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Abstract

Aerodynamic designers rely on high-fidelity numerical models to approximate, within rea-

sonable accuracy, the flow around complex aerodynamic shapes. The ability to improve

the flow field behaviour through shape modifications has led to the use of optimization

techniques. A significant challenge to the application of evolutionary algorithms for aero-

dynamic shape optimization is the often excessive number of expensive computational

fluid dynamic evaluations required to identify optimal designs. The computational effort

is intensified when considering multiple competing objectives, where a host of trade-off

designs are possible. This research focuses on the development of control measures to

improve efficiency and incorporate the domain knowledge and experience of the designer

to facilitate the optimization process.

A multi-objective particle swarm optimization framework is developed, which incor-

porates designer preferences to provide further guidance in the search. A reference point

is projected on the objective landscape to guide the swarm towards solutions of interest.

This point reflects the preferred compromise and is used to focus all computing effort on

exploiting a preferred region of the Pareto front. Data mining tools are introduced to

statistically extract information from the design space and confirm the relative influence

of both variables and objectives to the preferred interests of the designer. The framework

is assisted by the construction of time-adaptive Kriging models, for the management of

high-fidelity problems restricted by a computational budget. A screening criterion to lo-

cally update the Kriging models in promising areas of the design space is developed, which

ensures the swarm does not deviate from the preferred search trajectory. The successful

integration of these design tools is facilitated through the specification of the reference

point, which can ideally be based on an existing or target design.

The over-arching goal of the developmental effort is to reduce the often prohibitive

cost of multi-objective design to the level of practical affordability in aerospace problems.

The superiority of the proposed framework over more conventional search methods is

conclusively demonstrated via a series of experiments and aerodynamic design problems.
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ŝ Kriging prediction error

t Time-step

U∞ Characteristic velocity

v Particle velocity

x, y, z Cartesian coordinates

x Particle position

X Sampling dataset

y Fitness output

Y Kriging response dataset

z̄ Reference point

z′ Preferred solution

xvii



Abbreviations

AIAA American Institute of Aeronautics and Astronautics

CAD Computational-Aided Design

CFD Computational Fluid Dynamics

CV Cross-Validation

DACE Design and Analysis of Computer Experiments

DTLZ Deb-Thiele-Laumanns-Zitzler

EMO Evolutionary Multi-objective Optimization

GA Genetic Algorithm

GM Gradient Method

HV Hyper-Volume

LE Leading Edge

LHS Latin Hypercube Sampling

LO Lower surface

MOP Multi-Objective Problem

MOO Multi-Objective Optimization

MOPSO Multi-Objective Particle Swarm Optimization

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

NSGA Non-dominated Sorting Genetic Algorithm

PSO Particle Swarm Optimization

R-NSGA Reference point Non-dominated Sorting Genetic Algorithm

RANS Reynolds-Averaged Navier-Stokes

SOM Self-Organizing Map

TE Trailing Edge

UP User Preferences/Upper surface

ZTD Zitzler-Thiele-Deb

xviii



“I have not failed. I’ve just found 10000 ways that won’t work.”
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Chapter 1

Introduction

T
he continual progress in automated optimization techniques has led to the devel-

opment of innovative engineering design frameworks. These strategies are applied

to the design of a range of aircraft systems and components, and often encompass mul-

tiple disciplines and design philosophies. A field which has benefited considerably from

advancements in optimization is aerodynamic shape design. The incorporation of modern

evolutionary optimization for aerodynamic design is however still in its infancy, due to the

often excessive number of computational fluid dynamic simulations required to achieve

convergence. This poses a more serious problem within a multiple objective environment

where a range of trade-off designs are to be identified. The research presented in this thesis

aims to further develop the role of evolutionary optimization within the multi-objective

aerodynamic design architecture. In this introductory chapter, the research scope and

rationale are presented. The outcome of the research is highlighted by identifying the

major contributions and findings, which pertain to the concepts introduced in this thesis.

1.1 Motivation

In recent times the use of computational models in engineering design has greatly in-

creased [Keane and Nair, 2005]. Engineers employ high-fidelity numerical models to sim-

ulate, within reasonable accuracy, how a complex system behaves. The ability to reflect

changes in the behaviour of a system by modifying certain input parameters has driven

the use of optimization techniques. This leads to the fundamental question of design:

What determines, and more importantly, how can we determine the optimum

design to an engineering problem?

All research in the field of engineering design in some way aims to address this question.

From the viewpoint of the designer, the answer to this question is essentially a trade-off

2
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optimization problem – balancing the efficiency of the design process with the fidelity of

the numerical models. For this reason, aerospace and aerodynamic design tends to stand

at the forefront of optimization development. Simulations may very well be measured in

hours and days to achieve the necessary level of accuracy to result in a meaningful design.

That is, a design which ensures the anticipated performance is replicated in real flight.

This implies an intractable processing time for optimization, and control measures must

be implemented to ensure the design process is computationally viable.

1.1.1 Research in Aerospace Design

The insightful text by Keane and Nair [2005] presents a very thorough commentary on the

role of computational design in the aerospace industry. A concise roadmap is provided,

offering a historical perspective on research in aerospace design to the succession of the

computational era. Aerospace design is an immensely broad area, and the research pre-

sented in this thesis focuses on the complex area of aerodynamic shape optimization via

Computational Fluid Dynamics (CFD). CFD-driven design is a fundamentally difficult

task for optimization since the equations that govern fluid flow are highly non-linear and

are computationally expensive to solve [Keane and Nair, 2005]. The successful amalga-

mation of these two disciplines is the key in developing a viable design framework.

Keane and Nair [2005] highlight that the objective of the majority of research in aero-

dynamic design undertaken within major universities is to improve on the efficiency and

sophistication of numerical models. Evidently the motivation here is to improve on mod-

elling capabilities, so that more complex flow phenomena may be accurately studied. De-

spite the complexity of studying the non-linear mathematics, the outcome of the research

is ultimately straightforward, i.e. either the numerical model improves analysis capability

or it does not. By comparison, the research undertaken in improving the synthesis of aero-

dynamic optimization frameworks is significantly less. While this level of research may

seem less complex, the assessment of a new design process is unequivocally more difficult,

i.e. establishing that the design process improves efficiency within an industry setting.

From the physical viewpoint, numerical models have been developed to explore aerody-

namic flow phenomena with varying levels of fidelity dependent on the operating regime.

From the computational viewpoint, innovative evolutionary optimization techniques have

been developed, e.g. by drawing on the Darwinian model of the survival of the fittest or

the ability of a flock of birds to move in unison to avoid a predator. While it has been

established that evolutionary optimization techniques are the quickest route to identifying

globally optimum designs, their use within an aerodynamic design framework is generally
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Designer

Optimization Aerodynamics

Figure 1.1: The conventional aerodynamic design optimization loop

discouraged [Keane and Nair, 2005]. This unpopularity is due to the often excessive num-

ber of simulations required to achieve convergence, thereby restricting the viability of an

optimization process. Within a multiple conflicting objective environment, the computa-

tional effort is often intensified since there are now any number of trade-off designs which

are obtainable. Implementing control measures to improve the efficiency of the design pro-

cess, without compromising the fidelity, is the dilemma faced by aerodynamic designers.

This provides the principal motivation for the current research.

1.1.2 The Role of the Designer

The primary motivation of the research described in this thesis is to improve on the

amalgamation of the two disciplines within the design framework. This is essentially

the principal role of the designer. It is well known that the success of an optimization

process, irrespective of the methods and techniques employed, is ultimately dependent on

the experience of the designer in formulating the problem. It may therefore be argued

that appropriately defining the role of the designer within the design loop is crucial to the

efficiency of the optimization process.

A rudimentary example of the conventional aerodynamic design optimization loop is

illustrated in Figure 1.1. In this case the designer formulates the problem and allows

the optimization loop to run autonomously until the optimum design is identified. While

this philosophy is favourable since it requires the least designer input, it may lead to

unnecessary computational effort. For example, an autonomous optimization loop may

explore certain areas of the design space, which based on the interests of the designer,

would otherwise be left unexplored.

An alternative design loop is shown in Figure 1.2. By incorporating the designer

within the loop, their domain knowledge may be usefully exploited. It is therefore pos-
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Designer

Optimization Aerodynamics

Figure 1.2: The preference-based aerodynamic design optimization loop

sible to focus all computing effort on exploring interesting areas of the design space, to

identify only preferred designs best suited to the intended application. Exploiting the

designer (or user) preferences to guide the optimization process is not an original concept,

and is in fact a fairly popular subject in the literature [see, for example, Fonseca and

Fleming, 1998; Coello Coello, 2000; Rachmawati and Srinivasan, 2006; Wickramasinghe,

2010]. Despite the reported benefits, preference-based optimization has yet to make an

impact in aerodynamic design. This is a rather remarkable observation, considering that

aerodynamic designers could potentially offer significant guidance to the optimizer. The

research presented in this thesis attempts to bridge the gap in the synthesis between the

designer and the multi-objective aerodynamic design architecture in an attempt to reduce

the computational effort required to identify optimal solutions of interest.

1.2 Methodology

The motivation discussed in the previous section has laid a clear foundation from which the

research project may be formulated. It is consolidated in the single goal of developing an

efficient multi-objective design framework which draws on designer-preferences to identify

solutions of interest. The projected outcome of this goal is the practical application of this

framework to high-fidelity aerodynamic design problems. This section outlines the scope

of the research project, guided by the forming of research questions.

1.2.1 Research Questions

The research described in this thesis is guided by the following questions:

1. Is there an intuitive method for identifying solutions which reflect the

preferred interests of the designer? This question involves performing a com-
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prehensive literature survey on existing methods for multi-objective optimization

and preference articulation. The optimization method is responsible for isolating

and identifying globally performing regions of a multi-dimensional design space and

is the main contributing factor to the efficiency of the design framework. The prefer-

ence module is the key to identifying solutions of interest to the designer. Simplicity

is the key to preference articulation, without compromising automation which is the

most desirable feature of a computational design framework.

2. Can this method be applied to aerodynamic design, such that the domain

knowledge of the designer is exploited? Many methods have been proposed in

the literature that may address the question above, yet whether they are applicable to

a high-fidelity real-world scenario have not been addressed. Preference articulation

is no longer confined to a user stipulating preferred areas of a known design space of a

mathematical test problem. The domain knowledge of the designer must be exploited

by the optimization framework, yet the designer may have no prior information of

the optimization landscape.

3. Can it be applied to the level of practical affordability for high-fidelity

design? It is of particular concern in engineering design that an optimization process

is practically affordable given the often excessive computing effort required to assess

every candidate. Control measures should therefore be implemented to ensure that

an optimization process is computationally viable. The integration of surrogate

modelling and design space visualization techniques are crucial to the success of

optimization techniques for high-fidelity design.

1.2.2 Research Scope

The formulated questions provide a very clear roadmap to the successful completion of

this research. This is assisted by forming a set of guidelines or milestones which ultimately

result in achieving the practical application of this framework for aerodynamic design.

1. Development of a multi-objective evolutionary algorithm capable of identi-

fying globally performing areas of the design space.

2. Implementing the user-preference module to ideally focus all computing effort

on preferred regions of the design landscape, which is a reflection of the preferred

interest and experiences of the designer.

3. Integrating surrogate modelling to ensure the optimization process is computa-

tionally viable for high-fidelity problems of an industry-type setting.
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4. Exploring the use of visualization techniques to facilitate the optimization

process and extract useful information from the optimization landscape.

5. The successful integration of these design tools and the synthesis of the frame-

work for aerodynamic design applications.

This thesis report is organized such that these milestones are discussed sequentially,

highlighting to the reader the benefits of adopting each design tool. The efficiency of the

developed framework is illustrated through its application to aerodynamic design problems

of varying complexity and fidelity.

1.2.3 Contributions

This research makes novel contributions in the fields of preference-based optimization and

visualization, as well as improving the synthesis of the aerodynamic design architecture.

These contributions originate from the development and integration of the user-preference

module, which is tailored to reflect the preferred interests of the designer. This section

describes some of the key novel contributions of this research:

• The multi-objective particle swarm optimization algorithm developed in this thesis

is quick and simple to implement, and it provides a superior convergence rate over

other multi-objective methods. The concept of utilizing a secondary population

in the form of an archive allows identified non-dominated solutions to be stored

and subsequently used to further guide the search. The Gaussian mutation operator

applied to members in the archive is ideal for the management of highly multi-modal

problems.

• The user-preference module presented in this thesis takes the form of a reference

point. This provides additional guidance to the optimizer to converge to the pre-

ferred region of the Pareto front, thereby focusing all computing effort on identifying

solutions of interest. The novel contribution is the integration of the reference point

module to an aerodynamic design framework. In this case the reference point is

tailored to reflect a target or existing design, and thus is used to place performance

priority on specific design conditions. A procedure to control the location of the pre-

ferred region is introduced, by emphasizing or prioritizing certain design conditions

in order to identify designs which best suit the intended application.

• A primary novel contribution of this research is utilizing the preference-based archi-

tecture to manage high-fidelity aerodynamic design problems with the aid of sur-
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rogate modelling. The benefits of preference-based optimization have not made an

impact within high-fidelity engineering design, thus not driving any research in this

area. The introduction of the Kriging component allows for the management of high-

fidelity problems restricted by a computational budget. The search effort remains

consistent, with the added advantage that less precise evaluations are performed.

• An active area of research in surrogate-based optimization is the development of

screening criteria which determine, with sufficient confidence, which candidate de-

signs are promising for precise evaluation. In this research, a novel screening criterion

is developed which utilizes the information provided by the reference point to screen

candidates. Screening criteria are to be implemented with caution, so that a fair

balance between searching less explored regions of the design space and exploitation

of promising areas can be established. This simple, yet logical, criterion is profi-

cient in identifying solutions which are expected to provide improvement within the

preferred region of the design space. The novel reference point criterion utilizes the

adaptive control and lower-bound confidence strategies to identify solutions in the

population which are feasible for precise evaluation. This strategy effectively main-

tains control over the number of identified solutions as the swarm begins to exploit

the preferred region.

• Another major contribution is the practical application of design space visualiza-

tion and data mining techniques. Such techniques are applied to extract useful

information on the relationship between the design space and the objective space.

However when confronted with multiple conflicting objectives, related studies have

demonstrated that extracting case-specific information can be challenging. The in-

troduction of the reference point allows candidate designs (which are characterized

by multiple objective values) to be assessed as a single scalar. Hence certain variables

or objectives which directly drive the optimization process (rather than a specific

design condition) are easily identified. Visualization via the reference point metric

therefore facilitates the interpretation of a multi-objective optimization environment

such that meaningful conclusions can be made during the pre-optimization and de-

cision making processes.

• The developmental effort and successful integration of all the design tools described

in this thesis is facilitated through the specification of the reference point. Hence the

synthesis of the aerodynamic design architecture is improved by incorporating the

domain knowledge and preferred interests of the designer. The phases of optimization

are all linked via the reference point distance metric, the value of which is a measure
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of the resemblance to the preferred interests of the designer. Hence conclusions

regarding the dimensionality of the design space (since variables are now categorized

on how they drive the design rather than their effect on specific objectives), the

computational budget (since the design space is effectively reduced to encompass only

the preferred region), or selecting the most appropriate design (since final designs

are characterized via their resemblance to the reference point compromise) can now

be expertly made, rather than relying on estimations.

1.3 Thesis Outline

This thesis is comprised of eight chapters and an appendix. Chapter 2 presents a concise

literature review of the elements of the aerodynamic design architecture, with an introduc-

tion to optimization theory and techniques provided in Chapter 3. A brief introduction to

surrogate modelling and its management within an evolutionary optimization framework

is given in Chapter 4. The developmental effort of the preference-based design framework

is documented in Chapters 5 and 6. Results of the application of the design framework to

aerodynamic problems is provided in Chapter 7. The final chapter summarizes the out-

comes of this research and offers recommendations for potential areas warranting further

research and development.



Chapter 2

Elements of Aerodynamic Design

Aerodynamic design originates from an understanding of the fundamental physics of flight.

It has evolved from the use of wind tunnel catalogues and cut-and-try methods, to modern

computational frameworks. Since the introduction of computational methods researchers

have strived to increase modelling capabilities to approximate the flowfield around aerody-

namic shapes. While such methods allow for the study of aerodynamic flow phenomena,

they have also become an integral component of computational aerodynamic design. This

chapter provides a short description of the advancements in computational aerodynamic

design and numerical modelling, and discusses the physical elements of the aerodynamic

design architecture in detail.

2.1 Aerodynamic Design Architecture

The aim of implementing an aerodynamic design process is to identify or conform to

the best possible shape for the given design requirements. The introduction of computa-

tional frameworks further aims to increase the level of automation [Labrujère and Sloof,

1993]. While automation simplifies the design cycle, success is still largely dependent on

the fidelity of the computational methods, as well as the experience of the designer in

formulating the design problem. This section provides a short description of two design

strategies reported in the literature, namely the inverse and direct approaches. For a more

detailed discussion, the reader is referred to the paper by Labrujère and Sloof [1993].

2.1.1 Inverse Methods

Early attempts at developing computational methods for airfoil and wing design focused

on solving the inverse problem. The inverse design methods originate from the method

of conformal mapping of Lighthill [1945], which also provided the foundation for the full

10
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potential hodograph methods [see Drela and Giles, 1987]. The inverse method involves

specifying the appropriate design requirements in terms of a target pressure distribution.

The aerodynamic shape is then iteratively conformed to provide the prescribed surface

pressure distribution. The advantages of this method are fairly evident, since the designer

has the flexibility to control local flow behaviour. For example, extended regions of laminar

flow can translate to extending the favourable pressure gradient on the upper surface, or

the aft loading can be controlled by specifying the surface pressure difference. Despite the

apparent theoretical advantages, the inverse design method is fairly limited. In both the

studies of Labrujère and Sloof [1993] and Yiu [1994] it is confirmed that specifying a target

pressure distribution and ensuring a feasible airfoil profile exists is a major design challenge.

Furthermore, appropriate geometrical constraints must be implemented in order to avoid

a self-intersecting profile, or to adhere to minimum thickness requirements. Labrujère and

Sloof further conclude that revising the target pressure distribution is inevitable in order

to obtain a manufacturable profile. The development of more robust design strategies

addresses the demerits of the inverse design method.

2.1.2 Direct Methods

Direct methods refer to the philosophy of using mathematical optimization methods in

design to identify the optimal shape that achieves the prescribed design criteria. The

generalized framework for an aerodynamic shape optimization process is demonstrated

in Figure 2.1. The use of optimization methods in aerodynamic design frameworks is

increasing [Keane and Nair, 2005] and the direct approach is essentially applicable to

any aerodynamic cost function [Labrujère and Sloof, 1993]. Furthermore, this strategy

allows for the explicit treatment of multiple objective functions over a wide operational

spectrum. In principle, the computational flow solver is viewed as a black-box used to

calculate the objective function(s). The integrated optimization algorithm iteratively de-

termines the necessary shape modifications to a candidate shape (for population-based

optimization methods there are multiple candidate geometries, initialized randomly in the

design space) by direct manipulation of the shape design variables, to achieve the objec-

tive(s). Convergence is achieved once the optimal solution (or an approximate) has been

obtained, or the computational budget is exceeded.

As highlighted in the flowchart shown in Figure 2.1, the success of the direct approach

is dependent on three main components within the design loop; the shape parameterization

method, the computational flow solver and the optimization algorithm. All aerodynamic

design strategies share a common requirement that the geometry is represented by a finite

number of design variables. A method to mathematically parameterize shapes is therefore
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Figure 2.1: Generalized process flowchart for direct aerodynamic shape optimization

required, so shape modifications can be made via direct manipulation of the design vari-

ables. The number of design variables is directly proportional to the geometrical degrees of

freedom and therefore governs the dimensionality of the problem. The computational flow

solver is used to determine the flowfield properties surrounding the aerodynamic shape.

The objective function is obtained from the flow solver and may represent the global per-

formance of the shape via aerodynamic coefficients. It is therefore up to the discretion

of the designer to appropriately formulate the objective and constraint functions, such

that they reflect the design and operating requirements. The flow solver has a significant

influence on the efficiency of the optimization process since repeated evaluations of the

objective function are required for each candidate shape. Furthermore, the accuracy of the

flow solver ultimately governs the overall fidelity of the computational aerodynamic de-

sign method. The responsibility of the optimization algorithm is to iteratively determine

the shape modifications required to satisfy the objective, whilst adhering to any shape

or performance constraints. The optimizer should be robust and applicable to a wide

operational spectrum, yet efficient to guarantee convergence with the least computational

expense. A review of optimization concepts and techniques is provided in Chapter 3.

The direct approach originated from one of the first published accounts of wing aero-

dynamic design via numerical optimization by Hicks and Henne [1978]. In this work, a

full potential equation solver and analytical parameterization method was combined with

a conjugate gradient optimizer for transonic wing design. Since then, elaborate design

methodologies have been developed, owing also to the work of Jameson [1988] who de-

veloped the use of control theory via the solution of adjoint problems, and applied it to

design using the Navier-Stokes equations [Jameson et al., 1998]. A review of aerodynamic
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design frameworks reported in the literature will be provided in later sections, as concepts

are further introduced. Each of these reported frameworks aims to address the shortcom-

ings of the direct numerical approach, largely a result of the increased search effort to

identify globally optimal shapes using high-fidelity computational methods. Despite the

advancements in computer capabilities, the use of the direct approach for numerical opti-

mization is still a computationally challenging and intensive undertaking. The extension

to multiple objectives leads to a more generalized problem formulation, which significantly

increases the computational cost of convergence. This provides the principal motivation

for the aerodynamic design framework described in this thesis, where control measures

are proposed to ensure an efficient framework, focusing on identifying solutions to suit the

preferences of the designer.

2.2 Geometrical Shape Parameterization

Geometry manipulation is of particular importance in aerodynamic design. The pressure

for automated approaches has led to the advent of Computer-Aided Design (CAD) pack-

ages, which are now seen as the fundamental tool for aerospace design [Keane and Nair,

2005]. With the evolution of CAD, designers have always sought to integrate some of the

more higher-order parameterization methods for rapid design changes. These methods

may have more generic capabilities (e.g. splines) or may be devoted to a specific class of

shapes (e.g. airfoils, fuselage cross-sections, etc.). In aerodynamic design, the selection of

the shape parameterization method is an important contributing factor since it will effec-

tively define the objective landscape and the topology of the design space [Song and Keane,

2004]. Furthermore, certain parameterization techniques are tailored for specific forms of

optimization. Aside from reducing the computational cost to generate feasible shapes,

there are a number of criteria which are essential for geometry parameterization [Jin and

Sendhoff, 2009]. In this research, the criteria outlined by Sóbester [2009] are adopted for

the selection and application of shape parameterization methods:

• Conciseness: The number of shape variables governs the dimensionality of the

design space. The size of an n-dimensional space observed at q levels is O(qn) which

implies an exponential growth commonly referred to as the curse of dimensionality.

Therefore to reduce the computational cost of a conventional design process, it is

paramount to explore possibilities of reducing the number of design variables.

• Robustness: This feature reflects the ability of a parameterization method to yield

physically and geometrically sensible shapes, across the entire design space. A low
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degree of robustness results in an inefficient optimization process, due to infeasible

candidates. Obviously, one may be rigorous in restricting the design variable range

as to reduce the probability of generating infeasible shapes. However this may result

in completely neglecting high performing regions of the design space.

• Flexibility: This refers to the breadth of shapes that a parameterization method

is capable of exploring. The degree of flexibility is difficult to measure, since there

is no means of determining whether a method is exploring a sufficient range of

shape classes. Innovation in shape design is generally a result of exploring shapes

which perhaps are not immediately intuitive or conventional, and is only possible by

increasing the flexibility of the parameterization method.

If the aim of the optimization process is to improve on an established design, then

perhaps local parameterization methods are desirable since there are a greater number of

geometrical degrees of freedom. However, the large number of variables may prove to de-

teriorate the convergence rate for global design applications. The development of efficient

parameterization models has therefore been given significant attention, with the aim to

maximize the flexibility of geometrical control with a minimum number of design variables.

The classic NACA series as described by Abbot and von Doenhoff [1959] was one of the

earliest attempts at defining an airfoil parameterization method for design. This method

provides a wide range of airfoil shapes, by controlling important aerodynamic features such

as thickness and camber. While these methods are rarely adopted for industrial applica-

tions, they have inspired the more higher-order methods developed by researchers [Keane

and Nair, 2005]. A comprehensive survey of shape parameterization methods for numer-

ical optimization is given by Samareh [2001] – In this thesis the discussion is limited to

the popular methods used in aerodynamic optimization frameworks.

2.2.1 Discrete Method

The simplest form of manipulating geometry is to directly use the the grid-point coordi-

nates as design variables. The main advantage of this method is that it can be applied

to almost any aerodynamic shape, and allows for a flexibility which is only restricted by

the number of design variables. While this method may be suitable for local parameter-

ization, it is not viable for global shape design [Samareh, 2001]. Since the geometry is

manipulated through grid-point translation, a smooth geometry is difficult to maintain

and the point-wise gradients are not continuous [Braibant and Fleury, 1984; Samareh,

2001]. Furthermore, constraints must be imposed on all grid-point translations, to ensure

a feasible shape is generated (e.g. self-intersecting profiles). Methods to overcome the
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demerits of the discrete approach have been investigated, for example in Jameson et al.

[1998], where the gradient with respect to the grid points was conditioned to maintain

smooth geometries. The fact still remains however that for global design with a large

number of grid-points, successful convergence is improbable, and the computational cost

is quite high [Samareh, 2001].

2.2.2 Spline-based Methods

The discrete method allows for greater flexibility in geometry manipulation, yet a global

optimization process is heavily restricted by the geometrical degrees of freedom and hence

the number of design variables. The desire to allow for global geometrical control, whilst

controlling local curvature and continuity has therefore led to the introduction of the

spline-based methods [De Boor, 1994]. When used effectively, spline-based methods can

maintain a similar level of flexibility to discrete methods, whilst the number of design

variables is significantly reduced. This suggests that the spline-based methods are a vi-

able option for aerodynamic optimization [Braibant and Fleury, 1984]. Curve-fitting was

introduced in the NACA airfoil series, which used quadratic polynomials to model the

thickness and camber distributions [Abbot and von Doenhoff, 1959]. Cubic interpolation

methods have also been reported in the literature. For example, Marsden et al. [2004] re-

ports using Hermite interpolation for aeroacoustic shape design of a beveled trailing edge.

The advantage of this method is that curves are shape-preserving, therefore geometrical

constraints are easily enforced. It was demonstrated that by increasing the number of

control nodes, there is greater geometrical flexibility yielding improved designs.

The Bézier method is classical curve-fitting, where control points and Bernstein poly-

nomials are used to define individual curves [Samareh, 2001]. The control points form a

polygon and are generally treated as design variables [Samareh, 2001]. The Bézier form is

effective for simple curves, however it parameterizes the shape globally and perturbing one

control point subsequently modifies the entire shape contour. It is therefore not advised

to model high-degree Bézier curves for shape optimization [Samareh, 2001]. For complex

curves, a composite of several low-degree Bézier curves can be used to model the entire

curve, termed the B-spline approach. Shape parameterization via B-splines has been re-

ported in the literature for aerodynamic design. Anderson and Venkatakrishnan [1997]

report using the B-spline parameterization approach in conjunction with an unstructured

flow solver for a number of aerodynamic design test cases. Jones et al. [1998] also reports

the use of B-splines for an aerodynamic and aeroacoustic optimization design case-study.

B-splines are also used in the aerodynamic design framework of Nemec and Zingg [2002]

as well as their subsequent work in multi-point optimization [Nemec et al., 2004]. Song
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and Keane [2004] compared the use of B-splines and orthogonal basis functions for var-

ious airfoil shapes. It was concluded that B-splines are considerably more accurate at

representing airfoils. However this is at the expense of a higher computational cost.

B-splines have proven to be an established method for shape parameterization, yet its

main deficiency is its inability to accurately represent conic sections [Samareh, 2001; Keane

and Nair, 2005]. Furthermore since it is inherently a local parameterization method, a

greater number of design variables are required to maintain global control. To address

the deficiencies of both the Bézier and B-spline approaches the Non-Uniform Rational B-

Splines (NURBS) are introduced, which are the most general form of spline curve Piegel

and Tiller [1996]. This method is a direct extension of the B-spline approach, with the

introduction of weight terms for each control point. The weights affect the magnitude

of manipulation of each independent control point, which is beneficial for both local and

global control. NURBS are the basic representation tool of most CAD systems and are

used to represent most of the shape classes needed for aerospace design [Samareh, 2001].

While NURBS is favourably applicable to all forms of geometry, it presents some design

issues for aerodynamic shape optimization. There are no set guidelines for determining

the weight terms, and ill-definition of the weights may eventually lead to sub-optimal or

irregular geometries. Lèpine et al. [2001] and Painchaud-Ouellet et al. [2006] both report

the use of the NURBS for aerodynamic wing design. The studies demonstrate that a large

number of design variables are required for accurate geometrical representation. Keane and

Nair [2005] also do not suggest the use of NURBS to model complex aerodynamic shapes

such as transonic airfoils, as they require a large number of control points. Furthermore, as

highlighted by Kulfan [2008], there is no intuitive relationship between the aerodynamics

and the design variables, which the optimizer could exploit. For this reason, wherever

possible, it is beneficial to adopt a parameterization scheme which allows strict control

over important aerodynamic features of the geometry.

2.2.3 The PARSEC Method

Thus far the aerodynamic shape parameterization tools that have been described are

quite general and can be used to parameterize an arbitrary geometry. For certain ap-

plications, it is possible to make use of fundamental aerodynamic theory to refine the

parameterization method, such that the design variables relate to important aerodynamic

or geometric quantities. A common method for airfoil shape parameterization is the PAR-

SEC method by Sobjieczky [1998]. It has the advantage of strict control over important

aerodynamic features, and it allows independent control over the airfoil geometry for im-
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Figure 2.2: Airfoil representation via the PARSEC method

posing shape constraints. The methodology is characterized by eleven design variables

(see Figure 2.2) which are the leading edge radius (rLE), upper and lower thickness lo-

cations (xUP , zUP , xLO, zLO) and curvatures (zxxUP , zxxLO), trailing edge direction (αTE)

and wedge angle (βTE), trailing edge coordinate (zTE) and thickness (∆zTE). The shape

function is modelled via a sixth-order polynomial function:

zk =
6
∑

n=1

an,k · x
n− 1

2

k (2.1)

where (x, z) are the shape coordinates and k denotes either the upper (suction) or lower

(pressure) airfoil surface. The coefficients an are determined from the geometric param-

eters. A complete description on obtaining the polynomial coefficients is given by Cas-

tonguay and Nadarajah [2007]. The PARSEC method has been extensively applied for

aerodynamic optimization in the literature. Ray and Tsai [2004] report the use of the

PARSEC method for transonic airfoil optimization. In this study the design space is re-

duced to nine dimensions as the parameters zTE and ∆zTE were held constant. Jeong

et al. [2005b] also use the PARSEC method in their data mining analysis of a transonic

aerodynamic design space. Quantitative information via the decomposition of variance,

and qualitative information via self-organizing maps was obtained to establish the rela-

tionship between the PARSEC variables and the objectives. The non-linear sensitivity of

the transonic landscape to airfoil thickness was established.

In the response surface based optimization scheme of Vavelle and Qin [2007], the

PARSEC method is utilized to optimize the outer wing profile of a blended wing body
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configuration. Since the PARSEC method provides direct control over the airfoil thickness,

constraints on the minimum thickness-to-chord ratio were easily enforced by specifying

the variable limits. This was also the case in the transonic airfoil design framework of

Carrese et al. [2011b], where the thickness was constrained by the upper and lower limits

of zLO and zUP respectively. It was also concluded that the pressure surface thickness

is of significant importance, which confirms the study of Jeong et al. [2005b]. In the

airfoil shape optimization framework of Khurana et al. [2008b; 2010], data mining tools

were applied to quantify the relationship between the PARSEC variables and their effect

on subsonic airfoil geometry and aerodynamics. The experiments confirm the one-to-one

geometric control of the PARSEC variables. The influence of the upper thickness location

on the drag coefficient was highlighted, as this parameter directly influences the boundary

layer transition point. Furthermore, the influence of the leading edge radius and thickness

to the maximum lift coefficient was confirmed. The variable ∆zTE was eliminated as it

yielded a relatively negligible influence to the aerodynamic design space.

Although the original PARSEC method is flexible enough to generate a wide spectrum

of airfoil families, certain modifications have been proposed in the literature tailored for

specific operating conditions. For supercritical transonic airfoils, Sobjieczky [1998] sug-

gested additional control over the trailing edge curvature, which is beneficial to reduce the

probability of downstream boundary layer separation, giving rise to increased drag. The

modification allows for divergent trailing edge modelling, which provides a concave surface

shaping with curvature continuously increasing towards the trailing edge. A new variable

∆αTE was introduced, which directly influenced the additional curvature of the trailing

edge. The addition of bump functions was also proposed for local curvature control. This

allows the geometry to be modified at local supersonic regions to eliminate shocks. A

modification to the original PARSEC method for subsonic airfoil representation was sug-

gested and implemented by Khurana and Winarto [2010]. The modification addresses

the inability of the original PARSEC method to generate airfoils with a highly cambered

nose. The generation of the airfoil shape is decoupled with upper and lower airfoil con-

tours parameterized independently. Because of the introduction of three additional design

variables, the modified PARSEC method performed favourably for the shape optimization

study compared to the original method.

The modification for additional trailing edge curvature by Sobjieczky was later ex-

tended by Jahangirian and Shahrokhi [2009]. It was confirmed that the original PARSEC

method does not provide sufficient geometrical flexibility at the trailing edge to conform

to certain supercritical profiles. Despite the introduction of the Sobjieczky variant, it
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Figure 2.3: Additional trailing edge curvature via the modified PARSEC method

is still not a viable approach as it may lead to self-intersecting geometry, as shown by

Jahangirian and Shahrokhi. The new modification decouples the trailing edge parameter-

ization by first defining a smoother upper surface contour and then constraining the lower

surface to intersect the trailing edge coordinate. Figure 2.3 illustrates the modification to

the trailing edge curvature proposed by Jahangirian and Shahrokhi.

The trailing edge modification is applied to the upper and lower surfaces as follows:

δz =
L · tan ∆αTE

2µτ
[1 + η · xτ − (1− xτ )µ] , (2.2)

where the constants η, µ, and τ are set to 0.8, 2, and 6 respectively. The modification

is applied over the entire surface, such that LUP = LLO = c where c is the airfoil chord

length. The modification by Jahangirian and Shahrokhi provides a smoother upper sur-

face contour with respect to the original modification of Sobieczky, which is favourable to

reduce the pressure drag of the upper surface. The performance of this model is compared

to the Sobjieczky modification as well as the original PARSEC method through a series

of geometrical and aerodynamic inverse design studies. It is demonstrated that the new

model is capable of conforming more accurately to the desired profile, by either specifi-

cation of the target geometry or the target pressure coefficient. Furthermore Jahangirian

and Shahrokhi have shown that convergence is obtained at a reduced computational cost.

