Tukey's tests. Within-subject variability of BIS during 10min at SWAS
was also examined, as was the Spearman correlation of BIS values and power at

SWAS across participants.

The dataset analysed in this chapter is available on reasonable request via

https://zenodo.org/record/1168447.

2.3 Results

2.3.1 Slow-wave activity saturation (SWAS) across brain regions

Slow-wave activity saturation is a potential individualised marker of loss of
perception3-94, To explore how this phenomenon varies across the brain, | computed
slow-wave power (0.5-1.5Hz) and fitted a sigmoid slow-wave saturation curve for each
electrode in each participant (Figure 2.1, also see Methods). This way the baseline
slow-wave power, power at SWAS (Pswas), and concentration required to reach the
slow-wave plateau (Cswas) were extracted at each electrode (Figure 2.2A). In the
baseline period, slow wave power was low across the brain but highest pre-frontally
(Figure 2.2A(i)). During deep anaesthesia, slow-wave power drastically increased but
was still frontally dominant (Figure 2.2A(ii)). Compared to baseline, central and lateral

parietal regions showed the largest increases in slow-wave power (Figure 2.2A(iii)).
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The concentration required to reach the slow-wave plateau varied across brain regions
(within-subject Cswas range 0.85+0.21, median + median absolute deviation; Figure
2.2A(iv)). This effect was consistent between subjects with a repeated-measures
ANOVA effect of Channel on Cswas F=12.55, P<0.001. Fronto-central regions required
the highest dose to reach slow-wave activity saturation. The spatial distribution of
Cswas across the brain was significantly correlated with power change from baseline
(Pswas-Baseline, Spearman p=0.8988, P<0.001) and its baseline topography (p=-
0.7298, P<0.001), but had a weaker correlation with power at SWAS (p=-0.4194,
P=0.0263). After correcting for multiple comparisons, correlations at individual
electrodes did not show significant associations between Cswas and the other slow-

wave curve fitting parameters (i.e. Baseline, Pswas or Pswas-Baseline).

30

| Data wmmmModel fit

20

o

10

Slow-wave Power [dB]

Propofol [pg/ml]
Figure 2.1: Slow-wave activity saturation sigmoid modelling. Time-varying slow-wave

power (0.5-1.5Hz, 1 red dot = 4s window) is plotted against propofol effect-site
concentration. A sigmoid is fitted to find power at slow-wave activity saturation (Pswas,

95% saturated), baseline power, and concentration at SWAS (Cswas).
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Figure 2.2: Local slow-wave parameter topography (A) and its relationship with local

complexity (B). (A) shows the spatial distribution of the (i) baseline slow-wave power,

(i) power at slow-wave activity saturation (Pswas), (iii) increase in power at SWAS

compared to baseline, and (iv) concentration required to reach SWAS, Cswas. (B)

shows the Spearman correlation between the slow-wave parameters and local broad-

band LZW complexity at each electrode location. Red triangles indicate significant

single-electrode correlations (FDR-corrected P<0.05).
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2.3.2 Topographical relationship of complexity and slow-wave saturation

Low brain complexity has been previously linked with low-frequency brain
oscillations!8. | therefore hypothesised high slow-wave power should be associated
with low Lempel-Ziv-Welch complexity at each electrode location. | compared mean
LZW in the baseline and deep anaesthesia conditions with the slow wave activity
saturation sigmoid parameters (Figure 2.2B). In the baseline condition, individual
electrodes did not demonstrate a significant correlation between the local LZW

complexity and baseline slow-wave power (Figure 2.2B()).

In deep anaesthesia, high slow-wave activity saturation power was significantly
associated with low local complexity across subjects (FDR-corrected P<0.05 across
almost all electrodes, Figure 2.2B(ii)). Additionally, the average spatial patterns of
power at SWAS and local LZW complexity showed a moderate, significant negative
correlation (Spearman p=-0.5375, P=0.0021). When comparing the change from
baseline to SWAS, local complexity displayed a negative correlation with the
accompanying slow-wave power increases, though this was not significant after FDR-
correction (Figure 2.2B(ii))) and the spatial patterns were not significantly correlated
(p=0.2133, P=0.2482). Concentration needed to reach SWAS (Cswas) was not
significantly related to peak anaesthesia LZW at any electrode (Figure 2.2B(iv)),
though their spatial patterns were significantly correlated (spatial correlation

Spearman p=0.7645, P<0.001).
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2.3.3 Links with local gamma-aminobutyric acid receptor density

To test the hypothesis of topographical differences in SWAS being linked to differing
local GABAA density, | used a recent in vivo atlas of GABAa receptor density.
Associations between the regional binding site density and the baseline, Pswas, Pswas-
baseline, and Cswas topographies were tested. | found the concentration needed to
achieve local slow wave activity saturation (Cswas, Figure 2.3B) was significantly
negatively associated with local GABAA receptor density (N=26 electrodes, Spearman
p=-0.6861, Bonferroni-corrected P=0.0018, Figure 2.3B). There was no significant
correlation with GABAAa receptor density and the power at SWAS topography
(P=0.4361), though there was a significant correlation between the slow-wave power
at baseline (p=0.58611, P=0.0187) and for the increase in slow-wave activity from
baseline (p=-0.6287, P=0.0077). Correlation between GABAa receptor density and
Lempel-Ziv complexity was also present during slow-wave saturation and peak
anaesthesia stages (Supplementary Figure 2.1 with permission of Dr Di Zang; at peak

anaesthesia Spearman p=-0.70, Bonferroni-corrected P=0.0013).
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Figure 2.3: Spatial differences in slow wave activity saturation and complexity
correlate with local GABAA receptor (GABAAR) density. (A) Local brain distribution of
GABAA receptor density, obtained from 5. (B) Correlation of Cswas with GABAa
receptor density (N=26 electrodes, Spearman p=-0.69, Bonferroni-corrected
P=0.0018). The black dots indicate the individual electrode averages and the linear
best fit line is shown in red. The insets indicate where data comes from, i.e., (i) group-
average Cswas topography and (ii) local GABAAR density from (A) projected onto the

standard 10-20 EEG system.
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2.3.4 Comparison with the Bispectral Index (BIS)

Finally, 1 was interested in how slow-wave activity relates to the commonly used
Bispectral Index depth of anaesthesia measure. In this ultra-slow propofol infusion
experiment, BIS values changed significantly (Figure 2.4, repeated measures ANOVA
P<0.001). BIS dropped from 86+7 when awake to 76+9 at LOBR (P=0.012), 49+4 at
SWAS (P<0.001), 49+9 at peak concentration (n.s.), rising to 86+12 at ROBR
(P<0.001; subsequent stages compared). This pattern of BIS decreasing before

reaching a floor was observed in every subject (Supplementary Figure 2.2).

For subjects that achieved SWAS, during 10 minutes at SWAS, within-subject BIS
values fluctuated, with standard deviation of 0=4.7 (Figure 2.5). The mean BIS value
at SWAS correlated with slow-wave power at SWAS across individuals (Spearman
p=-0.675, P=0.010, Figure 2.6). A linear best fit indicated BIS at SWAS =72 - 1.6 *

Pswas [dB].
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Figure 2.4: Bispectral Index (BIS) and Slow-wave power (SWP). (A) Group-mean BIS,
SWP, and estimated propofol effect-site concentration through the entire experiment,
with mean loss (return) of behavioural responsiveness (LOBR / ROBR) indicated. (B)
Average BIS values for each subject at different experimental stages: awake baseline,

LOBR, slow-wave activity saturation (SWAS), peak propofol concentration, and ROBR.
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Figure 2.5: Variability of the Bispectral (BIS) Index value during 10 minutes at slow-
wave activity saturation (SWAS) for each participant that achieved SWAS in the
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2.4 Discussion

In this chapter, slow-wave activity saturation (SWAS) was analysed across the cortex
and in relation to two existing EEG-based markers of anaesthesia: the Lempel-Ziv-

Welch complexity and the Bispectral Index (BIS).

2.4.1 SWAS across the cortex

There is an ongoing debate about the distinct roles of frontal and parietal regions in
supporting consciousnesst>117.146.149 " glow waves have traditionally been considered
as a frontally dominant phenomenon?®é164, |dentifying regional differences in the SWAS
parameters adds nuance to this view. It was indeed observed that slow-wave power
(0.5-1.5Hz) at SWAS was highest (pre)frontally both in the awake and deep
anaesthesia states. However, the increase in slow-wave power with propofol
anaesthesia was greatest across central and lateral parietal regions. These central
and lateral brain regions also achieved slow-wave activity saturation at higher doses,
with propofol concentrations needed to achieve SWAS varying across the brain on
average by 0.85ug/ml. Given the average effect-site concentration at SWAS was
around 2.8ug/ml, this is a variation of about 30%, a change in concentration
comparable to dose reductions when co-administering ketamine or magnesium as an

adjunct!®®, and can thus be considered clinically significant.

