110 research outputs found

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    New strategies for the aerodynamic design optimization of aeronautical configurations through soft-computing techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Lozano RodrĂ­guez, Carlos, codir.This thesis deals with the improvement of the optimization process in the aerodynamic design of aeronautical configurations. Nowadays, this topic is of great importance in order to allow the European aeronautical industry to reduce their development and operational costs, decrease the time-to-market for new aircraft, improve the quality of their products and therefore maintain their competitiveness. Within this thesis, a study of the state-of-the-art of the aerodynamic optimization tools has been performed, and several contributions have been proposed at different levels: -One of the main drawbacks for an industrial application of aerodynamic optimization tools is the huge requirement of computational resources, in particular, for complex optimization problems, current methodological approaches would need more than a year to obtain an optimized aircraft. For this reason, one proposed contribution of this work is focused on reducing the computational cost by the use of different techniques as surrogate modelling, control theory, as well as other more software-related techniques as code optimization and proper domain parallelization, all with the goal of decreasing the cost of the aerodynamic design process. -Other contribution is related to the consideration of the design process as a global optimization problem, and, more specifically, the use of evolutionary algorithms (EAs) to perform a preliminary broad exploration of the design space, due to their ability to obtain global optima. Regarding this, EAs have been hybridized with metamodels (or surrogate models), in order to substitute expensive CFD simulations. In this thesis, an innovative approach for the global aerodynamic optimization of aeronautical configurations is proposed, consisting of an Evolutionary Programming algorithm hybridized with a Support Vector regression algorithm (SVMr) as a metamodel. Specific issues as precision, dataset training size, geometry parameterization sensitivity and techniques for design of experiments are discussed and the potential of the proposed approach to achieve innovative shapes that would not be achieved with traditional methods is assessed. -Then, after a broad exploration of the design space, the optimization process is continued with local gradient-based optimization techniques for a finer improvement of the geometry. Here, an automated optimization framework is presented to address aerodynamic shape design problems. Key aspects of this framework include the use of the adjoint methodology to make the computational requirements independent of the number of design variables, and Computer Aided Design (CAD)-based shape parameterization, which uses the flexibility of Non-Uniform Rational B-Splines (NURBS) to handle complex configurations. The mentioned approach is applied to the optimization of several test cases and the improvements of the proposed strategy and its ability to achieve efficient shapes will complete this study

    Applications and enhancements of aircraft design optimization techniques

    No full text
    The aircraft industry has been at the forefront in developing design optimization strategies ever since the advent of high performance computing. Thanks to the large computational resources now available, many new as well as more mature optimization methods have become well established. However, the same cannot be said for other stages along the optimization process - chiefly, and this is where the present thesis seeks to make its first main contribution, at the geometry parameterization stage.The first major part of the thesis is dedicated to the goal of reducing the size of the search space by reducing the dimensionality of existing parameterization schemes, thus improving the effectiveness of search strategies based upon them. Specifically, a refinement to the Kulfan parameterization method is presented, based on using Genetic Programming and a local search within a Baldwinian learning strategy to evolve a set of analytical expressions to replace the standard 'class function' at the basis of the Kulfan method. The method is shown to significantly reduce the number of parameters and improves optimization performance - this is demonstrated using a simple aerodynamic design case study.The second part describes an industrial level case study, combining sophisticated, high fidelity, as well as fast, low fidelity numerical analysis with a complex physical experiment. The objective is the analysis of a topical design question relating to reducing the environmental impact of aviation: what is the optimum layout of an over-the-wing turbofan engine installation designed to enable the airframe to shield near-airport communities on the ground from fan noise. An experiment in an anechoic chamber reveals that a simple half-barrier noise model can be used as a first order approximation to the change of inlet broadband noise shielding by the airframe with engine position, which can be used within design activities. Moreover, the experimental results are condensed into an acoustic shielding performance metric to be used in a Multidisciplinary Design Optimization study, together with drag and engine performance values acquired through CFD. By using surrogate models of these three performance metrics we are able to find a set of non-dominated engine positions comprising a Pareto Front of these objectives. This may give designers of future aircraft an insight into an appropriate engine position above a wing, as well as a template for blending multiple levels of computational analysis with physical experiments into a multidisciplinary design optimization framework

    Identifying preferred solutions for multi-objective aerodynamic design optimization

    Get PDF
     Aerodynamic designers rely on high-fidelity numerical models to approximate, within reasonable accuracy, the flow around complex aerodynamic shapes. The ability to improve the flow field behaviour through shape modifications has led to the use of optimization techniques. A significant challenge to the application of evolutionary algorithms for aerodynamic shape optimization is the often excessive number of expensive computational fluid dynamic evaluations required to identify optimal designs. The computational effort is intensified when considering multiple competing objectives, where a host of trade-off designs are possible. This research focuses on the development of control measures to improve efficiency and incorporate the domain knowledge and experience of the designer to facilitate the optimization process. A multi-objective particle swarm optimization framework is developed, which incorporates designer preferences to provide further guidance in the search. A reference point is projected on the objective landscape to guide the swarm towards solutions of interest. This point reflects the preferred compromise and is used to focus all computing effort on exploiting a preferred region of the Pareto front. Data mining tools are introduced to statistically extract information from the design space and confirm the relative influence of both variables and objectives to the preferred interests of the designer. The framework is assisted by the construction of time-adaptive Kriging models, for the management of high-fidelity problems restricted by a computational budget. A screening criterion to locally update the Kriging models in promising areas of the design space is developed, which ensures the swarm does not deviate from the preferred search trajectory. The successful integration of these design tools is facilitated through the specification of the reference point, which can ideally be based on an existing or target design. The over-arching goal of the developmental effort is to reduce the often prohibitive cost of multi-objective design to the level of practical affordability in aerospace problems. The superiority of the proposed framework over more conventional search methods is conclusively demonstrated via a series of experiments and aerodynamic design problems