2.2.4 The CST Parametric Method

The PARSEC parameterization method is flexible enough to conform to many vastly

different airfoil profiles. However the demerit of this method is that it is generally not

applicable to other aerodynamic shapes, limiting its application to airfoil shape optimiza-

tion. A global parameterization technique, capable of modelling arbitrary geometry of
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(a) N1 = 0.5, N2 = 1 (b) N1 = 1, N2 = 1 (c) N1 = 0.75, N2 = 0.25

(d) N1 = 0.5, N2 = 0.5 (e) N1 = 0.5, N2 = 0.25

Figure 2.4: Illustration of aerodynamic shapes via class function representation: (a) Airfoil; (b)

Ellipsoid; (c) Projectile; (d) Circular; and (e) Fuselage cross-section

varying curvature was developed by Kulfan and Bussoletti [2006] and is known as the

method of Class function/Shape function Transformation (CST). Apart from its ability to

parameterize round nose and sharp aft end geometries along the streamwise axis, the CST

method can also be tailored to represent cross-sections of fuselages, channels and ducts.

The mathematical description of the geometry is represented through a combination of a

shape function and class function. The class function provides a global representation of

the desired geometry and is of the form:

C(x) = (x)N1 · (1− x)N2 , (2.3)

where the exponents N1 and N2 define a variety of basic general classes of geometries

such as airfoils, ellipsoids, elliptic bodies, biconvex bodies, etc. as highlighted in Kulfan

[2008]. Figure 2.4 illustrates several examples of generic shapes that are possible by

varying the exponents N1 and N2. Shape functions are used to conform to a specific

shape by perturbing the generic shape. Kulfan provides an example of an airfoil shape

function, where geometrical quantities such as leading edge radius, trailing edge angles and

thickness distribution are specified. It is also shown that by specifying shape functions

through Bernstein polynomials of varying order, any smooth airfoil may be generated.

The CST method has been successfully applied in two- and three-dimensional wing op-

timization studies. CST was utilized in the transonic wing shape optimization framework

of Bogue and Crist [2006], where it was concluded that a Bernstein polynomial order of six

or higher was required to provide consistent results. The performance of the CST method
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was compared to the discrete and B-spline parameterization techniques by Mousavi et al.

[2007]. In the inverse design case-study it was concluded that a by increasing the order of

the Bernstein polynomials, the target pressure is obtained with reasonable accuracy. For

the three-dimensional shape optimization study, Mousavi et al. demonstrated that the

CST method was unable to attain the same level of drag reduction compared to the other

parameterization techniques. While these studies focus on airfoil and wing applications,

the full potential of the CST method lies in its ability to represent a wide range of shape

classes of interest to aerodynamic design. The generic class and unit shape functions may

be varied in order to conform to a specific family of shapes. This is evident from Carrese

et al. [2011c], where the class function of Kulfan was used as a baseline to generate a large

breadth of double-lobe fuselage shapes.

2.3 Computational Flow Solver

Characterizing a candidate shape is achieved through definition of the objective and con-

straint functions, which are obtained from the flow solver. The efficiency of the opti-

mization framework is dependent on the selection of the flow solver, since it is the most

computationally expensive component and repeated evaluations of the objective and con-

straint functions are required for each candidate shape. However if the flow solver is not

sufficiently accurate, the optimization process will converge to shapes which exploit the

numerical errors or limitations, rather than the fundamental physics of the problem. For

this reason, it is desirable to maintain the correct balance between solution accuracy and

computational expense, which is dictated by the flow regime. For certain problems where

the aerodynamic flowfield is well behaved, it may be sufficient to consider more robust lin-

ear solvers. However for high-fidelity design it is prudent to consider non-linear and more

computationally demanding solvers, to ensure optimized shapes provide the anticipated

performance requirements in flight.

2.3.1 The Navier-Stokes Equations

The governing equations of motion for fluid flow are the Navier-Stokes equations. The

Navier-Stokes equations are highly non-linear and thus no general analytical solution ex-

ists. The advent of computational and numerical modelling has however given rise to a

new discipline for solving aerodynamic problems - Computational Fluid Dynamics (CFD).

The distinguishing feature of CFD is that the flow-field must first be divided into a number

of discrete points or nodes. Coordinate lines are traced through each node to generate the

grid. The flow-field properties are then numerically calculated at discrete points in space
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and time. The Navier-Stokes equations are derived from the principles of the conservation

of mass, momentum and energy. These equations may be derived using infinitesimal or

finite control volume approaches and are expressed in either differential or integral form.

A short description of the Navier-Stokes and other related equations is presented here. A

thorough discussion on these equations is given elsewhere [Anderson et al., 1984; Thomp-

son, 1986]. The unsteady, compressible form of the Navier-Stokes, continuity and energy

equations are expressed in the two-dimensional domain as:

• Conservation of momentum (Navier-Stokes)

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
= −∂p
∂x

+
1

Re

[

∂τxx
∂x

+
∂τxy
∂y

]

, (2.4)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
= −∂p
∂y

+
1

Re

[

∂τxy
∂x

+
∂τyy
∂y

]

. (2.5)

• Conservation of mass (continuity)

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
. (2.6)

• Conservation of energy

∂ET
∂t

+
∂(uET )

∂x
+
∂(vET )

∂y
= −∂(up)

∂x
− ∂(vp)
∂y
−

1

RePr

[

∂qx
∂x

+
∂qy
∂y

]

+
1

Re

[

∂

∂x
(uτxx + vτxy) +

∂

∂y
(uτxy + vτyy)

]

. (2.7)

Where p, ρ, Re and ET denote the pressure, density, Reynolds number and total energy

respectively. The variables u and v represent the components of velocity in the spatial

coordinates x and y respectively and the time is denoted as t. The variables τ are compo-

nents of the stress tensor, which express the viscous stresses in terms of velocity variations.

The conservation of energy is technically distinct from the Navier-Stokes equations, yet it

is important for compressible flowfields, and introduces the heat flux q and the Prandtl

number Pr which relates the viscous to thermal stresses. The inertial components of the

momentum equation are known as the convection terms which dictate the space position

of the flow particle. The viscous components are termed the diffusion terms.

2.3.2 Quantities in Aerodynamic Design

Of particular interest in aerodynamic design are bodies for which the force parallel and

opposite to the direction of motion (drag) is significantly smaller in magnitude to the

force component acting normal to the direction of motion (lift). The pressure difference

of the upper and lower surface produces the resultant lift force. The location where the
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resultant lift force acts generates a moment, which governs the magnitude and direction

of the pitch inclination. Drag is comprised of both pressure and viscous components, the

latter dominating in subsonic flight. Viscosity of the flow in the immediate vicinity of the

surface (boundary layer) generates surface shear stress from which drag is derived. For the

given operating condition, deviations to the shape geometry will result in variations to the

pressure and shear stress distributions, which in turn alter the force values. In aerodynamic

design and analysis, it is customary to express these forces as non-dimensional coefficients.

It follows, that for a geometrically similar airfoil at a given flow incidence angle (α), the

lift (Cl), moment (Cm) and drag (Cd) coefficients are a function of:

[Cl, Cm, Cd] = f (Re,M) . (2.8)

The Reynolds number Re is the dimensionless ratio of the inertial forces to viscous

forces and quantifies their respective relevance for a given operating condition, such that

Re =
ρU∞c

µ
, (2.9)

where U∞ and c are the characteristic (freestream) velocity and length of the problem,

and µ is the dynamic viscosity. It is observed that as Re→∞, the diffusion terms of the

momentum equation can be neglected and the problem can be characterized purely by the

generation of inertial forces. The Mach number M is another dimensionless parameter

which is applicable to compressible flows, and is the ratio of the characteristic velocity to

the freestream speed of sound a∞, such that

M =
U∞
a∞
. (2.10)

The Navier-Stokes equations in their complete form are highly nonlinear. Dependent on

the flow regime (i.e. Re and M), simplifications are made to achieve a practical solution.

Various physical simplifications can be made resulting in varying levels of fidelity. For

example, the viscosity of the fluid can be neglected or confined to a thin shear layer over

the aerodynamic surface as per the Prandtl boundary layer concept [Schlichting et al.,

2004]. A description of the CFD techniques utilized in this research is presented.

2.3.3 Panel Methods

The boundary element or panel methods are used to describe inviscid, irrotational and

incompressible flow. The level of assumptions restrict the domain of application of the

panel methods, however within the appropriate domain they are very advantageous. Panel

methods require only surface discretization. Panel methods compute the inviscid pressure

distribution about arbitrary lifting bodies by solving the Laplace equation via flow singu-

larities. The inviscid pressure distributions are generally iteratively coupled to empirical
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Figure 2.5: XFOIL simulation of NACA0015 airfoil at angle of incidence

boundary layer models to measure viscous effects. The panel methods are still in use for

industrial applications, with three-dimensional codes such as VSAERO. Another widely

used panel method code is XFOIL developed by Drela [see Drela and Giles, 1987]. XFOIL

is a subsonic airfoil analysis code, which superimposes uniform flow and vortices acting at

the airfoil surface to simulate the surrounding flow-field. Sophisticated momentum inte-

gral methods are used to model the boundary layer behaviour. The boundary layer models

are iteratively coupled to the panel method module to predict laminar and turbulent ef-

fects. While these models are based on both analytical expressions and empirical data,

they represented some of the most advanced theoretical treatments available. Figure 2.5

illustrates the results output of an XFOIL simulation. The surface pressure is illustrated

by the inviscid distribution (- -) and the viscous-corrected distribution (—).

Panel methods provide remarkably accurate results rapidly, and are an attractive

choice for subsonic multi-fidelity analyses [Keane and Nair, 2005]. The use of VSAERO

was reported in the study of Ong et al. [2003] for a constrained wing design problem.

Wickramasinghe et al. [2010] and Khurana and Winarto [2010] use XFOIL to predict air-

foil performance for a wide range of operating conditions. In the optimization framework

of Jones et al. [1998], XFOIL is used to compute the airfoil coefficients, which is subse-

quently passed to an aeroacoustic module to compute the sound pressure level. Despite the

advantages of the panel methods, their main deficiency lies in the inability to accurately

model compressible effects, which restricts their application to subsonic problems.

2.3.4 Full Potential Methods

The full potential equation describes inviscid, irrotational and compressible flow. Since

the full potential equation includes all compressibility terms, solutions are valid for high
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Figure 2.6: Transformation from physical to computational domain for full potential method

Mach number flows, however the irrotational condition imposes a condition of constant

entropy throughout the flowfield. This results in the isentropic flow relation across shocks

and therefore does not apply to flows with strong shocks. This flaw of the full potential

equation results in a general overestimation of the lift and drag. In optimization, potential

flow solvers are most notably used in the transonic regime, where shocks are weak yet it is

assumed that the wave drag due to shocks is more significant than the component of drag

due to viscosity. Despite its inaccuracy in modelling strong shocks, full potential solvers

are still robust enough to drive the search away from poor performing regions of the design

space. The full potential method has been successfully used in several transonic airfoil

and wing optimization frameworks [see Hicks and Henne, 1978; Vicini and Quagliarella,

1997; 1999; Obayashi et al., 1997].

In this research the divergence form of the potential flow equation, using the rotated

difference scheme of Jameson [1974], is solved on a two-dimensional grid for the inviscid

compressible flow around supercritical airfoil sections. The grid is generated by solving a

system of elliptic equations, from the work of Thompson et al. [1974]. The physical grid

(x, y) is transformed to a finite difference computational grid (ξ, η) as shown in Figure 2.6.

2.3.5 Euler Method

For compressible flows at large Reynolds numbers, in the absence of massive flow separa-

tion, viscous and turbulence effects are limited to a thin layer close to the solid surface.

When the boundary layer is sufficiently thin compared with the characteristic length of the

problem, the diffusion terms can normally be neglected so that the Navier-Stokes equa-

tions are reduced to the Euler equations. Mathematically, the system of Euler equations

constitutes the most complete description of inviscid flows, and can thus be used to solve

all strong compressible flows (see Figure 2.7). Although the Euler equations are obviously
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Figure 2.7: Euler simulation illustrating Mach number contours for a supersonic nozzle

not universally valid, the importance of their accurate numerical simulation resides in the

dominating convective character of the Navier-Stokes equations at high Reynolds number.

The two-dimensional Navier-Stokes momentum equations (2.4)–(2.5) therefore reduce to:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
= −∂p
∂x
, (2.11)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
= −∂p
∂y
. (2.12)

The Euler equations require orders of magnitude less computing time than solving the

(Reynolds-averaged) Navier-Stokes equations. Euler solvers constitute the majority of

modern aircraft design codes [Keane and Nair, 2005], and codes generally incorporate

empirical boundary layer models to quantify the viscous effects in the linear regime.

Euler methods have been used extensively in aerodynamic design. Reuther and Jame-

son [1995] integrated an Euler solver into a supersonic wing-body shape optimization

framework using an adjoint formulation. It was demonstrated that shock-reduced designs

were identified at high supersonic Mach numbers. A comprehensive study on the use on

the adjoint approach for aerodynamic shape optimization using an unstructured Euler

solver is also presented [Anderson and Venkatakrishnan, 1997, and references therein].

Elliott and Peraire [1996] used an unstructured Euler solver for a number of case-studies,

demonstrating the feasibility of the Euler formulation for optimization studies. Obayashi

et al. [2000b] utilized an Euler solver for the evaluation of the supersonic performance

of wings, where simulations were executed in parallel for computational time savings. In

a later study, Huyse and Michael [2001] adopted an unstructured Euler solver for multi-

point airfoil optimization at varying Mach number range. However, it was concluded from

this study that a boundary layer correction was necessary in order to accurately predict

surface pressure. Quagliarella and Vicini [2001] presented a comprehensive optimization

framework of a high-lift airfoil configuration using an Euler-based solver, coupled with

the compressible boundary layer equations to model the viscous effects. Most commercial

CFD codes can be used to solve the compressible Euler equations. In this research, the
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Figure 2.8: RANS simulation of a slat configuration illustrating confluent boundary layer

compressible Euler equations are solved using the commercial finite volume code ANSYS

Fluent. The Euler solver is used for flows of high Mach number and Reynolds number,

where viscous effects are dominated by inertial forces.

2.3.6 (Reynolds-Averaged) Navier-Stokes

The most common simplification to the full Navier-Stokes equations are the Reynolds-

averaged Navier-Stokes (RANS) equations [Anderson et al., 1984], which describe (un)steady,

compressible and viscous flows. In order to take into account the turbulent motion of the

fluid, the statistical averaging procedure (or the Reynolds decomposition) of each variable

is used. The value of the generic variable g is therefore comprised of two parts such that,

g = ḡ + g′ (2.13)

where ḡ is the time-averaged value over the given time interval, and g′ refers to the fluctu-

ating component due to turbulence. When the dependent variables in the Navier-Stokes

equations (2.6)–(2.7) are replaced with their time-averaged and fluctuating components,

additional apparent stress and heat transfer terms appear [Anderson et al., 1984]. Consider

the Navier-Stokes momentum equations (2.4)–(2.5) with Reynolds decomposition:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
= −∂p
∂x

+
1

Re

[

∂ ¯τxx
∂x

+
∂ ¯τxy
∂y

]

−
[

∂ ¯τ ′xx
∂x

+
∂ ¯τ ′xy
∂y

]

, (2.14)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
= −∂p
∂y

+
1

Re

[

∂ ¯τxy
∂x

+
∂ ¯τyy
∂y

]

−
[

∂ ¯τ ′xy
∂x

+
∂ ¯τ ′yy
∂y

]

. (2.15)

It is observed that Eqs. (2.14)–(2.15) are similar to Eqs. (2.4)–(2.5) with the addition of the

fluctuating shear stress components. To model these new apparent stress terms (commonly
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known as the Reynolds stresses) requires additional equations. These additional equations

or closure models make empirical assumptions regarding the relationship between the time-

averaged variables and the apparent turbulent quantities.

To appreciate the domain of application of RANS modelling, consider the simulation

with the Spalart-Allmaras turbulence closure model [Spalart and Allmaras, 1992] for the

three-element airfoil configuration shown in Figure 2.8. The velocity contour demonstrates

the merging of the wake from the forward element with the surface boundary layer of

the aft element to generate a confluent boundary layer. To achieve this practical level of

accuracy for aerodynamic design, it would be essential to solve the RANS equations. Since

finer meshes are required to assure sufficient accuracy, parallel computing is of particular

significance in aerodynamic design via RANS modelling.

The use of RANS for aerodynamic design optimization was popularized by the work

of Jameson et al. [1998]. In these (and previous) papers, the authors present the solution

of the adjoint problem for the RANS equations. Since the introduction of this study,

the use of RANS in aerodynamic design frameworks is a recurring theme and appears

in notable (among others) studies in the literature (see, for example, Elliott and Peraire

[1997]; Anderson and Bonhaus [1999]; Nemec et al. [2004]; Kim et al. [2004]; Jeong et

al. [2005b]; Epstein et al. [2009]; Jahangirian and Shahrokhi [2009]). While these papers

focus on the steady-state approach for aerodynamic design optimization, unsteady design

frameworks have also been reported [see Rumpfkeil and Zingg, 2010].

Commercial CFD codes can be used to solve the compressible RANS equations. In this

research, the compressible RANS equations are solved using the commercial finite volume

code ANSYS Fluent. The one-equation Spalart-Allmaras turbulence closure model is

utilized [Spalart and Allmaras, 1992]. The advantage of this model over two-equation

turbulence models is its robust convergence rate which makes it suitable for aerodynamic

flows over complex geometries.

2.4 Summary

This chapter has introduced the aerodynamic design architecture and provided an insight

into the role of numerical modelling and shape parameterization in the aerodynamic design

framework. The shape parameterization techniques and numerical models used in this re-

search have been described and the effects of these elements on the efficiency and success

of the design process have been identified. It was established that the shape parameter-

ization method essentially governs the dimensionality of the problem and the attainable
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shapes, whereas the objective flow solver dictates the overall fidelity of the process. In the

next chapter the most important element of the design architecture is introduced, namely

the optimization algorithm.



Chapter 3

Design and Optimization

The aerodynamic design architecture is a synthesis of numerical methods for analysis

and optimization techniques. In the previous chapter, a description on the numerical

elements of the aerodynamic design architecture was provided. While these elements both

influence the efficiency of the optimization loop, arguably the most important element is

the optimizer itself. This chapter presents a discussion on the field of optimization and

the characteristics which classify an optimization problem. The concepts and techniques

which are especially applicable to this research are introduced, laying the foundations for

the proposed methodology documented in later chapters.

3.1 Introduction to Optimization

Optimization problems may be characterized in a number of different ways. To appreciate

the optimization process and the techniques developed to solve optimization problems, it

is beneficial to familiarize oneself with the terminology and concepts liberally used in this

thesis to characterize problems.

The aim of an optimization process in principle is to identify the optimum solution to

an objective function. The objective function represents the quantity to be optimized, and

it is generally up to the discretion of the designer to formulate the objective such that it

reflects the design requirements. If the problem involves one objective function, then it is

referred to as a single-objective optimization problem. If the problem consists of more than

one objective function it is considered multi-objective (see Section 3.4), which is the focus

of the current research. The objective function is optimized by systematically modifying

the input design variables, such that a candidate solution refers to a specific set of inputs.

The methodology for specifying variable modifications is essentially what characterizes

an optimization algorithm. Since all optimization methods solve problems iteratively,

30
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a convergence criterion is necessary1. While this should ideally be based on attaining

the optimum solution, in design it is not uncommon that convergence is assumed once a

computational budget has been exceeded (termed a stopping criterion). The remainder of

this section is devoted to the fundamental concepts of the generic optimization problem.

3.1.1 Optimality

Let S ∈ R
n denote the n-dimensional design space and let x = {x1, x2, . . . , xn} ∈ S be

a vector of design variables. Without loss of generality, it is assumed that the single

objective function f : R
n → R is to be minimized. The definition of the global optimum

x∗ of the objective function f(x) is therefore,

f(x∗) < f(x) ∀x ∈ S and x 6= x∗. (3.1)

Optimization problems are often multi-modal and possess multiple optima. Apart from

the case where all optima are equally global, there is generally only one single global

optimum and multiple local optima which are characterized as either strong or weak. A

solution y∗ is a strong local minimum of f(x) if

f(y∗) < f(y) ∀y ∈ N (y∗, η) and y 6= y∗, (3.2)

where N (y∗, η) ⊂ S is the neighbourhood of y∗ which extends some arbitrary distance

η from y∗. For y∗ to be a weak local minimum only the inequality of Eq. (3.2) need be

satisfied, such that f(y∗) ≤ f(y) under the same conditions. Figure 3.1 shows a one-

dimensional representation of a multi-modal function landscape. The global optimum

is the solution f(x∗) and the solution f(x′) is a strong local optimum. The cluster of

solutions represented by f(x′′) are weak local optima.

3.1.2 Constraints

Most design optimization problems are restricted due to constraints, which may either

confine the boundaries of the design space, or exclude a solution from being considered if

they are violated. Consider a simple airfoil shape optimization problem, where it is sought

to minimize the drag coefficient during cruise flight. A boundary constraint may be in the

form of a threshold to the minimum thickness-to-chord variable, in order to carry sufficient

fuel. A conditional constraint on the other hand may dictate that the lift coefficient must

be greater than or equal to a specific value, to ensure steady level flight.

1With the exception of classical convex critical point theory
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Figure 3.1: One-dimensional representation of a multi-modal objective landscape

Boundary Constraints

Boundary constraints define the domain of the n-dimensional search space. These con-

straints are of the form:

xmin,j ≤ xj ≤ xmax,j , ∀j = 1, . . . , n.

Boundary constraints restrict the domain of the objective functions within which an opti-

mum may be located. Consider the one-dimensional objective function shown in Figure 3.2.

If the boundary of x is defined such that x ∈ [0, 1] then the solution f(x′) is the global

optimum and f(x∗) is a local optimum. However, if the boundary is now defined such

that x ∈ [0, 0.5], then the solution at f(x∗) is the global optimum and f(x′) is now an

infeasible solution. It is important to note that although the solution f(x′) is the global

minimum, within the optimization constraints the solution f(x∗) is the global optimum.

The example in Figure 3.2 illustrates the necessity to appropriately define the bound-

aries of design variables to facilitate the optimization process. Defining the boundary such

that x ∈ [0, 1] causes the function f(x) to be multi-modal, requiring an increased search

effort to converge to the global optimum. If the boundary were defined as x ∈ [0, 0.5]

the function becomes uni-modal, however the optimization process will overlook better

performing areas of the design space. It would be ideal to define the boundary x ∈ [0.5, 1],

such that the problem becomes uni-modal and convex, and the global optimum is assured

to be the best performing solution. Design variable domains may be restricted to provide

robust designs, at the expense of limited flexibility and the risk that better performing

areas are bypassed completely. On the other hand, applying no restrictions will provide

greater flexibility to explore improved designs at the expense of an increased computa-

tional effort. In design it is ideal to avoid any unnecessary computational effort, and
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Figure 3.2: Shift of global optimum as a result of boundary constraints

thus it is beneficial to have some prior understanding of the design space, such that areas

which are likely to provide the optimum are isolated. For example, in the subsonic airfoil

design framework of Khurana and Winarto [2010], the design space domain was defined

by pre-screening existing profiles which perform well for the given operating conditions.

Conditional Constraints

Conditional constraints are represented as inequality or equality functions of the design

variables which exclude solutions if they are violated. They are of the form:

gk(x) ≥ 0, ∀k = 1, . . . , nk,

hp(x) = 0, ∀p = 1, . . . , np,

where nk and np are the number of inequality and equality constraints respectively. Equal-

ity constraints may be treated as a pair of inequality constraints, such that h(x) = 0 is

transformed to h(x) ≤ ǫ and h(x) ≥ −ǫ, where ǫ represents some threshold parameter.

Consider the same one-dimensional objective function shown in Figure 3.3. It is sought to

minimize f(x) subject to the linear inequality constraint of the generic form A · x ≤ B. It

is clearly shown that the global minimum of f(x) will violate the constraint. As a result,

the global optimum of the constrained optimization problem is now considered to be the

solution f(x∗).

Where boundary constraints are easily handled by restricting the design space domain,

conditional constraints must generally be solved simultaneously with the optimization

problem. Furthermore, conditional constraints generally refer to specific design require-

ments that must be maintained or achieved, providing the designer limited flexibility to

alleviate or avoid their effect.



34 3.2. Optimization Techniques

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

x

f
(x

)
x∗

Feasible

Constrained

Figure 3.3: Illustration of a constraint optimization problem

3.2 Optimization Techniques

Optimization algorithms repeatedly call the objective and constraint functions to maintain

the optimal search direction. Since in aerodynamic design these functions are represented

by computationally expensive flow solvers (see Section 2.3) it is essential that the optimizer

be as efficient as possible, to achieve convergence by expending the least computational

effort. The characteristics of the optimization problem are the primary factors that influ-

ence the choice of optimization algorithm. For design applications it is also necessary to

consider factors such as practicality, and whether the aim is to achieve a global design or

to locally improve on an existing design. This section describes and evaluates some of the

more popular optimization techniques applied for aerodynamic design applications.

3.2.1 Gradient Methods (GM)

The Gradient Methods (GM) exploit the objective function gradient to establish the op-

timal search direction. A single candidate solution is iteratively updated by modifying

the direction and step length of the design variables. GM techniques are influenced by

the dimensionality of the design space, since for each design variable the gradient must

be approximated in order to define the optimal direction. The computational viability of

these methods is thus largely dependent on the cost of evaluating the objective, and the

method used to approximate the function gradient [Keane and Nair, 2005]. GM techniques

almost exclusively rely on the condition that the objective function and constraints are

differentiable and convex, which suggests that near a minimum the objective function is

approximated as an ellipsoid2. An example of a convex function is illustrated in Figure 3.4.

2This is a characteristic of the minimum of any smooth and differential function (if the region near a

minimum is represented as a Taylor series expansion) [Keane and Nair, 2005]
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Figure 3.4: De Jong’s convex function in two-dimensions

GM are deterministic optimizers, since they always converge to the same solution

based on a given starting point. The exploitation characteristics of GM allow them to

quickly converge to the mathematically exact optimum (neglecting round-off error) but

only within the local neighbourhood of the starting point location. Hence if the search

is initialized from an ill-defined starting point, the search will converge to an inferior

minimum3. The use of GM is therefore highly problem dependent. If the problem is

continuous, differentiable, unimodal and convex then GM is ideal due to the accelerated

convergence properties. However, in most engineering design applications this is generally

not the case since the objective landscape is rarely unimodal, and is restricted by constraint

boundaries or discontinuities in the function landscape [Keane and Nair, 2005].

Keane and Nair [2005] provide a comprehensive review of GM techniques, and the dif-

ferent interpretations of the gradient information to determine the optimal search direction

and step-length. GMs are proven and effective techniques for optimization, however aero-

dynamic design problems are generally categorized by a large number of design variables

and therefore their application may be impractical due to the expensive gradient vector

evaluation. It was not until the introduction of the adjoint methods by Jameson [1988]

that they became popular in the aerodynamic design literature. An adjoint method refers

to the use of the flow equations to compute the objective function gradient. Since the ad-

joint approach is independent of the number of design variables, the computational burden

of optimizing multi-dimensional problems is significantly alleviated.

Giles and Pierce [2000] and Jameson [2003] present reviews of the development and

application of the adjoint approach for aerodynamic design. Adjoint-based gradient op-

3It can be argued that multiple starting point strategies may mitigate this issue
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timization is now a common theme in aerodynamic shape design frameworks, notably in

the work of Jameson et al. [1995; 1998; 2004], Anderson and Venkatakrishnan [1997], and

Zingg et al. [2002; 2004; 2006; 2010]. The introduction of the adjoint approach allows GM

to be a viable and practical technique for aerodynamic design. If the aim of the opti-

mization process is to locally improve on an existing design, then evidently adjoint-based

gradient optimization is ideal. However for global optimization of multi-modal landscapes

the use of any gradient-based approach is ultimately questionable, since premature con-

vergence to an inferior optimum is highly probable. Furthermore, since only one candi-

date is progressed through the optimization loop, their domain of application is limited.

For example, with reference to this research in particular, GM cannot be used to identify

multiple trade-off solutions to a multi-objective problem. The stochastic population-based

algorithms address the limitations of GM and are the preferred technique for this research.

3.2.2 Evolutionary Algorithms (EAs)

Evolutionary Algorithms (EAs) are stochastic methods inspired by evolutionary theory.

EAs maintain a population of candidate solutions, which either compete or collaborate to

identify optimum solutions over a number of iterations (generations). This considerably

broadens their domain of application, facilitating also the explicit treatment of multiple

objectives (see Section 3.5.2). EAs are global search techniques, since they simultane-

ously explore several promising areas of the design space. The evolutionary operators are

stochastic in nature and thus the probability of premature convergence to inferior optima

is significantly alleviated. In comparison to local optimizers, EAs are exploration-based

techniques. Hence they are proficient in identifying promising areas of the design space,

yet this is generally at the expense of slow convergence rates and poor precision in the

exploitation of individual optima [Grosan et al., 2007]. This is the primary uncertainty

in applying EAs to aerodynamic design, since computational complexity is a prohibiting

factor, and the use of parallel computing becomes a necessity [Keane and Nair, 2005].

EA techniques do not rely on the gradient vector to determine the search direction,

and do not require that the function is continuous or differentiable. EAs are therefore

applicable to all problem classifications, and are ideal for multi-modal and discontinuous

functions. An example of a multi-modal function is illustrated in Figure 3.5. EAs can-

not absolutely guarantee to converge to the global optimum, yet they can explore several

basins of attraction simultaneously. A typical search process involves the random initial-

ization of a population of individuals, eliminating the requirement to provide a starting

point. The objective and constraint functions are evaluated for each individual, in the

form of a fitness function. Evolutionary operators are subsequently used to define a new
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Figure 3.5: Rastrigin’s multi-modal function in two-dimensions

population of individuals, which inherent the successful attributes of the previous gen-

eration and reject poorer solutions. These operators introduce search diversity whilst

attempting to balance exploitation of promising areas of the design space. The algorithms

which fall under the class of EAs differ in their origins and their interpretation of evolv-

ing a population over time. For example, simulated annealing [Kirkpatric et al., 1983]

originates from the process of annealing in metallurgy. Differential evolution [Storn and

Price, 1997] or genetic algorithms [Goldberg, 1989] mimic genetic evolution and Darwinian

survival of the fittest. Other algorithms originate from the field of computational swarm

intelligence [Engelbrecht, 2005], where a particle swarm or a colony of ants collaborate to

identify promising areas of the design space. Each of these algorithms have their identified

merits and weaknesses4, and may be suited to specific forms of optimization.

Aerodynamic designers and researchers are now realizing the benefits of incorporating

EAs within an optimization framework, mainly for the enhanced probability to navigate

multi-modal and discontinuous landscapes. For example, in the shape optimization frame-

work of Rogalsky et al. [2000], differential evolution is shown to outperform more tradi-

tional optimization techniques. Wang and Damodaran [2001] demonstrate the ability of a

simulated annealing algorithm to identify optimum solutions for the shape optimization of

nozzles and diffusers. Their parallel computing architecture led to a significant reduction

in computing time. However, by far the most popular EAs adopted for aerodynamic design

in the literature is the Genetic Algorithm (GA) [see Goldberg, 1989]. GAs adopt the Dar-

winian theory of survival of the fittest, where successful individuals have a high probability

to participate in reproduction for the next generation. Following this methodology, poorly

4Refer to Keane and Nair [2005] for a comprehensive discussion on popular evolutionary heuristics.
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Figure 3.6: Illustration of genetic operators

performing solutions are eliminated from the population, and fitter individuals reproduce

to ensure successful offspring. In the canonical GA candidates are expressed as binary en-

coded strings (genomes), and genetic operators such as selection, crossover and mutation

are used to evolve the population over a number of generations. For example, consider

two successful solutions (parents) of two variables, where each variable is encoded by an

8-bit binary string. Figure 3.6(a) illustrates the single-point crossover operator, where a

point in the genome is randomly defined where the bits are exchanged. The highlighted

region indicates the bits which are exchanged between parents to produce the offspring.

Figure 3.6(b) demonstrates the single-bit mutation operator, where a bit is randomly se-

lected and exchanged. Mutation is effective to maintain diversity in the search and can

alleviate the probability of premature convergence.

In the studies by Quagliarella and Della Cioppa [1994] and Yamamoto and Inoue

[1995], GAs are applied for the shape optimization of transonic airfoils. Results highlight

the ability of GAs to converge towards shockless airfoils, demonstrating the viability of

GA for airfoil shape optimization studies. In the shape optimization framework of Holst

and Pulliam [2001], GA is applied for quasi-one-dimensional nozzle design and transonic

wing design. The case-studies demonstrate the robustness of GA and their insensitivity

to design space noise. The approach by Quagliarella and Della Cioppa [1994] was later

extended by Vicini and Quagliarella [1999] to incorporate a hybrid optimization strategy

with a gradient-based optimizer. The ability of GA to explore the design space was sup-
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ported by the exploitation proficiency of the GM to identify optimal solutions at a reduced

computational cost. In the transonic wing shape optimization of Oyama et al. [2001], a

real-coded adaptive range GA was implemented. The real-coded GA is an intuitive se-

lection for design problems, and the adaptive range technique facilitates the navigation

of large design spaces. These and other initiatives at exploring the viability of GA have

influenced many researchers to capitalize on the advantages of evolutionary computing,

establishing EA as a robust and powerful tool for aerodynamic shape optimization.

There are no clear guidelines on the use and development of EA, and where one algo-

rithm may perform favourably for a particular problem, it may conversely fail for another.

This research focuses on the development and application of a population-based heuristic

known as particle swarm optimization. This paradigm (as discussed in the next section)

is derived from the field of swarm intelligence, where the choreography of bird flock is

emulated to identify promising areas of the design space.

3.3 Particle Swarm Optimization (PSO)

While most population-based algorithms mimic the competitive theory of survival of the

fittest, the concept of maintaining a population of collaborating individuals is increasingly

becoming popular.

The formation of hierarchies within groups of animals is a naturally occurring phe-

nomenon and is simple to comprehend. Even humans have the intuitive tendency to

appoint leaders (e.g. political leaders, military generals, etc.). Another interesting phe-

nomenon which is more difficult to perceive, is the self-organized behaviour of groups where

a leader cannot be identified. This is known as swarming and is evident from the flocking

behaviour of birds or fish moving in unison. Studies have demonstrated [Kennedy et al.,

2001; Engelbrecht, 2005] that this emergent behaviour is highly coordinated and arises

from the interaction of simple rules (such as neighbour proximity). The recently devel-

oped field of swarm intelligence focuses on the artificial simulation of swarming behaviour

to model a wide range of applications, including optimization [Kennedy et al., 2001]. Par-

ticle Swarm Optimization (PSO) is a stochastic population-based technique developed by

Kennedy and Eberhart [1995] with the principles of swarm intelligence. The PSO archi-

tecture was derived from the fields of social psychology and engineering optimization. As

eloquently stated by Kennedy and Eberhart in their original paper:

“...Why is social behaviour so ubiquitous in the animal kingdom? Because it

optimizes. What is a good way to solve engineering optimization problems?

Modelling social behaviour.”
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The dynamics of the swarm are modelled on the social-psychological tendency of indi-

viduals to learn from previous experience and emulate the success of others. Similar to

most evolutionary optimization techniques (such as GA) the swarm is initialized with a

population of random individuals (particles) sampled over the design space. The parti-

cles navigate the multi-dimensional design space over a number of iterations or time-steps.