Slow-wave activity saturation has been proposed as an individualised loss of
perception marker3! with the slow wave power at saturation (Pswas) linked to the
number of neurons undergoing the bistable slow oscillation. Here, this was extended
by showing that the regional variation in the concentration needed to reach full

bistability (Cswas) is related to target receptor density within those regions. By
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projecting a recent in vivo atlas of receptor density onto relevant cortical locations, it
was showed this reduced regional susceptibility to propofol anaesthesia was
attributable to lower local GABAA receptor density, as would be expected with GABAa
as the primary hypnotic target. Effectively, the spatial differences in anaesthetic effect
could be explained by differences in local receptor target densities, suggesting a link
between this non-invasive brain activity-derived measure and the underlying

neurobiology.

Evidence for such receptor-function relationships such as this is growing. For example,
changes in GABAA have been shown to allow for better modelling of functional
magnetic resonance imaging (FMRI) results during anaesthesia’®® and, similarly,
serotonin 2A receptor (5HT2aR) effects on brain complexity have been shown in
psychedelic states'®®. A relationship between regional receptor density and metabolic
changes under anaesthesia has also been noted previously'>*, but here the underlying

molecular target is linked to an EEG-based anaesthesia marker for the first time.

This finding is supported by other work that has demonstrated broadband slow-wave
modulation envelopes posterior regions first after loss of responsiveness!!’. It may
therefore be the case that although slow-wave effects start appearing in posterior
regions at low doses, higher doses are needed to achieve full bistability of the cortex
and the subsequent disruption of fronto-parietal communication®*117.167  Furthermore,
if whole-brain slow-wave activity saturation is required for complete loss of perception,
frontal EEG monitoring, as is commonly used clinically, may underestimate the dose
required to achieve complete disconnection from the environment. This may explain
some of the ‘black swan’ cases of positive isolated forearm test (IFT) responses under
seemingly adequate alpha-delta frontal EEG patterns:112, The spatial variation is
also pertinent in light of recently proposed ‘islands of awareness’ in patients with
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disorders of consciousness®16° and work showing local sleep dynamics co-occurring

with conscious states?.

2.4.2 Brain complexity and slow waves

Slow oscillations in the brain may offer a causal explanation of the disrupted
information flow and lower complexity observed in anaesthesia!!’-1%171 This can be
interpreted within leading theories of consciousness, where information and
complexity in the system are hypothesised to underlie features of phenomenal
consciousness®102159.172173 Tg support this, it was observed that as the anaesthetic
dose increased, the drop in brain complexity tracked the increase in slow-wave power.
A significant negative correlation between the spatial organisation of maximal slow-
wave power and brain complexity was also found. This is consistent with the idea that
slow-wave activity can act as a controlling mechanism for the cortical circuits
responsible for the integration of high complexity information from top-down priors and

bottom-up data streams!%%.174-177,

Local concentration to reach SWAS demonstrated a statistically significant association
with local drug target binding site density. However, there may be multiple types of
slow waves with distinct generators and functional roles'?3124178  sometimes leading
to the appearance of wakeful slow-wave power in certain syndromes'’®. The possibility
of distinguishing different oscillation types is explored in Chapter 4. Despite this, slow-
wave activity saturation is directly interpretable in terms of cortical slow oscillations
and may be easier to compute in real time3!. Taken together with the fact that there

are many ways to compute complexity with slightly differing results®, SWAS may
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potentially prove more robust to use as an individualised, brain-based depth of

anaesthesia index than measures of complexity®*.

2.4.3 Slow waves and the Bispectral Index

Comparing novel metrics to currently used clinical measures of depth of anaesthesia
is important, as it allows for better interpretability and easier understanding for
anaesthetists without an interest in research. In this work, | showed for the first time
that in a cohort of young healthy volunteers undergoing a slow propofol infusion, slow-
wave activity saturation (SWAS) corresponds to around BIS 50 at the group average,
with significant within-subject and between-subjects variability within a range of around

BIS 30 to BIS 70.

It is reassuring to see that most of the time, people at SWAS fall into the manufacturer
recommended zone of BIS 40 to BIS 60. However, there are several reasons why the
BIS should not be seen as the gold-standard and SWAS may be a superior measure.
In this experiment, all participants at SWAS can be taken to be in the same brain state,
as supported e.g. by concurrent FMRI®L. Despite this, BIS at SWAS was linearly
related to the slow-wave power plateau. This makes sense in the context of existing
literature, as BIS is also higher in older adults, who tend to have lower EEG power!.
Furthermore, unlike BIS, SWAS is specific for each individual, relating to their number
of cortical neurons and GABAA receptor densities. In this dataset, SWAS was a well-
defined stable end point, with BIS being variable despite the brain likely being in the
same physiological state. If anaesthesia was titrated using the BIS 40-60 range, 6/14
of these subjects would have likely experienced either over- or under-anaesthesia.

Finally, unlike BIS, SWAS is not as susceptible to high-frequency muscle artifacts or
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changes brought on by neuromuscular blockade. However, as the BIS emulator does
not incorporate artifact detection and subjects were not paralysed, this could not be

directly shown in the present dataset.

2.4.4 Limitations of the study

In this work, | assessed Lempel-Ziv-Welch complexity as it is a well-understood and
robust measurel02146.149.161  However, it comes with certain limitations. Firstly, it is
affected by linear signal properties such as frequency changes®°. By a phase shuffling
surrogate analysis, it was shown this is not the case in our data (data from Dr Di Zang,
currently being prepared for a publication). However, LZW is still a so-called type 1
complexity, where maximum randomness is equated with maximum complexity*.
Other alternative metrics where maximal complexity falls near the critical point
between order and chaos exist!8l, They behave similarly in propofol, but for other non-
GABAergic agents (e.g. ketamine), this difference may be important and the results
here may not generalise. Also, average GABAAa receptor density and anaesthetic dose
response were linked here, but further work would be needed to establish to what
extent differences between GABAAa receptor expression between subjects lead to
different individual anaesthetic susceptibility®?, or whether the former can be used to
optimise clinical monitoring. Lastly, different analysis methods may be better suited at
finding discrete short-lived states in the data (for instance the Hidden Markov Model*3
explored in Chapter 5). This may be relevant for identifying properties of states
associated with worse postoperative prognosis such as burst-suppression’®, which

was only present in one subject in our dataset.
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3 Effect of propofol on
heart rate and its coupling
to cortical slow waves in
humans

3.1 Introduction

In the previous chapter, | explored the variation of slow-wave saturation across the
scalp, its links to GABAA receptor density, and a comparison to existing depth of
anaesthesia metrics. Monitoring of the heart and lungs is still the most common
method used by anaesthetists to assess anaesthetic depth. Cardiac monitoring
therefore forms a key part of anaesthetic practice, and heart physiology has known
effects on the brain%®184 Thus, in this chapter, | aimed to link the two together and

explore propofol’s effect on heart rate and its links to slow waves.

Propofol is the most widely used intravenous anaesthetic hypnotic drug!®. In contrast
to halogenated ether anaesthetics, it causes significant cardiovascular depression
manifesting mainly as arterial hypotension'8. However, despite decades of clinical
and laboratory use, the effect of propofol on heart rate (HR) remains controversial. In
clinical settings, propofol administration has been reported to carry a risk of
bradycardial®187 and several texts state propofol decreases the heart rate as an
accepted fact!®®18  QOthers however find propofol to have no effect on the heart
rate'®.190 and much of the literature, especially in laboratory settings, appears to show

significant increases in heart rate3%-1°1-19_Clinical research is complicated by common
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co-administration of opioids with bradycardic effects. On theoretical grounds,
propofol's effect on the heart rate may be due to modulation of GABAergic

neurotransmission to cardiac parasympathetic neurons in the brainstem?9,

Propofol also affects peripheral nervous activity. This can be indexed by heart rate
variability (HRV), i.e. the beat-to-beat variation in heart rate (distinct from the mean
heart rate, HR). Specifically, propofol appears to decrease heart rate variability, in part

through lowered parasympathetic tone!,

In the brain, propofol causes neuronal hyperpolarisation by prolonging GABA-
activated opening of chloride channels. At the network level, this causes the cortex to
switch between up states of relatively high activity and silent down states. This
switching can be observed as slow (~1Hz) waves on the electroencephalogram?3. As
propofol dose is increased, power in the slow-wave band (typically 0.5-1.5Hz)
saturates, at which point the thalamocortical system becomes largely isolated from
environmental stimuli®L. By disrupting information processing, these slow waves may
have a causal role in sustaining unconsciousness!!®. Similar slow waves are observed
in non-rapid eye movement sleep®. In sleep, individual slow waves have been linked

to changes in autonomic activity including individual heartbeats20.196.197,

For this chapter, | first performed an advanced secondary analysis of
electroencephalographic (EEG) and electrocardiographic (ECG) data collected in the
study presented in Chapter 2. As effects of propofol may depend on induction speed,
the ultra-slow infusion provides a unique perspective on propofol effects in this
context!®®. My first aim was to study the propofol ECG data. | hypothesised that in this
study, free of concomitant medication, propofol would increase the mean heart rate

and decrease parasympathetic effects as indexed by high-frequency heart-rate
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variability (HRV). My second aim was to explore a possible link between ECG activity
and frontal cortical slow waves seen in the EEG. | hypothesised that similar to non-
rapid eye movement sleep, slow waves would preferentially occur time-locked to
individual heart beats. Finally, to aid clinical translation and see if the heart rate
findings held validity in patients, | also analysed clinical EEG and heart rate data from

N=96 ASA-2/3 patients collected as part of the AlphaMax study*®°.