    Development of numerical procedures for turbomachinery optimizaion

    Get PDF
    This Doctoral Thesis deals with high speed turbomachinery optimization and all those tools employed in the optimization process, mainly the optimization algorithm, the parameterization framework and the automatic CFD-based optimization loop. Optimization itself is not just a mean to improve the performance of a generic system, but can be a powerful instigator that helps gaining insight on the physic phenomena behind the observed improvements. As for the optimization engine, a novel surrogate-assisted (SA) genetic algorithm for multi-objective optimization problems, namely GeDEA-II-K, was developed. GeDEA-II-K is grounded on the cooperation between a genetic algorithm, namely GeDEA-II, and the Kriging methodology, with the aim at speeding up the optimization process by taking advantage of the surrogate model. The comparison over two- and three-objective test functions revealed the effectiveness of GeDEA-II-K approach. In order to carry out high speed turbomachinery optimizations, an automatic CFD-based optimization loop built around GeDEA-II-K was constructed. The loop was realized for a UNIX/Linux cluster environment in order to exploit the computational resources of parallel computing. Among the tools, a dedicated parameterization framework for 2D airfoils and 3D blades has been designed based on the displacement filed approach. The effectiveness of both the CFD-based automatic loop and the parameterization was verified on two real-life multi-objective optimization problems: the 2D shape optimization of a supersonic compressor cascade and the 3D shape optimization of the NASA Rotor 67. To better understand the outcomes of the optimization process, a wide section has been dedicated to supersonic flows and their behavior when forced to work throughout compressor cascades. The results obtained surely have demonstrated the effectiveness of the optimization approach, and even more have given deep insight on the physic of supersonic flows in the high speed turbomachinery applications that were studied

    Machine Learning in Aerodynamic Shape Optimization

    Get PDF
    Machine learning (ML) has been increasingly used to aid aerodynamic shape optimization (ASO), thanks to the availability of aerodynamic data and continued developments in deep learning. We review the applications of ML in ASO to date and provide a perspective on the state-of-the-art and future directions. We first introduce conventional ASO and current challenges. Next, we introduce ML fundamentals and detail ML algorithms that have been successful in ASO. Then, we review ML applications to ASO addressing three aspects: compact geometric design space, fast aerodynamic analysis, and efficient optimization architecture. In addition to providing a comprehensive summary of the research, we comment on the practicality and effectiveness of the developed methods. We show how cutting-edge ML approaches can benefit ASO and address challenging demands, such as interactive design optimization. Practical large-scale design optimizations remain a challenge because of the high cost of ML training. Further research on coupling ML model construction with prior experience and knowledge, such as physics-informed ML, is recommended to solve large-scale ASO problems

    Hybrid Intelligent Optimization Methods for Engineering Problems

    Get PDF
    The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles

    Development and application of an optimisation architecture with adaptive swarm algorithm for airfoil aerodynamic design

    Get PDF
    The research focuses on the aerodynamic design of airfoils for a Multi-Mission Unmanned Aerial Vehicle (MM-UAV). Novel shape design processes using evolutionary algorithms (EA) and a surrogate-based management system are developed to address the identified issues and challenges of solution feasibility and computational efficiency associated with present methods. Feasibility refers to the optimality of the converged solution as a function of the defined objectives and constraints. Computational efficiency is a measure of the number of design iterations needed to achieve convergence to the theoretical optimum. Airfoil design problems are characterised by a multi-modal solution topology. Present gradient-based optimisation methods do not converge to an optimal profile, hence solution feasibility is compromised. Population-based optimisation methods including the Genetic Algorithm (GA) have been used in the literature to address this issue. The GA can achieve solution feasibility, yet it is computationally time-intensive, hence efficiency is compromised. Novel EAs are developed to address the identified shortcomings of present methods. A variant to the original Particle Swarm Optimisation algorithm (PSO) is presented. Novel mutation operators are implemented which facilitate the transition of the search particles toward a global solution. The methodology addresses the limited search performance of the original PSO algorithm for multi-modal problems, while maintaining acceptable computational efficiency for aerodynamic design applications. Demonstration of the developed principles confirmed the merits of the proposed design approach. Airfoil optimisation for a low-speed flight profile achieved drag performance improvement that is lower than a off-the-shelf shape designed for the intent role. Acceptable computational efficiency is achieved by restricting the optimisation phase to promising solution regions through the development of a novel, design variable search space mapping structure. The merit of the optimisation framework is further confirmed by transonic airfoil design for high-speed missions. The wave drag of the established optima is lower than the identified, off-the-shelf benchmark. Concurrently significant computational time-savings are achieved relative to the design methodologies present in the literature. A novel surrogate-assisted optimisation framework by the definition of an Artificial Neural Network with a pattern recognition model is developed to further improve the computational efficiency. This has the potential of enhancing the aerodynamic shape design process. The measure of computational efficiency is critical in the development of an optimisation algorithm. Airfoil design simulations presented required 80\% fewer design iterations to achieve convergence than the GA. Computational time-savings spanning days was achieved by the innovative algorithms developed relative to the GA. Hence, computational efficiency of the developed processes is confirmed. Aircraft shape design simulations involve three-dimensional configurations which require excessive computational effort due to the use of high-fidelity solvers for flow analysis in the optimisation process. It is anticipated that the confirmed computational efficiency performance of the design structure presented on two-dimensional cases will be transferable to three-dimensional shape design problems. It is further expected that the novel principles will be applicable for analysis within a multidisciplinary design structure for the development of a MM-UAV
    • …
    corecore