Each particle maintains knowledge of its current position in the design space. This is anal-

ogous to the fitness concept of GA. Each particle also records its personal best position,

which is where the particle has experienced the greatest success. Aside from recording

personal information, each particle in the swarm also tracks the most successful position

of its surrounding neighbours, known as the neighbourhood leader. Utilizing this infor-

mation, each particle collaborates rather than competes with other particles to adjust its

position in the design space by accelerating towards successful areas of the design space.

The swarm generally converges to the most successful position as identified by any particle,

yet similar to GA it is not guaranteed that this position is the global optimum.

PSO originated as a method to optimally train neural networks and it has steadily

gained popularity as a global optimization technique [Kennedy et al., 2001]. There are

primary distinctions between PSO and GAs which have contributed towards its growing

regard [Angeline, 1998; Engelbrecht, 2005]. GAs rely on three operator mechanisms to

evolve the population which are selection, crossover and mutation. Each of these operators

must also be configured to suit the intended application. PSO however only relies on one

operator which is the particle velocity update. There is no notion of selection therefore

particles do not compete with each other and they do not reproduce nor are they rejected.

The absence of selection is compensated by the use of leaders to guide the swarm. In

this way, a solution which initially performs poorly may possibly be on the future road to

success. Despite its intricate origins, PSO with respect to GAs is also fairly simple and

straightforward to implement [Reyez-Sierra and Coello Coello, 2006]. For this reason, PSO

has been established as a very effective optimization tool for a wide variety of applications

due to its efficient and accurate convergence rates [Trelea, 2003], and has also prompted

some interest from researchers in aerodynamic design.

Perhaps one of the first recorded attempts at utilizing swarm intelligence to solve con-

strained aerodynamic design problems was by Ray and Liew [2002]. Swarm dynamics were

combined with evolutionary selection mechanisms to maintain diversity in the search. The

swarm algorithm was quite capable at handling a variety of different problems, including

single and multi-objective airfoil shape optimization studies [Ray and Tsai, 2004]. In the

study by Sobieszczanski-Sobieski and Venter [2004], PSO was implemented for the bi-level

multi-disciplinary optimization of an aircraft transport wing. The authors concede that
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while PSO may be more expensive in comparison to gradient-based techniques, having

the ability to efficiently navigate the noisy aerodynamic and structural landscapes makes

PSO a viable alternative. Praveen and Duvigneau [2009] report the use of PSO and local

metamodels for an aerodynamic shape design case-study. A PSO-specific screening crite-

rion was proposed, based on the expected improvement in the local memory of individual

particles. Khurana and Winarto [2010] developed and implemented a novel PSO algorithm

for an intricate airfoil shape design framework. The superiority of the swarm algorithm

over other techniques was highlighted, thus establishing it as a feasible approach for the

constrained airfoil design case-studies.

The popularity of PSO has led to increasing open source support5. The focus on PSO

for this research is primarily motivated by the studies of Khurana and Winarto, and the

most attractive feature of PSO in the opinion of the author is its elegant simplicity. With

only slight variations to the algorithm it can be applied to essentially any optimization

problem. Furthermore the coding of the PSO algorithm is straightforward. The remainder

of this section is devoted to a discussion on the swarm topology and dynamics of the

developed algorithm.

3.3.1 Swarm Topology

The change in position of a particle is dictated by its velocity. At any time-step, the

velocity vector of a particle is dependent on its own personal experience and the influence

of other particles. There have been numerous modifications and improvements to the

canonical PSO algorithm, which affect certain search characteristics [Engelbrecht, 2005].

Of significant importance is the level of social interaction among particles, or the swarm

topology. This is also a characteristic of naturally occurring animal behaviour, where an

individual is most likely to be influenced by more successful neighbours rather than the

less successful. The topology essentially characterizes the dynamics of the swarm, and is a

subject of major interest among researchers [Engelbrecht, 2005]. The main variations are:

• gbest: The neighourhood of the particle is the entire swarm. Each particle can

communicate with every other particle to navigate the design space. In this case

each particle is attracted towards the best solution found by the entire swarm.

• lbest: Specific neighbourhoods are defined for each particle. Social interaction is

confined within the local neighbourhood. Each particle is therefore attracted towards

the best solution within the neighbourhood.

5See, for example: http://swarmintelligence.org and http://particleswarm.info
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(a) Global star topology (b) Local ring topology

Figure 3.7: Illustration of main variations in swarm topology and social hierarchy

In the gbest topology all particles are fully-connected, providing the advantage of quickly

exchanging information through the swarm. Figure 3.7(a) illustrates the gbest topology

represented by a star structure. This structure guarantees a faster convergence rate yet

consequently is more susceptible to premature convergence to local optima [Engelbrecht,

2005]. The advantage of the local topology lies in its slower convergence rate, alleviating

the probability of premature convergence to an inferior optimum [Kennedy and Mendes,

2002]. Individual particles have limited global communication and the concept of a single

global leader is replaced by a subset of one-to-many neighborhood leaders to encourage

diversity. Figure 3.7(b) demonstrates the ring structure, where each particle communicates

with only two of its immediate neighbours.

The lbest topology or the notion of maintaining multiple leaders within the swarm is

now considered the standard, as recommended by Bratton and Kennedy [2007]. Given the

problem circumstances, Bratton and Kennedy also note that even the gbest topology can

deliver comparable performance to the lbest topology for complex multi-modal problems.

In a multi-objective environment, the concept of the single swarm leader of the gbest

topology is naturally replaced by a number of equally optimal trade-off solutions. This

concept is comparable to the lbest topology, where defining multiple leaders to guide the

swarm inherently incorporates more diversity in the search.

3.3.2 Swarm Initialization

A swarm of N particles is required to navigate the design space S bounded by xmin and

xmax. To safeguard against magnitude and scaling issues, all variables are normalized into

the unit cube, such that S = [0, 1]n. The i-th particle in the swarm is characterized by the

n-dimensional vectors xi and vi, which are the particle position and velocity respectively.
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The i-th particle is randomly initialized at time t = 0 by the expression

xi(0) = xmin + U[0, 1]⊗ (xmax − xmin) , (3.3)

where the function U[0, 1] returns a vector of length n of uniformly distributed pseudoran-

dom numbers U(0, 1). The personal best position of the i-th particle pi is initialized to the

position xi at t = 0. The objective and constraint functions are calculated and fitness is

assigned. While it is argued that the initial particle velocity should be zero (since in reality

a swarm starts from rest), it is possible to initialize the velocity such that the particle has

an initial momentum and trajectory [Engelbrecht, 2005]. Following Wickramasinghe and

Li [2008], the velocity is initialized to a random value, such that

vi(0) = (xmin − xmax) + U[0, 1]⊗ (2 · xmax) . (3.4)

It is important to note that initializing the velocity by Eq. (3.4) randomly assigns both

the magnitude and direction of each vector component.

3.3.3 Particle Update

The update equations of PSO adjust the position of the i-th particle from time t to

t+ 1. Significant insight into formulating a theoretical basis for the internal dynamics of

PSO were pioneered in the work of Clerc and Kennedy [2002]. In their studies, particle

behaviour was analyzed from an eigenvalue analysis of swarm dynamics. The relative influ-

ence of constricting exploration and exploitation characteristics of the swarm on its overall

search performance was highlighted. Their constriction type frameworks have since formed

a departure point for further studies in refining the PSO algorithm. In the constriction

type 1 framework6, the velocity update of the i-th particle is a function of acceleration

components to both the personal best position, pi and the global (or neighbourhood) best

position, pg. The updated velocity vector is given by the expression,

vi(t+ 1) = χ[vi(t) + R1[0, ϕ1]⊗ (pi(t)− xi(t)) + R2[0, ϕ2]⊗ (pg(t)− xi(t))]. (3.5)

The velocity update of Eq. (3.5) is quite complex and is composed of many quantities

which affect certain search characteristics. The previous velocity vi(t) serves as a memory

of the previous flight direction and prevents the particle from drastically changing direction

and is referred to as the inertia component. The cognitive component of the update

equation (pi(t)− xi(t)) quantifies the performance of the i-th particle relative to past

performances. The effect of this term is that particles are drawn back to their own best
6The constriction type 1 framework of Clerc and Kennedy is the recognized standard [see Bratton and

Kennedy, 2007]
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positions, which resembles the tendency of individuals to return to situations where they

experienced most success. The social component (pg(t)− xi(t)) quantifies the performance

of the i-th particle relative to the global (or neighbourhood) best position. This resembles

the tendency of individuals to emulate the success of others.

The two functions R1[0, ϕ1] and R2[0, ϕ2] return a vector of uniform random numbers

in the range [0, ϕ1] and [0, ϕ2] respectively. The constants ϕ1 and ϕ2 are equal to ϕ/2

where ϕ = 4.1. This randomly affects the magnitude of both the social and cognitive

component. Once the particle velocity is calculated, the particle is displaced by adding

the velocity vector (over the unit time step) to the current position,

xi(t+ 1) = xi(t) + vi(t+ 1). (3.6)

The balance between exploration and exploitation is a critical feature of global optimiza-

tion techniques. In PSO, this trade-off is heavily dependent on the magnitude of velocity.

The velocity magnitude should initially be larger so unexplored areas are quickly sampled.

As the algorithm identifies a promising area it is ideal to reduce the magnitude of velocity

so that the area is exploited and particles are less susceptible to diverge from the search

path. In PSO this balance is managed by dynamically scaling the inertia component or

clamping the velocity magnitude [Engelbrecht, 2005]. In the constriction type 1 framework

of Clerc and Kennedy [2002], the velocity vector is constricted by the constant,

χ = 2/|2− ϕ−
√

ϕ2 − 4ϕ|. (3.7)

This factor applies a dampening effect as to how far the particle explores within the

search space and is a dynamic way to ensure a stable convergence rate [Engelbrecht, 2005].

While use of the constriction coefficient eliminates the need to clamp the velocity, it was

empirically demonstrated that if velocity clamping and constriction are used together,

more efficient convergence rates are possible [Eberhart and Shi, 2000]. The j-th velocity

component of the i-th particle is clamped as shown in Algorithm 1.

3.3.4 Boundary Conditions

Particle flight should ideally be confined to the feasible design space. However it may occur

during flight that a particle involuntary violates the boundaries of the design space. There

are a variety of methods for handling boundary constraints with PSO [Engelbrecht, 2005].

While it is suggested that particles which leave the confines of the design space should

simply be ignored [Bratton and Kennedy, 2007], it is possible to restrict the movement of

particles such that they remain within the feasible design space without affecting the flight

trajectory. The bounce-back method considers the calculated flight trajectory and adjusts
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Algorithm 1 Velocity clamping

1: for each particle xi do

2: for each variable j do

3: if vi,j > xmax,j − xmin,j then

4: vi,j = xmax,j − xmin,j

5: else if vi,j < xmin,j − xmax,j then

6: vi,j = xmin,j − xmax,j

7: end if

8: end for

9: end for

Algorithm 2 Boundary violation

1: for each particle xi do

2: for each variable j do

3: if xi,j(t+ 1) > xmax,j then

4: xi,j(t+ 1) = xi,j(t) + rand()× (xmax,j − xi,j(t))
5: else if xi,j(t+ 1) < xmin,j then

6: xi,j(t+ 1) = xi,j(t) + rand()× (xmin,j − xi,j(t))
7: end if

8: end for

9: end for

the variables which violate the boundaries. The process is demonstrated in Algorithm 2. It

is important to note that the boundary condition is applied to the j-th dimension. If the j-

th dimension is violated then only the j-th variable is corrected. This is particularly useful

for many-dimensional problems, where penalizing all variables as a result of a boundary

violation could potentially disrupt the search path of the particle.

3.4 Multi-objective Optimization

Aerodynamic design problems are often characterized by several interacting or conflicting

requirements, which must be satisfied simultaneously. For example, consider the optimal

design of a high-lift system for a transport aircraft wing. In this case, the aerodynamic

requirement is simply to achieve maximum lift. In reality, the high-lift system will also have

a strong impact on the wing weight, as well as the intricacy of system actuation. There

is an important trade-off between these requirements: to maximize flight performance, a

complex high-lift system is required. However, increasing the complexity of the system

compromises the structural integrity, resulting in an increase in weight. Trade-offs between

different requirements is a characteristic of Multi-Objective Problems (MOP). The current
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research focuses exclusively on the development of a design framework for MOP. This

section introduces the fundamental concepts of Multi-Objective Optimization (MOO),

and reviews the techniques for solving multi-objective problems in aerodynamic design.

3.4.1 Problem Definition

Let S ∈ R
n denote the n-dimensional design space and and let x = {x1, x2, . . . , xn} ∈ S

denote the decision vector with lower and upper bounds xmin and xmax respectively. Let

the objective function fi(x) be defined as fi : R
n → R be the i-th component of the

objective vector f(x) = {f1(x), . . . , fm(x)} where m is the number of objectives. The

generic multi-objective minimization problem is thus defined as:

min f(x) subject to: ck(x) ≥ 0, ∀k = 1, . . . , p. (3.8)

Where p is the number of inequality constraints ck. Equality constraints may be appro-

priately represented as two inequality constraints, as discussed in Section 3.1.2.

3.4.2 Pareto Optimality

For a single-objective problem, the global optimum is the solution which satisfies the con-

dition min fi(x). For a MOP the definition of the optimum must be redefined since in

the presence of conflicting objectives, improvement in one objective may cause a deterio-

ration in another. Typically there is no single global solution and it is often necessary to

identify a set of trade-off solutions, which can all be considered equally optimal. Finding

a set of these solutions, and quantifying how much better these solutions are compared

to others, is the aim when formulating and solving a MOP. A solution is termed globally

non-dominated or Pareto optimal7 if the value of any objective cannot be improved with-

out deteriorating at least one other objective. Let the candidate solutions, a and b ∈ S.

The candidate a dominates the candidate b (denoted by a ≺ b) if,

∀i = 1, . . . ,m fi(a) ≤ fi(b) ∧ ∃i : fi(a) < fi(b). (3.9)

The concept of dominance is illustrated in Figure 3.8 for a bi-objective minimization

problem. The shaded area denotes the area of objective vectors dominated by a. A decision

vector a∗ is therefore Pareto optimal if there is no other feasible decision vector a 6= a∗ ∈ S
such that f(a) ≺ f(a∗). A locally non-dominated solution within a neighbourhood can

similarly be defined as discussed in Section 3.1.1.

7The term is named after the 19th century Italian economist Vilfredo Pareto, who used the trade-off

concept in income distribution [Pareto, 1927]
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Figure 3.8: Illustration of dominance on a bi-objective landscape

3.4.3 Pareto Front

The Pareto front contains the objective vectors which correspond to all Pareto-optimal

solutions. Identifying the true or exact Pareto front is generally computationally pro-

hibitive [Engelbrecht, 2005]. The aim when solving a MOP is therefore reduced to ap-

proximating the full or partial Pareto optimal front, such that the distance to the Pareto

front is minimized, and the Pareto optimal set is as diverse as possible. A key character-

istic of multi-objective methods is the nature of the solutions that they provide [Arora,

2004]. Some methods may always yield Pareto optimal solutions but may omit certain

solutions along the Pareto front. Alternatively, other methods may capture all possible

solutions on the Pareto front but may also provide false Pareto-optimal solutions [Arora,

2004]. The tendency of a particular method to result in false Pareto optima, or being in-

capable of identifying all solutions is not only influenced by the method itself, but also by

the problem. For example, the Pareto landscape is of particular importance in MOO, and

in some cases restricts the attainability of Pareto optimal solutions [Deb, 2001; Marler and

Arora, 2004]. Figure 3.9 illustrates common Pareto landscapes for bi-objective problems.

There is only one Pareto front to a given problem, which (following the optimization

terminology) could be considered the global non-dominated front. The concept of the

global non-dominated front therefore suggests the existence of false or local fronts [see Deb,

2001]. For single-objective multi-modal problems, algorithms are developed to identify

the global optimum and avoid premature convergence to local solutions. Similarly, multi-

objective algorithms aim to identify the closest approximation to the true (i.e. global)

Pareto front, and avoid premature convergence to local inferior fronts.
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Figure 3.9: Illustration of example Pareto landscapes for bi-objective functions

3.5 Solving Multi-objective Problems

From a design perspective, the primary aim of MOO is to obtain Pareto optimal solutions

which are in the preferred interests of the designer, or best suit the intended application.

Methods for solving MOP are therefore characterized by how the designer preferences

are articulated [Marler and Arora, 2004]. There are three generic classes of methods for

solving MOP [Fonseca and Fleming, 1998]:

• A priori methods: The preferences of the designer are expressed prior to the opti-

mization process, generally resulting in one identified trade-off.

• A posteriori methods: The algorithm first identifies a set of non-dominated solu-

tions, subsequently providing the designer greater flexibility in selecting the most

appropriate solution.

• Interactive methods: The decision making and optimization processes occur at in-

terleaved steps, and the preferences of the designer are interactively refined.
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The a priori strategy requires the designer indicate the relative importance of each objec-

tive before performing the optimization. Notable methods are the weighted aggregation

methods, the Lexicographic method [Marler and Arora, 2004], physical programming [Mes-

sac, 1996], as well as the goal programming approach, which makes specific reference to a

target solution [see, for example Sobieszczanski-Sobieski and Haftka, 1996, and references

therein]. The a priori methods simplify the MOP at the expense of limited flexibility, since

multiple runs are required to generate a set of interesting trade-offs. The a posteriori meth-

ods provide maximum flexibility to the designer, at the expense of greater computational

effort. Generally these methods involve explicitly solving each objective using the dom-

inance criteria, a concept which is ideal for population-based EA [Fonseca and Fleming,

1995; Deb, 2001; Coello Coello, 2007]. However, there have been some notable exceptions

in the literature, such as the normal constrained method of Messac et al. [2003]. The

interactive methods involve the progressive articulation of preferences, which originates

from the multi-criteria decision making literature [Ehrgott and Gandibleux, 2002]. The

optimization and decision making processes are interleaved, exploiting the intermediate

information provided by the optimizer to refine preferences [Fonseca and Fleming, 1998].

This section presents a discussion on the multi-objective methods adopted within the

scope of aerodynamic design, namely the weighted sum approach (which is generally solved

via gradient-based methods) and evolutionary multi-objective optimization. A comprehen-

sive introduction to the use of PSO for MOO is subsequently presented. The concepts

described hereafter are fundamental to introducing the field of preference-based optimiza-

tion, which constitutes a significant component of this research.

3.5.1 Weighted Aggregation

A simple and common approach to multi-objective aerodynamic design is to adopt the

weighted sum approach, where all objectives are aggregated into a single scalar,

F =
m
∑

i=1

ωifi(x). (3.10)

Where ω is a vector of weights typically set by the designer such that
∑m
i=1 ωi = 1. If

all weight values are positive, then a solution to the weighted sum approach will likely be

Pareto optimal [Marler and Arora, 2004]. The relative weights are effectively a method of

stipulating designer preferences a priori, since the weights reflect the relative priority of

each objective. For example, consider a case-study with two conflicting objectives. The

simplest strategy in assigning weights would be the expression,

min
x
F = ω · f1(x) + (1− ω) · f2(x) (3.11)
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Figure 3.10: Illustration of the weighted sum approach for a convex Pareto front

Eq. (3.11) reduces to the single-objective optimization problem min f1(x) as the weight

value ω → 1. Any value of ω ∈ (0, 1) will therefore result in a different compromise

between both objective functions8. Figure 3.10 illustrates the weighted sum approach for

a bi-objective optimization problem. The trade-offs on the convex Pareto landscape are

obtained by incrementing the value of ω in Eq. (3.11). It is observed that linear increments

in ω do not correspond to a uniform spread of solutions.

In the aerodynamic design literature, Drela [1998] introduced the weighted sum ap-

proach for multi-objective airfoil shape optimization. Drela observed that the real defi-

ciency of traditional airfoil design philosophies for a single operating condition was the

often significant performance degradation at off-design conditions. To address this inade-

quacy, the concept of multi-point optimization was introduced where a range of operating

conditions are considered, such that optimal performance is achieved throughout the de-

sired range. The relative importance of each operating condition is established through

weights, however their appropriate values are not intuitive and cannot be easily esti-

mated without prior experience. The study by Drela laid the foundations for utilizing

the weighted sum approach for MOO. Correlations between the geometrical degrees of

freedom and the number of operating conditions were established, and the potential limi-

tations of the approach were identified. Since then, researchers have addressed the topic

of multi-point optimization in various contexts within aerodynamic design.

Li et al. [2002] provides a comprehensive discussion on robust optimization using the

multi-point strategy, and presents a case study on airfoil wave drag optimization. In

the paper by Nemec et al. [2004] a Newton-Krylov GM is applied for multi-objective

8It is interesting to note that the weighted sum approach can identify trade-off solutions to a multi-

objective problem despite no explicit reference to the concept of dominance.



3.5. Solving Multi-objective Problems 51

aerodynamic shape optimization using the weighted sum approach. Through their imple-

mentation of the discrete adjoint method, the computational expense in calculating the

gradient is significantly reduced, providing an effective approach for aerodynamic design

problems with multiple objectives. Furthermore, the proposed algorithm was used to com-

pute a Pareto front based on competing objectives, where the results were validated using

a dominance-based EA (see Section 3.5.2). The weighted-sum strategy using the gradient-

based method was demonstrated to be convincingly more efficient than the evolutionary

algorithm for the particular case-study.

The concept of multi-point aerodynamic optimization was further developed by the

work of Zingg and Elias [2006]. In their study a technique was proposed for automatically

choosing sampling points within the operating range and their weights to obtain the desired

performance over the range of operating conditions. Airfoil shape optimization over a

range of Mach numbers was considered for constant lift-to-drag ratio by minimizing a

weighted integral over the design operating envelope. Through a numerical integration

scheme, the weighted integral is converted to a multi-point optimization problem with

specified sampling points and weights. In more recent studies, Epstein et al. [2009] adopted

the weighted sum strategy for three-dimensional wing drag optimization. The authors

performed a comprehensive comparative study of different optimization techniques, namely

an adjoint-based GM, a response surface method and a GA, in an effort to construct a

reliable test case-study for aerodynamic design optimization frameworks. In the recent

study by Buckley et al. [2010], the scope of multi-point aerodynamic optimization has been

extended to accommodate the full range of flight conditions that an aircraft encounters

during a mission, characterized by eighteen design points.

Despite its popularity among researchers, regardless of the optimizer, there are rec-

ognized deficiencies with the weighted sum strategy [see Marler and Arora, 2004, and

references therein]. The primary disadvantage of the weighted sum strategy is the a priori

selection of weights does not necessarily guarantee that the final solution will reflect the

preferred interests of the designer, and it may be necessary to resolve the problem with new

weights [Messac, 1996]. The second deficiency is that as a consequence of aggregating the

objective functions, it is impossible to obtain solutions on non-convex Pareto fronts9 [Deb,

2001; Marler and Arora, 2004]. Another disadvantage of the weighted sum method is

that varying the weights continuously will not necessarily result in an even distribution of

Pareto optimal solutions [Das and Dennis, 1997; Deb, 2001; Marler and Arora, 2004], nor

a complete representation of the Pareto front [Arora, 2004].

9See [Das and Dennis, 1997; Messac et al., 2000a;b] and [Jin et al., 2001] for discussions on non-convex

Pareto fronts
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3.5.2 Evolutionary Multi-objective Optimization (EMO)

While EA could potentially be used as an optimizer for the a priori methods discussed

previously, their appeal is in their ability to converge to the whole Pareto front of a given

problem, thus identifying numerous trade-off solutions [Marler and Arora, 2004]. The

designer therefore has the flexibility to select the most appropriate solution(s) which best

suit the intended application. GM techniques are not ideal for MOO, since only one

candidate is progressed through the optimization loop and consequently only one final

trade-off can be identified. In order to generate a spread of solutions, it would therefore

be necessary to perform consecutive runs of the optimization loop. Alternatively the use

of evolutionary methods is ideal, since they maintain a population of candidates capable

of identifying numerous trade-offs simultaneously. As confirmed by Coello Coello [2007],

“...from the several emergent research areas in which (evolutionary algorithms)

have become increasingly popular, multi-objective optimization has had one of

the fastest growing in recent years... Researchers and practitioners remain to

find an irresistible match between the population available... and the need in

multi-objective problems to approximate the Pareto trade-off curve or surface.”

Numerous texts are available (and are continuously updated), which are devoted entirely

to Evolutionary Multi-objective Optimization (EMO) [for example Fonseca and Fleming,

1995; Deb, 2001; Coello Coello, 2007]. Monitoring the frequency that these texts are

cited in the literature illustrates the popularity of these techniques among researchers10.

It is therefore intractable that one could hope to concisely present a review of EMO

within the confines of a thesis report. The field of EMO is extensive, and while the

reported algorithms differ in their own respects, they generally maintain a population

of candidates which is iteratively updated through the dominance criterion. The use of

other EMO methods which do not make explicit reference to the dominance criteria have

also been reported. For example the vector evaluated GA proposed by Schaffer [1989] or

the use of preference-based mechanisms to identify optimal trade-offs in many-objective

(i.e. m > 4) environments [see Wickramasinghe and Li, 2009]. The present discussion is

therefore limited to some of the dominance-based EMO techniques for aerodynamic design,

or concepts which have prompted the development of frameworks tailored for aerodynamic

design.

The primary difficulty in developing EMO algorithms is how to quantify the success

of a solution among other candidates, and therefore how to iteratively update the popu-

lation [Marler and Arora, 2004]. Another issue arises from the need to maintain diversity
10A list of references on EMO is also maintained: http://www.lania.mx/ ccoello/EMOO/EMOObib.html
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ing to their pertaining front and closeness to the true Pareto front

in the non-dominated set, and maintain already identified non-dominated solutions11. An

initial attempt at extending GA to handle multiple objectives was by Goldberg [1989]. At

each generation individuals are assigned a rank, whereby non-dominated solutions have

the highest rank and solutions in the most inferior front have the lowest rank. This en-

sures that the more successful individuals are selected to reproduce. Fonseca and Fleming

[1993] proposed a similar ranking procedure to Goldberg. In their Multi-Objective Genetic

Algorithm (MOGA) each individual is assigned a rank based on the number of individuals

that dominate them. A niching method is implemented in order to maintain a diverse set

of non-dominated solutions in the Pareto front. Srinivas and Deb [1994] later extended

the approach by Goldberg, with the Non-dominated Sorting Genetic Algorithm (NSGA).

All individuals are ranked based on non-domination, and correspondingly the highest se-

lection pressure for reproduction is given to solutions in the non-dominated front, and so

forth until all individuals are classified. An extension to the NSGA algorithm (NSGA-II

algorithm) was developed by Deb et al. [2002]. This algorithm introduces elitism and a

crowding distance operator, providing more efficient convergence rates over its predecessor.

An illustration of non-dominated sorting is provided in Figure 3.11.

Due to the rate at which new algorithms and concepts were being developed, EMO

have gained popularity among researchers in aerodynamic design. The concept of applying

EMO for aerodynamic design was popularized by the pioneering work of Obayashi et al..

MOGA was applied for the aerodynamic design of transonic wings [1997], the shape opti-

11The final issue – perhaps more related to their application in engineering design – is the computational

cost associated in maintaining a population of candidate solutions. It can be argued that the introduction

of the parallel computing architecture has somewhat alleviated this issue [Keane and Nair, 2005]
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mization of cascade airfoils [2000a] as well as supersonic wing-shape optimization [2000b].

These studies were fairly complex, yet the advantages of driving a population of candidates

to identify trade-offs were comprehensively highlighted. It was also one of the first studies

where EMO was applied for case-studies of varying fidelity, illustrating its proficiency in

handling different multi-objective environments. Crossley et al. [1996; 1998] report the

use of a MOGA variant, which was further developed and applied to the aerodynamic

and aeroacoustic design of airfoils by Jones et al. [1998]. A MOGA was also developed

and applied by Vicini and Quagliarella [1997] for the aerodynamic design of wings. The

algorithm was further developed by introducing a GM in the form of a genetic operator

to increase convergence rates [1999], and later applied to the shape optimization of both

transonic airfoils and multi-component airfoils for high-lift applications [Quagliarella and

Vicini, 2001]. The NSGA algorithm [Srinivas and Deb, 1994] is applied in the airfoil aero-

dynamic design framework of Marco et al. [1999]. Ray et al. [2001] also applied the NSGA

algorithm for engineering design applications, before developing a multi-objective swarm

algorithm for airfoil shape optimization [2002; 2004].

Most of the earlier attempts at developing EMO algorithms were derived using the prin-

ciples of GA. However Pareto optimality is not linked with any of the conventional genetic

operators. Consequently, it is possible that a Pareto optimal solution may be identified

and then randomly discarded [Marler and Arora, 2004]. For this reason, the use of elitist

schemes has also become common [Marler and Arora, 2004; Coello Coello, 2007]. Elitism

generally consists of the use of an archive, that is used to store identified non-dominated

solutions and can also interact with the population of individuals. This has also naturally

led to the development of multi-objective algorithms based on other EA techniques. The

Pareto Archived Evolution Strategy (PAES) by Knowles and Corne [2000] is one such

strategy, whereby evolutionary operations and an archive of non-dominated solutions are

used to compare with individuals in the current population. This led to the development

of the earliest published attempt at extending particle swarm optimization to handle mul-

tiple objectives by Coello Coello and Lechuga [2002]. There has since been an increase

in the number of proposals for multi-objective particle swarm optimization [Engelbrecht,

2005; Reyez-Sierra and Coello Coello, 2006]. This research focuses on the development of

a novel swarm-based framework for multi-objective aerodynamic design.

3.5.3 Multi-objective Particle Swarm Optimization (MOPSO)

PSO is an effective tool for single-objective optimization problems due to its fast con-

vergence [Trelea, 2003]. It has also gained rapid popularity for MOO [Reyez-Sierra and

Coello Coello, 2006]. PSO is a population-based technique, thus it can be tailored to
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identify trade-off solutions to a MOP in one single run, similar to EMO. Comprehen-

sive surveys on extending PSO to handle multiple objectives are provided by Engelbrecht

[2005]; Reyez-Sierra and Coello Coello [2006]. It was established that the primary ambi-

guity in specifically tailoring PSO to handle multiple objectives was the selection of guides

for each particle to avoid convergence to a single solution. The velocity update Eq. (3.5)

makes explicit reference to a single personal best and global best solution. The selection

process for particle leaders must therefore be restructured, to encourage search diversity

and ensure non-dominated solutions found during the search are maintained.

Initial attempts at a Multi-Objective Particle Swarm Optimization (MOPSO) algo-

rithm were motivated by the archive strategy by Knowles and Corne [2000]. Coello Coello

and Lechuga [2002] incorporated the concept of Pareto dominance in PSO by maintaining

two independent populations: the particle swarm and the elitist archive. Non-dominated

solutions are stored in the archive and subsequently used as neighbourhood leaders. The

objective space is separated into hypercubes, which serve as a particle anti-clustering

mechanism. Solutions in sparsely populated hypercubes have a higher selection pressure

to be leaders and solutions in densely populated hypercubes are removed if the archive

limit is exceeded. The initial approach by Coello Coello and Lechuga was later extended

by Mostaghim and Teich [2003], where the concept of ǫ-dominance12 was studied and

compared to existing clustering techniques for fixing the archive size, with favourable re-

sults. Ray and Liew [2002] also developed an efficient evolutionary-based swarm paradigm,

where a Pareto ranking scheme similar to non-dominated sorting is implemented to rank

each solution in terms of the objective functions and constraint violation.

Fieldsend and Singh [2002] addressed the computational complexity of maintaining a

restricted archive, by incorporating the dominated tree method. This data structure al-

lows for an unrestricted archive size, which interacts with the population to define global

leaders. A turbulence operator (similar to the concept of mutation in EA) was also im-

plemented, where swarm members were randomly displaced on the design space to reduce

the probability of premature stagnation. In the NSPSO algorithm of Li [2003], the non-

dominated sorting mechanisms of NSGA-II are incorporated. The population and the

personal best position of each particle are consolidated to form one single population,

and the non-dominated sorting scheme is utilized to rank each solution. Global guides

are selected based on particle clustering, where a niching or crowding distance metric

is used to further classify non-dominated solutions. Li later proposed the maximinPSO

algorithm [Li, 2004], which uses no niching method to maintain diversity.

12Refer to Deb [2001] for a description of ǫ-dominance
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Reyez-Sierra and Coello Coello [2005] proposed an elitist archive incorporating the

ǫ-dominance strategy to maintain global leaders for the swarm. A crowding distance

operator is employed to classify non-dominated solutions and maintain uniformity. The

crowding distance operator is also used to limit the number of candidate leaders after each

population update, simplifying the mechanism to control the set of candidate leaders. A

turbulence operator is implemented to encourage diversity, whereby particles are randomly

mutated. A similar approach by Raquel and Naval [2005] was developed in parallel (al-

though this method does not implement ǫ-dominance), where the crowding distance was

used to both define the global guides and truncate the size of the archive. For this research,

a MOPSO variant is proposed (described in Chapter 5) which is predominately influenced

by the two latter studies.

3.5.4 Preference-based Optimization

The a priori strategies (such as the weighted sum approach) articulate preferences by

initially prioritizing each objective. These methods are simple and efficient if the fitness

function is able to faithfully reflect the preferred interests of the designer. However, this is

rarely the case since there is no prior knowledge of the relative influence of each objective

in order to allocate bias with sufficient confidence [Rachmawati and Srinivasan, 2006]. The

dominance-based EMO approach alternatively provides the designer greater flexibility in

selecting the most preferred solution. However it poses the challenge of identifying and

exploiting the entire Pareto front which may be impractical for design applications due to

the excessive number of function evaluations. While conventional EMO techniques may be

computationally demanding, Fonseca and Fleming [1995] argue that their most attractive

aspect is the intermediate information generated which can be exploited by the designer to

refine preferences and improve convergence. This concept of interactive optimization has

led to an increasing interest in coupling classical a priori methods to EMO as an intuitive

way of specifying designer preferences and identifying solutions of interest. This is known

as preference-based optimization, which is the motivation for this research.

Comprehensive surveys on preference-based optimization are provided by Coello Coello

[2000] and Rachmawati and Srinivasan [2006]. The first recorded attempt at incorporat-

ing preferences within an EMO framework was by Fonseca and Fleming [1993] using the

goal programming approach. Goal programming [see Marler and Arora, 2004] is an ideal

approach to indicate desired levels of performance for each objective, since they are closely

related to the final solution of the problem. Goals may either represent target or ideal

values. Fonseca and Fleming later extended the approach where an online decision making

strategy was proposed based on goal and priority information [1998]. A goal programming
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Figure 3.12: Isolating the preferred region using the reference point compromise

mechanism for identifying preferred solutions for MOP was also proposed by Deb [1999].

While the reported frameworks draw on the preferred interests of the designer to aid the

optimization process, the goal programming approach is computationally complex, and

there is no means of specifying any relation or trade-off between the objectives [Rach-

mawati and Srinivasan, 2006].

Thiele et al. [2007] proposed another variant of preference-based EMO. A coarse rep-

resentation of the Pareto front is initially presented to the designer. The most interesting

regions are subsequently isolated, to which the algorithm continues to focus on exclusively.