3.2 Materials and methods

3.2.1 Data collection

This dataset is the same as that studied in Chapter 2. In brief, 32-electrode EEG and
single-channel ECG was collected in N=16 healthy subjects (8 female, age 28.6+7
years) during slowly increasing intravenous infusion of propofol up to an estimated
effect-site concentration of 4 pg/ml. The experiment was separated into 4 main periods:
10 minutes awake, 48 minutes induction, 10 minutes peak anaesthesia and 48
minutes emergence. Informed written consent was obtained from all participants;

details of this experiment have been published previously3!.

3.2.2. Data pre-processing

EEG data pre-processing was carried out with BrainVision Analyzer version 2.1
(BrainProducts GmbH), custom written MATLAB code (MATLAB 2020a, Math Works
Inc.), and the EEGLAB (v2019.1) analysis toolbox. The EEG and ECG data were re-
referenced to the common average of signals from all EEG channels. This was done

as theoretical reasons suggest scalp average to be a robust null reference which
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decreases volume conduction effects?®. Independent component analysis and bad
channel rejection was performed to remove EEG data with blinks and ocular
movements. EEG data were band-pass filtered with a phase-preserving third order
0.5Hz-45Hz Butterworth filter. EEG data was down-sampled to 100Hz and ECG to

500Hz.

3.2.3 Time-series ECG analysis

Heart rate, ECG waveform templates, and R-wave amplitudes were extracted using

the biosspy toolbox (https://github.com/PIA-Group/BioSPPy/) which uses Hamilton

segmentation?%! to identify individual R-wave peaks, the heart rate, and ECG
waveform templates. This was used on each subject to extract an instantaneous heart
rate trace and ECG properties, which were subsequently Spearman-correlated to the

propofol effect-site concentration.

3.3.4 Heart rate variability ECG analysis

To explore correlates of autonomic activity, standard heart rate variability metrics were
extracted for 5-minute segments in each subject using the pyHRV toolbox?%? and
Spearman-correlated with propofol effect-site concentration at the group level. These
included root-mean-square successive difference between R peaks as well as
frequency domain metrics. These were ratio of low-frequency (0.04Hz-0.15Hz) and
high-frequency (0.15Hz-0.4Hz) heart rate variability and peak frequency in the high

frequency band.
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3.3.5 Slow-wave analysis

Slow-wave activity (SWA) was found as the spectral power in the 0.5Hz-1.5Hz band
on the frontal Fz channel. Correlation between SWA and heart rate / effect-site
concentration was found using Spearman correlation and its P-value in 5-minute
segments. Individual slow waves were identified using standard methodology based
on amplitude and duration thresholding implemented in the yasa toolbox86:120:203 |n
brief, each slow wave had to have amplitude in the 99" percentile of the 0.5-4Hz
amplitude and negative duration between 0.25s and 1.25s. Slow-wave frequency was

extracted as inverse of slow-wave period.

3.3.6 Cortico-cardiac coupling analysis

Once heartbeats and slow waves were identified, | aimed to test whether heartbeats
occur at preferential times in the slow wave cycle. For each slow wave detected, the
time delay relative to the slow wave start (initial downward zero crossing) was noted
for 8 heartbeats closest to it. Eight beats were chosen at this fully covers a potential
0.5Hz slow wave without overlapping with neighbouring slow waves. This resulted in
8 R-wave to slow wave (RS) intervals, using methodology similar to previous cardio-

respiratory analyses20420,

| wanted to know if ECG R-wave to EEG slow wave timings were distributed randomly
or in phase with the slow wave onset. For robustness, this was tested against a
surrogate null distribution in several ways. First, | utilised the same method that has
previously been used to study cardiorespiratory coupling?°¢. This method compares
the RS.1 interval (time interval between slow-wave start and preceding R-wave peak)

to a uniformly random null distribution. Starting from the beginning of each subject’s

50



RS.1 time-series, | used a moving window of 40 slow waves, and placed the
corresponding RS.1 intervals in a 10-bin histogram with outer limits of 0 and the mean
heart period for that window. From the histogram, the proportional Shannon entropy

is calculated as follows:
Shannon entropy = SH = Y}_, P, x log P,
Maximum Shannon entropy = SHmax = — log%

Proportional Shannon entropy = SHp = SH / SHmax,
Where Pk is the histogram probability of bin b and N is the number of histogram bins.

During perfect coupling, all RS-1 intervals fall into one bin and SHp=0. In the absence
of coupling, RS-1 intervals are distributed randomly, producing maximum entropy with
SHpe=1. For each subject, the mean SHp across the whole experiment was computed.
To determine a significance threshold, SHr was computed for N=10,000 surrogate
series of 200 random numbers each, drawn from a uniform distribution between 0 and
1 (mean heart rate of 60bpm). The 0.1t percentile was used to indicate significance
at the P=0.001 level (SHpP=0.970). Finally, for a preliminary multivariate extension, the

analysis was repeated on all channels and SHr and mean RS.1 extracted.

Additionally, for each slow wave identified, £2s of EEG and ECG activity were saved
around the slow wave start. This was then averaged across slow waves and subjects

to reveal any coherent ECG patterns during a slow wave.

Further tests of robustness

As the Galletly et al. method only tests RS.1 intervals, | wanted to perform further
robustness tests to verify the presence of an ongoing oscillation, not just RS-1. To test
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this in each subject and at the group-mean level, a histogram of RS timings (range
-3s to 3s) was computed and adjusted for between-subject heart rate differences by
multiplying it by the mean heart rate across the entire experiment for each subject.
Next, the histogram’s autocorrelation calculated. Significant, sine-like autocorrelation
would signify an ongoing ECG oscillation around the slow-wave onset. To assess
significance, autocorrelation for the same histogram but with uniformly random RS
timings in the (-3s, 3s) interval was computed for N=1000 surrogate distributions. To
further assess whether autocorrelation showed sinusoidal behaviour, and to find the
delay between this possible ECG oscillation and slow wave, an exponentially decaying
sinusoid was fitted to it (scipy.optimize.curve_fit) and significance established using
the Bartlett test on residuals compared to the mean. Additional methods using
simulations were used to further verify that this result does not follow trivially from

having two oscillations both around 1Hz (slow waves and heart rate, Appendix 2).

3.3.7 Clinical dataset analysis

In order to explore whether the heart rate results could be replicated in clinical data, |
performed a post-hoc analysis of heart rate and drug concentrations in N=96 patients
collected as part of the AlphaMax study (median age 74yrs (range 61 to 86yrs), 66
male, ASA 2/3, variety of procedures)'®®. These patients received a standardised
desflurane and fentanyl-based maintenance general anaesthesia that was titrated to
maximise the EEG alpha power in the intervention group. For each patient, heart rate,
and drug concentrations (propofol, fentanyl, desflurane) were sampled every 5
seconds. Individual ECG waveforms from this dataset were not available, so heart rate
variability or R-wave to slow wave time intervals could not be determined. The heart

rate was smoothed with a 2min moving median window to suppress artifacts and any
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heart rate above 250bpm or below 10bpm was not used. A large mixed-effects general
linear model was constructed with heart rate, drug concentrations, and demographic
variables. Specifically, the fixed effects of propofol, fentanyl, and desflurane (+ their
linear interaction terms), as well as age, BMI, ASA status, and sex were studied. A
random effect of each individual’s mean heart rate was included. In summary, the

model equation was

HR[bpm] = Bo + B1*age + B2*BMI + B3*ASA + B4*(sex=F) + Bs*prop + Be*fent + B7*des

+ Bs*prop*fent + Bo*prop*des + Bio* fent*des + (1 | patient number),

Where Bi are model coefficients, prop=propofol, des=desflurane, fent=fentanyl. To
compare some of the slow wave results, individual slow waves were extracted from
intraoperative EEG (from first incision to the end of closing up) and mean slow-wave

frequency per subject extracted and compared with the mean heart rate.

