6,373 research outputs found

    Multi-objective gene-pool optimal mixing evolutionary algorithms

    Get PDF
    In this paper, by constructing the Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA), we pinpoint key features for scalable multi objective optimizers. First, an elitist archive is beneficial for keeping track of non-dominated solutions. Second, clustering can be crucial if different parts of the Pareto-optimal front need to be handled separately. Next, an efficient linkage learning procedure with a lean linkage model is required to capture the underlying dependencies among decision variables. It is also important that the optimizers can effectively exploit the learned linkage relations to generate new offspring solutions, steering the search toward promising regions in the search space

    Multi-objective gene-pool optimal mixing evolutionary algorithms

    Get PDF
    The recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), with a lean, but sufficient, linkage model and an efficient variation operator, has been shown to be a robust and efficient methodology for solving single objective (SO) optimization problems with superior performance compared to classic genetic algorithms (GAs) and estimation-of-distribution algorithms (EDAs). In this paper, we bring the strengths of GOMEAs to the multi-objective (MO) optimization realm. To this end, we modify the linkage learning procedure and the variation operator of GOMEAs to better suit the need of finding the whole Pareto-optimal front rather than a single best solution. Based on state-of-the-art studies on MOEAs, we further pinpoint and incorporate two other essential components for a scalable MO optimizer. First, the use of an elitist archive is beneficial for keeping track of non-dominated solutions when the main population size is limited. Second, clustering can be crucial if different parts of the Pareto-optimal front need to be handled differently. By combining these elements, we construct a multi-objective GOMEA (MO-GOMEA). Experimental results on various MO optimization problems confirm the capability and scalability of our MO-GOMEA that compare favorably with those of the well-known GA NSGA-II and the more recently introduced EDA mohBOA

    Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm with the interleaved multi-start scheme

    Get PDF
    The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-GOMEA requires its two parameters, namely the population size and the number of clusters, to be set properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner. In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent performance of the original MO-GOMEA

    Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

    Get PDF
    Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules

    A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: Benchmarking efficiency and quality

    Get PDF
    Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of ∌1600 on the tested registration problems while achieving registration outcomes of similar quality

    Model-based evolutionary algorithms

    Get PDF
    • 

    corecore