This proposal effectively removes the necessity to predefine target values for each objective

and provides the designer a means of isolating the preferred trade-offs. However, it is a

two-stage approach requiring an initial approximation to the Pareto front, which may be

unnecessarily expensive. The integration of other classical preference articulation meth-

ods have also been proposed in the literature. A reference point based EMO framework

was proposed by Deb and Sundar [2006]. The crowding distance operator of the NSGA-II

algorithm was modified to include the reference point information and the extent of the

preferred region was controlled by ǫ-dominance. Figure 3.12 demonstrates the concept

of the preferred region based on the stipulation of a reference point compromise. Deb

and Kumar also experimented the use of other classical preference methods, such as the

reference direction method [2007a] and the light beam search method [2007b].

Recently the concept of preference-based optimization has also been integrated within

MOPSO frameworks. Wickramasinghe and Li [2008] integrated the reference point method

to both the NSPSO and maximinPSO algorithms of Li [2003; 2004]. Significant improve-

ment in convergence efficiency was highlighted and it was demonstrated that final solutions
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are of higher relevance to the designer. Wickramasinghe and Li [2009] later extended their

approach to handle many-objective problems, by replacing the dominance criteria entirely

with the simpler distance metric. The benefits of utilizing the reference point method for

a many-objective aerodynamic optimization framework was also investigated [2010]. It

was conclusively demonstrated that without the use of the reference point, obtaining a

final set of preferred designs solely through conventional EMO techniques is improbable.

The proposed multi-objective algorithm (refer to Chapter 5) is primarily influenced by the

preference-based architecture developed by Wickramasinghe and Li.

3.6 Summary

In this chapter the optimization concepts which are related to this research have been

introduced. A generic discussion on the characteristics of the optimization problem, such

as the definition of global and local optima has been provided. This is followed by a

comparison of the two main optimization techniques, namely the deterministic gradient-

based methods and the stochastic evolutionary algorithms. A comprehensive introduction

and review of the evolutionary algorithm selected for this research, known as particle

swarm optimization, is subsequently provided. This research is concerned primarily with

multi-objective optimization, and as such a thorough introduction to dominance and the

techniques utilized to identify non-dominated solutions has been given. Focus is given to

the field of preference-based optimization, since it is the primary theme of the proposed

design framework which is documented in Chapter 5.



Chapter 4

Surrogate Modelling

The most prohibiting factor of design optimization is the cost of evaluating the objective

and constraint functions. For high-fidelity aerodynamic design, function evaluations may

very well be measured in hours. This computational burden ultimately questions the prac-

ticality of performing an optimization study, and is often alleviated by simply reducing

the level of sophistication of the solver. This consequently reduces the fidelity of the final

design, which is undesirable. Another mitigating strategy which has steadily gained popu-

larity in design is the use of inexpensive surrogates or metamodels. These models emulate

the response of the expensive function at an unobserved location, based on observations

at other locations. Surrogate models are not specifically optimization methods, but rather

they may ideally be used in lieu of the expensive function to extract information from or

visualize the design space during the optimization process. This chapter presents a brief

introduction to surrogate modelling, with a comprehensive review on the Kriging method.

4.1 Surrogates in Design

The insightful texts by Keane and Nair [2005] and Forrester et al. [2008] provide a detailed

account of the use of surrogates in design. The most common use is to construct a

curve fit of an expensive function landscape which can be used to predict results without

recourse to the original function. This is supported by the assumption that the inexpensive

surrogate will still be usefully accurate when predicting sufficiently far from observed data

points [Forrester et al., 2008]. Figure 4.1 illustrates the use of a surrogate to fit the

one-dimensional multi-modal function, based on four sample observations. The original

function landscape could potentially represent any deterministic quantity of the design

space. Rather than exactly emulating the response of a high-fidelity flow solver, the

surrogate may be used to bridge the gap between flow solvers of varying fidelity [Forrester

59
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Figure 4.1: Constructing a surrogate to fit a one-dimensional function

et al., 2008]. Alternatively a surrogate may be used to filter noisy landscapes, as to

eliminate the adverse effects of flow solver convergence or grid discretization. Surrogates

are also used for data mining. Such methodologies are applied to extract useful information

on the relationship between the design space and the objective space, allowing informed

decisions to be made which could simplify a seemingly complex problem.

4.1.1 Constructing a Surrogate

For the aforementioned uses of surrogate modelling, the common requirement is to repli-

cate the function relationship between the variable inputs and the output quantity of

interest. This is typically achieved by sampling the design space using the exact function

to sufficiently model the underlying relationship within the allowable computational bud-

get. Whether the aim is to locally model the design space surrounding an existing design

or train a surrogate to replicate the global design space is almost entirely dependent on the

formation of the sampling plan [Keane and Nair, 2005]. The construction of a surrogate

model in either case should, wherever possible, ideally make use of a parallel computing

structure. A suitable surrogate model f̂ of the precise objective function f should then be

constructed to fit the dataset.

There are a multitude of popular techniques for constructing surrogates in the litera-

ture. For a comprehensive review of different methods, the reader is referred to (among

others) Jones [2001]; Jin [2005]; Keane and Nair [2005]; Forrester et al. [2008]. The se-

lection of the surrogate model is dependent on the information in which the designer is

attempting to extract from the design space. Polynomial response surfaces and radial

basis functions are a fairly popular technique for constructing local surrogates, especially

if some level of regression is desirable. Techniques such as Kriging or support vector
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machines are more ideally suited to global optimization studies since they offer greater

flexibility in tuning model parameters and provide a confidence interval of the predicted

output. Neural networks require extensive training and validation, yet have also been a

popular technique for design applications notably in aerodynamic modelling [Greenman

and Roth, 1999] and visualization techniques [see Kohonen, 1995; Jeong et al., 2005b].

4.1.2 Managing Surrogates in Evolutionary Optimization

Despite the benefits of evolutionary computing, their application in solving aerodynamic

design optimization problems is computationally challenging. Navigating a noisy or multi-

modal design landscape with a high-fidelity objective flow solver often requires an excessive

number of fitness evaluations before an acceptable solution is identified. The concept of

incorporating surrogate modelling in optimization is motivated by the need to alleviate

this computational burden. Comprehensive surveys on incorporating surrogate modelling

within the evolutionary optimization architecture are provided by Jin [2005] and Keane

and Nair [2005]. This section focuses on the generic structure of the surrogate-based

optimization architecture which involves:

1. Generating the sampling plan to create the dataset X = {x1,x2, . . . ,xN}T and the

corresponding response Y = {f(x1), f(x2), . . . , f(xN )}T .

2. Constructing the surrogate model f̂(x) based on the dataset [X,Y].

3. Searching the surrogate f̂(x) using the optimizer and identify promising solutions.

4. Verifying the identified solutions by calculating the exact response value using f(x).

5. Checking for convergence else augment the dataset [X,Y] with the additional solu-

tions from step 4 and repeat from step 2.

The surrogate model is constantly re-constructed, whenever the dataset is augmented with

an additional solution. The optimization algorithm then explores or exploits the surrogate

function to identify promising areas of the design space. Where the principal ambiguity lies

is the verification or co-operation between the exact function f(x) and the surrogate model

f̂(x) during the optimization process. While the aim of the surrogate-based optimization

architecture is to significantly reduce the number of precise function evaluations, it must

also be ensured that the optimizer converges to the near global optimum (or trade-offs) of

the original fitness function. The excellent text by Jin [2005] outlines the main approaches

to managing surrogate models for evolutionary frameworks:
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No Control: The surrogate is assumed to be globally accurate and the fidelity of the

model is sufficient such that it can replace the exact function entirely. This technique is a

rarity for aerodynamic optimization studies, since (depending on the function landscape)

it would require an unnecessarily large sampling plan.

Fixed Control: In this strategy the surrogate and the exact function are used co-

operatively. The surrogate model can either be managed through generation- or individual-

based control. For generation-based control, the surrogate is initially assumed to be glob-

ally accurate and the evolutionary optimizer operates on the surrogate model. After a

fixed number of generations, the surrogate is updated with the identified solutions. An

example of this strategy is provided in Chung and Alonso [2004] for the design of low-

boom supersonic business jets. The non-dominated trade-offs identified from exploring

the surrogate after a fixed number of generations were used to update and verify the pre-

diction accuracy of the surrogate model until convergence. For individual-based control,

the fitness of most individuals in the population is computed using the surrogate, while a

subset of individuals use the exact objective function. The population subset contains the

best performing solutions of the current generation. This strategy is used by Jeong et al.

[2005a]; Kanazaki et al. [2006], where at each generation the solutions which are expected

to provide the greatest improvement in any objective are used to update the surrogate.

Individual-based control is a popular strategy for aerodynamic design frameworks and has

also been considered in Jin et al. [2002]; Ong et al. [2004]; Emmerich et al. [2006]. How-

ever, as highlighted by Jin [2005], the drawback of these methods is that the frequency

of updating the surrogate is fixed. This is not practical since the model fidelity may vary

significantly during the optimization process.

Adaptive Control: This strategy is similar to the fixed control strategy, with the excep-

tion that the frequency of surrogate updates is not dependent on a population subset or

a fixed number of generations but rather on the fidelity of the surrogate model. Since the

fidelity of the surrogate model is likely to fluctuate during the optimization process, indi-

viduals are selected for exact evaluation based on a screening criterion, which quantifies

the prediction accuracy of the surrogate based on a confidence output. Within an adaptive

control framework, it is therefore common that the population subset selected for exact

evaluation may be larger during the exploration phase and subsequently reduce when the

search begins to exploit promising areas of the design space. Examples of the adaptive

control strategy are given in the design frameworks of D’Angelo and Minisci [2005]; Li et

al. [2008] where error-based screening criteria are used to filter trustworthy solutions.
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For high-fidelity aerodynamic design, the use of surrogate modelling is a necessity to

maintain a tractable computational complexity. This research proposes a novel adaptive

control strategy for Kriging modelling based on the concept of adaptive control.

4.2 Sampling Arrays

Construction of a globally accurate surrogate which exactly replicates the response of an

aerodynamic function landscape is improbable due to the multi-modal design space. It is

more common to construct a global surrogate approximation based on a limited number

of observations and then locally update the prediction accuracy of the surrogate as the

search progresses towards promising areas of the design space. The spatial arrangement

of these initial observations is governed by the sampling array X of size (NK , n) and the

corresponding response Y of size (NK , 1) such that,

X = {x1,x2, . . . ,xNK}T and Y = {y1,y2, . . . ,yNK}T (4.1)

The fidelity of the surrogate model has a large dependence on the sampling plan, and the

number of samples NK is also dependent on the dimensionality of the problem. If a certain

level of prediction accuracy is achieved by sampling a one-parameter design space in NK

locations, then to achieve the same full factorial sample in a n-dimensional space, NnK
observations are required. This is termed the curse of dimensionality and poses a large

problem for high-dimensional design problems [Forrester et al., 2008; Sóbester, 2009]. It

is therefore imperative that the number of sample points required to generate a fairly

accurate approximation to the response function is minimized [Forrester et al., 2008].

4.2.1 Sampling Techniques

The excellent texts by Keane and Nair [2005] and Forrester et al. [2008] provide a com-

prehensive discussion on sampling methods, in the context of constructing surrogates for

design problems. Classical sampling techniques such as the full factorial design were devel-

oped to alleviate the adverse effects of measurement noise in physical experiments [Mont-

gomery, 1997]. These classical designs provide a simple way of producing a uniform sample

of the design space through rectangular grids. However to evaluate every possible permu-

tation for the n-dimensional design space is computationally challenging. While classical

designs are stratified over the unit hypercube, design permutations are biased in each di-

mension, which is a consequence of enforcing uniformity through rectangular grids. Unlike

physical experiments, computer experiments are not influenced by random noise. There-

fore to model the underlying functional relationship between variables inputs and the

function response, it is imperative that the design space is sampled optimally.
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Developing a good sampling plan is an optimization problem. It is desirable to generate

a sampling plan with the fewest evaluations, whilst ensuring the entire design space is

sufficiently sampled. The strategy here is to therefore provide a stratified or unbiased

representation of the design space rather than attempting to establish a truly accurate

representation. Notable techniques include Monte Carlo sampling [Sobol, 1994], Latin

hypercube sampling [Mckay et al., 1979] and orthogonal arrays [Hedayat et al., 1999].

4.2.2 Latin Hypercube Design

Latin hypercube sampling (LHS) is a statistical method first described by Mckay et al.

[1979]. LHS generates space-filling designs using a relatively small number of design points

to sample a multi-dimensional space. A stratified sample plan is constructed in the context

of a Latin square, where sample positions appear only once in every row and every column.

Figure 4.2 illustrates an LHS design for an n = 3 grid of NK = 10 samples.

Figure 4.2 demonstrates that an LHS design will generate a random stratified sam-

pling plan, where the projections on to the axes are uniformly spread. This concept does

not however guarantee that the plan will be ideal, since a stratified sample plan is also

possible by placing all points on the main diagonal, which will result in a crude approxi-

mation of the function landscape [Forrester et al., 2008]. Additional criteria are therefore

required to ensure stratified designs which effectively sample a large percentage of the n-

dimensional design space. Techniques to develop space-filling LHS designs were pioneered

by the work of Johnson et al. [1990], and Morris and Mitchell [1995] through their devel-

opment and application of the maximin space-filling criterion. These designs attempt to

maximize the minimum distance between sample points. Generating optimal designs is

still an active area of research today particularly in the field of computational statistics

and data analysis Santer et al. [2003]. In this research space-filling designs are generated

by reducing the correlation between sample points, as discussed in detail by Forrester et

al. [2008]. The correlation criterion is optimized to generate a space-filling design within

the computational budget of NK samples.

4.3 Kriging Method

A popular surrogate method which is ideally suited to optimization is based on Gaussian

stochastic process models. This method was originally developed in the field of geostatis-

tics and is referred to as Kriging1. In the optimization literature, Kriging was popularized

1The term Kriging is in honour of the South African mining engineer D. G. Krige, who first proposed

the method [see Matheron, 1963]
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Figure 4.2: Illustration of LHS design for a n = 3 dimensional grid of NK = 10 samples.

by the work of Sacks et al. [1989] and is also referred to as the Design and Analysis of

Computer Experiments (DACE). The derivation of the Kriging method is available from a

number of sources in the literature, and the readers are encouraged to follow the excellent

texts by Jones [2001] and Forrester et al. [2008]. This section is devoted to the techniques

for the construction and validation of Kriging models, and introduces concepts essential

for their integration to the proposed optimization framework.

4.3.1 Model Construction

The Kriging method predicts the response of a function at an unobserved location, based

on responses at prior observations. Given the sampling array [X,Y], the ordinary Kriging

method expresses the unknown function y(x) as,

y(x) = β + z(x). (4.2)

Where x = (x1, · · · , xn) is the data location, β is a constant global mean value and z(x)

represents a local deviation at the data location x based on a stochastic process with

zero-mean and variance σ2 following the Gaussian distribution. The stochastic variables

of any two locations xi and xj , are correlated with each other using the Gaussian basis

function expression

R(xi,xj) = exp

(

−
n
∑

k=1

θk|xik − xjk|pj
)

, (4.3)
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where R is the correlation matrix. It is now possible to construct the NK×NK correlation

matrix of all the observed data:

R =











R(x1,x1) · · · R(x1,xNK )
...

. . .
...

R(xNK ,x1) · · · R(xNK ,xNK )











(4.4)

The correlation between the sample data expects that the data will be smooth and con-

tinuous, which is the principle assumption of the Kriging method. The data in the sample

Y is correlated through the matrix R. The correlation between any two sample points is

shown to depend entirely on the absolute distance between the points |xi − xj | and the

correlation parameters p and θ.

4.3.2 Model Training

It is observed that the correlation between sample points, whilst being dependent on

the sampling plan, is also dependent on the parameters p and θ. There are no globally

intuitive values for these parameters, and optimum values should be selected in order to

maximize the prediction accuracy or train the Kriging model to fit a given sample dataset.

Correlation Parameters

The effect of the correlation parameter p is shown in Figure 4.3(a). It is observed that the

correlation between any two points approaches unity as the sample points coincide, i.e.

exp
(−|xi − xj |p)→ 1 as xi − xj → 0. This is analogous to stating that y(xi) is equal to

y(xj). Similarly, it is observed that as xi − xj →∞, the correlation exp
(−|xi − xj |p)→ 0.

The rate of correlation is shown to vary with the parameter p. Essentially, larger values of

p provide a smooth continuous gradient through the point xi − xj = 0. However, this is

linked with a rather rapid decline in the correlation as the distance between sample points

increases. With lower values of p, it is observed that there is a fairly constant correlation

between any two sample points and there is a near discontinuity at the point xi − xj = 0,

which is counter intuitive. For this reason, Jones [1998] suggests a range of 1 ≤ p ≤ 2,

with many researchers opting for a constant p = 2 [Emmerich et al., 2006; Gano et al.,

2006; Jin, 2005; Jeong et al., 2005a; Li et al., 2008; Lee et al., 2005].

The effect of θ is shown in Figure 4.3(b). This parameter does not affect the smoothness

of the correlation, yet it is inversely proportional to the extent of the influence of a given

sample point. It is demonstrated that a lower value of θ suggests that sample points

have a high correlation and that the fitness response is fairly similar. A higher value of θ

indicates that the fitness response is rapidly changing. As discussed by Jones [1998] and
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Figure 4.3: Change in sample point correlation due to varying parameters

Forrester et al. [2008], in multi-dimensional problems the value of θj can thus be viewed

as a measure of importance or activity of the design variable xj . If the design variable

xj has no apparent influence on the fitness response, then it would be expected that θj

should be close to zero. On the other hand, if the variable xj has a significant influence

on the fitness response, then a larger value of θj is expected.

Maximum Likelihood Estimation

The parameters p and θ have a significant impact on sample point correlation. It was

also shown that the parameter θ provides a measure of the level of activity of each design

variable. In the literature, it is observed that the most popular method of estimating the

values of p and θ is to maximize the likelihood of Y. Maximizing the likelihood of Y is

an attempt to reduce the errors obtained by constructing a surrogate to exactly replicate
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the precise function. Following the derivation of Jones [2001], the likelihood expressed in

terms of the sample data is,

L =
1

(2π)
NK

2 (σ2)
NK

2 |R| 12
exp

[

−(Y− 1β)TR−1(Y− 1β)

2σ2

]

. (4.5)

It is more convenient to express the natural log of the likelihood function,

lnL = −NK
2

ln(2π)− NK
2

ln(σ2)− 1

2
ln(|R|)− (Y− 1β)TR−1(Y− 1β)

2σ2
. (4.6)

Equating the derivatives of the log likelihood function with respect to β and σ2 to zero,

the maximum likelihood estimates for the mean and standard deviation are obtained:

β̂ =
1TR−1Y

1TR−11
, (4.7)

σ̂2 =
1

NK

[

(Y− 1β̂)TR−1(Y− 1β̂)
]

. (4.8)

Substituting Eq. (4.7) and (4.8) back into Eq. (4.6), the concentrated natural log likelihood

function is obtained. Ignoring all constants, the concentrated ln-likelihood function is

ln (L) ≈ −NK ln(σ̂2)− ln |R|
2

. (4.9)

The value of the concentrated ln-likelihood function is dependent on the value of the

correlation matrix R and hence for a given sample dataset is solely dependent on the

correlation parameters p and θ. Furthermore, if a constant value of p = 2 is considered,

determining the maximum likelihood is reduced to an n-variable optimization problem,

min
NK ln(σ̂2)− ln |R|

2
subject to: θj > 0, ∀j = 1, . . . , n (4.10)

Training a Kriging model from a sample dataset is time-consuming and is O(N3
K). To

visualize an example of the ln-likelihood function landscape, the two-variable Branin test

function is considered (see Appendix A). The variables are normalized to the range [0, 1]

for ease of comparison. A LHS of 20 points is used to construct the Kriging model. The

variable θ is converted to a logarithmic scale, as suggested by Forrester et al. [2008]. The

concentrated ln-likelihood function landscape is visualized in Figure 4.4.

The concentrated ln-likelihood function landscape is difficult to navigate since the

function is multi-modal and is susceptible to long flat ridges. Gano et al. [2006] conducted

a series of tests where a number of deterministic and stochastic optimizers where compared

for two engineering design problems. It was concluded that although local optimization

tools such as Quasi-Newton or pattern search may prematurely terminate the search due

to convergence to local minima, they are still economically more efficient than stochastic

algorithms (such as EA). Stochastic optimizers potentially overcome the multi-modality

of the design space, but at the expense of many orders of magnitude more evaluations.
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Figure 4.4: Concentrated ln-likelihood function landscape for Branin test function

4.3.3 Model Prediction

The correlated sample data is then used by the Kriging model to make predictions at

unobserved locations. The following derivation is extracted from Jones [2001]. The Kriging

correlation parameter θ is optimized such that it maximizes the likelihood of the observed

data, Y. Given the correlation parameter, a new prediction ŷ at the position x is chosen

such that the likelihood of the sample data and the prediction is maximized. To achieve

this a vector of correlations is defined, augmenting the observed dataset Y with the still

to be determined prediction ŷ,

r =











R(x1,x)
...

R(xNK ,x)











. (4.11)

The correlation matrix for the augmented dataset R̃ is given as

R̃ =





R r

rT 1



 . (4.12)

Substituting the expressions into Eq. (4.6), it is observed that only part of the augmented

ln-likelihood function depends on the prediction ŷ, such that the function reduces to

ln (L) ≈
−




Y− 1β̂

ŷ − β̂





T 



R r

rT 1





−1



Y− 1β̂

ŷ − β̂





2σ̂2
(4.13)

The augmented ln-likelihood function reduces to a quadratic function of ŷ and is maxi-

mized by differentiating with respect to ŷ and equating to zero,

∂ ln (L)

∂ŷ
=

−1

σ̂2 (1− rTR−1r)

(

ŷ − β̂
)

+
rTR−1

(

Y− 1β̂
)

σ̂2 (1− rTR−1r)
= 0 (4.14)
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Figure 4.5: Kriging approximations fitted to the Branin function based on NK samples

The equation is rearranged such that the augmented ln-likelihood is maximized for the

Kriging prediction at the location x,

ŷ(x) = β̂ + rTR−1(Y− 1β̂). (4.15)

The Branin test function is used as an example of implementing a Kriging prediction

based on initial datasets, as shown in Figure 4.5. The correlation parameter θ is opti-

mized based on maximum likelihood estimation using a pattern search method [Torczon,

1997]. The smoothness parameter is kept constant at p = 2. Three independent Krig-

ing models are constructed, based on LHS designs of NK = 5, 10 and 20 respectively.

Figure 4.5 features three different Kriging approximations, based on NK highlighted sam-

ples. It is shown that as NK → 20 the Kriging approximation provides a very close visual

representation of the true Branin function (shown in Figure 4.5(d)).

4.3.4 Model Validation

In the previous section, a Kriging approximation of the Branin function was demon-

strated, and the results were visually presented through contour plots. The term visually
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is emphasized here, since contour landscapes offer no real measure of the correlation of

the dataset. In this section, methods to accurately test and validate the performance of

Kriging models are considered. The inadequacy of a surrogate model can arise from sat-

uration of the dataset, generating a noisy landscape, or insufficient sampling whereby the

true relationship of the function landscape is not captured. Model-assessment strategies

are therefore required to ensure the model is adequate for optimization [Keane and Nair,

2005]. Such methods are therefore useful in engineering design and assist the designer in

making informed decisions about the subsequent optimization process.

Subset Validation

This method consists of reserving a separate subset of precise observations for validation

of the Kriging model. To test the adequacy of the model, both the root mean squared

error, or the correlation coefficient c2 can be calculated [Forrester et al., 2008]. Therefore,

based on a subset of NT observations, the performance of the model can be measured by:

RMSE =

√

∑NT
i=0 (yi − ŷi)2

NT
(4.16)

c =
NT

∑NT
i=0 y

iŷi −∑NTi=0 y
i∑NT
i=0 ŷ

i

√

[

NT
∑NT
i=0 y

(i)2 −
(

∑NT
i=0 y

i
)2
] [

NT
∑NT
i=0 ŷ

(i)2 −
(

∑NT
i=0 ŷ

i
)2
]

. (4.17)

The definition of the Root Mean Square Error (RMSE) means that it should ideally be as

close to zero as possible, but dependent on the eventual application of the Kriging model

it may not be necessarily required. For example, if the aim of constructing the surrogate is

to visualize the entire design landscape then minimizing the RMSE is required. However

if the surrogate is constructed to economically navigate the design landscape to identify

the region of a global minimum, then a globally accurate Kriging model is not of great

concern, and additional data points can be included using an update strategy.

The correlation coefficient is a very effective validation tool, and compares the shape

of the landscapes rather than the values [Forrester et al., 2008]. Figure 4.6 illustrates the

relationship of the correlation coefficient to the sample dataset size NK , for the Branin

function. Results are generated based on a random subset of NT = 10 samples. It

is observed that there is some scatter in the results at low values of NK , before the plot

begins to plateau. It is clear that for NK ≥ 18 samples the correlation coefficient converges

to one. At this point, generating a greater sample size will saturate the training dataset,

and will not provide any higher prediction accuracy.

Although this method of validation is fairly conclusive, it requires a validation subset

which is not always permissible for optimization problems, especially when there is a
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Figure 4.6: Relationship between correlation and sample size for Branin function

computational budget. The NT = 10 samples used here for validation may be better

utilized to update the Kriging model in promising areas of the design space. A method

of cross-validation is hence considered, which does not require any additional evaluations

whilst still providing a measure to the adequacy of the surrogate.

Cross Validation

The method of cross validation [Mitchell and Morris, 1992; Santers et al., 2003] is a model

assessment strategy which does not require the added expense of running additional evalu-

ations. For practical optimization, the leave-one-out cross validation strategy is suggested

by Santers et al. [2003]. In this approach, one sample point xi is removed so that there are

now NK − 1 samples. The new Kriging model is rebuilt excluding the i-th sample. The

difference between the prediction ŷ(xi) and the precise evaluation y(xi) is then computed.

This process is repeated for all sample points i = 1, . . . , NK . The Cross Validation (CV)

error is then calculated as,

CV =

√

∑NK
i=1 (y(xi)− ŷ(xi))2

NK
. (4.18)

In this expression, the root mean squared error of all predictions ŷ(xi) are considered.

The initial values for the parameter θ based on the model constructed with NK samples is

fixed during the validation process. Figure 4.7 demonstrates the application of the leave-

one-out cross-validation scheme applied to Kriging models of varying NK to fit the Branin

function. It is fairly evident that the quality of the model increases as NK → 20, which is

consistent with previous conclusions.

It is also possible to gain a visual understanding of the error spread. In Figure 4.8,

the observed data is plotted against the Kriging predictions for four different sample plan
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sizes. This is useful in order to obtain a qualitative measure of the model accuracy, and

can provide insight into regions of the design space which are highly non-correlated. Non-

correlated sample points can easily be identified, and the dataset can be conditioned to

increase the global accuracy of the model. In the study by Emmerich et al. [2006] it is

suggested that this validation process could also be used to adapt the value of θ during
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ŷ

(d) NK = 20

Figure 4.8: Comparison between observed data and Kriging predictions for varying NK
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the training stage, replacing the maximum likelihood estimation, despite the increase in

computing time. The authors further suggest the use of the median deviation rather than

the average deviation, in order to increase robustness at outliers.

4.4 Visualization Techniques

Beyond their most obvious use of replicating an expensive function, surrogates can be used

to filter or extract meaningful data from the function landscape. Visualization is used to

either gain a functional insight between the input variables and the objective landscape,

or perhaps visualize the compromise between identified trade-off solutions.

Optimization frameworks aim to identify the most optimal geometric shape for a given

operating condition, however an analysis of the correlation between the design space and

the objective space is not considered. Design space visualization identifies these relation-

ships providing the designer insight into the optimization problem, and bridges the gap

between the design space and the solution space both quantitatively and qualitatively.

With the growing regard of surrogate modelling, the use of design space visualization

and data mining techniques has progressively increased. However when confronted with

a multi-dimensional design space and conflicting goals, identifying and isolating the case-

specific information that suits the intended application can be challenging.

In this section, techniques for pre-optimization variable screening and post-optimization

trade-off visualization are presented and discussed. It is demonstrated that extracting case-

specific information from the visualization analyses, based on the preferred interests of the

designer, is facilitated through the reference point. Variable influence and interaction, as

well as important factors which drive the design are easily identified, which allow informed

decisions to be made which may facilitate the optimization or decision-making processes.

4.4.1 Design Space Visualization

The most obvious form of visualization is concerned with graphically mapping the design

space. This method allows for the key functional relationships between the inputs and

outputs to be observed, to determine the modality or non-linearity of the design landscape.

While this approach makes no statistical assumption on the design landscape, its main

deficiency is its inability to analyze multi-dimensional data. Forrester et al. [2008] suggest

that an intuitive way of gaining insight into a multi-dimensional landscape is to extract

two-dimensional contours and strategically arrange them. The projections of these two

dimensional slices stem from a baseline design, such that for a problem of n variables, n−2

variables are held at their respective baseline values, while two variables are visualized.
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Variable Description Baseline Min Max

SW Wing area (ft2) 174 150 200

Wfw Fuel weight (lb) 252 220 300

A Aspect ratio 7.52 6 10

Λ quarter-chord sweep (deg) 0 -10 10

q Cruise dynamic pressure (lb/ft2) 34 16 45

λ Taper ratio 0.672 0.5 1

tc Thickness to chord ratio 0.12 0.08 0.18

Nz Load factor 3.8 2.5 6

Wdg Gross weight (lb) 2000 1700 2500

Wp Paint weight (lb/ft2) 0.064 0.025 0.08

Table 4.1: Variable description and boundaries for the conceptual wing weight function

An analytical expression of the conceptual estimate of the weight of a light aircraft

wing is considered as an example (extracted from Forrester et al. [2008], see Appendix

A). Table 4.1 contains a description of the function variables, as well as a suggestion for a

baseline design. Figure 4.9 shows a matrix of two-dimensional contour slices to visualize the

non-linearity of the design landscape. It is immediately observed that the most influential

variable (as expected) is the load factor (Nz) as it is involved interactions with other

variables. Similarly the aspect ratio (A) is particularly influential, while variables such

as the fuel weight (Wfw) and the paint weight (Wp) are not active at all. An insight

into the fundamental aerodynamics of the problem is also obtained. Consider the two-

180

210

240

270

300

330

360

SW Wfw

W
f
w

A

A

Λ

Λ

q

q

λ

λ

tc

t c

Nz

N
z

Wdg

W
d
g

W
p

Figure 4.9: Matrix of two-dimensional contour plots (coloured by wing weight (lb))
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Figure 4.10: Two-dimensional contour of variables A and Nz (coloured by wing weight (lb))

dimensional contour slice of the variables A and Nz, which is shown in Figure 4.10. It is

immediately observed that with increasing values of load factor and aspect ratio the wing

weight approaches the maximum. This is the principal reason why highly manoeuvrable

wings do not have a high aspect ratio, while glider aircraft have a large aspect ratio at the

expense of limited manoeuvrability.

The example function is inexpensive, and the construction of a surrogate model is

unnecessary. However for high-fidelity applications generating a multi-dimensional contour

matrix requires an intractable computational effort, thus warranting the use of surrogate

modelling, to provide a cheap-to-evaluate alternative at the expense of the prediction

accuracy. While this method does provide an avenue to visualizing the design landscape,

it is not immediately clear which variables are the most influential, and which variables

are involved in non-linear interactions with other variables. The next section is concerned

with screening methods which provide statistical measures to variable importance.

4.4.2 Variable Screening

The purpose of a screening study is to rank the design variables according to their ele-

mentary effect on the model ŷ. In many design problems, only few variables are primarily

responsible for the variation in the model, whereas most of the other variables contribute

linear or negligible effects [Trocine and Malone, 2000; Keane and Nair, 2005]. An estimate

of the elementary effects of each variable identify the important factors which drive the

design, and allow informed decisions to be made on the constriction of variable boundaries,

or even the exclusion of a variable. A comparison of various screening methods used in

engineering design is given by Trocine and Malone [2000] and Leary et al. [2002]. The

authors discuss in detail the general framework for conducting variable screening studies.
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There are several methods available for screening variables and each method is limited in

one aspect or another. The designer is therefore required to make informed decisions about

the appropriate method to apply, which may be based on the underlying structure of the

model, the level of qualitative or quantitative information required, or the computational

budget allocated for global sampling and visualization.

Variable screening has been considered in a number of aerodynamic design problems.

For example, Jeong et al. [2005b] and Chiba et al. [2008] applied a screening method

to multi-dimensional aerodynamic design problems where the most important variables

corresponding to each objective were recognized. Khurana and Winarto [2010] conducted a

screening analysis for airfoil shape design, where it was concluded that one of the variables

could be safely omitted from the subsequent optimization study. A recurring strategy in

these studies is to combine the sensitivity studies with visualization techniques to concisely

present quantitative information about the design space. Presented in this section are two

methods which are useful for identifying the sensitivity and elementary effects of variables.

Analysis of Variance

Perhaps the most intuitive method of determining the sensitivity of each variable, is

through an analysis of variance [Sobol, 1993; Jones, 1998]. This method is particularly

useful in analyzing design problems of many dimensions, where a complex problem may be

simplified by identifying non-active variables [see, for example Jeong et al., 2005b; Chiba

et al., 2008]. The total variance of the model ŷ is decomposed into the contributions from

individual variables and from variable interactions. A measure to the influence of each

design variable on the model is therefore obtained.

Decomposition of the model variance is simply achieved by integrating variables out

of the model ŷ. Consider the model ŷ(x) where the variables x lies in the unit interval

[0, 1]n. The total mean µ̂ and variance σ̂2 can be calculated as follows:

µ̂ =

∫ 1

0
. . .

∫ 1

0
ŷ(x1 . . . xn)dx1 . . . dxn, (4.19)

σ̂2 =

∫ 1

0
. . .

∫ 1

0
[ŷ(x1 . . . xn)− µ̂]2 dx1 . . . dxn. (4.20)

To assess the main effect of variable xi, all other variables are integrated out of the ŷ.

This results in a function solely of xi, which is denoted µ̂i(xi):

µ̂i(xi) =

∫ 1

0
. . .

∫ 1

0
ŷ(x1 . . . xn)dx1 . . . dxi−1dxi+1 . . . dxn − µ̂. (4.21)
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Similarly, the two-way interaction effect between the variables xi and xj is denoted as:

µ̂ij(xi, xj) =

∫ 1

0
. . .

∫ 1

0
ŷ(x1 . . . xn)dx1 . . . dxi−1dxi+1 . . .

dxj−1dxj+1 . . . dxn − µ̂i(xi)− µ̂j(xj)− µ̂. (4.22)

The variance due to the design variable xi is quantified as

σ̂2
i =

∫ 1

0
[µ̂i(xi)]

2 dxi, (4.23)

thus the proportionate variance of xi to the total variance of the model σ̂2 is
∫ 1

0 [µ̂i(xi)]
2 dxi

∫ 1
0 . . .

∫ 1
0 [ŷ(x1 . . . xn)− µ̂]2 dx1 . . . dxn

. (4.24)

For certain polynomial models the above integrals can be performed analytically [Keane

and Nair, 2005]. For Kriging models, sampling plans can be used to numerically approxi-

mate the integrals. The subsequent method does not require the approximation of integrals

and is applicable to any deterministic function. In the opinion of the author, this is a more

concise method of measuring the level of activity of each variable.