3.3.8 Statistical analyses

As these analyses were all post hoc analyses of previously collected and published
data, no power calculation was done. Spearman correlation and its P-value were used
to test associations between ECG/EEG parameters (heart rate, R-wave amplitude,
root-mean-square successive difference, low frequency to high frequency ratio, peak
high frequency, slow-wave power) and propofol concentration. Repeated-measures
analysis of variance (RM-ANOVA) was performed on ECG/EEG-derived parameter
traces in 5-minute segments to further test for significant changes. For display
purposes, mean + standard error across participants is shown, except where the data
was not normally distributed (tested with D’Agostino and Pearson’s test). In these non-

normally distributed cases, median + bootstrapped 95% confidence interval (10,000
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iterations) are shown. Mean + SD (or median [25", 75™ percentile]) are given in the
text. Significance was set at the P=0.05 level unless otherwise specified. Custom code

used in this study is available at gitlab.com/marcoFabus/fabus2022 brain heart.

3.3 Results

3.3.1 Time-series ECG analysis

First, | tracked the heart rate and time-series ECG properties across a slow propofol
cycle in N=16 healthy volunteers (Figure 3.1). At higher propofol doses, a shortening
of the QT segment and decrease in R-wave amplitude was observed (Figure 3.2.1A).
In every subject, the heart rate increased and very robustly tracked the propofol dose
with Spearman correlation of p=0.923, P<0.001 (Figure 3.1B). Heart rate increased
from 58.2+10bpm at baseline to 73.4+8.8bpm at peak anaesthesia, an increase of
4.2+1.5 bpm/(ug -mlt) The maximum effect size comparing HR at baseline and peak
propofol was Cohen’s d=1.546. A linear regression showed the heart rate / propofol
relationship to be HR [bpm] = 56.1 (54.9, 57.2) + 4.23 (3.75, 4.80) * propofol [ug/ml],
where brackets show 95% confidence intervals. Similarly, the R-wave amplitude was
also strongly inversely correlated with the propofol effect-site concentration
(Spearman p=-0.902, P<0.001, Figure 3.1C). R-wave amplitude decreased from 966
[707, 1133] pV at baseline to 742 [627, 1068] uV at peak anaesthesia, a decrease of

-83 [-245, -28] pV.
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3.3.2 Heart rate variability analysis

Next, | studied autonomic activity through heart-rate variability (HRV; Figure 3.2). The
root-mean-square successive difference between heartbeats, which indexes
parasympathetic tone, decreased in proportion to propofol concentration, and
rebounded on emergence (Figure 3.2A; Spearman p=-0.785, P<0.001, Cohen’s
d=1.296 for baseline vs peak concentration). This was confirmed by a repeated

measures ANOVA (RM-ANOVA) with P<0.001.
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Figure 3.1: Propofol increased heart rate and changed ECG shape in healthy
volunteers. (A) Mean ECG waveform for all heart beats across N=16 subjects across
propofol doses. High propofol concentration (pink) was characterized by a decrease
in R-wave amplitude (top inset) and an earlier T-wave (lower inset). (B) Propofol
increased the heart rate. Group-level heart rate results (purple; mean + SEM) and
propofol effect-site concentration (black; Spearman p=0.923, P<0.001). (C) At the
group level, R-wave amplitude (RWA; purple; mean £ SEM) inversely tracked propofol

concentration (black; Spearman p=-0.902, P<0.001)
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Figure 3.2: Propofol decreased parasympathetic activity, as indexed by heart rate
variability in healthy volunteers. (A) Root-mean-square successive difference
(RMSSD) between heart beats (blue; median £ 95% CI) that is a measure of
parasympathetic activity inversely tracks propofol concentration (black) and rebounds
on emergence. (B) The low to high frequency ratio (green; median + 95% CI), which
is a metric thought to index balance of sympathetic and parasympathetic activity, is
noisy but suggests an increase with propofol (black). (C) Peak frequency in the high-
frequency heart rate variability band that indexes the respiratory vagal peak (blue;

median + 95% CI) tracks propofol concentration (black).

With regard to the frequency domain metrics, the low frequency to high frequency ratio
showed higher between-subject variability, but the group average confirmed the shift
towards a relative predominance of sympathetic activity with increasing propofol
concentration (Figure 3.2B; Spearman p=-0.763, P<0.001), and the RM-ANOVA
result also showed a significant change with P=0.003 with Cohen’s d=0.539 between
baseline and highest propofol concentration. The peak frequency in the high-
frequency parasympathetic HRV range also tracked with propofol concentrations

(Spearman p=0.885, P<0.001; RM-ANOVA P<0.001).
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3.3.3 Slow-wave analysis

Cortical activity during propofol anaesthesia is known to be associated with sleep-like
slow-wave activity (Figure 3.3). | first confirmed the previous finding of saturation of
frontal slow-wave activity with propofol dose (Figure 3.3A). However, more strikingly,
this slow-wave activity increase correlated very strongly with the increasing heart rate

(Figure 3.3B; Spearman p=0.910, P<0.001).
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Figure 3.3: Propofol increased frontal cortical slow-wave activity and this increase
tracked heart rate increases in healthy volunteers. (A) Group-level Fz slow-wave
activity results (purple; mean + SEM) against propofol concentration (black). Slow-
wave activity increases and plateaus with drug dose. (B) On the group level, increases
in heart rate correlate with increases in slow-wave power (Spearman p=0.910,
P<0.001). Each purple dot represents a 5-minute segment of the experiment with

standard errors across subjects shown.
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3.3.4 Cortico-cardiac coupling

The observed association between slow-wave activity and heart rate in conjunction
with previous literature describing their coupling in sleep, led to a focus on quantifying
the presence of any time-related coupling between individual slow waves and
heartbeats (Figure 3.4). After identifying individual slow waves, | studied the
distribution of heartbeats around each slow-wave onset (defined as the initial zero
crossing of the wave). As observed in previous work on cardio-respiratory coupling?°4,
the distribution of time intervals between R-waves and slow wave (RS intervals; Figure
3.4B) was non-uniform and concentrated around specific phases in the slow-wave
cycle. This appeared as a residual low-frequency oscillation in the ECG, after
averaging around the slow-wave onset (Figure 3.4C); and as peaks in the distribution
of heartbeat timings (Figure 3.4D). This effect was also present and significant at the
group level (Figure 3.5). The group-average lag between the ECG peak and slow-
wave onset was 447 [392, 510] ms (Figure 3.5B). The slow-wave/R-wave coupling, as
measured by entropy in relation to a uniform null distribution was SHp=0.866+0.05
(P<0.001 compared to a uniform null hypothesis, see Methods). Additional tests to
verify this is not a random effect were carried out and are described below together
with Supplementary Figures 3.1-3.3. Furthermore, at the group level, the subjects’
mean heart rates and slow-wave frequencies were significantly linearly correlated

(Pearson r=0.519, P=0.0395).

The above analysis results were qualitatively unchanged when EEG data was re-
referenced to linked mastoids and when ECG was time-locked to slow-wave trough
instead of downward zero crossing — full results of these control analyses will be

included in the forthcoming publication based on the work in this chapter.
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Figure 3.4: Single-subject low-frequency cortico-cardiac coupling. (A) Example 15s
of EEG and ECG data at high propofol concentrations. Slow-wave starts are shown
with blue dots. For each slow-wave start, duration of intervals to nearest heartbeats is
determined (RS intervals, R-wave/Slow wave). Individual R-waves are marked with
red vertical lines. (B) Example raster plot of RS intervals during 10 minutes of peak
anaesthesia. Heartbeats cluster in horizontal lines, demonstrating non-random
coupling to slow-wave onset (proportional entropy SHp=0.890). (C) Single-subject
average slow wave (blue; mean + SEM across all slow waves) and ECG (red =
broadband, purple = 0.5Hz-1.5Hz only) time-locked to slow-wave onset. The ECG
pattern is not uniform random noise but shows a clear ongoing low-frequency ECG
oscillation. (D) Histogram of R-wave timings relative to slow-wave onset. Individual
heartbeats preferentially occur in phase with the slow wave, explaining the oscillatory

appearance of (C) and stripes seen in (B).

59



B 10 (e SOW o ECG mm LFECG

S
=
o 0
@)
(1N]
S0 0 1 32 s R B S
Time from slow wave start [s] Time from slow wave start [s]
C — Dimiaatian D
N 1.2 . "
e 757 g?_:, -
© c>1.1
50 e
2 2910
0o (@) Y
, 1 £ 0.9 , , . .
%.8 0.9 1.0 60 70 80 90 100
RS_; Proportional Entropy Heart Rate [bpm]

Figure 3.5: Group-level cortico-cardiac coupling in healthy volunteers. (A) Mean slow
wave detected (blue) with each subject mean in grey. (B) Group-average ECG (red =
broadband, purple = 0.5Hz-4Hz only) time-locked to slow-wave (black) onset. The
ongoing low-frequency ECG oscillation is also present at the group-level. (C) Slow-
wave onset is significantly linked to the preceding heartbeat. Proportional entropy of
intervals between slow-wave start and previous R-wave. Mean is in red, each of N=16
subjects is shown with a grey vertical line, surrogate distribution assuming random
timings is in blue. (D) Individual heart rate and slow-wave frequency are related

(Pearson r=0.519, P=0.0395).
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For a preliminary analysis to explore potential spatial differences in cortico-cardiac
coupling, the group-average lag between the ECG peak and slow-wave onset was
extracted for each electrode, as was the coupling strength measured by entropy SHe

(Figure 3.6).

The coupling strength and R-wave / slow-wave delay were similar across the scalp.
The only trending exception was a difference in the temporo-parietal R-wave/slow-
wave difference between the left and right hemispheres, where some electrodes had
a significantly different delay compared to the mean (P<0.1 on permutation test with
N=1000 random shuffled permutations of delays between electrodes in each subject).
For the significant electrodes, the mean delay was 446 + 15ms on the average of
TP9/T7/CP5 and 462 + 17ms on P8/CP6 (uncorrected Wilcoxon P=0.025, average

left-right difference of 16.5ms).

R-wave / Slow wave R-wave / Slow wave Delay [s]

Coupling Strength 0se0 B 0.47
0.875
<
10870 D 0.46
c
o
10.865 O
o)
=
10.860 & +0.45
]
o)
0.855 O
0.850

0.44
Figure 3.6: Multivariate extension of the analysis. (A) Coupling strength across

channels shows virtually no significant differences (permutation P>0.1). (B) R-wave /
Slow wave delay shows potential small differences between right and left

temporoparietal regions (permutation P<0.1).
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Further robustness analyses

The method introduced by Galletly et al?°” was used above to test the presence of
coupling against a uniformly random distribution. An alternative autocorrelation-based
test was also used to verify the robustness of this result (see Methods). It revealed the
presence of an ongoing oscillation at the group level (Supplementary Figure 3.1),
present strongly in 10 out of 16 subjects (Supplementary Figure 3.2). In these subjects,
the mean P-value for a sinusoidal fit was P=0.0012 with R?=0.723+0.056. On the group
level across all participants, the distribution of heartbeat timings in relation to the slow-
wave onset showed significant autocorrelation with P<0.001 and R?=0.857 to a
decaying sinusoid fit with exponential half-life of 2.51s (Supplementary Figures 3.1C,

D).

| also wanted to know if the strength of coupling varies with dose or is a general slow-
wave phenomenon (Supplementary Figure 3.3). When plotting the proportional
entropy SHp across time, no significant effect was observed, i.e. no dose-dependent

effects could be detected (P>0.5).

Finally, simulations were used to check this coupling does not arise trivially in
presence of two oscillators around 1Hz (the heart rate and slow oscillation). These
confirmed that the effect seen here only arises when the two waves are coupled

(Appendix 9.2.1).

3.3.5 Clinical dataset analysis

In order to explore whether the above heart rate results hold in a clinical setting, |
analysed the association between effect-site drug concentration and heart rate using
a large general linear model with N=96 older patients collected as part of the AlphaMax
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trial (Table 3.1, Supplementary Figure 3.4). After adjusting for age, BMI, sex, and ASA
status, all agents (propofol, fentanyl, and desflurane) had a significant effect on the
heart rate (P<0.001). Propofol led to a mild increase in heart rate, on average with a
coefficient of +1.3 bpm/ (ug mlY) (95%CIl 1.1, 1.5). Fentanyl however led to a decrease
in the heart rate, on average -2.6 (95%CI 2.7, -2.5) bpm / (ng mIY), as did desflurane
with average of —1.84 (95%CI -1.90, -1.78) bpm / (1%ET). The interaction terms
were also significant though with smaller coefficients. With mean individual heart rate
included as a regressor, no demographic parameters were significant, suggesting that
the drug effects on the heart rate may be independent of these. The effect size
comparing HR with propofol <0.5pg/ml and >3ug/ml was Cohen’s d=0.796.
Interestingly, at the group level, mean intraoperative slow-wave frequency was not

related to the mean heart rate in this dataset (P=0.65).

, Standard t- P-
Name Estimate Lower Upper Error statistic Value
Intercept 45.444  17.620 73.267 14.196 3.201 0.001
Age 0.213 -0.142 0.568 0.181 1.177 0.239
BMI 0.122 -0.288 0.532 0.209 0.584 0.559
ASA 1.976 -2.853 6.806 2.464 0.802 0.423
Sex = F 0.367 -4.181 4.915 2.320 0.158 0.874
Propofol [ug/ml] 1.319 1.120 1.517 0.101 13.016 <0.001
Fentanyl [ng/ml] -2.604 -2.706 -2.501 0.052 -49.682  <0.001
Desflurane [%)] -1.838 -1.895 -1.780 0.029 -62.566 = <0.001
Propofol*Fentanyl 0.988 0.946 1.030 0.021 46.510 <0.001
Propofol*Desflurane = -0.711 -0.766 -0.656 0.028 -25.266 = <0.001
Fentanyl*Desflurane 0.463 0.437 0.489 0.013 | 35.018 <0.001

Table 3.1: General linear model coefficients for heart rate in the AlphaMax clinical
study. Lower / Upper columns indicate 95% confidence intervals. The model confirms
propofol's tendency to increase the heart rate independent of other regressors, unlike

fentanyl and desflurane.
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3.4 Discussion

3.4.1 Propofol and the heart rate

In this chapter, it has been shown that administration of propofol leads to increases in
the mean heart rate. The ultraslow propofol administration in healthy volunteers led to
an increase in the mean heart rate of roughly +4 bpm / (ug/ml propofol concentration).
The effect of propofol on heart rate in the older patient population was about three-fold
smaller, with an average +1.3 bpm / (ug/ml). These clear and significant mean heart
rate increases confirmed my hypothesis but are surprising in view of the mixed

reporting in the existing clinical literature.

Several experimental studies have seen a heart rate increase across a variety of
research paradigms!®1-195.208 | contend the lack of heart rate increase (or heart rate
decrease) with propofol frequently reported in some clinical studies may be due to
other drugs given, the patient population, the surgical context, as well as dose and
rate-dependent effects. Clinically, it is common to administer opioids and other
premedication, many of which decrease the heart rate and affect cardiovascular
dynamics?°82%°_ This even includes pre-oxygenation which tends to decrease the heart
rate?'0. The smaller heart rate increase observed in the older clinical population could
be in part due to a previously proposed U-shape relationship between propofol and
heart rate%. Older patients have higher anaesthetic sensitivity and therefore may be
more susceptible to a heart rate decrease at relatively high propofol concentrations.
This is supported by a previous healthy volunteer study where propofol plasma
concentrations of about 7.4pg/ml increased the heart rate by about 30bpm, consistent
with the results of this study; but excessively high concentrations up to mean plasma

levels of 18.3ug/ml reversed the effect and decreased the heart rate compared to
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lower concentrations!®. Additionally, autonomic system balance and baseline activity
are age-dependent?'!. Finally, clinical procedures may provide autonomic stimulation

which could affect intrinsic heart rate increases with propofol.

The ultraslow induction rate used in the healthy volunteer study may also affect the
cardiac changes. This is supported by previous work finding rate-dependent cardiac
effects of propofol with greater decrease in heart rate in fast induction rates, perhaps

due to a rate-limiting central nervous system distribution process!%8212,

Some could argue the heart rate increase is due to the presence of anxiety. However,
this is unlikely to be the case as in the experimental setting, whilst heart rate increased
from baseline to loss of responsiveness, it continued to increase at the same rate when
the drug concentration increased beyond the point of loss of consciousness

(Supplementary Figure 3.5).

3.4.2 Propofol and heart rate variability

The biological basis for the increase in mean heart rate may be due to propofol
inhibiting cardioinhibitory vagal neurons in the brainstem!%. Studies of propofol’s

effect on autonomic cardiac influences have also produced mixed results.

The literature agrees that propofol reduces heart rate variability'90:195.213-215 " 3 result
also confirmed in this experiment. The distinct sympathetic and parasympathetic
contributions to this are less clear. An early study proposed that propofol mostly
depresses sympathetic activity and suggested this as a mechanism for propofol
bradycardia and hypotension. However, opioids were also used in that study?'4.
Several studies since have concluded that propofol predominantly decreases high-
frequency heart rate variability, which is thought to reflect parasympathetic vagal
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influences®0:195213.215 Thjs vagolysis could be an explanation for the increased heart
rate, especially as it distinguishes propofol from sevoflurane!®1%, |t is less likely to be
a reflex tachycardic response to vasodilation, as propofol has been shown to depress

the baroreflex23,

3.4.3 Propofol and ECG morphology

Dose-dependent changes in ECG morphology that may reflect both direct cardiac
effects and central nervous system-mediated changes of propofol were also observed.
After adjusting for heart rate changes, propofol was found not to affect the QT
interval1® so the earlier T-wave seen in this study could just reflect a faster heart rate.
However, the R-wave amplitude decrease seen in the present study might be related
to previously observed propofol effects on ventricular depolarisation?'’. Propofol may
decrease myocardial contractility, possibly due to a direct propofol effect on myocyte
ability to expel intracellular calcium?*®, However, another study suggested this only
happens at doses beyond common clinical ranges??®. A change in the mean electrical
axis or direct vagal effect could also explain the R-wave amplitude decrease; findings

have been mixed so far217.220,

3.4.4 Cortico-cardiac coupling in propofol

Low-frequency cortico-cardiac coupling has been observed in sleep?9221, As propofol
slow waves show some sleep-like properties®, it was hypothesized this effect would
also be present in anaesthesia. In healthy volunteers, it was found that the increase in
mean heart rate was strongly correlated with increases in cortical slow-wave power.