Morris Screening Method

A popular method for designing preliminary experiments for design space visualization is

the screening method developed by Morris [1991] and discussed in detail also in Forrester

et al. [2008]. If the model ŷ is differentiable over the design space S with respect to xi,

then the effect of xi ∈ S can be established as:

• Negligible, if (∂ŷ/∂xi) = 0,

• Linear, if (∂ŷ/∂xi) = constant 6= 0,

• Nonlinear, if (∂ŷ/∂xi) = f(xi) 6= constant,

• Nonlinear and interacting with xj , . . ., if (∂ŷ/∂xi) = f(xi, xj , . . .) 6= constant.

For an engineering function, there is no real measure for computing (∂ŷ/∂xi) across the

entire design space S. In plain terminology, the Morris algorithm measures the sensitivity

of the i-th variable to the model ŷ through finite differencing. The design space S is

restricted to an n-dimensional, p-level full factorial grid, where the normalized variable,

xi ∈ {0, 1/(p− 1), 2/(p− 1), . . . , 1} , for i = 1, . . . , n. (4.25)

For a given baseline design x, di(x) denotes the elementary effect of xi, where

di(x) =
ŷ(x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xn)− ŷ(x)

∆
, (4.26)
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Variable µi σi Influential Interactive

SW 12.0373 60.395 X X

Wfw 0.0505 0.2929

A -10.6727 77.5943 X X

Λ 1.6341 8.0751

q -0.5714 1.566

λ -0.7615 7.9458

tc 2.9585 77.0339 X

Nz 46.3847 113.2279 X X

Wdg 4.2889 50.8157 X

Wp 1.1917 9.7916

Table 4.2: Determining wing weight variable effects using the Morris method

where ∆ = ξ/(p − 1), ξ ∈ IN∗ is the elementary effect step length factor, and x ∈ S
such that xi ≤ 1 − ∆. Morris’ method estimates the distribution of elementary effects

of xi over S. If the variable xi has a large central tendency µi, then this suggests an

important influence on ŷ. A large measure of spread σi suggests that either xi is involved

in interactions with other variables or is nonlinear with ŷ. Essentially, the sample mean

and standard deviation of a set of di(x) ∈ S values are calculated. Clearly, it is desirable

to maximize the spread and number of elementary effects to provide a more thorough

representation of the design space, without compromising the global accuracy of the model.

A method to generate a sampling plan to estimate r elementary effects is given by Morris

[1991].

Referring back to the conceptual wing weight function, it is possible to determine the

elementary effect of each variable using Morris’ screening method. Table 4.2 consolidates

the results of the screening analysis and based on the values of central tendency and

variance, determines whether the variables are influential and/or interacting.

As discussed by Saltelli et al. [2001], an extension to the original Morris method intro-

duces a ranking measure µ∗i , which is calculated from the mean of the distribution of the

absolute values of the elementary effects, such that

µ∗i = |di(x)|. (4.27)

The proposed methodology addresses the misrepresentation of the magnitude of sensitivity,

as a result of opposite signs of the elementary effects for a non-monotonic model. To rank

variables in order of influence or importance, the quantity µ∗ may also be used. Figure 4.11

illustrates the results of the revised screening method, where the proportion of variance

of µ∗ for each variable (and the corresponding ranking) is observed. It is immediately
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Figure 4.11: Pie-chart of proportional variance for conceptual wing weight function

observed that the most influential variable is the load factor (Nz), while other variables of

significant influence are the wing area (SW ), the aspect ratio (A), the thickness to chord

ratio (tc) and the gross weight (Wdg). Of the least influential variables it is concluded that

the dynamic pressure (q) and the fuel weight (Wfw) have a negligible effect, and could be

safely omitted from the subsequent optimization analysis - a conclusion which is otherwise

not possible to reach solely from Figure 4.9. Thus the design space is reduced to eight

dimensions which will accelerate the search effort and alleviate the computational effort

of constructing and updating the Kriging model.

4.4.3 Self-organizing Maps

To ideally represent the identified trade-offs and the compromise between objectives, a

data mining technique known as Self-Organizing Maps (SOM) is introduced. Clustering

SOM techniques are based on the analogy of a neural net to organize and visualize large

volumes of data to facilitate its interpretation. The methodology is based on a technique

of unsupervised artificial neural network to model the nonlinear projection from high-

dimensional inputs to the self-organization of a low-dimensional array of neurons. For a

comprehensive discussion on SOM variants, the reader is referred to the excellent texts

of Fausett [1994] and Kohonen [1995]. In this section a brief introduction to SOM is

provided, extracted from Jeong et al. [2005b] and Khurana and Winarto [2010].

SOM techniques are primarily applied for pattern recognition and for clustering and

visualizing large volumes of data [Fausett, 1994]. An example of a SOM structure is pre-

sented in Figure 4.12, where a 4×4 network of neurons are directly connected to the input

nodes, but not directly inter-connected [see Khurana and Winarto, 2010]. The neurons

are positioned two-dimensionally for ease of visualization. In the projection algorithm

of SOM, the connecting weights between the input vector and the array of neurons are

adjusted to represent features of the high-dimensional data on the low-dimensional map.
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Figure 4.12: Simple representation of a SOM structure [see Khurana and Winarto, 2010]

A neuron has the weight vector wi = [wi1, wi2, . . . , win] ∀i = 1, . . . , N where n is the

number of input variables and N is the number of neurons. Each neuron is connected to

its adjacent neurons by a neighborhood relation forming either a one or two-dimensional

rectangular or hexagonal topology. The learning algorithm will attempt to maximize the

correlation between neighbouring neurons by finding the best-matching unit (wc):

‖x−wc‖ = min ‖x−wi‖ ∀i = 1, . . . , N (4.28)

The best-matching units are determined sequentially, and for each neuron the weight

adjustments are performed for the respective local neighbours to organize the topological

mapping. With repeated iterations of this learning algorithm the adjustments lead to a

global correlation [see Jeong et al., 2005b].

In this research, SOM are generated using the software Viscovery SOMine 5.2. SOMine

constructs SOM charts via an advanced variant of unsupervised neural networks, known

as the Kohonen batch [Kohonen, 1995]. Similar to the sequential learning algorithm, the

Kohonen batch algorithm searches for the best-matching unit ci for all input data xi, and

adjusts the weight vector wj locally surrounding the best-matching unit. The Batch SOM

algorithm can be formulated as follows:

ci = min
j
‖xi −wj‖ (4.29)

w∗j =
∑

i

hjcixi/
∑

i

hjci (4.30)

where w∗j is the adjusted weight vector. The neighborhood relationship between the
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neuron j and the best-matching unit ci is defined by the following function:

hjci = exp

(

−
d2jci
r2t

)

(4.31)

where djci is the Euclidean distance from the neuron j to the best-matching unit ci on the

map, and rt denotes the neighborhood radius, which is gradually decreased with increasing

number of iterations t.

The Kohonen batch algorithm performs a collected adjustment of the weight vectors

apart from individually or sequentially adjusting the weight vector. SOMine creates two-

dimensional SOM charts arranged in a hexagonal topology. Based on the presentation of

the input data, the resulting chart will reflect the characteristics of the data distribution.

Once the input data is projected and arranged on the two-dimensional grid, the SOM can

be used for qualitative visualization. A hierarchical algorithm is used to cluster the data,

based on priorities specified by the user. SOM are organized into a user-defined number

of clusters, to facilitate the interpretation of the charts.

To illustrate the function of SOMine, refer to the conceptual wing weight function

introduced earlier. A stratified sample of the multi-dimensional design space is first ob-

tained, and is organized in no particular fashion. The corresponding outputs are arranged

by increasing values. Output values are assigned a user-defined integer to denote the re-

spective data cluster and facilitate the clustering process. The sample data is therefore

arranged as:
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(4.32)

The data has been arranged into 10 clusters, based on increasing values of the output W 2.

Figure 4.13 features the results of the SOM analysis. The SOM charts are topologically

aligned via the data clusters. To read the charts it is required to sequentially monitor each

data cluster to arrive at any meaningful conclusion. For example, the cluster of minimum

2Reference has been made to inputs and outputs for ease of interpretation, however SOMine treats each

column of data as an input.
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Figure 4.13: Visualizing a stratified sample of the conceptual wing weight design function via

SOM representation
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Figure 4.14: Visualizing the compromise between key variables via SOM representation
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Figure 4.15: Visualizing the compromise between key variables via SOM representation

values of wing weight W (the bottom left section of Figure 4.13(k) corresponds to low

values of wing area SW , low values of aspect ratio A, high values of dihedral Λ, etc.

The data however is ill-represented and apart from making the most obvious con-

clusions, the maps are very difficult to interpret to extract any meaningful insight. For

example, it was determined in earlier studies that the paint weight Wp is essentially in-

active and not involved in any interactions with other variables. From Figure 4.13(j)

however, it is not possible to arrive to the same conclusion, and the observed scatter in

the chart could either represent noise or just as likely it could represent high non-linearity.

The input data should therefore be systematically arranged in order to arrive at meaning-

ful conclusions. Figure 4.14 provides an example of systematically arranged data. In this

case, data is clustered to measure the interaction between variables Nz andWp on the wing

weight W . It is now clearly evident that the paint weight Wp is essentially inactive, since

varying the values of Wp together with increasing values Nz produces a negligible change

to the wing weight W . Similar conclusions can be derived for other variables, for example

Figure 4.15 features the influence and interaction between the variables Nz and A for the
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wing weight W . It is clearly shown that the wing weight W is highly sensitive to the in-

teractions between both variables. Obviously the analyses shown in Figures 4.14 and 4.15

are useless since similar conclusions may be obtained using design space contours. It has

however illustrated the necessity to strategically arrange the data input which facilitates

the interpretation of the SOM charts.

4.5 Summary

This chapter provides an introduction to surrogate modelling and its use and integration

within an evolutionary optimization framework. Surrogate models are used in lieu of

the expensive function to efficiently navigate the optimization landscape. However, to

construct a globally accurate surrogate of the entire design landscape is improbable and

computaitonally expensive. It is more advantageous to generate a coarse represention of

the design space using a stratified sample dataset, and locally updating the surrogate as

promising areas of the design space are identified by the optimizer. A review of some

popular methodologies to construct sample datasets and integrate a surrogate within the

optimization architecture is provided. Focus is thereafter given to introducing the Kriging

method, which is of particular importance in this research. Procedures to train, construct

and validate a Kriging model are provided and demonstrated. The chapter concludes with

yet another beneficial use of surrogates, namely for visualization and data mining. Variable

screening and sensitivity methods to visualize the design space and variable activity are

described. While such methods do not explicitly require the construction of a surrogate,

the aid of a surrogate model is highly advanatageous. A data mining technique known

as self-organizing maps (based on an unsupervised neural network) is further introduced,

whereby multi-dimensional data is effectively visualized using an array of two-dimensional

maps. Common examples of the use of the aforementioned visualization methods are

provided, providing some insight to their applicablity for this research.



Chapter 5

Novel Preference-based MOPSO

Algorithm

Evolutionary computing is a recurring theme for multi-objective aerodynamic design frame-

works. While most population-based algorithms mimic the competitive theory of survival

of the fittest, the concept of maintaining a population of collaborating individuals is increas-

ingly becoming popular. In this research, the multi-objective search effort is coordinated

via a particle swarm optimization algorithm. A variant to the canonical swarm algorithm

is developed, which draws on the domain knowledge of the designer to obtain solutions of

interest. The swarm is guided by a reference point, which is an intuitive means of artic-

ulating the designer preferences and can ideally be based on an existing or target design.

This chapter provides a comprehensive discussion on the proposed algorithm and a visual

demonstration of its operation. A series of test function suites are investigated, which

highlight the viability of the proposed framework for the intended domain of application.

5.1 Incorporating Designer Preferences

The fundamental PSO architecture was provided in Chapter 3. The dynamics of the swarm

were described, and the methodology to balance exploration-exploitation characteristics,

as well as overcoming boundary violation was documented. An introduction to the exten-

sion of PSO to handle or multiple objectives (or MOPSO) was subsequently provided in

Section 3.5.3. This novel algorithm aims to integrate the recent developments in MOPSO

to the preference-based architecture. The principal argument of this research is that for

most design applications, to explore the entire Pareto front is often unnecessary and the

computational burden can be alleviated by considering the immediate interests of the de-

signer. In Section 3.5.4, a discussion on the benefits of preference-based optimization was

86
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Figure 5.1: The classical reference point approach

provided. Drawing on these concepts, a preference-based algorithm is proposed, where a

designer-driven distance metric is used to scalar quantify the success of a solution. The

swarm is guided by this information to confine its search focus exclusively on the preferred

region of the Pareto front as dictated by the preferences of the designer. Introducing the

preferred region provides the designer flexibility to explore other interesting alternatives.

This hybrid methodology is advantageous to navigate high-dimensional and multi-modal

landscapes, which are typical of aerodynamic design problems. Furthermore, inherently

considering the preferences of the designer provides a feasible means of quantifying the

practicality of a design.

5.1.1 The Reference Point Method

In order to introduce the preference metric utilized in this algorithm, it is beneficial to

gain an understanding of the preferred compromise or the reference point. This classical

method first introduced by Wierzbicki [1980], directly uses the reference point to identify

preferred designs. The reference point is used to construct a single-objective optimization

which is minimized for x ∈ S,

minimize max
i=1:m

{wi · (fi (x)− z̄i)} , (5.1)

where z̄ = {z̄1, . . . , z̄m} is the reference point of m reference values and w = {w1, . . . , wm}
is a vector of weights indicating the priority of each objective. The classical reference

point method is illustrated in Figure 5.1 for a bi-objective minimization problem. For a

given reference point z̄, the optimal solution is the target solution of the reference point

method z′. Wierzbicki [1980] further suggested a procedure whereby the optimal solution

z′ is used to identify m new reference points as shown in Figure 5.1. Subsequently, these
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Figure 5.2: Illustration of the search direction governed by the reference point

identified reference points may be used to derive additional solution points to provide a

solution spread. The region surrounding the reference point z̄ is known as the preferred

region, and provides a measure of the designer’s confidence in the reference point selection.

5.1.2 The Reference Point Distance Metric

The reference point method has been integrated into MOO algorithms, notably by Deb

and Sundar [2006] and Wickramasinghe and Li [2008; 2009]. These studies highlight

the benefits of incorporating preference information via the reference point in terms of

convergence. Guided by the information provided by the reference point, the swarm

can simultaneously identify multiple solutions in the preferred region. This provides the

designer flexibility to explore several preferred designs, while alleviating the computational

burden of identifying the entire Pareto front. A reference point distance metric following

the work of Wickramasinghe and Li [2008] is proposed. This metric provides an intuitive

criterion to select global leaders, and assists the swarm to identify only solutions of interest

to the designer. The distance of a particle x to the reference point z̄ is defined as:

dz(x) = max
i=1:m

{(fi (x)− z̄i)} . (5.2)

The weight vector w is omitted to give equal priority to each objective. A arbitrary solution

a is therefore preferred to the arbitrary solution b if dz(a) < dz(b). This condition is an

extension of the condition f(a) ≺ f(b), therefore the distance metric may in fact substitute

the dominance criteria entirely [see Wickramasinghe and Li, 2009]. Using this distance

metric, the swarm is guided to preferred regions of the Pareto front. Figure 5.2 illustrates

the search directions of the algorithm when guided by the j-th reference point z̄j , and the

corresponding preferred design z′j as a result of minimizing the distance metric.
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Figure 5.3: Identifying the preferred solution from solutions with equal Euclidean distance

The distinguishing feature of the reference point distance metric over the mathematical

Euclidean distance is that solutions do not converge to the reference point, but on the

preferred region of the Pareto front as dictated by the search direction (which is dependent

only on the relative location of the reference point to the Pareto front). This is illustrated

in Figure 5.3. All solutions are non-dominated and lie on the circular arc surrounding

the reference point z̄ and thus the Euclidean distance to the reference point is equal.

However since solution i has the smallest maximum translational distance dz(i) to the

reference point compared to any other solution, it is considered preferred. The definition

of the reference point distance also therefore permits solutions to have negative values.

In the case that the distance of the preferred solution dz(z′) < 0 then it can simply be

considered that the reference point is dominated or z′ ≺ z̄. Since the designer generally

has no prior knowledge of the topology and location of the Pareto front, a reference point

may be ideally placed in any feasible or infeasible region, as shown in Figure 5.2. It is

therefore the consensus that the reference point draws on the experience of the designer

to express the preferred compromise, rather than specific target values or goals. Similarly,

the reference point distance metric ranks or assesses the success of a particle as one single

scalar, instead of an array of objective values.

5.1.3 Defining the Preferred Region

As demonstrated in Figure 5.2, if there is no control over the solution spread, the swarm

will explore the preferred search direction and converge to the single solution z′ as dictated

by the reference point z̄. The advantage of maintaining a population of particles provides

the designer with the possibility to explore a range of interesting alternatives within a

preferred region of the Pareto front. The aim is therefore to identify a set of solutions
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Figure 5.4: Definition of the preferred region via the parameter δ

surrounding the intersection point z′. A threshold parameter δ > 0 is defined, such that

a solution x is within the preferred region if the following conditional statement is true:

dz(x) ≤ dz(z′) + δ (5.3)

Figure 5.4 illustrates the definition of the preferred region. The extent of the solution

spread is proportional to δ and evidently as δ → 0, the designer is interested in determining

only the most preferred solution z′. Conversely, as δ → ∞, the designer is interested in

determining all solutions along the Pareto front, and thus the influence of the reference

point location diminishes. The function of the solution spread implies that if the designer

were supremely confident that the reference point is a viable reflection of the preferred

compromise, then a smaller solution spread may be used to increase search efficiency.
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Otherwise if there is doubt in selection of the reference point, then a larger spread provides

the flexibility to explore other interesting alternatives during post-optimization.

5.1.4 Solution Clustering

The introduction of δ encourages a broader search region, and control measures must be

implemented to ensure a uniform solution spread. Niching methods are extensively studied

and used to maintain population diversity in EMO algorithms [Deb, 2001]. A commonly

used method is the sharing function introduced by Goldberg and Richardson [1987]. In

this method, the niche count of a particle is defined as the number of other particles within

a distance σshare. The undesirable feature is that the value of σshare must be specified,

and the performance of the metric is highly dependent on this parameter value. Fonseca

and Fleming [1993] extended this approach by developing a dynamic update of σshare,

based on the upper and lower bound values for each objective at each iteration.

In this algorithm the crowding distance method is utilized, which is free of choosing

such a parameter. This method was first introduced by Deb et al. [2002]. The crowding

distance metric has also been applied to MOPSO algorithms, notably in the work of Li

[2003]; Raquel and Naval [2005]; Reyez-Sierra and Coello Coello [2005]. The crowding

distance is calculated by first sorting the set of solutions in ascending objective function

values. The crowding distance of a solution i is the size of the largest cuboid bounded by

the solutions i−1 and i+1 without enclosing any other solution, as illustrated in Figure 5.5.

The final value is obtained by adding the individual distances for each objective:

dc(i) =
m
∑

j=1

f(i+1,j) − f(i−1,j)

(fmax,j)− (fmin,j)
(5.4)
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It is shown that the crowding distance is essentially the Euclidean distance from its two

neighbouring solutions. Boundary solutions are given an infinite crowding distance value

to increase selection pressure.

5.2 Identifying Preferred Solutions

User-preferences alleviate the computational burden of identifying the entire Pareto front.

While the concept of the reference point is fairly intuitive, ensuring the swarm is guided by

this information to identify preferred solutions is more ambiguous. This section discusses

the synchronization of the searching prowess of the MOPSO algorithm with the guidance of

the reference point. Leader selection schemes incorporate the reference point information

to guide the swarm along the preferred search path. Additional features incorporated,

such as a mutation operator to prevent convergence to local fronts, are also highlighted.

5.2.1 Global Best Selection Scheme

The methodology for updating and storing non-dominated solutions is primarily influenced

by the MOPSO variants of Reyez-Sierra and Coello Coello [2005], and Raquel and Naval

[2005]. A secondary population of particles in the form of an elitist archive (denoted by

Q) is maintained, such that

Q = {q1,q2, · · · ,qK}T (5.5)

where q refers to a non-dominated solution, and K is the number of archive members at

time, t. After the population update x(t) to x(t+1), the non-dominated solutions identified

by the particles are appended to the archive. The archive Q(t) with the new additions

is then updated to Q(t+ 1) using a non-dominated sorting procedure where all members

pertaining to local inferior fronts are omitted. The archive serves as a mutually accessible

memory bank for the particles of the swarm. Each member is a potential candidate for

global leadership of the particles during the subsequent velocity update.

Defining the global leaders ultimately governs the direction of the search. The swarm

should efficiently navigate the design space such that the search effort is locally focused

within the preferred region and provides a uniform spread of solutions. Since all members

of the archive are mutually non-dominated, a ranking procedure is necessary to distinguish

the most appropriate candidates for leadership from the remaining members. At each time-

step t, the most preferred solution z′(t) is recorded. The subset of members Xg(t) ∈ Q(t)

selected for global leadership satisfy the condition of Eq. (5.3), such that

Xg(t) ∈ Q(t) : dz(Q(t)) ≤ dz(z′(t)) + δ. (5.6)
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Figure 5.6: Defining swarm leaders based on global leader distance-based schemes

Since not every member will initially satisfy this condition, the number of candidate lead-

ers may fluctuate over time. This condition provides the necessary selection pressure for

particles to locally focus the search effort within the preferred region, avoiding the unnec-

essary computational effort of exploring undesired regions of the design space. Each swarm

particle is randomly assigned a leader to promote diversity in the search. Figure 5.6(a)

illustrates the selection of leaders based on the preferred region concept.

In the case where all non-dominated solutions satisfy the condition of Eq. (5.6), addi-

tional guidance through the crowding distance metric is provided. Members are first sorted

based on their crowding distance values dc(). The top 10% ranked members according to

dc() (i.e. members with the highest crowding distance values) are subsequently selected

for global leadership, to promote a uniform spread. Figure 5.6(b) shows an instance where
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Algorithm 3 Truncating the archive

1: if K > Kmax then

2: if max dz(Q) > dz(z
′ + δ) then

3: qmax(dz) = xi

4: else

5: qmin(dc) = xi

6: end if

7: end if

it is desirable to focus on solutions in sparsely populated areas. The definition of global

leaders is therefore governed as,

Xg(t) ∈ Q(t) : sort(dc(Q),max) if max dz(Q) ≤ dz(z′ + δ). (5.7)

As the particles are guided to converge to the preferred region, the number of iden-

tified non-dominated solutions will steadily increase. To avoid this number unnecessarily

escalating and to maintain high competitiveness within the archive, there is a restriction

(denoted by Kmax) on the number of solutions permitted for entry. If the number of

members K > Kmax, the newest solution is permitted entry and an existing member is

removed. If all archive members exist within the preferred region, the most crowded solu-

tions are removed. This ensures that solutions in densely populated regions are removed in

favour of solutions which exploit sparsely populated regions, to promote a uniform spread.

For each new addition xi, an existing member q is removed as shown in Algorithm 3.

5.2.2 Personal Best Selection Scheme

Fieldsend and Singh [2002] proposed a population of personal best solutions for each

particle i, with the best representative front found by the solution i. While the benefit

could be greater search diversity, the expense of maintaining N personal archives is quite

high and the same degree of diversity could potentially be achieved by an appropriate

global selection mechanism or through a turbulence operator [Fieldsend, 2004].

Most of the other reported MOPSO variants [Fieldsend, 2004] maintain one personal

best solution pi for each particle i, which is updated during the search according to the

dominance criteria. The ambiguity lies in the treatment of the case when the personal best

solution pi(t) is mutually non-dominated with the solution xi(t + 1). The introduction

of the reference point distance metric elegantly deals with this ambiguity. If the parti-

cle position xi(t + 1) is mutually non-dominated and preferred to the existing personal

best pi(t), then the personal best is replaced. Otherwise the personal best is remained

unchanged. The personal best of particle i is updated as per Algorithm 4.
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Algorithm 4 Updating the personal best position

1: for each particle xi do

2: if xi ≺ pi then

3: pi = xi

4: else if xi � pi then

5: if dz(xi) < dz(pi) then

6: pi = xi

7: end if

8: end if

9: end for

5.2.3 Constraint Handling

Constraints in PSO may be handled in different ways. Particles may simply be rejected if

they violate a constraint, or a penalty factor could be applied to persuade other par-

ticles from exploring that region of the design space [Engelbrecht, 2005]. Deb et al.

[2002] introduced a constraint-handling mechanism based on Pareto ranking, which ap-

plies specifically to MOO. The dominance criterion is manipulated to include the feasibil-

ity of a solution with respect to its number of constraint violations. For the i-th particle,

c(xi) = {c1, . . . , cp} where p is the number of constraints and c(xi) ≥ 0 is the violation

of the constraint. A particle a therefore constraint-dominates b if any of the following

criteria are met:

• Solution a is feasible and solution b is not.

• Both solutions a and b are infeasible but c(a) < c(b).

• Both solutions a and b are feasible but a ≺ b.

If both particles are infeasible, the particle with the overall least constraint violation is

considered the better solution. If both particles are deemed to satisfy the constraint values,

then evidently the better performing solution is admitted for entry. This methodology

alleviates the ambiguity in having to define a penalty factor.

5.2.4 Mutation Operator

The concept of mutation in EA as a genetic operator was introduced in Section 3.2.2.

For single point mutation, the candidate genome is mutated by flipping a single binary

bit. Mutation is an important operator since it reduces the probability of premature

convergence to inferior solutions, and provides a mechanism to maintain diversity within

the population. For PSO, the notion of mutation and crossover is inherent within the
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Figure 5.7: Mutation probability pmut as a function of archive capacity

particle update equations. However for reasons of avoiding premature convergence, there

are many reported PSO algorithms in the literature which incorporate explicit mutation

schemes [Engelbrecht, 2005; Reyez-Sierra and Coello Coello, 2006]. Despite the additional

guidance provided by the reference point, and the diversity inherent within the proposed

topology, the search proficiency of the swarm may deteriorate when confronted with a

highly multi-modal problem. It follows that as the velocity of the particles converges

to zero (i.e. v → 0), the swarm is unable to generate new leaders. This could lead

to premature convergence as a result of the swarm being trapped within a local front.

Kennedy and Eberhart [1995] observed that the probability of such an occurrence may

be reduced by introducing some element of flight turbulence or craziness. Turbulence, or

mutation, issues a random variation in the particle flight trajectory or position.

Reyez-Sierra and Coello Coello [2006] present a survey of MOPSO algorithms, also

characterizing their turbulence or mutation schemes. A mutation operator (when applied

appropriately) is very effective at generating new leaders. If mutation is incorrectly im-

plemented, it becomes destructive and deteriorates the natural explorative capabilities of

the swarm. Generally the mutation operator in reported algorithms is applied directly to

particles in the swarm, via a mutation probability criterion [see Reyez-Sierra and Coello

Coello, 2005; Wickramasinghe and Li, 2008]. For the proposed algorithm, a Gaussian

mutation operator is applied to members within the archive. Mutation is triggered if con-

sistent improvement in the archive is not recorded1. To ensure that the mutation operator

is non-destructive, only mutated members which provide some measure of improvement

over existing members are successful. The percentage of archive members pmut selected

for mutation steadily reduces as the archive reaches maximum capacity, as shown in Fig-

1Improvement is measured by monitoring the mean value of dz. If successive mean values are equal,

mutation is triggered.
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Algorithm 5 Gaussian mutation operator scheme

1: for each archive member qi...K do

2: if rand ≤ pmut then

3: for each dimension j do

4: if rand ≤ pdim then

5: MUTATE dimension q′i,j
6: end if

7: end for

8: if dz(q
′) < max dz(Q) then

9: UPDATE archive qK+1 = q′i
10: end if

11: end if

12: end for

ure 5.7. A mutation probability of pdim = 0.1 is applied to each dimension. For the

selected member qi and dimension j, Gaussian mutation is applied as follows:

q′i,j = qi,j +N(µ, σ2) (5.8)

where N(µ, σ2) represents a random number of mean µ = 0 generated from the nor-

mal distribution curve. The standard deviation, σ2 (based on trial and error) is given a

value of 0.1 which plateaus to 0.05 as the algorithm advances to promote exploitation.

Theoretically the mutation operator should only come into effect if the inherent searching

capabilities of the swarm fail – thereby resulting in premature convergence to a local front.

Algorithm 5 illustrates the operation of the mutation scheme.

The global leader selection scheme introduced in Section 5.2.1 incorporates the refer-

ence point distance metric and dominance to promote solution diversity. The mutation

operator however is used solely to enhance diversity. No reference is made to dominance,

and improvement is solely measured by preference comparison. This proves to be an

effective technique for establishing global leaders in multi-modal optimization problems.

5.2.5 UPMOPSO Pseudo Code

The User-Preference Multi-Objective Particle Swarm Optimization (UPMOPSO) algo-

rithm is summarized in Algorithm 6. The algorithm utilizes the swarm topology, velocity

initialization and boundary violation schemes as described in Section 3.3. The constriction

type 1 formulation of Clerc and Kennedy [2002] is implemented to update the velocity and

position of each particle, as described in Section 3.3.3. The stopping criterion is either

based on the maximum number of time-steps tmax or the maximum number of function

evaluations fmax as specified by the user.
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Algorithm 6 The UPMOPSO algorithm

1: OBTAIN user-defined preferences, z and δ
2: INITIALIZE swarm of size [N,n]; t = 0

3: EVALUATE fitness and distance metric
4: ASSIGN personal best
5: CONSTRUCT archive Q(t+ 1)

6: t = 1

7: repeat

8: SELECT global leaders
9: UPDATE particle velocity

10: CONSTRICT velocity
11: UPDATE particle position
12: APPLY boundary conditions
13: EVALUATE fitness and distance metric
14: UPDATE personal best
15: UPDATE archive Q(t+ 1)

16: if MUTATION triggered then

17: MUTATE archive members
18: end if

19: t = t+ 1

20: until t = tmax OR fmax

5.3 Test Function Validation

To illustrate the functionality of the UPMOPSO algorithm, a series of test functions are

presented. Multi-objective test function suites have been utilized in order to demonstrate

the performance of the algorithm for problems of varying size and complexity. Details of

each test function are provided in Appendix A. The behaviour of the algorithm during

exploration and exploitation is highlighted, and guidelines to controlling the spread of

solutions and objective bias are demonstrated through selection and manipulation of the

user-preference parameters. A modified hyper-volume metric is introduced to monitor

convergence and solution spread, which does not depend on prior knowledge of the Pareto

front. To facilitate the performance comparison, results of the NSGA-II [Deb et al., 2002]

and the reference point based R-NSGA-II [Deb and Sundar, 2006] are also included.

5.3.1 Convergence Characteristics

A simple execution of the UPMOPSO algorithm is provided in Figure 5.8 on the two-

objective ZTD1 test function [Zitzler et al., 2000]. A swarm of N = 100 particles is

initialized and flown for 50 time-steps. The reference point is selected as z̄ = [0.5, 0.5]

with a solution spread of δ = 5× 10−2. The archive solutions are recorded and plotted at
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Figure 5.8: Illustration of the UPMOPSO algorithm on the ZTD1 two-objective test function,

showing phases of initialization, exploration and exploitation
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Figure 5.9: Statistical box-plots illustrating particle stagnation due to convergence

different iterations, to highlight the phases of exploration and exploitation. The swarm

is initialized in Figure 5.8(a), and the exploration phase is evident from Figures 5.8(b)

and 5.8(c). A distinct attraction towards the preferred region of the Pareto front is shown

thereafter. The swarm is able to exploit this region to provide a uniform set of non-

dominated solutions as shown in Figure 5.8(f).

Figure 5.8 illustrates the convergence of the swarm to the Pareto front by monitoring

the activity of the archive members. While this methodology effectively communicates

the proficiency of the swarm in identifying non-dominated solutions, the truest reflection

of convergence is by monitoring the particle dynamics. Figure 5.9 shows box-plots of the

mean velocity magnitude for each particle. A clear convergence towards stagnant motion

is observed, indicating the arrival of the swarm to the preferred area of the design space.

5.3.2 Controlling the Preferred Region

Isolating and identifying the preferred region on the Pareto front is essentially dependent

on the parameters z̄ and δ. The δ parameter is fairly straightforward, as it essentially

dictates the extent of the solution spread. Figure 5.10 illustrates the convergence of the

UPMOPSO algorithm on the ZTD1 test function, with varying δ.

While the concept of the reference point z̄ may initially seem misleading, it in fact

provides a very simple and intuitive method of articulating the preferred interests of the

designer. Consider the three-objective DTLZ2 test function [Deb et al., 2005], where the

boundaries of the Pareto front are in the unit hypercube f ∈ [0, 1]3. If an absolutely equal

weighting between all objectives is desired, then a reference point consisting of equal values

should be considered, as illustrated in Figure 5.11(a). This is however not dependent on

the feasibility of the reference point, as illustrated in Figure 5.11(b).
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Figure 5.10: Controlling the extent of the solution spread by varying δ

There are a few possibilities to provide additional bias to any particular objective(s).

For example, the simplest approach to applying additional weighting to the objective f3

would be to reduce the reference value for f3, as illustrated in Figure 5.11(c). Alterna-

tively it is possible to obtain a similar level of bias to a specific objective by relaxing the

reference values of the other objective functions. This is illustrated in Figure 5.11, where

the values of f2 and f3 are relaxed, naturally placing more emphasis on the objective f1. It

is demonstrated that by adding additional bias to any particular objective, the preferred

region shifts to favour that objective without affecting the compromise between any other

objectives. In the context of aerodynamic design, if a hypothetical existing design configu-

ration were representative of an original reference point, then a new reference point which

emphasizes a specific design condition represents a target compromise where the designer

is interested in obtaining further improvement in that specific design objective.
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(c) z̄ = (0.75, 0.75, 0.35)
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(d) z̄ = (0.75, 1, 1)

Figure 5.11: Shifting the preferred region through adjustment of the reference point

The example given in Figure 5.11 is indicative of the scenario when the designer places

emphasis on a particular objective before the optimization process. It is however possible

that during the course of optimization it may be necessary to shift the preferred region

without the added computational expense of reinitializing the swarm. Essentially the

search direction of the swarm (and consequently the identified preferred region) can simply

be disrupted or modified at any time-step during flight by manipulating the reference

point. To illustrate this concept, Figure 5.12 shows the interval convergence of a swarm

of N = 100 particles flown for 50 time-steps, on the ZTD1 test function. At time t = 20,

the reference value z̄1 is reduced, thereby placing more emphasis on the first objective.

Despite the abrupt change in search direction, the swarm quickly adapts to the change in

preferences and subsequently converges to the updated preferred region.

5.3.3 Hyper-Volume Performance Metric

There are several popular performance metrics to monitor solution spread and accuracy

for MOO [see Zitzler et al., 2000] yet these metrics are only suitable for problems where
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Figure 5.12: Illustration of the UPMOPSO algorithm on the ZTD1 two-objective test function,

showing the mid-flight shift in the preferred region due to an adjustment of the reference point
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the Pareto front is known. For design problems, the Pareto front is generally unknown and

a suitable performance metric is therefore required which does not rely on this information

to compare various algorithms. The Hyper-Volume (HV) metric is a popular performance

metric, which provides a single measurement to assess both the convergence and spread of

solutions and does not rely on knowledge of the Pareto front [Knowles and Corne, 2002].