Obviously, this correlation might be explained as being driven by a common cause —
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that of increasing propofol concentration. However, individual cortical slow waves and
cardiac R-waves were found to be coupled as hypothesized. A heartbeat was most
likely to precede the slow-wave onset by about 450ms with another heartbeat near the
slow-wave nadir, a time interval similar to that seen in sleep?%22%, Further robustness
analyses showed that in 10 out of 16 subjects, this effect was not restricted to just the
preceding heartbeat, but there was a significant autocorrelation between a slow wave
and heart beats with a half-life of 2.5s. Interestingly, Mensen et al. also found
significant results at the single-subject level only in 9-13/16 subjects depending on the
sub-analysis (ECG vs near-infrared spectroscopy, NIRS). Further studies should
explore what drives these between-subject differences. Finally, simulations
demonstrated that the results here are not trivially due to similar heart rate and slow
wave frequencies, and only hold up when the two waveforms are genuinely coupled

(Appendix 9.2.1).

Mensen et al. proposed several hypotheses for why this coupling may occur?®. The
first was a possible metabolic constraint. Overall, neurochemical tone favours
hyperpolarized down states with heartbeats acting as a potential stimulus to evoke a
down state. Neurons may enter a hyperpolarized state when their resources are
depleted. Slightly lower regional blood flow between heart beats could have this effect
on a few critical neurons leading to an entire network change. However, this seems
unlikely because the necessary time resolution of changes in metabolic energy
demand seems shorter than that of a damped feeder capillary blood flow, coupled with
the diffusion time of energy substrates and the presence of intrinsic neuronal energy
stores. The other possibility is a third generator controlling both the heart rate and
slow-wave genesis. Knowing this effect is present both in sleep and propofol

anaesthesia gives us a clue as to the possible nature of such a generator. Sleep and
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anaesthesia differ in their noradrenaline levels, but both show low levels of
acetylcholine??2, Combined with the fact that the brainstem projects both in a cephalad
direction to higher brain areas and, caudally to the heart, here it is proposed as a
possible place for a common generator. For instance, the nucleus of the solitary tract
or cholinergic pontine nuclei may project both to fast-spiking GABAergic interneurons
in the thalamus and to medullar regions controlling the heart rate?23224, Given that the
thalamus is likely involved in slow-wave generation in vivo, this brainstem connection
could explain the observed cortico-cardiac coupling, perhaps by weak-coupling
synchronization®:225, This is supported by the finding that subjects with a faster heart
rate also had faster slow-wave frequency. Finally, a preliminary analysis of the cortico-
cardiac coupling effect across all electrodes did not reveal any notable differences in
coupling or delays across the scalp, except for trending left/right heartbeat/slow wave

delay differences in temporoparietal regions.

Interestingly, this frequency relationship was not observed during desflurane-fentanyl
slow waves in the clinical dataset, suggesting volatile anaesthetics may differ in their
cortico-cardiac coupling effects. Different types of slow waves have also been
proposed (see 123124 and Chapter 4). Here a traditional slow wave definition was used
that allows for comparison with previous literature'?%124, but wave sub-types may show

differences in coupling to the heart rate.

Further work is needed to explain the relationship between slow waves and cardiac
activity, especially as pertains to wider coupling of autonomic and central activity1°6.197,
The proposed common brainstem generator could be ruled out if patients with

pacemakers also show this coupling.
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In summary, slow propofol administration in healthy subjects robustly led to an
increase in mean heart rate that was strongly proportional to drug concentration, and
not influenced by changes in behavioural responsiveness. This result was replicated
in a larger clinical dataset but with a decreased effect size. The heart rate increase
could be explained with decreased cardiac parasympathetic inputs, as indexed by
decreased high-frequency heart rate variability. Frontal cortical slow waves
preferentially occurred coupled to the heart rhythm similarly to cortico-cardiac coupling
that is seen in sleep, perhaps due to a common brainstem generator. More work is
needed to elucidate the mechanism and role of these cardiac changes and the clinical

significance of their coupling to the cortex.

Thus, in the clinical management of patient haemodynamics, propofol should not be
assumed to decrease the heart rate. In fact, particularly for slow infusions and younger
patients, propofol is likely to increase the heart rate. Ultimately, heart rate will be a

complex result of opioid, hypnotic, and surgical factors.
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4 Automatic decomposition
of electrophysiological data
into distinct non-sinusoidal
oscillatory modes

4.1 Introduction

The synchronized activity of neuronal populations can be observed in dynamic
oscillations recorded in electrophysiology®®2?6. These oscillations are often visible in
raw data traces but are challenging to isolate in an objective, data-driven manner.
Methods for signal isolation must contend with signals being obscured by noise or by
simultaneous oscillations at different frequencies. Neuronal oscillations are often non-
sinusoidal and change over time, which leads to ambiguities in standard analyses
based on the Fourier transform?27:228, These dynamic and non-sinusoidal features are
of growing importance in electrophysiological research but remain difficult to analyse
using existing methods?!?1:126.:226.229-231 ° Ag sych, there is a pressing need for data-
driven methods that can isolate oscillations from noisy time-series whilst preserving

their non-sinusoidal features.

In previous chapters, slow waves were analysed using well-established and traditional,
Fourier-based filtering methods, allowing direct comparison with the wider literature.
However, brain waves during anaesthesia are non-sinusoidal'?%:232, and their shape

may have potential physiological relevance?2, To address this, | tackled the problem
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of non-sinusoidal neural oscillations more broadly, before applying my new data-driven

analysis technique to propofol anaesthesia.

Empirical Mode Decomposition (EMD)?*? is able to provide a different perspective on
analysing transient oscillations. It offers a radically different approach to signal
separation based on a flexible, local, and data-driven decomposition with weaker
assumptions about stationarity and linearity of the signal. Single channel data is
decomposed by a sifting process into Intrinsic Mode Functions (IMFs) based on finding
successively slower extrema. Unlike Fourier or Wavelet methods, EMD does not a-
priori assume the shape of its functions. It is therefore believed IMFs can capture non-
sinusoidal oscillations and may better reflect the underlying processes in physical and
physiological signals??7233234_ This can especially aid analyses sensitive to waveform

shape, such as calculations of phase and cross-frequency coupling??®.23,

The original EMD algorithm can in theory produce arbitrarily shaped IMFs, but in noisy
neural signals it struggles with signal intermittency and high non-sinusoidality. In the
presence of transient oscillatory bursts, the sifting process may detect extrema on
different time scales at different times. This is referred to as mode mixing. It presents
a major challenge in analysis and interpretation of IMFs236:237, This is especially the
case in analysis of brain signals, where transient states are common and have
functional significance!?6-238-240 Fuyrthermore, in the presence of pure Gaussian
fractional noise, EMD has been shown to act as a dyadic filter bank?41242, This means
that for highly noisy signals, EMD tends to produce IMFs with fixed bandwidths rather

than adapting to capture signals present in the data, further complicating analysis.

Various improvements to the sifting process have been proposed to make EMD more

applicable to real-world data?43-25°, A unifying characteristic of the existing approaches
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is to inject a secondary signal into the data to alter the extrema distribution and
overcome mode mixing. Noise-assisted methods, as exemplified by Ensemble EMD
(EEMD)?#3245 uyse white noise as the injected signal. This reduces mode mixing due
to signal intermittency. However, the use of noise can limit IMF bandwidth, possibly
making mode mixing worse. Masking methods inject sinusoids into the data before
sifting?*4247. With a suitable mask, this technique can recover non-sinusoidal
waveforms and/or intermittent bursts in presence of noise. However, the frequency of

masking signals that should be used is often not known a-priori.

Mask optimization can become an arduous manual process, prohibiting
generalizability and introducing uncertainty on analysis outcomes. This is exacerbated
by the presence of high noise and non-sinusoidal signals near dyadic boundaries,
where a small change in the masking signal frequency may dramatically alter the
quality of resulting IMFs. Mask frequency selection can be done semi-automatically by
choosing an initial frequency based on the number of zero-crossings in the first IMF
and dividing this successively by two for later IMFs?44, If the approximate frequency
content of the signal is known, then mask frequencies may be directly selected to
isolate the specific components of interest?**. Though effective, the semi-automatic
method is relatively inflexible, and the direct specification method can be manually

intensive to validate.