The HV performance metric is applied to the archive members Q = {q1, · · · ,qK}T . The

HV metric calculates the total volume bounded by the archive solutions on the Pareto

front and a selected point in the objective-space. The selected point is termed the nadir

point. At the nadir point, all objectives are at their worst values simultaneously [Emmerich

et al., 2005]. The nadir point qnad is calculated by first collating all identified solutions

(from all algorithms), such that

qnad = [fnad1 (q), . . . , fnadM (q)] where fnadi (q) = max
j=1...K

{fi(qj)}. (5.9)

The formal definition of the HV metric according to Emmerich et al. [2005] is the

Lebesgue measure, Λ, of the union of all hypercubes ai defined by a solution bi and the

nadir point qnad. The HV value is the sum of all these volumes as denoted in Figure 5.13(a).

HV (Q) = Λ({
⋃

i

ai|bi ∈ Q}) = Λ(
⋃

bi∈Q

{q|bi ≺ q ≺ qnad}) (5.10)

For experimental validation with stochastic algorithms, multiple runs are conducted to

eliminate the influence of random occurrences. The nadir point is calculated from the

final combined population, and is subsequently used to obtain the HV value for each

independent simulation. When comparing different algorithms, that which provides the

greatest HV value is considered to be superior, since it gives a measure of both the spread

and the closeness of the solution to the Pareto front.

The standard HV metric is not applicable for comparing preference-based optimization

algorithms since the search converges to a partial subset of the Pareto front. A modifica-

tion to the standard HV calculation was proposed by Wickramasinghe et al. [2010]. All

solution points outside the preferred regions are excluded such that the nadir point used to

calculate the HV metric is representative of the preferred region. After each independent

simulation, all non-dominated solutions are combined to produce one non-dominated set.

Wickramasinghe et al. then suggest that the Euclidean distance is calculated of each so-

lution to a fictitious ideal point (which for a minimization problem would be placed at the

origin). A volume is defined around the solution point with the lowest Euclidean distance

to the ideal point. The value δ′ is prescribed such that a volume is defined having 2δ′ for

each objective. The value of δ′ may be adjusted such that a sufficient number of solution

points lie within the defined volume. Solutions which reside outside the preferred volume
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Figure 5.13: The modified HV performance metric to monitor convergence and solution spread

are simply excluded from the calculation. The remaining solutions are used to obtain the

nadir point, which is located within the defined volume. The calculation of the HV values

for each independent run is then performed using this common nadir point. This original

method has one inconsistency, since the ideal point is dependent on whether the volume

is at the centre or either extreme of the front. The same procedure is utilized in this

research, with the exception that the original ideal point is no longer used to define the

boundary, but rather the mid-point solution of the preferred region.

5.3.4 Test Functions

Presented in this section are the results of UPMOPSO for various test problems obtained

from MOO test function suites. It is sought to provide an unbiased overview of the
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Figure 5.14: Time-step convergence for the multi-modal ZTD4 test problem

capabilities of the algorithm for problems of varying size and complexity. Results of

both the NSGA-II and the reference point based R-NSGA-II algorithms are included for

performance comparison. The HV metric is used to quantify the performance of the

algorithms, averaged over ten independent runs to eliminate random occurrences.

ZTD Test Suite

Zitzler et al. [2000] proposed a test suite of six bi-objective minimization problems. The

detailed descriptions of these test functions are provided in Appendix A. In the ZTD test

function suite, xi ∈ [0, 1] for all variables, apart from the ZDT4 function where x1 ∈ [0, 1]

and xi ∈ [−5, 5] for all other variables. The functions ZTD1–3 and 6 are biased two

objective problems, hence the global front is fairly simple to identify. The ZTD4 problem

is however highly multi-modal, and consists of 219 local inferior fronts. The binary encoded

ZTD5 problem has been omitted.

Properties of the ZTD test problems are provided in Table 5.1. Each test problem

is assigned a single reference point and solution spread value to compute the HV metric.

A swarm of N = 100 particles is initialized for each problem instance and flown for the

prescribed number of time-steps. This corresponds to a population of 100 individuals

evolving for the maximum number of generations for the GA equivalents. The mutation

operator of the UPMOPSO algorithm is included for the ZTD4 test function, as the

algorithm would otherwise not converge to the Pareto front. Results of the computational

experiments are provided in Table 5.1.

The ZTD test function suite is fairly biased towards the Pareto front (apart from the

ZTD4 problem) and the UPMOPSO algorithm converges to the Pareto front within 50

to 100 time-steps. For ease of comparison and consistency between results, the maximum
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Problem n Characteristics tmax NSGA-II R-NSGA-II UPMOPSO

ZTD1 30 Convex 200 0.0755 0.1055 0.1101

± 0.0129 ± 0.0046 ± 0.0020

ZTD2 30 Concave 200 0.0892 0.1127 0.1206

± 0.0107 ± 0.0052 ± 0.0026

ZTD3 30 Discontinuous 200 0.3638 0.4436 0.4601

± 0.1142 ± 0.0179 ± 0.0073

ZTD4 10 Convex 500 0.0490 0.0628 0.1112

± 0.0240 ± 0.0215 ± 0.0098

ZTD6 10 Concave 200 0.0721 0.0910 0.0975

± 0.0080 ± 0.0070 ± 0.0023

Table 5.1: Properties and average HV results of the ZTD test function suite. Results of the

highest preforming algorithm are shown in bold.

Problem n Characteristics tmax NSGA-II R-NSGA-II UPMOPSO

DTLZ1 7 Linear 500 0.1436 0.1967 0.2326

± 0.0242 ± 0.0260 ± 0.0121

DTLZ2 12 Concave 200 0.2915 0.4082 0.3863

± 0.0852 ± 0.0134 ± 0.0210

DTLZ3 12 Concave 500 0.0000 0.3765 0.3922

± 0.0000 ± 0.0218 ± 0.0207

DTLZ7 22 Discontinuous 100 0.0372 0.0945 0.1112

± 0.0785 ± 0.0173 ± 0.0120

Table 5.2: Properties and average HV results of the three-objective DTLZ test function suite.

Results of the highest preforming algorithm are shown in bold.

number of time-steps is fixed to 200. Table 5.1 highlights the superiority of the UPMOPSO

algorithm over the NSGA variants, especially for the highly multi-modal ZTD4 function.

Figure 5.14 demonstrates the time-step convergence of the UPMOPSO algorithm for the

ZTD4 test function. It is demonstrated that the UPMOPSO algorithm is superior to the

preference-based R-NSGA-II algorithm in both phases of exploration and exploitation.

DTLZ Test Suite

Deb et al. [2005] proposed the DTLZ suite as an extension to the ZTD test function suite.

The detailed descriptions of these test functions are provided in Appendix A. The unique

feature of the DTLZ test suite (at the time) is that the problems may be scaled to any

number of objectives and dimensions. In the DTLZ test function suite, xi ∈ [0, 1] for all
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Problem n Characteristics tmax NSGA-II R-NSGA-II UPMOPSO

DTLZ1 9 Linear 500 0.0000 0.2454 0.3157

± 0.0000 ± 0.0581 ± 0.0132

DTLZ2 14 Concave 200 0.0000 0.3445 0.3757

± 0.0000 ± 0.0416 ± 0.0181

DTLZ3 14 Concave 500 0.0000 0.3610 0.3755

± 0.0000 ± 0.0198 ± 0.0117

Table 5.3: Properties and average HV results of the five-objective DTLZ test function suite.

Results of the highest preforming algorithm are shown in bold.

variables. DTLZ1 is a multi-modal problem, consisting of 115 − 1 local optimal fronts.

DTLZ3 is highly multi-modal, with 310 − 1 local optimal fronts. The mutation operator

of the UPMOPSO algorithm is included for these two test functions, as the algorithm is

otherwise not guaranteed to converge to the Pareto front. The DTLZ2 and DTLZ7 test

problems also included in this thesis are biased problems.

Properties and results of the DTLZ test problems is shown in Table 5.2 for three-

objective variants, and in Table 5.3 for five-objective variants. Each test problem is as-

signed a single reference point and solution spread value to compute the HV metric. A

swarm of N = 100 particles is initialized for each problem instance and flown for the

prescribed number of time-steps. This corresponds to a population of 100 individuals

evolving for the maximum number of generations for the GA equivalents.

UPMOPSO outperforms the NSGA-II variants for all test problems, apart from the

three-objective DTLZ2 problem where the R-NSGA-II algorithm is superior. As the scale

of the problem increases the benefits of adopting user-preferences are more apparent as in

some cases NSGA-II is not able to converge to the Pareto front. UPMOPSO consistently

produces higher average HV values and lower standard deviation values, which highlights

its proficiency in providing an accurate and uniform approximation of the preferred region.

Shown in Figures 5.15 and 5.16 are solution fronts of certain problems.

Constrained Problems

A series of problems are included to asses the performance of the UPMOPSO algorithm in

handling (conditional) constrained problems. Included in this thesis are the constrained

problems of Kita et al. [1996] (KITA) and Osycza and Kundu [2004] (OSY), as well as the

two-bar truss and welded beam design problems of Deb [2000]. Details of these problems

are provided in the Appendix. The problems are not difficult or multi-modal, however the

constraints are of varying size and complexity.
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Figure 5.15: Solution front as obtained by the UPMOPSO algorithm with z̄i = 0.5 for the

(a) ZTD4; (b) ZTD2; (c) ZTD3; (d) three-objective DTLZ1; (e) three-objective DTLZ2; and (f)

three-objective DTLZ7 problems
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Figure 5.16: Solution front as obtained by the UPMOPSO algorithm for the (a) five-objective

DTLZ1; and (b) five-objective DTLZ3 problems

Problem n Constraints NSGA-II R-NSGA-II UPMOPSO

KITA 2 3 0.2792 0.3384 0.3866

± 0.0943 ± 0.0663 ± 0.0241

OSY 6 6 0.4591 0.5518 0.5712

± 0.0976 ± 0.0577 ± 0.0491

Two-bar 3 1 0.0932 0.1453 0.1529

truss ± 0.0452 ± 0.0230 ± 0.0137

Welded 4 4 0.5586 0.6076 0.6245

beam ± 0.1037 ± 0.0663 ± 0.0513

Table 5.4: Properties and average HV results of the constrained test problems. Results of the

highest preforming algorithm are shown in bold.

Properties and results of the constrained test problems are shown in Table 5.4. Each

problem is characterized by two objectives, and the number of variables and constraints are

indicated. Each test problem is assigned a single reference point and solution spread value

to compute the HV metric. A swarm of N = 100 particles is initialized for each problem

instance and flown for a maximum number of time-steps of 100. The solution fronts are

shown in Figure 5.17. Results clearly demonstrate that the benefits of focusing exclusively

within a preferred region of the Pareto front also translate to constrained problems.
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Figure 5.17: Solution front as obtained by the UPMOPSO (•) and NSGA-II (*) algorithms for

the (a) KITA; (b) OSY; (c) Two-bar truss; and (d) Welded beam constrained problems

5.3.5 Low-fidelity Design: Wave Drag Optimization

To further demonstrate the operation of the UPMOPSO algorithm, a low-fidelity aero-

dynamic design case-study is presented. This study demonstrates the relative ease in

assigning a reference point to design problems to efficiently identify preferred designs.

This example deals with a wave drag airfoil shape optimization problem that aims to

minimize f1 = Cd/C
2
l and f2 = C2

m, for an angle of incidence of α = 2◦ and a Mach

number of M = 0.73. This formulation has appeared in earlier studies, notably in Vicini

and Quagliarella [1997] and Ray and Tsai [2004].

The PARSEC method (as described in Section 2.2.3) is used to parameterize the airfoil

geometry, and the potential flow solver (as described in Section 2.4.3) is selected to predict

the aerodynamic coefficients. The potential flow solver is not computationally intensive
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Variable Lower Bound Upper Bound

rLE 0.0055 0.0085

αTE −12◦ −8◦

βTE 9.5◦ 14.5◦

xUP 0.3 0.5

zUP 0.05 0.075

zxxUP -0.6 -0.4

xLO 0.28 0.42

zLO -0.075 -0.5

zxxLO 0.55 0.85

zTE 0 0

∆zTE 0 0

Table 5.5: PARSEC parameter ranges for the low-fidelity wave drag optimization study

and requires only a few seconds per function evaluation, yet still captures important shock-

flow phenomena. The boundaries of the design space (see Table 5.5) are as suggested by

Ray and Tsai [2004]. The reference point is selected as the benchmark RAE2822 airfoil,

since it provides maximum performance within the desired operating range. The reference

values as obtained by the potential flow solver are z̄ = [0.0141, 0.0148].

A swarm population of N = 100 particles is initialized and flown for tmax = 50 time-

steps. Due to the apparent simplicity of the optimization problem, the mutation operator

is omitted. While it is expected that the optimizer will converge before the maximum

allocated number of time-steps, the process is continued to highlight the phases of explo-

ration and exploitation. For comparative purposes, the NSGA-II algorithm is also applied

to obtain the full Pareto front. Figure 5.18 shows the final solution sets obtained by the

UPMOPSO and NSGA-II algorithms, accompanied with the HV convergence plots.

It is observed from Figure 5.18(a) that the reference point is dominated with respect to

the final solution spread. The UPMOPSO algorithm is therefore able to identify designs

which provide improvement in all objectives, while reflecting the reference point compro-

mise. Figure 5.18(a) also demonstrates that the UPMOPSO algorithm provides a more

optimal solution set than NSGA-II, which highlights its superiority in exploitation, no

doubt an advantage of focusing exclusively on a subset of the Pareto front. This is fur-

ther confirmed in Figure 5.18(b), which conclusively demonstrates the greater convergence

characteristics of the UPMOPSO algorithm in both exploration and exploitation.

Table 5.6 shows the designs of interest of the optimization case-study, as identified by

the UPMOPSO algorithm. The preferred design z′ clearly provides a design which reflects
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Figure 5.18: Final results of the low-fidelity design case-study

the preferred compromise. It provides a 39% and 37% improvement over the reference

point design for objectives f1 and f2 respectively. The min f1 design (as expected) yields

slighty further improvement in f1 with a 40% improvement, at the expense of only a 30%

improvement in f2. The min f2 design instead provides a 62% improvement in f2 at the

expense of only a 32% improvement in f1. These results clearly demonstrate that the

RAE2822 places more emphasis on the f1 condition, and slight improvements in the f1

Design Cd Cl Cm f1 f2 dz

RAE2822 0.008807 0.7938 -0.1215 0.0140 0.0148 –

z′ 0.004600 0.7342 -0.0959 0.0085 0.0092 -0.0055

min f1 0.004833 0.7604 -0.1013 0.0084 0.0103 -0.0045

min f2 0.003957 0.6445 -0.0747 0.0095 0.0056 -0.0045

Table 5.6: UPMOPSO results of the low-fidelity wave drag optimization study
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Figure 5.19: Normalized box-plots of variable ranges at interval time-steps

objective provide drastic changes in the f2 objective. Despite the bias towards f1, the

UPMOPSO algorithm is still able to faithfully reflect the preferred compromise. Another

strategy for visualizing the convergence of the optimization process is to monitor the vari-

able spread as solutions exploit the preferred region. Figure 5.19 show the variable ranges

of the non-dominated solution set at certain time-step intervals. A distinct attraction

towards a very specific region of the design space is observed. It is also demonstrated that

certain variables are saturated at either the lower or upper boundary, suggesting that the

respective ranges should be adjusted. It is evident that the final preferred designs aim to

minimize the amount of curvature on the upper surface to reduce flow acceleration which

is critical to avoid shock formation. This is further complemented with the increase in

leading edge radius, as well as the mild upper thickness. This combination of effects es-

sentially plateaus the upper surface, stabilizing the flow velocity and reducing the adverse

pressure gradient. The reduction in pitching moment is due primarily to the reduction

in lower surface curvature and trailing edge angle, which is pivotal in reducing the aft



5.4. Summary 115

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 

 

x-coordinate x

y
-c

o
o
rd

in
a
te
y

RAE2822
z′

min f1
min f2

(a) Geometry preferred designs

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5  

 

x-coordinate x

S
u

rf
a
ce

p
re

ss
u

re
co

effi
ci

en
t

RAE2822
z′

min f1
min f2

(b) Surface pressure at M = 0.78 and α = 2◦

Figure 5.20: Comparison of optimized designs and the RAE2822 reference point

loading. The lower thickness is however quite high, and complemented with the delayed

lower thickness location, significant lift may still be generated. The profile geometries and

surface pressure distributions are shown in Figure 5.20. These plots verify the conclusions

derived from Figure 5.19 and Table 5.6. It is shown that in order to optimize f1 objective,

the drag Cd is reduced to a shockless value, and the lift Cl is slightly reduced (a result

of the reduction in aft loading). The f2 objective is achieved by reducing the aft curva-

ture/loading, as reducing the magnitude of Cl (consequently decreasing the lift-to-drag

ratio – thereby increasing f1) is directly proportionate to reducing the Cm magnitude.

5.4 Summary

In this chapter, a comprehensive discussion on the development of the proposed multi-

objective particle swarm optimization algorithm has been given. The operation of the
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reference point distance metric has been described, and its unique integration into the al-

gorithm has been documented. The convergence behaviour of the swarm was studied, and

an insight into controlling the location of the preferred region was provided. To highlight

the superiority of the developed algorithm, a series of unconstrained and constrained test

suites were considered. The UPMOPSO algorithm was compared with the NSGA-II and

R-NSGA-II algorithms in an attempt to provide an unbiased reflection of the performance

of UPMOPSO. It was conclusively demonstrated that the UPMOPSO is superior to the

NSGA-II variants for all test suites, in both phases of exploration and exploitation. To

further demonstrate the convergence behaviour of the algorithm, a low-fidelity aerody-

namic design case-study was presented. This case study demonstrates the operation of

the algorithm for an aerodynamic design application, and confirms its viability for the

high-fidelity design case-studies of Chapter 7.



Chapter 6

Implementing Kriging and

Visualization

Aerodynamic design optimization problems benefit from the construction of inexpensive

surrogate models that emulate the response of exact functions. This chapter presents a

novel development to the field of preference-based optimization. Adaptive Kriging models

are incorporated within the swarm framework to efficiently navigate design spaces re-

stricted by a computational budget. The successful integration of these design tools is

facilitated through the reference point distance metric, which provides an intuitive cri-

terion to update the Kriging models during the search. Surrogate-based visualization

methods are also introduced, which are used to statistically extract information from the

design space and confirm the relative influence of both variables and objectives to the

preferred interests of the designer. Such visualization techniques may be applied before

or after optimization, to facilitate the design or decision making processes.

6.1 Implementing the Kriging Method

An introduction to the surrogate-based optimization architecture was presented in Chap-

ter 4. A frequent occurrence in these studies is the use of the Kriging method, since

it inherently considers the confidence interval of the predicted output. This allows the

optimizer to exploit the information provided by the Kriging prediction, in determining

whether a solution is worthy of precise evaluation. Verifying whether a solution is valid

of precise evaluation is the key to implementing the Kriging method. It is also beneficial

to maintain the correct direction of the search so no solution is unnecessarily evaluated,

such that it may contribute to the global accuracy of the Kriging model yet does not aid

the optimization convergence.

117
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Figure 6.1: One-variable function with Kriging model through three sample points

The operation of the Kriging method was also described in Chapter 4, detailing the

procedure to construct and validate a Kriging model which emulates an expensive function

landscape. A novel development to the field of preference-based optimization is proposed

in this section, describing the implementation of the Kriging method to the preference-

based multi-objective swarm algorithm. In this section a review of some traditional update

strategies for the Kriging method is presented, before introducing the update strategy

developed for this research, which is motivated by the preference-based theme adopted

thus far. The aim is to facilitate the synthesis of the design framework, such that the

reference point is no longer solely used to dictate the preferred search direction of the

swarm, but also provides a guideline in determining the validity of a predicted solution.

6.1.1 Update Strategies

Consider the multi-modal one-variable function, where a Kriging model is constructed

based on the three sample points, as shown in Figure 6.1. This section will introduce

some popular techniques for updating the surrogate to identify the global minimum. These

techniques are critical to the development of the novel reference point screening criterion.

Exploitation

The most intuitive update strategy is to exploit the predicted optimum of the Kriging

model. This update strategy will ensure a fast convergence rate, however is very depen-

dent on initial sampling and may fail to find the true global optimum in the presence of

a multi-modal function. Referring to Figure 6.1, it is observed that the Kriging method

provides a rather crude approximation of the function. By identifying the minimum func-

tion value provided by the Kriging model and applying an infill point at that location,
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Figure 6.2: Kriging model enhanced by an update point at the identified optimum

a more accurate approximation in the region of the identified optimum is obtained, as

shown in Figure 6.2. It is observed from Figure 6.3(a) that after an additional five update

points the Kriging model has identified the region of the local optimum, which has been

extensively sampled. The limitations of this strategy are evident here, since this strategy

is purely based on exploiting the identified optimum and is not capable of exploring other

areas of the design space which may provide further improvement. After eight update

points, the Kriging approximation is still trapped within the region of the local optimum,

as shown in Figure 6.3(b). Due to the orientation of the original sampling plan, this strat-

egy has not converged to the global minimum, and it is observed that pure exploitation

can unnecessarily prolong the search or in fact cause convergence to a false optimum.

Exploration

The exploitation strategy is very dependent on the initial sample since it is not capable of

exploring other regions of the design space which may offer improvement. Consequently,

the full capabilities of the Kriging method are not utilized. The accuracy of the prediction

ŷ at the unobserved location x depends on the correlation distance with sample points X.

The closer the location of x to the sample points, the more confidence in the prediction

ŷ(x). The Gaussian function adopted by the Kriging method thus allows for an estimate

to the prediction error. The uncertainty in the prediction is estimated by

ŝ2(x) = σ̂2

[

1− rTR−1r +
(1− 1TR−1r)2

1TR−11

]

. (6.1)

On examination of Eq. (6.1), it is observed that if the error ŝ(x) is calculated at a sample

point xi, then x ⊂ X and thus r is a column of R. Hence the expression R−1r is the

i-th unit vector leading to 1TR−1r = 1 and rTR−1r = 1. Substituting these proofs into
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(b) Additional eight update points

Figure 6.3: Kriging model with additional sample points based on previous optima

Eq. (6.1) yields the error ŝ(x) = 0. This follows the characteristic of any interpolation

method, whereby a previously sampled point is precisely recorded and stored and therefore

there is no prediction error.

A possible update strategy as a direct result of the error prediction is to infill points

at locations which have maximum error. This update strategy is potentially immune to

the multi-modality of any function landscape. Figure 6.4 revisits the example of the one-

variable function where four additional update points which have been selected based on

pure exploration. The accompanying plot which features the error distribution is shown in

Figure 6.5. It is observed that such a process will eventually identify the global minimum

of the function, however is analogous to simply increasing the sample plan to ensure

constant error across the entire design space. Furthermore, since this strategy is based on

pure exploration, there is no precursor as to when the search can confidently cease.



6.1. Implementing the Kriging Method 121

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

 

 

f
(x

)

x

True function
Kriging prediction
Initial Sample
Update point

Figure 6.4: Kriging model enhanced by four update points based on pure exploration
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Figure 6.5: Kriging prediction error based on the approximation shown in Figure 6.4

Balanced Exploration and Exploitation

Thus far, update strategies which are either based on pure exploitation and exploration

have been presented. Pure exploitation results in an accelerated convergence rate, but can

not necessarily guarantee convergence to the true global minimum. On the other hand,

pure exploration can potentially identify the global minimum of any function, yet it is

highly inefficient for an optimization process. The logical conclusion is to combine the

strengths of both update strategies in an effort to eliminate the deficiencies. A simple and

effective method [see Forrester et al., 2008], of balancing exploration of the error ŝ(x) and

exploitation of the prediction ŷ(x) is to minimize the lower-confidence bound:

ŷ(x)lb = ŷ(x)− ω · ŝ(x), (6.2)

where ω is a constant that controls the bias between exploration and exploitation. As

ω → 0, the result is pure exploration and similarly if ω → ∞, the effect of ŷ(x) becomes



122 6.1. Implementing the Kriging Method

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

15

20

 

 

f̂
(x

)

x

True function
Kriging prediction
ω = 1
ω = 2
ω = 3
Initial Sample
Update points

Figure 6.6: The lower bound strategy for balancing exploration and exploitation

negligible and is equivalent to pure exploration. The consensus of the lower-confidence

bound strategy is to direct the infill points in promising but less explored regions of the

design space. Emmerich et al. [2006] demonstrated this criterion in the context of optimiza-

tion of multi-modal functions, where significant improvement in results over exploitation

methods was observed. A reasonable choice for the user-defined parameter is ω = 2, which

leads to a 97% confidence probability that ŷ(x)lb is the lower-confidence bound of ŷ(x).

Figure 6.6 shows the lower bound for varying ω after four additional update points. It is

shown that this method is quite capable of identifying promising areas of the design space,

without the added expense of sampling in areas which have large error values.

The choice of the extra parameter provides some ambiguity in the use of the lower

bound strategy, as Figure 6.6 highlights that the strategy could potentially arrive at the

global minimum, yet the most feasible value is ultimately dependent on the function land-

scape. Other update strategies have been developed which are free from choosing such

a parameter. The probability of improvement, or more specifically the expected improve-

ment is one such technique which has been popularized for surrogate-based engineering

design applications. This criterion calculates the improvement which is expected from the

predicted solution at location x, with reference to the minimum solution Ymin found so

far. Figure 6.8 illustrates the predicted expected improvement over the design landscape

based on the approximation shown in Figure 6.7. The expected improvement of any given

solution can be obtained as,

E[I(x)] =











Ymin − y(x)Φ
(

ymin−y(x)
ŝ(x)

)

+ sφ
(

Ymin−y(x)
ŝ(x)

)

if s > 0

0 if s = 0
(6.3)

where Φ and φ are the cumulative distribution function and probability density function

respectively. Rather than searching for the minimum lower bound value, one could ef-
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Figure 6.7: Kriging model enhanced by three update points based on expected improvement
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Figure 6.8: Predicted expected improvement based on the approximation shown in Figure 6.7

fectively balance exploration and exploitation by maximizing the expected improvement.

Whether a sampled solution exploits a local basin of attraction or samples a relatively

unknown location is irrelevant and is only dependent on where the improvement is pre-

dicted. This strategy is by far the most intuitive and complete strategy to finding the

global minimum of a function and has been included in a number of aerodynamic design

frameworks [Emmerich et al., 2006; Jeong et al., 2005a; Jones, 1998; Ong et al., 2004].

6.1.2 Reference Point Screening Criterion

The developed reference point screening criterion draws on the concept of individual-based

adaptive control [see Jin, 2005] and is motivated by the lower bound update strategy.

Kriging fitness predictions f̂() are used to screen each candidate particle in the swarm

after the population update (or likewise after mutation). The Kriging model estimates
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Algorithm 7 Reference point screening strategy

1: for each particle xi do

2: PREDICT f̂(xi)

3: PREDICT d̂z(xi)
4: if d̂z(xi) < z′(t) then

5: EVALUATE f(xi)

6: EVALUATE dz(xi)
7: RETRAIN Kriging models [X; xi]

8: UPDATE archive Q(t+ 1)

9: end if

10: end for

the lower-confidence bound (lb) of the objective array as,

{f̂1(x), . . . , f̂m(x)} = [{ŷ1(x)− ω · ŝ1(x)} , . . . , {ŷm(x)− ω · ŝm(x)}] . (6.4)

The factor ω is specified as 2 to provide a 97% probability that f̂i(x) is the lower-bound

value of ŷi(x). An approximation to the reference point distance is thus computed as,

d̂z(x) = max
i=1:m

{(

f̂i (x)− z̄i
)}

. (6.5)

The approximation to the reference point distance provides an estimate to the improve-

ment that is expected from the solution. At time t, the most preferred archive member

is recorded as z′(t). Particle candidates are subsequently flagged for precise evaluation

or rejection as described in Algorithm 7. Stratified sampling using an LHS methodology

is used to construct a global Kriging approximation [X, Y] with least number of sample

points (NK). The non-dominated subset of Y is used to construct the non-dominated

archive as outlined in Section 5.2.1. This ensures that candidates for global leadership

have been precisely evaluated (or with negligible prediction error) and, therefore, offer no

false guidance to other particles. Mathematically the candidate global leaders at time t

are a subset of the non-dominated archive Q(t) which is a subset of the Kriging dataset

X, such that

Xg(t) ∈ Q(t) ∈ X1...NK . (6.6)

Based on the success of the Kriging prediction, a candidate particle may be subsequently

flagged for precise evaluation. This evidently requires retraining of the Kriging models,

and can subsequently lead to reconstruction of the global archive.

The lower bound screening criterion ensures particles will be attracted towards the

areas of the design space which provide the greatest resemblance to z̄ and the direction

of the search will remain consistent. A similar screening strategy adopting the expected
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improvement criterion was tested, yet failed to provide similar results. There are a num-

ber of motives for adopting the lower confidence bound strategy (at least in conjunction

with the reference point method) over the widely more popular expected improvement

approach. Firstly, the expected improvement criterion leads to no logical strategy for

determining whether a solution is deemed feasible for exact evaluation, which contradicts

the adaptive control strategy (see Section 4.1.2). For example, the candidate particle with

highest expected improvement may intuitively be selected, but there is ambiguity in spec-

ifying a threshold value or a minimum value of expected improvement. This would likely

result in performing an unnecessary, or likewise an inadequate, number of evaluations

during the search. Secondly, the success of the expected improvement criterion is greatly

dependent on the value of Ymin. This guides the particles to explore areas which expected

improvement in either objective rather than the preferred compromise. This could be

alleviated through a strategy which predicts the expected improvement in the reference

point distance rather than any specific objective, but is beyond the scope of this research.

Fortunately by adopting the lower confidence bound strategy, many of the earlier

reported ambiguities are resolved. As the search initially commences and the prediction

accuracy of the Kriging model(s) is low, there will be a large percentage of the swarm that is

flagged for precise evaluation. Subsequently, as the particles begin to identify the preferred

region and the prediction accuracy of the surrogate model(s) gradually increases, the

screening criterion becomes increasingly difficult to satisfy, thereby reducing the number

of flagged particles at each time-step. This is further illustrated in Figure 6.9 which shows

instances of exploration and exploitation.

In Figure 6.9(a) at time t1 it is shown that the preferred region is not well defined.

Particles are initially predicted using the lower bound strategy which overestimates their

success. The flagged particles (however likely these particles really do offer the level of

improvement that is predicted) ensure the Kriging models are updated to offer greater

improvement in the preferred region. In Figure 6.9(b) at time t2 it is shown that the

preferred region is now well defined, such that the screening criterion is difficult to satisfy.

This ensures the preferred region is exploited, without the risk of performing unnecessary

evaluations in other unexplored regions of the design space.

6.2 Kriging UPMOPSO Algorithm

The proposed Kriging UPMOPSO (or the KUPMOPSO) algorithm amalgamates the

search strategy of the UPMOPSO algorithm (see Section 5.2.5) with the developed Kriging
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Figure 6.9: Flagging successful particles based on the reference point screening procedure

reference point screening criterion for performing high-fidelity aerodynamic design opti-

mization studies. This algorithm presents a novel addition to the field of preference-based

optimization. The pseudo-code of the KUPMOPSO algorithm is presented in Algorithm

8. The stopping criterion is intuitively based on the maximum number of precise function

evaluations fmax as dictated by the allowable computational budget. An extensive vali-

dation procedure was performed for the UPMOPSO algorithm in Section 5.3. The search

effort of the KUPMOPSO algorithm remains essentially the same with the exception that

the number of precise evaluations are significantly reduced due to the inclusion of the

Kriging models. Presented in this section are a series of experimental problems. The aim

here is not to assess the searching prowess of the method (which has been conclusively

demonstrated), but rather the effect of the screening criterion.
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Algorithm 8 The Kriging UPMOPSO (KUPMOPSO) algorithm

1: OBTAIN user-defined preferences, z and δ
2: CONSTRUCT Kriging models [X,Y] of NK samples; t = 0

3: CONSTRUCT archive Q(t+ 1)

4: RECORD most preferred solution z′(t+ 1)

5: INITIALIZE swarm of size [N,n]

6: PREDICT fitness and lower bound distance metric
7: ASSIGN personal best
8: t = 1

9: repeat

10: SELECT global leaders
11: UPDATE particle velocity
12: CONSTRICT velocity
13: UPDATE particle position
14: APPLY boundary conditions
15: PREDICT fitness and lower bound distance metric
16: SCREEN particles for precise evaluation
17: EVALUATE successful particles
18: RETRAIN Kriging models
19: UPDATE archive Q(t+ 1)

20: RECORD most preferred solution z′(t+ 1)

21: UPDATE personal best
22: if MUTATION triggered then

23: MUTATE archive members
24: end if

25: t = t+ 1

26: until fmax

6.2.1 Schaffer Test Function

The Schaffer mathematical test function is a bi-objective problem of the form:

min f1(x) =
2

γ
·
(

d
∑

i=1

x2
i

)γ/2

(6.7)

min f2(x) =
2

γ
·
[

d
∑

i=1

(1− xi)
2

]γ/2

(6.8)

where the design space range is x ∈ [0, 10]d, the number of dimensions d = 10 and γ = 2.

The curvature of the Pareto front is scalable by the parameter γ. The convex Pareto front

follows the equation,

y2 =
(

1− y1/γ1

)γ
y1 ∈ [0, 1]. (6.9)

The Schaffer test function is not characterized as deceptive; though a random initial popu-

lation tends to be reasonably far from the global Pareto front, which generally prolongs the
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Figure 6.10: Cross-validation for the constructed Kriging models of the Schaffer test function

explorative phase of the search. By focusing exclusively on the preferred region and con-

structing a Kriging model for each objective, the time spent in exploration and hence the

number of function evaluations can be significantly reduced. Simulations are performed

with a population of N = 100 individuals using the benchmark NSGA-II algorithm, the

UPMOPSO algorithm and the KUPMOPSO algorithm. For the latter, a Kriging model

is constructed for each objective based on an LHS of NK = 20 design points. Figure 6.10

illustrates the cross-validation error plot of the constructed Kriging models.

The reference point is selected as z̄ = [0.2, 0.2] with a solution spread of δ = 0.015.

With no broadly applicable stopping criterion, all algorithms stopped after a specified

number of function evaluations. Results for the NSGA-II and the UPMOPSO algorithms

are recorded after 1000 and 5000 function evaluations. For the KUPMOPSO algorithm,

results are recorded after 150 function evaluations.



6.2. Kriging UPMOPSO Algorithm 129

Algorithm Evaluations z′ max(dz)− z′

NSGA-II 1000 7.6201± 1.8600 –

NSGA-II 5000 0.5371± 0.2823 –

UPMOPSO 1000 0.1742± 0.0274 –

UPMOPSO 5000 0.0553± 0.0009 0.0159± 0.0013

KUPMOPSO 150 0.0521± 0.0003 0.0152± 0.0002

Table 6.1: Optimization results for the convex Schaffer test function

Statistical results (mean ± standard deviation) of ten independent simulations are

shown in Table 6.1. The most preferred (z′) is indicative of the closeness of the non-

dominated solution set to the global Pareto front. The KUPMOPSO consistently provides

a more accurate solution set over the standard UPMOPSO algorithm and NSGA-II algo-

rithm at approximately 2% of the computational cost (the number of function evaluations

refers to the sample points plus the additional update points). Results for the variance

(max(dz)−z′) of the non-dominated solution set are also recorded; this provides a measure

of the uniformity in solution spread. Since the NSGA-II algorithm explores the full extent

of the Pareto front, the variance is not recorded. Larger values of the variance suggest

a non-uniform scattering of solutions, whilst values that approach δ indicate the desired

solution spread is attained.