Finally, multivariate EMD is also a subject of active research?®1.252, The extension of
EMD to multi-channel data is not trivial as interpolating extremal envelopes becomes
computationally expensive in higher dimensions and additional methods are needed,
such as only sifting along most important directions. Alternatively, pseudo-multivariate

EMD can be computed by simply performing EMD on each channel separately and
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checking cross-channel mode correspondence afterwards, for example, by comparing

their frequency content.

Existing versions of Empirical Mode Decomposition have been applied to anaesthesia.
The first application was by Li and colleagues (2008)%°3, where after standard
Empirical Mode Decomposition, the Hilbert-Huang transform was computed to obtain
a spectrum and its entropy was found, the Hilbert-Huang spectral entropy. This
entropy decreased with increasing sevoflurane concentration and was more resistant
to noise than commercial M-Entropy. This paper illustrates a common trend in the
literature on applying EMD to anaesthesia. Because in existing EMD-based methods
individual cycles are difficult to interpret due to mode mixing, either EMD is used as
just a pre-processing tool to remove noise, or further analysis is done by using the
modes as input into entropy, spectral, or neural network measures. This has been
done with Ensemble EMD?542% and Multivariate EMD?°¢:257, The validity of extracting
slow-wave activity during general anaesthesia using EMD has also been
demonstrated?®82%°, More recently, masked EMD was used to suggest different
spectral components of EEG show different rates of return to baseline after burst-
suppression?®0. The existing work suggests EMD is a promising technique to study
EEG changes under anaesthesia, but methodological improvements to reduce mode

mixing are needed.

In this chapter, | introduce Iterated Masking EMD (itEMD), which is a novel sifting
technique that | have developed that builds on the masking method. This method
retains all the advantages of using a masking signal whilst being more generalizable
and automated. | validated itEMD by comparing it with existing methods using
simulations and multi-species, multi-modal experimental data, and discuss its range
of applicability and limitations. After developing and validating the novel methodology,
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| applied itEMD to the propofol dataset presented in Chapters 2 and 3. Using itEMD in
this way, | found three distinct low-frequency modes in the data. These were termed
high delta, low delta, and slow modes. | hypothesised that these modes should show

changes in spatiotemporal structure with increased anaesthetic doses of propofol.

Additionally, to explore changes in the brain following anaesthesia, | adapted a trough-
based traveling wave analysis that has been previously used in anaesthesia and
sleep®:88. For the first time, | resolved properties of travelling waves across changing
anaesthetic concentration thanks to the ultra-slow infusion paradigm. | found dose-

dependent changes in globality, frequency, and amplitude for each of the three wave

types.

4.2 Methods

The methodological and validation part of this chapter is based on my existing first-

author publication?®,

4.2.1 Empirical Mode Decomposition (EMD) Algorithms

Empirical Mode Decomposition decomposes a signal x(t) into a finite number of
Intrinsic Mode Functions (IMFs) ci with a sifting algorithm 233, The IMFs are constructed
to have locally symmetric upper and lower envelopes with no peaks below zero or
troughs above zero. A smooth signal with these features is well-behaved during
instantaneous frequency analysis, allowing for a full description of non-sinusoidal

waveform shape?**,

75



Ensemble EMD?* is typical of a class of noise-assisted sifting methods. An ensemble
of N sift processes is created, each with different white noise injected. The final IMFs
are computed as the average across this ensemble. The goal is to exhaust all possible
sifting solutions, leaving only persistent real signals. However, due to a finite size of
the ensemble, IMFs may contain unwanted residual noise unless further
improvements are introduced?#8:249, Furthermore, due to the stochastic nature of white
noise, signals of interest might shift between modes across the ensemble, leading to
some mode mixing in the final result. Finally, the use of noise reinforces the dyadic
filtering behaviour of EMD. This means any signal near dyadic boundaries is likely to
be split between modes. This effect is especially pronounced for non-sinusoidal
signals which change in instantaneous frequency, making waveform shape analysis

difficult as they become smeared over multiple IMFs.

Masked EMD?* works by injecting a masking signal si(t) into signal x(t) before sifting.
This reduces mode mixing by making the sift ignore signal content slower than the
frequency of the masking signal. The masking signal is introduced uniformly across np
phases at each step to further minimize mode mixing?*>. The IMFs ci are thus

calculated with the following algorithm:
1. Construct a masking signal si(t).

2. Perform EMD on xk = x(t) + sik(t + ¢k), where ¢k = 21(k-1) / np, obtaining IMFs

Cik(t).
3. Compute the final IMF as ci(t) = 1/np  Cik.
4. Compute the residue ri(t) = x(t) — ci(t).

5. Set x(t) = ri(t) and repeat 1-4 with the next masking signal to extract the next

IMF.
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This technique permits analysis with intermittent bursts and non-sinusoidal oscillations
(Figure 4.1). EMD is locally adaptive, and as such fast bursts get mixed with slower
activity when bursts are not present. With a mask, any signal content with frequencies
much lower than the masking frequency will be ignored by the sift in that iteration and
is replaced by the mask. The mask is finally removed, allowing for correct recovery of
intermittent activity. In presence of noise, EMD also acts as a dyadic filter?41242, This
means non-sinusoidal oscillations are often split across multiple IMFs. With a suitable
mask, the bandwidth of modes can be adapted and more of the waveform shape

recovered.

The choice of masking signals remains an area of active research. The original paper
by Deering and Kaiser suggested the first mask frequency to be the energy-weighted
mean of instantaneous frequency obtained from the first IMF found by ordinary EMD,
with subsequent mask frequencies chosen as fo divided by powers of 2 to account for
the dyadic nature of EMD?*. Other approaches have included computing the mask
from zero crossings of the first IMF of a standard sift and purely dyadic masks?*’.
However, the choice of optimal masks remains a manual process in many cases. This

requires experience and may introduce subjective bias?34244.250,262,

Iterated Masking EMD (itEMD) technique

As seen above, noise-assisted and masking approaches to EMD sifting improve mode
mixing in some cases, but mode mixing may still be present to complicate further
analysis. Mask choice in noisy datasets is complicated, especially with signal
frequencies near dyadic boundaries. Iterated masking solves this problem by finding

and using an adaptive, data-driven mask.
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In science, it is common to rely on intuition to guide study of complex dynamical
systems?%3, Consider then a simple example where there is a signal burst x(t) with
some base frequency fsig and possible deviation around it due to non-sinusoidality.
Take as a start the masked EMD process with a single mask of frequency fmask©®. A
good choice of frequency would be near fmask = fsig, @s this would extract most of x(t)
into one IMF, resulting in noise reduction and allowing for a simple IMF interpretation.
This is because adding a mask at fmask = fsig forces the IMF to ignore any spectral

content below ~0.67* fmask 2°°.

In real data however, fsig is often unknown. Assume then fmask©@ is chosen with little to
no knowledge of the system frequency fsig. After applying masked EMD, the resulting
IMF will contain a part of the burst with some noise or other signal mixed in. However,
its instantaneous frequency will be fsig for sections of the IMF attributable to the signal.
Assuming signal amplitude is distinguishable from noise in this IMF, the amplitude-
weighted instantaneous frequency mean (AW-IFM) will be closer to the desired fsig
than fmask©@. Thus, if one uses this AW-IFM as the masking frequency for the next
iteration fmaskY, the resulting mask sift IMF will be even closer to the optimal IMF. This
is the case both if fmask© is greater and smaller than fsig, as both lead to mode mixing.
Following this reasoning, the natural equilibrium of this iteration process is when fmask
= fsig, and one can apply this approach to a signal consisting of multiple signal

frequencies and noise. This leads to the following algorithm:

1. Choose an initial set of mask frequencies m = {fo}.
2. Perform masked EMD to obtain IMFs.
3. Find the instantaneous frequency (IF) for each IMF using the Hilbert transform.

4. Compute the amplitude-weighted average of each IMF’s IF and set mi = AW-IFM.
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5. Repeat 2-4 until a stopping criterion ) is reached.
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Figure 4.1: Limitations of EMD. (A) Standard EMD sifting applied on a pure 4Hz

iterated sine function. With no noise, EMD can accurately identify an Intrinsic Mode

Function (IMF) that represents the non-sinusoidal signal. (B) In presence of white

noise and a 30Hz burst (arrow), standard EMD shows heavy mode mixing. (C) EMD

with an appropriate dyadic mask sift will recover most of the iterated sine (IMF-3)

and the intermittent burst (IMF-2) signals. (D) Masked EMD and Ensemble EMD can

better reconstruct non-sinusoidal wave shape in signal with low noise unlike

standard EMD. The figure shows the phase-aligned instantaneous frequency

calculated from 100 runs of (B) and (C). Mean + standard error (shaded) shown.
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Here the stopping criterion was chosen such that the relative difference between
current and previous mask frequencies is small, i.e. (mi — mi1) / — mi1 < ).
Instantaneous frequency averaging was weighted by the square of instantaneous
amplitude for a given IMF, i.e. by instantaneous power. Mask frequencies were
initialized by the dyadic masking technique, though it was found that itEMD is not
sensitive to mask changes and can rapidly identify correct IMFs even with a random
initial mask (Figure 4.2). Due to rapid convergence (<10 iterations in most cases),
itEMD is computationally comparable to existing techniques including ensemble EMD
and uniform phase EMD, each of which requires repeated sifting?4>. More formally, the
computational complexity of itEMD is T = 41nitr * ns* np * n logz(n) for niter iterations,

ns sifting steps, np mask phases, and data length n.

4.2.2 Simulations

| ran simulations to compare the performance of itEMD to existing sifting methods,
namely Ensemble EMD (EEMD?*%) and Masked EMD?*. Simulations were performed
along three dimensions that are important to analysis of neural signals: noise, sparsity,
and waveform shape distortion (non-sinusoidality). These were chosen as they are all
common features of neurophysiological data which cause issues for extracting neural
oscillations. In standard EMD, they result in mode mixing and prohibit accurate

representation of waveform shape and robust interpretation of identified modes.

All noise and frequency distortion simulations were 10s long and sampled at 512Hz
with signal amplitude normalized to 1. In each simulation, IMFs were computed using
three different methods that are used to address mode mixing: Dyadic Mask Sift,

Ensemble Sift, and the novel iterated masking EMD (itEMD). Dyadic Mask Sift utilized
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a single set of masking frequencies. The first was computed from zero-crossings of
first IMF obtained by a standard sift and subsequent masking frequencies were divided
by powers of 2. Masks were applied with 4 phases uniformly spread across 0 to 21T
following Wang et al. (2016)%4°. Ensemble sift was run with 4 noise realizations and
ensemble noise standard deviation of 0.2. The novel tEMD was run on top of the
masked EMD implementation with a stopping criterion 3 = 0.1 and maximum number
of iterations Nmax = 15. In all simulations, number of IMFs was limited to 6 and the
sifting threshold was 1e-08. After finding IMFs, individual cycles were found from
jumps in the instantaneous phase found by the amplitude-normalized Hilbert transform.
Each set of simulations (noise, distortion, sparsity) was repeated N=100 times with the

mean +/- standard error results presented.

Waveform shape was quantified by computing the average phase-aligned
instantaneous frequency (IF) across cycles?34. IF measures how an oscillation speeds
up or slows down within a cycle. It is computed as the time derivative of the
instantaneous phase. IF was phase-aligned to correct for differences in timing and
duration between cycles and allow for comparisons at each phase point. It can
intuitively be understood as fitting a sinusoid with frequency that of the instantaneous
frequency at each time point, capturing shape deviations away from a sinusoid with a
constant frequency?64265, Within-cycle IF variability is thus a measure of how non-

sinusoidal each cycle is.

Performance of each method was assessed by two methods. The first was finding
Pearson correlation between reconstructed phase-aligned instantaneous frequency
(proxy for waveform shape) and its ground truth. The second was computing the

Pseudo-Mode Splitting Index (PMSI) introduced by Wang et al. (2018)%4°. PMSI
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estimates the degree of mode mixing between two adjacent IMFs by computing the
normalized dot product between them:
PMSI; ;41 = max (ﬁ, O) [1]

Orthogonal, well-separated modes with no mode mixing thus have PMSI=0. Fully split
modes have PMSI=0.5. This index was chosen as it can be applied to both simulated
and real data and is easy to interpret. For simulations with a known ground truth, the
IMF of interest was taken to be the one with mean instantaneous frequency closest to
that of the ground truth and calculated PMSI as the sum of PMSIs with the above and

below IMF.

Noise Simulations

For analysing noise-dependent properties, white noise was created using the
numpy.random.normal Python module with zero mean and standard deviation ¢ (also
equal to its root-mean-square, RMS). White noise was chosen because performance
results tested on it are independent of signal frequency. This is because white noise
has equal power throughout the frequency spectrum. For simulations of
neurophysiological data, in a supplementary analysis, signals with brown noise were
also considered. For this set of simulations, white noise RMS o was varied between
0=0.05 and 0=3 in 100 uniformly spaced steps. Waveform shape distortion was held

constant at FD=68% (see below).
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Waveform Shape Distortion Simulations

For analysing waveform shape, signal was simulated as an iterated sine function, i.e.
sin(sin(...sin(2*m*fo*x))) iterated Nsin times with fo=4Hz. This function was chosen
because i) it is easy to manipulate its non-sinusoidal distortion by increasing Nsin, ii) it
is well-understood analytically2®, iii) it has been used before in context of EEG time-
frequency analysis?®’, and iv) it has a well-behaved instantaneous frequency by
satisfying conditions outlined in Huang et.al. (1998)2. It also qualitatively captures
parts of waveform shape of the sensorimotor mu oscillation and slow oscillations in
depth EEG recordings by its ‘flat top’ structure'?12%8, The base frequency of 4Hz was
chosen as it is physiologically plausible in the delta range and was near a Nyquist
boundary, where current EMD sifting methods may have issues. Its non-sinusoidality
was captured by a frequency distortion metric FD defined by

max(IF) — min(IF)
D =
fo

A signal with FD=0% is a pure sinusoid and FD=100% indicates a waveform with IF

- 100% [2]

range equal to that of the original frequency, i.e. 4+2Hz. An example waveform can be
seenin Figure 4.1 (FD=68%). In this set of simulations, frequency distortion was varied
between FD= 18% and 101% by repeating simulations with iterated sine order varying

from Nsin=1 to Nsin=18. White noise RMS was held constantat o = 1.

Signal Intermittency Simulations

For analysing effects of signal intermittency on itEMD performance, bursts of different
length in a 25s segment of data were simulated. Sparsity was measured as the number

of individual oscillations in the burst. The number of cycles in the burst was varied from
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510 95in 100 steps. Noise RMS was kept constant at onoise = 1 and distortion at FD=68%

(8" order iterated sine).

Statistical testing was done using one-sided Welch’s t-test corrected for multiple

comparisons using Bonferroni’'s method unless otherwise specified?5°,

4.2.3 Validation using Experimental Data

Rat Local Field Potential (LFP) Data

To validate the method with well-described hippocampal theta oscillations, a publicly
available data set of Long-Evans rats was used?’%27t, The full 1000s local field
potentials (LFP) recording from rat EC-013 sampled at 1250Hz was used for analysis.
The electrode analysed was implanted in the hippocampal region CA1. EMD cycle
analysis was the same as during simulations. In short, three types of sifting methods
were compared: dyadic masking sift with zero-crossing initialization, ensemble sift,
and the novel tEMD. The recording was split into 20 segments of 50s duration before
sifting. For itEMD (as in simulations), the stopping criterion was set at >=0.1, the
maximum number of iterations was Nmax=15, the mask was weighted by squared
instantaneous amplitude, and the iteration process was initialized by the zero-crossing
dyadic mask result. Instantaneous phase, frequency, and amplitude were computed
from the IMFs using the amplitude-normalized Hilbert transform with an instantaneous
phase smoothing window of N=5 timepoints. The theta IMF was chosen as that whose
average instantaneous frequency was closest to the Fourier spectral theta peak
estimated using Welch’s method (peak in 4-8Hz, function scipy.signal.welch, 8s
segment length / 0.125Hz resolution). Cycles were computed from jumps in the

wrapped instantaneous phase. To discard noisy cycles, only cycles with monotonic
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instantaneous phase, instantaneous amplitude above the 50" percentile, and
instantaneous frequency below 16Hz were used for further analysis. Cycles were
phase-aligned with N=48 phase points and the shape was represented by the mean
of the phase-aligned instantaneous frequency. To compare mode mixing, the PMSI
(see above) was also computed as the sum of PMSIs of the theta IMF with the IMF

above and below it in frequency.

Finally, the Wavelet transform of the LFP data was also computed for comparison with
the Hilbert-Huang transform (HHT). This was done using the scipy.signal.cwt function
with the Complex Morlet wavelet with wo=4 and N=100 frequency points between 1Hz
and 64Hz as the widths. HHT was computed using the emd.spectra.hilberthuang
function in the same frequency range with a gaussian image filter from scipy.ndimage

with 0=0.5 applied for visualization purposes.

Human Magnetoencephalography (MEG) Data

Ten resting state MEG recordings were randomly chosen from the CamCAN project

(www.cam-can.org/)?72273, The participants were randomly chosen from the project

(mean age 43.5 years, range 18-79, 6 female). The maxfilter processed data were
downloaded from the server and converted into SPM12 format for further analysis

using the OHBA Software Library (OSL; ohba-analysis.github.io/osl-docs/).

Preprocessing was done by Prof Andrew Quinn. Each dataset was down-sampled to
400Hz and bandpass filtered between 0.1 and 125Hz. Two notch filters were applied
at 48-52Hz and 98-102Hz to attenuate line noise. Physiological artefacts were
removed from the data using Independent Components Analysis. 62 components

were computed from the sensor s