It is clearly observed from Figure 6.11 that the KUPMOPSO algorithm identifies a

set of Pareto-optimal solutions in the immediate vicinity of the reference point. Also

shown are selected sample points used to update the Kriging models. The proficiency

of the reference point pre-screening criterion is evident from the sample point attraction

towards the preferred region. This establishes a distinct search direction which is beneficial
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Figure 6.11: KUPMOPSO on Schaffer function showing update points in the immediate vicinity
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to screen prospective swarm particles to determine whether they are feasible for precise

evaluation. It is also observed that only few precisely evaluated solutions reside on the

Pareto front. This information is sufficient to predict a uniform spread of solutions on the

Pareto front with negligible error.

6.2.2 Design of a Helical Compression Spring

Presented here is a multi-objective constrained problem which was first proposed by Tudose

and Jucan [2007]. A subsequent study, using surrogate models, is described by Forrester

et al. [2008]. A helical compression spring is to be designed to work over a stroke of

h = 50mm with a corresponding load variation between Fmin = 40N and Fmax = 500N.

ASTM A229/SAE J315 oil tempered wire is used with modulus of elasticity E = 2.06×105

MPa, density ρ = 7.87× 10−6 kg/mm3 and rigidity modulus G = 0.78× 105 MPa. There

are two conflicting objectives, 1) to minimize the mass and 2) to maximize the fatigue life

of the spring. Two constraints ensure that the spring does not fail in shear and in buckling

respectively. There are three design variables, whose ranges are shown in Table 6.2. The

first is the wire diameter d. The second is the index i, defined as the ratio of the mean helix

diameter (measured from the center of the wire) and the diameter d. The final variable

is the maximum load intercoil distance coefficient k∆, which is the ratio of the distance

between adjacent coils of the fully loaded spring and the diameter d.

Shown in Figure 6.12 are the results of the evaluation of a 250,000 point full-factorial

sampling plan. Only a marginal percentage (i.e. 66,139) of the designs have proven to

be feasible, where they do not violate the two resistance constraints and they make geo-

metrical sense (i.e. their variable triplets generate sensible springs). For a conventional

(exhaustive) search, this would suggest a high number of unnecessary (or at least avoid-

able) evaluations are performed.

As the following results will indicate, the KUPMOPSO algorithm performs efficiently

for this problem, in spite of the very large infeasible subdomain of the design space. Sim-

ulations are performed with a population of 100 individuals using the NSGA-II algorithm,

the UPMOPSO algorithm and the KUPMOPSO algorithm. For the latter, a Kriging

Variable Lower bound Upper bound

d (mm) 0.5 7

i 4 16

k∆ 0.1 1.1

Table 6.2: Ranges of variables for the design of a helical compression spring
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Figure 6.12: Full factorial plan and the corresponding wire diameters of the feasible designs

model is constructed for the objective and constraint functions based on a LHS sample

of 20 design points, of which only 7 designs satisfy the constraints (Note: designs which

yield geometrically non-sensible springs are omitted). The reference point is specified as

the ideal target design of 0.1 kg mass, and a life of 1010 cycles. The solution spread is

specified as δ = 0.015. For the NSGA-II and UPMOPSO algorithms, results are recorded

after 2000 function evaluations. For the KUPMOPSO algorithm, results are recorded after

50 function evaluations.

Statistical results (mean ± standard deviation) of 10 independent simulations are

shown in Table 6.3. A representative simulation is shown in Fig. 6.13 compared with

the Pareto-front trend estimated from the full-factorial search of Figure 6.12. The KUP-

MOPSO algorithm is observed to be far more proficient in comparison to the other algo-

rithms, because it consistently obtains more accurate (and uniform) results at a fraction

of the computational cost. Furthermore, the percentage of feasible solutions (i.e. sensi-

ble designs with no record of constraint violation) is sufficiently greater. Although the

objectives and constraints are inexpensive to compute for this specific problem, if each

experiment were a computer simulation or destructive test, the potential time and cost

savings would be significant.

Algorithm Evaluations % Feasible z′ max(dz)− z′

NSGA-II 2000 40.2± 0.5 0.2925± 0.0014 –

UPMOPSO 2000 41.7± 0.7 0.2902± 0.0027 0.0152± 0.0023

KUPMOPSO 50 68.7± 0.2 0.2877± 0.0005 0.0151± 0.0002

Table 6.3: Optimization results for the helical spring design problem
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Figure 6.13: KUPMOPSO on helical spring design problem showing feasible sample points

6.2.3 Low-fidelity Design: Case-study Revisited

The low-fidelity case-study (see Section 5.3.5) is revisited in an attempt to demonstrate

the dramatic increase in computational efficiency using the KUPMOPSO algorithm, whilst

still maintaining the same search proficiency as the UPMOPSO counterpart. In this case,

it is beneficial to construct the Kriging models to replicate the aerodynamic coefficients

rather than the objective functions, as to avoid square and reciprocal square terms. A

stratified sample based on an LHS methodology is used to construct the global Kriging

approximations of NK = 50 samples. These global approximations Y1,...,3 are initially

trained using the cross-validation procedure, where the error plots are illustrated in Fig-

ure 6.14. These error values are considered acceptable for the optimization study. The

objective functions are thus computed as:

f̂1(x) = (ŷ1(x)− ω · ŝ1(x)) / (ŷ2(x)− ω · ŝ2(x))2 , (6.10)

f̂2(x) = (ŷ3(x)− ω · ŝ3(x))2 . (6.11)

A swarm population of N = 100 particles is initialized and flown for a maximum

computational budget of 200 precise evaluations. The Kriging datasets are restricted to

150 samples during the optimization process, in an attempt to localize the prediction

accuracy of the models to preferred regions only, and to reduce training time. A further

150 precise updates were performed over t = 228 time-steps until the computational budget

was breached. Figure 6.15 illustrates the error margins of the constructed Kriging models,

captured at t = 0 and t = 228. There is a distinct reduction in the mean and variance of

the error for all models, owing mostly to the localized focus of the preferred region.

The performance of KUPMOPSO is illustrated in Figure 6.16. It is shown from Fig-

ure 6.16(b) that the largest number of update points is recorded during the initial phases
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Figure 6.14: Cross-validation curves for the constructed Kriging models of the low-fidelity design

case study based on the aerodynamic coefficients.
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Figure 6.15: Illustration of error margins via box-plots for the constructed Kriging models

of the search. As the preferred region becomes populated and ŝ→ 0, the search enters into

an exploitation phase and the number of update points steadily reduces. Figure 6.16(a)

features the progress of the most preferred design as the number of precise evaluations

increase. The reference point criterion is shown to be proficient in filtering out poorer so-

lutions during exploration, since only 50 update evaluations are required to reach within

15% of the final identified design and a further 50 evaluations to reach within 5%. Fur-

thermore, no needless evaluations as a result of the lower-bound prediction are performed

during the exploitation phase. This conclusion is further complemented by Figure 6.17(a),

as a distinct attraction to the preferred region is clearly visible.

The final set of non-dominated solutions identified is shown in Figure 6.17(b), super-

imposed over the set obtained by the standard UPMOPSO algorithm. It is evident that
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Figure 6.16: Performance of the KUPMOPSO algorithm for the low-fidelity design case-study

the set of non-dominated solutions is not as uniformly spread as that identified by the

UPMOPSO algorithm - a consequence of implementing the Kriging component - which

is an inevitable deficiency of the KUPMOPSO algorithm1. However the search process

remains fairly consistent, where a similar spread of optimal designs has been identified

despite the dramatic reduction in computational effort.

6.3 Visualization Strategies

In Section 4.4 a series of visualization techniques were described. It was observed that such

techniques could potentially offer meaningful information on the design space or objective

space during all phases of optimization. As has been a recurring theme in this thesis the

1Precise evaluations are performed based on the success of the Kriging prediction - it can never be

assured that a solution will provide the same performance as obtained from the Kriging prediction
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Figure 6.17: Precise evaluations performed and the resulting non-dominated designs

low-fidelity case study is revisited in an attempt to demonstrate the practical application of

some of the visualization techniques that have been documented. A pre-optimization and

variable screening phase is introduced, to measure the level of importance of each PARSEC

variable on the objective landscapes. Despite this problem having multiple objectives (or

quantities of interest), it is shown how the relative importance of each variable can be

measured by relating its sensitivity to the deviation from the preferred compromise. A

post-optimization decision making process is also introduced. SOM charts are used to

visualize the identified trade-offs and characterize them according to their similarity to

the reference point compromise.

6.3.1 Pre-optimization and Variable Screening

The global Kriging models constructed in Section 6.2.3 are considered sufficient in order to

obtain sufficient confidence in the results of the subsequent visualization analyses. Whilst
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Figure 6.18: Matrix of two-dimensional contour plots (coloured by drag coefficient)

a larger sampling plan is essential to obtain an accurate global correlation, it is only of

interest to quantify the elementary effect of each variable to the objective landscapes.

The baseline value is intuitively selected as the reference point RAE2822 airfoil, which is

mapped using the PARSEC method via a least-squares method. Figure 6.18 maps the

variable relationship with the drag coefficient Cd utilizing the methodology discussed in

Section 4.4.1.

Figure 6.18 provides some insight into the non-linearity of the objective landscape,

and it is observed that the variables relating to thickness and surface curvature have the

greatest effect. However within a multi-objective context, investigating the elementary

effect of variables through contour slices does not provide a complete overview of the

optimization landscape. For example, the trailing edge variables (αTE and βTE) do not

seem to have a significant impact on the drag coefficient, but may have a large influence

on the pitching moment. To avoid this deficiency, variable screening is conducted using

the Morris algorithm (see Section 4.4.2). Table 6.4 consolidates the results of the analysis

and based on the mean and standard deviation, conclusions are made whether a variable

is influential and/or interacting with other variables.

The screening study immediately provides two important observations. Firstly it is

shown that the trailing edge wedge angle βTE has a negligible influence and is essentially

inactive. This is most likely caused by the restricted boundaries of the variable range, or its

inactivity could also be due to the fidelity of the potential flow method (e.g. the inclusion

of the boundary layer could activate the influence of βTE). This variable could safely
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Drag Cd Lift Cl Moment Cm

Variables Influential Interactive Influential Interactive Influential Interactive

rLE X

αTE X X X X

βTE

xUP X X X X X X

zUP X X X X X X

zxxUP X X X

xLO X

zLO X X X X X X

zxxLO X X X X X

Table 6.4: Results of the variable screening study for the low-fidelity case-study

be omitted from the design space as it is not likely to provide any influence on the final

designs. Other inactive variables are identified as rLE and xLO and are observed to have

only isolated influence on the aerodynamic quantities. The second important observation

is that most variables do not influence considerably the aerodynamic coefficients but they

are mostly all non-linear and/or involved in interactions. Only the leading-edge radius

rLE is shown to be highly active for computing the lift coefficient, but has a negligible

effect on other quantities.

While this strategy provides the designer a clear insight into the variable influence on

the aerodynamic quantities, once again it offers no insight on the optimization landscape.

Figure 6.19 alternatively features the results of the extended Morris algorithm [Saltelli et

al., 2001], where variable elementary effects are now screened using the quantity µ∗. It is

evident that the upper and lower thickness is of significant importance for all aerodynamic

quantities. While the lower thickness location xLO does not have much influence on the lift

and drag coefficients, it is shown to have a greater effect on the pitching moment, as this

variable to some degree will control the aft camber. It is observed that Figures 6.19(a)-

6.19(d) faithfully reflect the conclusions obtained from Table 6.4, with the exception that

the charts are simpler to interpret.

Of particular significance is Figure 6.19(d) which examines the variable influence on

the deviation from the reference point compromise. The variable influence on dz is case-

specific and entirely dependent on the reference point chosen for the proposed optimization

study. Since the value of dz is a means of ranking the success of a multi-objective solution

as one single scalar, variables may be ranked by influence, which is otherwise not possible

when considering a multi-objective array. It is therefore argued that while Figures 6.19(a)-

6.19(c) measure variable influence on the isolated objective functions, Figure 6.19(d) mea-
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sures the variable influence on the actual optimization landscape. Preliminary conclusions

to the priority weighting of the objectives to the reference point compromise can also be

made. For example, it is interesting to note that rLE has a negligible influence on all quan-

tities except on the lift coefficient, however its influence on dz is fairly evident, suggesting

that the lift coefficient (i.e. f1) drives the design. It is observed that Figure 6.19(d) more

closely resembles the charts of Figures 6.19(a) and 6.19(b) which further concludes that

the design driver is the lift-to-drag ratio, a conclusion which compliments the findings of

previous studies. The reader should be fully aware that this conclusion is case-dependent

and based on the selection of the reference point, i.e. with variations to the reference

values the variable influence on dz will not be consistent. It is also important to note that

while Table 6.4 suggests inactivity of the variables rLE , βTE and xLO - only the trailing

edge wedge angle βTE is observed to be negligible.

6.3.2 Post-optimization and trade-off visualization

The pre-optimization phase focuses on setting up the optimization problem and providing

a statistical measure on the variable influence. The designer is generally unaware of

(a) Influence on Cd (b) Influence on Cl

(c) Influence on Cm (d) Influence on dz

rLE xLO zLO zxxLOxUP zUP zxxUPαTE βTE

Figure 6.19: Results of the extended Morris screening study for the low-fidelity case-study
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Figure 6.21: Visualization of the influence of variable xUP on the drag coefficient Cd

the best performing areas of the design space, and thus pre-optimization is performed

(reluctantly) over the entire design space. Once the optimization has been performed, the

area of the design space for visualization is significantly reduced. Furthermore, the activity

and influence of the variables within the best performing areas of the design space can

be properly assessed. Figures 6.20 and 6.21 illustrate selected charts of a SOM analysis

(see Section 4.4.3) based on a stratified sample of the localized preferred region. The data

is arranged via seven clusters based on increasing values of the aerodynamic coefficients.

Figure 6.20 illustrates the activity of the leading edge radius rLE on the lift coefficient,

while Figure 6.21 illustrates the activity of the upper thickness location xUP on the drag

coefficient. Both variables were concluded to be significant to the respective coefficients.

The qualitative data provided by the SOM chart illustrates the variable activity and

provides a comprehensible insight into the variable influence.

It was shown in the previous section how the reference point facilitated the screening

of variables to measure their influence on the optimization landscape. The reference point

additionally provides a feasible means of selecting the most appropriate solution to aid the



6.4. Summary 141

0.0084 0.0087 0.0091 0.0095

(a) Coloured by f1

0.006 0.007 0.008 0.009 0.010

(b) Coloured by f2

MIN MAX

(c) Coloured by dz

Figure 6.22: Visualizing the compromise between the design objectives via SOM representation

decision making process. For example, identified designs may be ranked according to how

well they represent the reference point compromise. This is achieved through the use of

SOM. To visualize the compromise between the aerodynamic coefficients and the reference

point a SOM is trained to evaluate the relationship between the inputs Cd, Cl and Cm to

the output dz. A user-defined cluster separator is integrated to partition designs based on

increasing values of dz.

Each neuron in this case refers to a potential solution of which the designer may

select the one that best suits the intended application. The charts are organized via five

clusters, which facilitate the interpretation of the SOM analysis. Observing the chart

in Figure 6.22(c) it is clearly demonstrated that minimum values of the reference point

distance metric dz are obtained by reducing the f1 objective at the expense of higher f2

values. This suggests that the preferred compromises places a greater emphasis on the lift-

to-drag objective, a conclusion which has already been obtained in earlier analyses. This

is further complemented by the fact that the dz chart more closely resembles the f1 chart

which suggests that the deviation from the preferred compromise is directly proportionate

to the f1 objective. Utilizing these charts, it is shown that the post-optimization and

decision making process is simplified, and the addition of the dz chart allows for the

scalar ranking of identified solutions. While this particular case-study only involves two

objectives, which does not particularly warrant the use of multi-dimensional data mining

techniques, the use of SOM for problems of three or more objectives is highly advantageous.

6.4 Summary

This chapter describes the integration of surrogate modelling to the preference-based opti-

mization framework. For high-fidelity problems where the objective function is expensive,

Kriging models may be constructed to alleviate the computational burden. Popular screen-
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ing strategies for locally updating the Kriging models during the optimization process are

first described. Thereafter, the development of a novel screening criterion is documented,

which utilizes the information provided by the reference point to screen candidates. This

is a simple criterion based on the lower-confidence bound strategy, and is shown to be

proficient in identifying solutions which are expected to provide improvement within the

preferred region of the design space. To demonstrate the operation of the surrgoate-based

framework (or the KUPMOPSO algorithm) a number of analytical problems are first at-

tempted, before revisiting the low-fidelity aerodynamic design case-study introduced in

the previous chapter. The search effort is shown to remain consistent as the UPMOPSO

algorithm, with the added advantage that less precise evaluations are performed. The

chapter concludes with a demonstration of the visualization strategies that were intro-

duced in Chapter 4. Using the low-fidelity aerodynamic design case-study, it is shown how

the results of the screening analyses are comprehended using the reference point distance

metric. This allows candidate designs of a multi-objective problem to be assessed as a

single scalar. Variables which directly drive the optimization process (rather than the

objective landscape) are easily identified. A methodology to visualize resulting trade-off

solutions using self-organizing maps is also presented. In this case, the reference point

distance metric is used to characterize idenfitifed designs, and relate them to the preferred

interests of the designer to facilitate the decision making process.



Chapter 7

Case-studies and Results

The design tools discussed in the previous chapters are synthesized to develop an efficient

framework for aerodynamic design. A wide spectrum of applications is presented in this

chapter that adopt various design philosophies. For each application, the optimization

framework is combined with a suitable shape parameterization tool and robust compu-

tational solver based on the required fidelity. For selected problems, data mining aids

are applied to visualize the design landscape and investigate the compromise between de-

sign objectives. The preferred interests of the designer are reflected through selection of

the reference point. This is an intuitive way of articulating designer preferences, since

a reference point may be ideally based on an existing or target design. On the basis

of these case-studies, the practical efficiency of the preference-based optimization frame-

work is demonstrated and its proficiency in navigating complex optimization landscapes

is highlighted.

7.1 Multi-mission Airfoil Shape Optimization

This section describes the attempt at utilizing the design framework for a typical subsonic

airfoil shape optimization scenario (previously published in Carrese et al. [2011a]). The

aim for this design case-study is to broaden the multi-mission capabilities of subsonic

Unmanned Aerial Vehicles (UAV).

Despite advantages at one flight condition, a good design is one that exhibits optimal

aerodynamic performance over a range of flight conditions and mission segments. Tradi-

tional concepts of developing platforms for single mission requirements have resulted in a

large number of UAV with difficulties in operation and support [Khurana et al., 2008a]. Fu-

ture mission requirements have confirmed that the single mission design concept is neither

operationally nor financially feasible. Alternatively, a multi-mission platform is regarded

143
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as a viable design concept to address the issues with the current UAV fleets [Khurana et al.,

2008a]. Present UAV platforms are plagued with performance restrictions and operations

outside the intended design envelope are not permissible. For example long endurance

UAV are optimized for slow speed operations. Performing high g-force manoeuvres with

these platforms would result in suboptimal performance. This application focuses on the

design of UAV airfoils for multi-mission capabilities.

Problem Formulation

The formulated objectives cover mission segments that are typical of multi-mission UAV

requirements. The minimization of the drag coefficient (Cd) is first considered, at a fixed

lift coefficient (Cl), Reynolds number (Re) and Mach number (M) such that,

f1 = minCd at Cl = 0.5, Re = 4× 106, M = 0.3. (7.1)

Providing a reduced drag during cruise is generally achieved at the expense of a highly

aft cambered airfoil section which results in excessive pitching moments. An objective is

thus formulated to minimize the zero-lift pitching moment coefficient, which is desirable for

stability and control. The incidence angle which corresponds to zero-lift (α0) is determined.

The pitching moment at this condition (Cm0
) is recorded such that,

f2 = min(Cm0
)2 at Cl = 0, Re = 4× 106, M = 0.3. (7.2)

UAV are required to perform manoeuvres without the risk of stall. The final objective

considers maximizing the highest possible lift coefficient (Clmax
) before stall occurs, where

f3 = min 1/100 · C2
lmax

at Re = 4× 106, M = 0.3. (7.3)

The objectives described here are considered sufficient to address the multi-mission design

philosophy at the preliminary level.

Shape Parameterization

Airfoil shapes are parameterized using the PARSEC method (see Section 2.2.3 – Fig-

ure 2.2). In this study, blunt trailing edges sections are not considered and ∆zTE = 0.

A thickness constraint of 10% chord is applied by appropriately setting the ranges of the

thickness variables xUP and xLO. The PARSEC ranges are as shown in Table 7.1. The

suggestions of Khurana and Winarto [2010] has been followed, in an attempt to organize

the design space such that it is reflective of the class of subsonic airfoils desired. For exam-

ple, a significantly large range is assigned for both the leading edge radius rLE (to control

the forward suction peak and lift generation) and the upper surface curvature zxxUP (to
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Variable Lower bound Upper bound

rLE 0.006 0.015

αTE −20◦ 4.5◦

βTE 4.5◦ 15◦

xUP 0.2 0.5

zUP 0.05 0.12

zxxUP -0.95 -0.4

xLO 0.2 0.5

zLO -0.075 -0.5

zxxLO 0.05 0.8

zTE -0.02 0.02

Table 7.1: PARSEC parameter ranges for the multi-mission airfoil shape optimization study

maintain a favourable pressure gradient over the upper surface). The trailing edge angle

αTE (representing the aft camber) and the lower surface curvature zxxLO are also assigned

large ranges to provide flexibility in balancing the pressure loading.

Flow Solver

Multi-mission UAV platforms operate within the linear subsonic regime, therefore panel

methods are considered to provide a sufficient level of accuracy. The iterative viscous-

inviscid airfoil software XFOIL is selected (see Section 2.3.3). XFOIL provides relatively

accurate results for subsonic airfoil analysis rapidly using potential and integral boundary-

layer theory. Integrated within XFOIL is an iterative design loop, which automatically

identifies the aerodynamic properties based on specific operating constraints (e.g. design

α or design Cl). This eliminates the need to solve performance constraints explicitly.

XFOIL provides an estimate of Clmax
which is obtained by monitoring the amount of

upper-surface separation of the boundary layer. This separation of the boundary layer

induces a de-cambering effect which reduces the value of Cl at post-maximum values.

The Reference Point Design

The reference point selected for this case-study is the NLF0416. It is considered a bench-

mark profile for low-speed applications since there is experimental data available and it

is applicable to general aviation purposes [see Somers, 1981]. The UPMOPSO framework

will attempt to improve on the performance characteristics of this airfoil, whilst maintain-

ing a similar level of compromise between the design objectives. Figure 7.1 features the

geometrical and aerodynamic properties of the reference point NLF0416 airfoil.
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Figure 7.1: Geometric and aerodynamic profile of the reference point NLF0416 airfoil

The NLF0416 is a 16% thick airfoil which has a relatively high upper-surface curva-

ture to maintain a favourable pressure gradient for laminar flow control, whilst providing

increased maximum lift values for manoeuvring due to the highly cambered aft section.

Figure 7.1(b) shows the aerodynamic drag polar computed using XFOIL. It is observed

that within the design regime of Cl = 0.5, there is a noticable reduction in the Cd. The

gradient of the drag polar is fairly mild up to values of Cl ≈ 1.25, thereafter significant

increases in Cd are observed with only slight increments in Cl.

Optimization Results

XFOIL provides results in seconds thereby negating the use of Kriging models to enhance

computational efficiency. A swarm population of N = 100 particles is flown for tmax = 50

time-steps. At each time-step, the swarm is partitioned across four parallel processors,

yielding an average computational time per time-step of approximately six minutes (Intel
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Figure 7.2: Optimization results of the multi-mission airfoil design case-study

Core2 Duo CPU 3.16 GHz). The reference point is obtained by computing the objective

values for the NLF0416 using XFOIL and a solution spread of δ = 1× 10−3 is specified.

Figure 7.2(a) features the final set of non-dominated solutions identified. The UP-

MOPSO algorithm was successful in obtaining a partial subset of non-dominated solutions

in the vicinity of the preferred region as dictated by the reference point. The progress of

the solution with closest resemblance to the reference point (or the most preferred solution

z′(t)) is featured in Figure 7.2(b). It is immediately observed that the most improvement

in the solution occurs during the explorative phase of the search, since only 15 time-steps

are required to reach within 11% of the final converged design.

Trade-off Visualization

Figure 7.3 features the trade-off visualization analysis conducted using SOMine, where

SOM charts are organized by eight clusters according to ascending values of dz. Solutions
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Figure 7.3: Trade-off visualization for the multi-mission airfoil design case-study

which yield negative values of dz indicate improvement over each reference value. Solu-

tions with positive dz values do not surpass each reference value, but provide significant

improvement in at least one other objective. From Figure 7.3(d) it is possible to visualize

the trade-off between design objectives. Figure 7.3(d) does not resemble any of the func-

tion charts indicating that all objectives hold a similar priority. However, on observing the

hot and cold sections of the charts it is evident that the most preferred designs offer low-

to-mid values for objectives f1 and f3 and mid-to-high values for f2. This clearly suggests

that the f2 objective is of least importance, based on the compromising characteristics

of the NLF0416. If the designer were inclined towards a specific objective, then designs

which place more emphasis on the respective objective could be considered.

Final Designs

A description of the identified set of non-dominated solutions is provided from the box-plot

shown in Figure 7.4. It is immediately observed (even without reference to the geometrical

profiles) that the identified airfoils are representative of subsonic (or natural-laminar-flow)

airfoils. It is shown that all designs have a relatively high leading edge radius, which is

necessary to control upper surface acceleration to avoid flow separation and assist in gen-
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Figure 7.4: Normalized box-plots of variable ranges of identified solutions

erating greater lift. This is accompanied with a very high curvature of the upper surface

geometry, which is necessary to prolong laminar flow. The camber is fairly symmetrical,

owing to the high curvature of the lower surface. It is however observed that the lower

surface thickness location appears fairly downstream - generating the characteristic lower

surface s-shape essential for controlling the pressure load distribution and hence the pitch-

ing moment. The trailing edge is fairly asymmetrical, providing significant trailing edge

camber to generate the design lift coefficient.

To demonstrate the performance of the identified solution set, the designs which exhibit

the highest performance in either objective are documented. The preferred airfoil design

is representative of the solution which provides the greatest resemblance to the NLF0416

reference point compromise. Table 7.2 consolidates the results of the solution spread.

The solutions which provide minimum values in either objective clearly do not provide

poor performance in other objectives (relative to the performance of the NLF0416) due

to the compromising influence of the reference point. It is however confirmed that the f2

objective is of least importance since large fluctuations are observed across the solution

set. This suggests that the f2 objective does not overly conflict with the other design

objectives and could potentially be treated as a constraint in subsequent studies.

Design f1 f2 f3

NLF0416 0.00516 0.00982 0.00308

Preferred 0.00472 0.00717 0.270

min f1 0.00407 0.00982 0.00289

min f2 0.00621 0.00008 0.00326

min f3 0.00555 0.01018 0.00221

Table 7.2: Results of the multi-mission airfoil optimization study
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Figure 7.5: Geometrical profiles of identified designs of interest

Figure 7.5 features the geometrical profiles of the documented solutions in comparison

to the NLF0416. The profile geometry of the identified solutions echo the conclusions

derived from Figure 7.4, with the exception now that certain discrepancies in the airfoil

geometry can clearly be attributed to prioritizing either design objective. For example,

the design prioritizing f1 is observed to be more symmetrical than the preferred design,

with a very high upper surface curvature. This promotes the favourable pressure gradient

to reduce drag losses due to the turbulent boundary layer. The design prioritizing f2 is

also more symmetrical, with the exception that the characteristic s-shape now appears on

both the upper and lower surfaces, which balances the loading on the airfoil. Alternatively

the design prioritizing f3 is very asymmetrical, with a significantly larger aft camber. The

larger aft camber undoubtedly serves to increase the amount of lift generated.

Figure 7.6 compares the designs of interest with the NLF0416 through aerodynamic

performance curves. Figure 7.6(a) shows the drag polar of the identified airfoils, where

the bucket region close to the cruise condition is clearly visible. For the min f1 design,

the drag bucket is more pronounced at the expense of larger drag values outside the

design range. This is an undesirable feature of the airfoil, as it considerably reduces

its domain of application. The pitching moment curve shown in Figure 7.6(b) clearly

shows the favourable characteristics of the min f2 design, yet its poor performance in drag

and lift generation (see Figure 7.6(c)) clearly deters the selection of this airfoil for multi-

mission flight. Alternatively, the preferred design and the min f3 design offer reasonable

performance in all areas which encourages their use for a multi-mission application.
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Extended Application

To further refine the concept of a multi-mission design philosophy, an additional three

objectives are implemented. This extension to the UAV airfoil design case-study was

introduced in Wickramasinghe et al. [2010] for use with a many-objective PSO algorithm

[see Wickramasinghe and Li, 2009]. The additional objectives cover a number of mission

phases which are critical to the success of a multi-mission platform.

The design objective f1 focused on minimizing the drag during flight which is essential

to maximizing the range of the UAV. It is however also prudent that the airfoil obtain a

high lift-to-drag ratio (or aerodynamic efficiency) for climbing, as well as increased flight

endurance. Maximum endurance is a prerequisite for UAV which are expected to perform

automated missions for an extensive period. For each candidate solution, the incidence

angle is floated to determine the minimum drag-to-lift ratio, such that

f4 = minCd/C
3/2
l at Re = 4× 106, M = 0.3. (7.4)

While the design objective f3 focused on increasing the maximum lift of the airfoil, no

reference is specified to maximizing the amount of generated lift in other areas of the flight

envelope. The resulting deficiency is clearly evident from Figure 7.6(c), where the min f3

generates a greater maximum lift at the expense of poor lift generation at lower angles

of incidence. During descent and approach conditions, a high lift value is beneficial as

it constitutes towards an increased lift-induced drag, which is essential for landing. The

angle of incidence is fixed at α = 5◦, which is regarded as a typical incidence angle during

approach flight, such that

f5 = 1/C2
l at α = 5◦, Re = 2× 106, M = 0.15. (7.5)

Providing optimal performance in the approach condition should not be at the expense of

massive flow separation or leading-edge boundary layer transition (xtr). In this case, it is

sought to maintain a smooth flow-field during approach flight by maximizing the laminar

portion of the upper surface of the airfoil, such that

f6 = 1/xtr at α = 5◦, Re = 2× 106, M = 0.15. (7.6)

Results of the extended optimization case-study are presented in Wickramasinghe et

al. [2010]. This study compares the user-preference framework with a conventional EMO

framework and confirms the necessity of utilizing a reference point in a many-objective

environment. The addition of three objectives ultimately changed the preferred compro-

mise, resulting in a new identified spread of preferred designs. Table 7.3 consolidates the

results of the extended optimization study.
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Design f1 f2 f3 f4 f5 f6

NLF0416 0.00516 0.00982 0.00308 0.00606 0.92314 0.65460

Preferred 0.00431 0.00968 0.00320 0.00581 0.89235 0.51930

min f1 0.00407 0.01713 0.00287 0.00726 0.91924 0.64170

min f2 0.00559 0.00413 0.00338 0.00671 0.96098 0.57380

min f3 0.00412 0.03984 0.00239 0.00472 0.88731 0.70100

min f4 0.00408 0.02883 0.00301 0.00404 0.97161 0.62610

min f5 0.00604 0.01968 0.00276 0.00523 0.58638 0.64360

min f6 0.00536 0.01145 0.00323 0.00477 0.93441 0.45250

Table 7.3: Results of the extended multi-mission airfoil optimization study
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Figure 7.7: Comparison of the NLF0416 with the m = 3 and m = 6 preferred designs
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From an initial observation of Table 7.3, it is evident that designs which exhibit improve-

ment over all objectives have no longer been identified, owing largely to the increased

complexity of the problem. Similar improvements (with reference to Table 7.2) have been

identified by each min fi design for the respective objective fi. It is shown that the revised

preferred design provides improvement for all objectives, at the expense of a reduction in

the maximum lift coefficient (i.e. f3). This suggests that the f3 objective is driving the

design and obtaining a high aerodynamic efficiency for nominal flight conditions hinders

the manoeuvring performance of the airfoil.

Figure 7.7 features the original preferred design (for m = 3) and the revised preferred

design (form = 6). The revised profile is thicker and has a higher curvature over the upper

surface, and the aft camber is less significant. Figure 7.7(b) shows that the performance

region is no longer localized to a specific drag bucket as was evident for the original

preferred design. This makes the selection of the revised preferred design more attractive

for a multi-mission application, as a higher aerodynamic efficiency is observed across the

flight envelope, notwithstanding the poorer performance at higher angles of incidence. It is

observed that a multi-point optimization strategy is probably required to avoid a localized

improvement of the drag at the expense of higher drag in off-design points.

7.2 Supersonic Nozzle Design

Flow conditions within supersonic nozzles are extremely sensitive to variations in profile

geometry as well as ambient conditions and thus are an ideal candidate for shape opti-

mization. Nozzles are designed to suit a broad range of engineering applications, such as

rockets, turbines, supersonic wind tunnels, etc. Dependent on the application, the de-

sign philosophy employed will vary. For example, rockets require shorter nozzle lengths

with rapid expansion to minimize weight, whereas supersonic nozzles require high quality

uniform flow within the test section [Pasquale et al., 2010]. The present work aims at un-

derstanding the trade-off between the reduction in length of the nozzle and the uniformity

of the flow at the test section for a specified discharge Mach number.

Geometry Parameterization

An axisymmetric nozzle of circular cross-section is considered, such that the flow is sym-

metrical about the mid-plane. The geometry of the upper-half of the nozzle is shown in

Figure 7.8. Air enters in from the reservoir inlet of area Ai. The flow within the con-

verging section of the nozzle Lc is purely subsonic (i.e. M < 1) until the throat At where

the flow is sonic (i.e. M = 1). Thereafter, the flow becomes supersonic (i.e. M > 1)
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Figure 7.8: Upper-half of the nozzle geometry symmetrical with respect to the mid-plane

and accelerates through the diverging section Ld until it reaches the required discharge

Mach number Mo at the outlet Ao. The nozzle length is fixed to unity and all geometrical

quantities are made dimensionless with respect to the throat area At.

The uniformity of the supersonic flow at the outlet is evidently much more sensitive

to the divergent section rather than the convergent section upstream of the throat sec-

tion. The solid wall of the nozzle is therefore represented as a composition of two curves

– whereby the convergent section is fixed and the divergent section is parameterized.

Construction of the convergent section and throat geometry is important to ensure uni-

form flow at the throat, achieved through a smooth and gradual acceleration of the flow

through the convergent section. The Mach-area relationship of one-dimensional isentropic

flow theory is used to determine the inflow area:

(

A

At

)2

=
1

M2

[

2

γ + 1

(

1 +
γ − 1

2
M2

)]
γ+1

γ−1

(7.7)

where γ = 1.4 is ratio of specific heat for air. The area ratio between the inflow and the

throat has been chosen such that the inlet Mach number is Mi = 0.3. As suggested by

Macabe et al. [1967], the converging geometry is expressed via a composition of hyperbolic

curves of the form:

y2 = 1 +
x2

ρc
(7.8)

where ρc is the radius of curvature of the nozzle wall. Figure 7.9 features the convergent

section geometry for a unit throat area. All the quantities required to define the converging

portion of the nozzle have been chosen as a fixed multiple of the throat span, such that

Ai = 1.4266 ·At and Lc = 3 ·At, for an axisymmetric geometry.

The divergent section of the nozzle geometry is parameterized and constructed using a

piecewise cubic Hermite interpolating polynomial. This is a shape preserving cubic spline

function, defined by a series of control points (see Section 2.2.2). Hermite curves favourably

do not exhibit oscillations unlike conventional spline methods. An additional benefit of
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Figure 7.9: Normalized convergent section of the nozzle geometry

shape preserving curves is the ability to provide sufficient shape flexibility whilst easily

enforcing the physical constraint of a continuously diverging section. Figure 7.10 illustrates

the design of the divergent geometry, which is achieved by constructing a Hermite curve

to represent the expanding and levelling sections of the supersonic nozzle.

Using isentropic flow theory as per Eq. (7.7), the outlet area is defined to ensure a

discharge Mach number of Mo = 2, such that Ao = 1.2989 · At. The Hermite curve is

modelled by five control points which are horizontally and vertically translated to produce

curves of varying degrees of curvature. The control points are illustrated in Table 7.4. The

corresponding design variables are outlined in Table 7.5. The location of the throat Lc

essentially measures the ratio between the converging and diverging lengths of the nozzle.

Convex section Concave section

At

Ao

L1 L2

A1

A2

l1 l2

a1

a2

Figure 7.10: Nomenclature of the divergent section geometry
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x-coordinate z-coordinate

Lc At

L1 − l1 At + a1

L1 At +A1

(L1 + L2)− l2 At + a2

L1 + L2 At +A2

Table 7.4: Hermite control points for supersonic divergent nozzle

This parameter is subsequently used to determine all important geometric quantities which

are measured with respect to the throat area. The remaining variables define the control

points, necessary to construct the divergent geometry.

Flow Solver

While the boundary layer and cross flow effects could represent a limiting issue for this

application, in the present work, viscous effects are not considered and the flow is governed

by the axisymmetric inviscid Euler equations. The general purpose finite volume code

ANSYS Fluent is used. The axisymmetric inviscid Euler equations are solved using a

pressure-based formulation with second-order spatial discretization, which is well suited

for the computation of high Mach number flows. The operating pressure is set at zero, and

the pressure and temperature ratios between the pressure inlet and outlet are specified

through the gauge pressure. The two-dimensional computational grid is composed of a

200 × 50 body-fitted structured mesh, as shown in Figure 7.11. In the interest of robust

and efficient convergence rates, Full Multi-Grid (FMG) initialization is employed, with

coarsening of the grid to 10 cells. In the FMG initialization process, the Euler equations

are solved using a first-order discretization to obtain a flowfield approximation before

submitting to the full iterative calculation.

Variable Description Lower bound Upper bound

Lc Throat location 0.2 0.8

L1 Convex section length 0.1 · (1− Lc) 0.6 · (1− Lc)
A1 Convex section radius 0.1 · (A2) 0.5 · (A2)

a1 Convex mid-length radius 0.1 · (A1) 0.9 · (A1)

a2 Concave mid-length radius 0.1 · (A2 −A1) 0.9 · (A2 −A1)

l1 Convex mid-length location L1/2 L1/2

l2 Concave mid-length location L2/2 L2/2

Table 7.5: Design variable ranges for the supersonic nozzle case-study
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Figure 7.11: Example computational grid used during optimization process

Problem Formulation

The aim of the optimization case-study is to quantify the influence of nozzle length re-

duction on the uniformity of the Mach number at the outlet (i.e. the test section). The

multi-objective problem is formulated by defining two conflicting objective functions:

f1 = min
1

At
, (7.9)

f2 = min

√

√

√

√

1

q

q
∑

j=1

(Mj −Mo)2. (7.10)

The objective f1 is simply the inverse of the throat span, since it is related to the nozzle

length. The second objective f2 is the root mean square of the deviation of the local Mach

number Mj of the j-th cell of the outlet boundary (discretized by q nodes), with respect

to the design discharge Mach number.

The Reference Point Design

Prior to the advent of optimization techniques, nozzle design was achieved using the two-

dimensional Method Of Characteristics (MOC) [Anderson, 2001]. MOC and its application

to nozzle design is based on the linearization of an exact Prandtl-Meyer solution for super-

sonic corner flow. The method evaluates the interactions between a series of positive and

negative characteristic Mach waves that propagate from two corner sources of a simplified

nozzle shape. The limitation of MOC is that characteristic lines only exist in supersonic

flow regimes and the method can therefore only be used for the design of the supersonic

nozzle section downstream of the throat. This is not a serious problem for nozzle design,

since the uniformity of the outlet flow is much more sensitive to the diverging section,

rather than the converging section upstream of the throat. MOC is also limited in the

sense that it cannot be extended to account for viscous effects and it provides no insight
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(a) MOC design illustrating Mach wave intersects
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(c) Outlet flow as predicted by the Euler solver

Figure 7.12: Reference point geometry generated via the Method of Characteristics
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into the trade-off between flow quality and the nozzle length [Pasquale et al., 2010]. De-

spite the deficiencies of MOC, it can provide a feasible reference point geometry which

may be utilized by the optimization framework to identify designs of interest.

The analytical MOC (as shown in Figure 7.12) is used to generate the reference point

divergent geometry based on a discharge Mach number ofMo = 2. The nozzle coordinates

are expressed via the unit throat length and can subsequently be normalized via the

nozzle length to be consistent with the problem formulation. The design geometry is

characterized by the black line, as this refers to the shortest nozzle length required to

achieve uniform flow at the outlet while maintaining zero curvature at the throat. The

divergent geometry generated by MOC is subsequently meshed and solved using the Euler

flow solver to generate Figure 7.12(c), used to calculate the reference value for f2.

Variable Screening

The nozzle geometry is parameterized by a Hermite spline where the control points are

representative of important geometrical features. This provides an ideal case-study for

a variable screening study, to determine the elementary effect of each control point. To

assess the design space topology the visualization technique introduced in Section 5.4.1 is

first utilized. Figure 7.13 features the two-dimensional contour projections of the n = 5

dimensional design space. The multi-modality of the design space is fairly evident and it

is clearly shown that each variable has non-linear interactions with all other variables. No

meaningful conclusion could hence be derived from a screening study, other than ensuring

that sufficient time is allocated to the swarm to navigate the landscape.
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(b) Progress of the most preferred solution

Figure 7.14: Optimization results of the supersonic nozzle design case-study

Optimization Results

The first objective is analytical and the Euler solver is also fairly economical, due to the

fact that the mesh is not required to be dense and there is no added expense of computing

the effects of viscosity. For this level of fidelity the construction of Kriging models is

not deemed necessary. A swarm population of N = 100 particles is flown for tmax = 50

time-steps. At each time-step, the swarm is partitioned across four parallel processors,

yielding an average computational time per time-step of approximately twenty minutes

(Intel Core2 Duo CPU). The reference point is obtained by computing the objective values

for the MOC geometry using the flow solver (see Figure 7.12(c)) and a solution spread of

δ = 5× 10−3 is specified.

Figure 7.14(a) features the final set of non-dominated solutions. The non-dominated

front is discontinuous and three subsets of designs are identified. It is shown that the
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Figure 7.15: Normalized box-plots of variable ranges of the identified solutions

preferred compromise is biased towards objective f2. This is expected since the MOC

analysis estimates the most uniform design for the shortest nozzle length. Despite this the

MOC geometry is still dominated and the UPMOPSO algorithm identified designs which

improve on flow uniformity at a reduced nozzle length. The progress of the most preferred

design is featured in Figure 7.14(b). As is a recurring observation, significant improvement

occurs during exploration and convergence is clearly obtained within the allocated time.

Final Designs

The identified non-dominated solutions are described using the box-plot shown in Fig-

ure 7.15. The objective f1 is solely dependent on the throat location Lc and the box-plot

illustrates that designs lie within 30 to 40% of the allocated range. This is not an in-

tuitive result as Lc is inversely proportionate to f1 and thus lower values of Lc result in

larger nozzle lengths. This however signifies that shorter nozzle lengths will disrupt the

uniformity of the flow at the outlet, deviating from the preferred compromise. Another

interesting observation is that the convex radius A1 and mid-length radius a1 have very

low magnitudes. The concave mid-length radius a2 lies within 50% of the allocated range,

which results in a quasi-linear concave section. This evidently restricts the formation of

expansion waves thereby resulting in highly uniform flow at the outlet.

Figure 7.16(a) features the Mach number distributions of the preferred designs. The

identified preferred designs offer a significantly more uniform flow at the exit over the MOC

design. The corresponding nozzle shapes are shown in Figure 7.16(b). As concluded from

the box-plot, the divergent section is quasi-linear, with a relatively short convex section

and a linear concave section. The preferred geometry seems to deviate slightly from the

other two designs which verifies the discontinuity observed in the non-dominated front.
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(c) Contours of Mach number for preferred design

Figure 7.16: Geometrical and performance comparison of identified nozzle designs
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7.3 Transonic Airfoil Shape Optimization

This section describes a design framework to mitigate the adverse effects of shock forma-

tion and boundary layer separation through airfoil shape optimization. The work in this

sections has been previously published in Carrese et al. [2011c]. Shape optimization of

transonic airfoils is employed to limit shock drag losses and reduce shock-induced bound-

ary layer instability at the design Mach number and lift coefficient. This often occurs at

the expense of excessive pitching moments due to aft loading and performance degradation

under off-design conditions. To overcome this inadequacy, robust optimization is generally

performed for a wide operational spectrum.

Transonic design problems were traditionally solved using hodograph methods [see

Drela and Giles, 1987] and more recently, the weighted-sum methodology (refer to Section

3.5.1). The latter allows for a larger number of design conditions, however the weight

terms are generally not known in advance, which can lead to the optimizer exploiting

undesirable regions of the design space. Utilizing the preference-based algorithm, focus

is given exclusively to the region of the design space which compliments the performance

compromise of an existing airfoil. This ensures that less strenuous effort is required in

formulating the objectives, since the optimizer will attempt to improve the performance

and mimic the design characteristics of an existing transonic airfoil.

Transonic Flow Solver

Potential flow and Euler methods are particularly suited to transonic design studies due

to their quick and simple prediction of the wave drag (refer to Section 5.3.5). However the

boundary layer also has a significant effect within the transonic regime, interacting with

the shock wave to affect performance. In order to gain an appreciation of transonic flow

it is necessary to also investigate the influence of viscosity.

In this study the finite volume RANS code of ANSYS Fluent is adopted (see Section

2.3.6). A coupled pressure-based numerical procedure is adopted with third-order spa-

tial discretization to capture the occurring flow phenomena. The pressure-based coupled

solver is a good alternative to density-based solvers when dealing with applications involv-

ing high-speed aerodynamics with shocks. The momentum equations and pressure-based

continuity equation are solved concurrently, with the Courant-Friedrichs-Lewy number

set at 200. The one-equation Spalart-Allmaras turbulence model [Spalart and Allmaras,

1992] is selected and turbulent flow is modeled over the entire airfoil surface. The C-

type grid (as represented in Figure 7.17) stretches 25 chord lengths aft and normal of the

airfoil section. Resolution of the C-grid is 460×65 providing an affordable mesh size of
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Figure 7.17: Airfoil c-type grid for transonic simulation

approximately 30,000 elements. The first grid-point is located 2.5×10−4 units normal to

the airfoil surface resulting in an average y-plus value of 120. Standard wall functions are

enabled since the viscous sub-layer is not resolved. In the interest of robust and efficient

convergence rates, FMG initialization is employed, with coarsening of the grid to 30 cells.

Shape Parameterization and Qualitative Screening

Airfoils are parameterized using the popular PARSEC method for transonic airfoil design

(see Section 2.2.3). The modification by Jahangirian and Shahrokhi [2009] is further imple-

mented, to provide additional control over the trailing edge curvature. The KUPMOPSO

algorithm has performed favorably for previous problems, since the smoothly correlated

objective landscape compliments the Kriging interpolation method. Obtaining adequate

prediction accuracy for airfoil performance coefficients in transonic viscous flow is gen-

erally more cumbersome. It is beneficial to construct the design space such that better

performing regions are isolated, eliminating the probability of flow solver divergence.

SOMine is used to illustrate the PARSEC parameter sensitivity on the aerodynamic

coefficients in a typical transonic environment. The PARSEC parameters may be restricted

to conform to a specific family of airfoils to aid in the formation of the design space.

This is achieved through inverse mapping of benchmark profiles that have been developed

to perform favorably in transonic flow conditions. Four baseline airfoils are selected∗

and the desired variable(s) of interest are systematically varied to generate a qualitative

description of their influence on the aerodynamic coefficients. Figure 7.18 features the

selected baseline airfoils with the respective PARSEC parameter values shown in Table 7.6.

∗The NASA SC (or supercritical) airfoils have been modified to incorporate a sharp trailing edge
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Figure 7.18: Baseline airfoils used in the sensitivity study

Airfoil rLE αTE βTE xUP zUP zxxUP xLO zLO zxxLO δαTE

RAE2822 0.0083 -0.1082 0.164 0.4324 0.0629 -0.4274 0.3436 -0.0589 0.7131 -0.0064

SC(2)0010 0.0119 0 0.2998 0.3974 0.0505 -0.3661 0.3974 -0.0505 0.3661 0

SC(2)0410 0.011 -0.1828 -0.017 0.4119 0.0502 -0.2637 0.376 -0.0501 0.4036 -0.0081

SC(2)0712 0.0164 -0.256 -0.0024 0.4081 0.0604 -0.3002 0.3695 -0.0601 0.514 0.1966

Table 7.6: Mapped PARSEC parameters of the baseline airfoils

For the following analysis, the Mach number is fixed at M = 0.79, and the angle of

incidence at α = 0◦. The effect of varying the upper thickness location, xUP , is shown

in Figure 7.19. Every other variable is held constant across each of the four baseline

configurations as shown in Table 7.6. Variable perturbations and the corresponding output

coefficients are recorded and clustered according to the baseline airfoil.

The elementary effect of xUP is easily identifiable through the SOM charts. Large

variations to the drag coefficient are observed for medium to high-cambered airfoils, such

as the NASA-SC(2)0712. In this case, lower-bound values of xUP result in higher values of

the drag coefficient, since this will effectively increase the upper surface curvature thereby

resulting in a stronger shock-wave closer to the leading edge of the airfoil. Negligible

variations to the drag coefficient are observed for the lower-cambered airfoils, which implies

xUP is a non-sensitive variable. On the contrary, lower-cambered airfoils are observed to

be more sensitive to variations of xUP when considering the lift and pitching moment

characteristics. For the symmetrical SC(2)0010, an increment in xUP is complemented

with an increase in the lift coefficient due to the effective camber created. To guarantee

the feasibility of incorporating the additional trailing edge design variable, the effect of

varying δαTE is shown in Figure 7.20. Similar to the previous study, every other variable

is held at the baseline values. The variable perturbations and the corresponding output

coefficients are recorded and clustered according to the baseline airfoil.
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Figure 7.19: Effect of varying xUP on aerodynamic coefficients

In comparison to xUP the SOM charts for variations in δαTE demonstrate its high

sensitivity to all the output aerodynamic coefficients. Furthermore, for each baseline

airfoil a diverse trend is observed. Focusing on the symmetrical sc(2)0010 airfoil, it

is observed that as the boundaries of δαTE are approached a subsequent increase in the

drag coefficient is obtained, owing to the effective increase in aft camber. This effective

increase in aft camber also results in a lift increment of ∆Cl ≈ ±0.50. For the highly-

cambered SC(2)0712 airfoil, as the lower bound value of δαTE is approached a significant

reduction in the drag coefficient and pitching moment magnitude is observed with only a

mild reduction in the lift coefficient. This is due to the reduction in aft loading due to

the change in trailing edge curvature, as well as the reduction in upper surface curvature,

which helps to reduce the strength of the shock-wave.

It is clear that variations in the PARSEC parameters and their effect on the airfoil

aerodynamics are also due to other geometrical variables, e.g. thickness, camber, etc.

Therefore, variations in trends are not a result of the elementary effect of a single variable,

but rather the interactive effects with other variables. SOM charts can also be used to

gather qualitative data on the interactive effect of a variable group (in this case limited to

couple-interactions). Figure 7.21 features the interactive effect of the leading edge radius
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Figure 7.20: Effect of varying δαTE on aerodynamic coefficients

rLE and the lower surface curvature zxxLO on the aerodynamic coefficients. Only two

baseline airfoils are included to facilitate comprehension of the charts.

It is observed that for the RAE2822 airfoil, the aerodynamic properties in this case are

heavily influenced by variations in the lower surface curvature zxxLO , since this effectively

controls the degree of aft loading experienced on the airfoil, fundamental to transonic

aerodynamics. The variations in the leading edge radius rLE have a minor effect on the

aerodynamic properties when interacting with zxxLO . Similar conclusions are drawn for the

SC(2)0410 baseline airfoil, although it is now interesting to note that the interactive effect

rLE on the aerodynamic properties is no longer negligible. An increase in rLE despite

variation in zxxLO will result in an increment in the drag, as a result of the pressure

peak being shifted closer to the leading edge. The lift and moment coefficients are still

predominantly dictated by zxxLO .

Such design variable sensitivity studies are useful in obtaining a thorough representa-

tion of the design landscape. Performing screening studies are advantageous to propose

feasible design space boundaries which bypass poorly performing areas of the design space.

Design space visualization is also beneficial to monitor the multi-modality of the variable-

to-objective landscape in order to impose an appropriate computational budget. Table 7.7
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Figure 7.21: Interactive effect of varying rLE and zxxLO on aerodynamic coefficients

features the upper and lower boundaries for the subsequent optimization case-study. These

boundaries have been selected based on a thorough screening study involving a statistical

sample of a number of benchmark airfoils.

Problem Formulation and Reference Point

The parameterization method and transonic flow solver described in the preceding section

are now integrated within the KUPMOPSO algorithm for an efficient airfoil design frame-

work. The framework is applied to the re-design of the NASA-SC(2)0410 airfoil for robust

aerodynamic performance. A three-objective constrained optimization problem is formu-

lated, with f1 = Cd and f2 = −Cm for M = 0.79, Cl = 0.4, and f3 = ∂Cd/∂M for the
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Variable Lower bound Upper bound

rLE 0.0063 0.0151

αTE 0.2405(-) 0.0026(-)

βTE 0.0655 0.2618

xUP 0.3170 0.5250

zUP 0.0497 0.0683

zxxUP 0.5135(-) 0.2393(-)

xLO 0.2835 0.3418

zLO 0.0603(-) 0.0478(-)

zxxLO 0.2535 0.8405

δαTE 0.0080(-) 0.3696

Table 7.7: PARSEC parameter ranges for transonic optimization case-study

Airfoil M f1 f2 f3

NASA-SC(2)0410 0.79 0.008708 0.1024 0.189625

Table 7.8: NASA-SC(2)0410 airfoil results for the formulated objectives

design range M = [0.79, 0.82], Cl = 0.4. The lift constraint is satisfied internally within

the solver, by allowing Fluent to determine the angle of incidence required. A constraint

is imposed on the allowable thickness, which is defined through the parameter ranges (see

Table 7.8) as approximately 9.75% of chord. The reference point is logically selected as

the NASA-SC(2)0410, in an attempt to improve on the performance characteristics of the

airfoil, whilst still maintaining a similar level of compromise between the design objectives.

The extent of the preferred region is controlled by δ = 5× 10−3.

Model Construction and Quantitative Screening

Global Kriging models are constructed for the aerodynamic coefficients from a stratified

sample of NK = 100 design points1. This sampling plan size is considered sufficient

in order to obtain sufficient confidence in the results of the subsequent design variable

screening analysis. Whilst a larger sampling plan is essential to obtain fairly accurate

correlation, the interest here is to quantify the elementary effect of each variable to the

objective landscapes. The global Kriging models are initially trained via cross-validation.

Illustrated in Figure 7.22 are the CV curves for the Kriging models. The subscripts to the

aerodynamic coefficients refer to the respective operational Mach numbers.

1This follows the suggestion of Forrester et al. [2008], that the computational expense of building a

Kriging dataset should be approximately one-third of the total computational budget
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Figure 7.22: CV plots for the constructed Kriging models
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Figure 7.23: Quantitative illustration of variable influence on the aerodynamic coefficients

Figure 7.22 shows the constructed Kriging models reproduce the training samples with

sufficient confidence, recording error margins of 2% to 4%. It is hence concluded that the

Kriging method is very adept at modelling complex landscapes with only limited precise

observations. In the previous section the variable sensitivity on a transonic landscape

was qualitatively illustrated. While this analysis proved beneficial to construct the design

space, the immediate effect of the variables on the objective landscapes and the preferred

compromise was not assessed. To investigate these effects, a quantitative visualization

analysis via the Morris method is conducted.

Figure 7.23 graphically shows the results obtained from the design variable screening

study. It is immediately observed that the upper thickness coordinates has a relatively

large influence on the drag coefficient for both design conditions. At higher Mach numbers

the effect of the lower surface curvature zxxLO is also significant. It is demonstrated

however that the variables zxxLO and αTE have the largest effect on the moment coefficient

- variables which directly influence the aft camber on the airfoil. These variables will no

doubt shift the loading on the airfoil forward and aft resulting in highly fluctuating moment

values. Similar deductions can be made by examining the variable influence on dz shown

in Figure 7.23(d). The variable influence on dz is case-specific and entirely dependent on
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Figure 7.24: KUPMOPSO performance for transonic airfoil shape optimization

the reference point chosen for the proposed optimization study. Since the value of dz is a

means of ranking the success of a multiobjective solution as one single scalar, variables may

be ranked by influence, which is otherwise not possible when considering a multiobjective

array. Preliminary conclusions to the priority weighting of the objectives to the reference

point compromise can also be made. It is observed that the variable influence on dz is

most closely resembling the the plots of the drag coefficients Cd79
and Cd82

, suggesting

that the moment coefficient is of least priority for the preferred compromise. It is curious

to see that ∆αTE is important for all design coefficients, which confirms the results of the

qualitative analysis and validates its inclusion in the optimization study.

Optimization results

A swarm population of N = 100 particles is flown to solve the optimization problem until

the computational budget of 250 evaluations is breached. The objective space is normalized
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Figure 7.25: Precise evaluations performed and the resulting non-dominated solutions

for the computation of the reference point distance by (fmax − fmin). The sample of

NK = 100 design points was used to construct the initial global Kriging approximations

for each objective. A further 150 precise updates were performed over t ≈ 100 time-steps.

As shown in Figure 7.24(a), the largest number of update points is recorded during the

initial explorative phase. As the preferred region becomes populated and ŝ → 0, the

algorithm triggers exploitation and the number of update points steadily reduce.

The KUPMOPSO algorithm proves to be very capable for this specific problem. Fig-

ure 7.24(b) features the progress of the highest ranked solution (i.e. z′) as the number

of precise evaluations increase. The reference point criterion is shown to be proficient

in filtering out poorer solutions during exploration, since only 50 update evaluations are

required to reach within 15% of the final converged design and a further 50 evaluations

to reach within 3%. Furthermore, no needless evaluations as a result of the lower-bound

prediction are performed during the exploitation phase. This conclusion is further comple-



7.3. Transonic Airfoil Shape Optimization 175

8 9 10 11 12 13

(a) Coloured by f1 × 103

4 5.8 7.6 9.4 11.2 13

(b) Coloured by f2 × 103

0 2 4 6 8 10

(c) Coloured by f3 × 103

-8 2 11 21 30 40

(d) Coloured by dz × 104

Figure 7.26: Trade-off visualization via SOM charts for the transonic design problem

mented by Figure 7.25(a), as a distinct attraction to the preferred region is clearly visible.

A total of 30 Pareto-optimal solutions were identified in the preferred region, which are

shown in Figure 7.25(b).

Trade-off visualization

Figure 7.26 features the trade-off visualization analysis conducted using SOMine, where

SOM charts are organized by six clusters according to ascending values of dz. Following

the SOM charts, it is possible to visualize the preferred compromise between the design

objectives which are obtained. The chart of dz closely follows the f1 chart, which suggests

that this objective has the highest priority.

Final designs

Table 7.9 shows the objective comparisons with the NASA-SC(2)0410. Interesting to note

is that the most active objective is f1, since the solution which provides the minimum

dz values also provides the minimum f1 value. This implies that the reference point

was situated near the non-dominated front boundary of f1. Of the identified set of non-
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Airfoil f1 f2 f3

NASA-SC(2)0410 0.008708 0.1024 0.189625

Preferred Design 0.008106 0.0933 0.168809

% Improvement 6.9 8.8 10.9

Table 7.9: Objective values for the preferred and reference designs with respective improvement
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Figure 7.27: Most preferred solution observed by the KUPMOPSO algorithm

dominated solutions, the largest improvements obtained in objectives f2 and f3 are 36.4%

and 91.6% respectively over the reference point. The preferred airfoil geometry is shown

in Figure 7.27(a). The preferred airfoil has a thickness of 9.76% chord and maintains a

moderate curvature over the upper surface. A relatively small aft curvature is used to

generate the required lift, at the same time reducing the magnitude of pitching moment.

A performance comparison between the NASA-SC(2)0410 and the preferred airfoil at
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Figure 7.28: Drag-rise curves for Cl = 0.4

the design condition of M = 0.79 can be made from the surface pressure distribution

of Figure 7.27(b). The reduction in Cd is attributed to the significantly weaker shock

which appears slightly upstream of the supercritical shock position. The reduction in the

pitching moment is clearly visible from the reduced aft loading.

Along with the improvement at the required design condition, the preferred airfoil

exhibits a lower drag-rise by comparison, as shown in Figure 7.28. There is a notable

reduction in the drag coefficient at the design condition of M = 0.79 (resulting in a

negative drag-rise gradient), and the drag is recorded as lower than the NASA-SC(2)0410

even beyond the design range. Also shown is the design which provides the most robust

performance (i.e. min f3). The most robust design is clearly not obtained at the expense

of poor performance at the design condition, which is an advantage of the preferred region.

7.4 Fuselage Cross-Sectional Design

Managing a discontinuous objective landscape poses a large problem for surrogate mod-

elling. Since this algorithm focuses on modelling a preferred area of the design space, the

influence of a discontinuous landscape is alleviated, since only a partial region is modelled.

As the main illustration of this algorithm to manage discontinuous design problems, the

multi-disciplinary design of a semi-monocoque fuselage enclosing a pressurized cabin and

payload bay is considered. A fundamental design rule here is that any cross-sectional shape

other than a circle is a stress compromise [Niu, 2002]. Any deviation from the circular

shape forces the frames to carry a bending load (otherwise they are limited to maintaining

the shape of the fuselage and breaking up the lengths of the longerons). However, compet-

ing drivers (primarily, the minimization of pressure drag by a reduction of cross-sectional



178 7.4. Fuselage Cross-Sectional Design

area and the maximization of passenger comfort by increasing certain cabin dimensions)

routinely demand other shapes.

The classic alternative is the two-lobe cross-section. The upper and lower lobes are

referred to as the passenger and cargo lobes respectively. The passenger cabin and the

cargo bay are separated by the cabin floor, which carries tensile loads resulting from the

pressurization, as well as the bending loads caused by the weight of the seats, passengers,

etc. From a design optimization perspective, a parametric description capable of covering

a broad range of two-lobe designs is therefore required.

Parameterization Model

For fuselage design, generating families of shapes which reproduce standard sections as

well as multiple overlapping sections in a concisely parameterized manner is advantageous.

This would enable the Pareto analysis of the trade-offs involved in deviations from cir-

cularity, mainly driven by the competing goals of structural weight, drag minimization

and comfort. The study of the systematic description of such pseudo-circular fuselage

cross-section shapes goes back to the earliest days of CAD [Polhamus et al., 1959].

The right-hand half of the generic airliner fuselage cross-section in the y − z plane is

defined as the explicit function

y(z) = CS ·max
[

Y CAR(z), Y PAX(z)
]

+ ∆z, z ∈ [0, 1], (7.11)

where the coordinates y(z) are a composite depiction of the individual shape descriptions,

which use class functions from Kulfan [2008] (see Section 2.2.4) of the cargo lobe (Y CAR)

and the passenger lobe (Y PAX).

Y CAR(z) =











CCARzN
CAR
1

(

2RCAR − z
)NCAR

2 , z ∈
[

0, 2RCAR
]

0 elsewhere.
(7.12)

Y PAX(z) =











CPAX
[

z −
(

1− 2RPAX
)]NPAX

1
(1− z)NPAX

2 , z ∈
[

1− 2RPAX, 1
]

0 elsewhere
(7.13)

In its most flexible form, the cross-sectional shape is described by ten variables, each

with a clear and intuitive meaning. The passenger lobe and the cargo lobe have variable

radii: RPAX and RCAR respectively. The deviations from circularity are controlled by two

exponents on each lobe: NPAX
1 , NPAX

2 , NCAR
1 and NCAR

2 . Additional flexibility is enabled

by a scaling coefficient on each lobe (CPAX and CCAR) (see Figure 7.29 for an example).

The section is normalized to a height of z = 1. The coefficient CS and the offset ∆z define

the full size, correctly positioned section.
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Figure 7.29: Approximation to the wing-to-body fairing area of the Embraer E145

Problem Formulation and Reference Point

The problem is defined as the design of a single-aisle fuselage cross-section which ac-

commodates 95 percentile US male passengers seated six abreast, respecting the industry

standard requirements in terms of aisle headroom, headroom under the overhead bins,

overhead bin space, window seating, foot, shoulder and headroom. The cargo bay is

designed to accommodate the standard LD3-45W container (see Figure 7.30). These

conditional requirements are incorporated into a set of constraint points (marked by +

symbols), which must all reside within the cross-section to ensure a feasible shape.

The design variable vector is formally defined as:

x =
{

RCAR, NCAR
1 , NCAR

2 , CCAR, RPAX, NPAX
1 , NPAX

2 , CPAX,WS,WA,WAR, HB

}

(7.14)

where the definition and ranges of these variables are provided in Table 7.10. The number

of constraint points that reside outside the cross-section is denoted as Nout, and hence the

constraint Nout (X, CS ,∆Z) = 0 is formulated. The constraint is satisfied by the paramet-

ric model and not handled directly by the optimizer, yielding a first-order discontinuity.

As KUPMOPSO is a gradient-free algorithm, this approach is permissible.

For a given input vector x it is sought to minimize the pressure drag created by

the cross-section while still enveloping the constraint points. The objective f1 is thus

formulated as the cross-sectional (half-)area:

f1 (x) = min
CS ,∆z

∫ 1

0
y(z)dz subject to Nout = 0, (7.15)
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Cabin Floor

LD3-45W container or
wing carry-through structure

A

B

C

D

E

A: Aisle headroom

B: Overhead bin headroom

C: (Window seat) Head and shoulder room

D: (Window seat) Elbow room

E: (Window seat) Foot room

Figure 7.30: Cabin space constraint points (denoted by + symbols) related to passenger space

requirements based on the size of a 95 percentile US male, as well as on the space needed for a

fuselage frame of constant depth. The cargo lobe must accommodate the standard single-aisle

container and/or the wing carry-through structure. A feasible cross-section shape is one that

envelops all + symbols.

where each evaluation of f1 (~x) requires a Nelder and Mead pattern search to satisfy the

constraint. The second objective f2 is a measure of passenger comfort, formulated as:

f2 (x) = max [0.6WS + 0.1WA + 0.1WAR + 0.2HB] . (7.16)

The third objective relates to the stress in the cabin structure. There are a variety of loads

(e.g. bending loads, aerodynamic loads, etc.) which are dynamically applied to an aircraft

fuselage in flight. Furthermore, the stress is non-uniformly distributed due to deviations

in frame depth and circumferential size along various stations. A simplified stress analysis

is proposed, which provides a fairly sensible measure of the harshness of the stress-state

of a candidate design. A finite element analysis is still required, which is a physics-based,

high-fidelity analysis. Distributed loads are applied to the frame circumference and the

floor to signify pressurization loads and weight loads respectively.

A two-dimensional (linear static) finite element model is constructed using MSC Nas-

tran, Inc. Numerical loading values are obtained from Niu [2002] as 0.35 psi and 8.25

psi for the floor and frame, respectively. The I-beam and C-section are constructed with

a series of beam elements of depth 0.125 m. The material is aluminum Al2024-T3 with

modulus of elasticity E = 7.5 × 1010 Pa and Poisson ratio of ν = 0.33. The model is

analyzed to determine the von Mises stress (σv) distribution around the frame. The sim-

ulation is completed by identifying the peak stress as the objective function, resulting
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Variable Definition Lower bound Upper bound

RCAR See Equation (7.12) 0.3 0.5

NCAR
1 See Equation (7.12) 0.1 0.5

NCAR
2 See Equation (7.12) 0.1 0.5

CCAR See Equation (7.12) 0.5 1.2

RPAX See Equation (7.13) 0.3 0.5

NPAX
1 See Equation (7.13) 0.1 0.5

NPAX
2 See Equation (7.13) 0.1 0.5

CPAX See Equation (7.13) 0.5 1.2

WS Seat width 0 1

WA Aisle width 0 1

WAR Armrest width 0 1

HB Bin headroom 0 1

Table 7.10: Design variable ranges for the fuselage cross-sectional design

Fuselage f1 (m2) f2 f3 (×109 Pa)

Reference 6.9928 0.5 1.4908

Table 7.11: Reference values for the Boeing 737 representative fuselage

in another first-order discontinuity. By minimizing the identified peak stress (where the

location varies dependent on the cross-sectional shape), emphasis is indirectly placed on

obtaining designs which exhibit a uniform stress distribution (i.e. circular cross-sections).

f3 (x) = min {max [σv(y(z))]} (7.17)

To reiterate on the concept of using KUPMOPSO to focus on and exploit the preferred

compromise, the reference point is selected as the best approximation2 of the Boeing 737

fuselage cross-section (see Figure 7.31 with the corresponding reference values given in

Table 7.11). This cross-section has a slight hint of a double-lobe design where the cusp

point coincides with the floor. The quasi-circular cross-section implies a fairly uniform

circumferential stress distribution whilst maintaining a relatively low cross-sectional area

for reduced pressure drag. The solution spread is specified as δ = 5× 10−2.

The allowable computational budget for this problem is directly related to the multi-

modality of the objective landscapes. The first-order discontinuity of the objectives places

further limitations on the use of Kriging models, since a larger number of sample points
2This case study is merely a demonstration of the algorithm on a realistic design problem. Only the

key objectives and constraints are taken into account, hence actual results may be different from those

obtained if the same exercise was conducted in an industrial setting
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Figure 7.31: Reference point Boeing 737 representative geometry (normalized co-ordinates)

are required to accurately depict non-smooth regions of the design space. Visualizing the

design landscape (see Section 4.4.1) is a useful and simple technique to gain insight into a

discontinuous landscape. Selected contour slices of the multi-dimensional design space are

shown in Figure 7.32. The deceptive landscapes originate from the element of uncertainty

in the location of the peak stress for each individual cross-sectional design, as well as the

requirement of the cross-section to enclose all constraint points. In a preference-based

framework, the Kriging predictions are localized entirely within the preferred region of

the design space, thereby alleviating the irregularity of the landscape.

Optimization Results

A swarm population of N = 100 particles is initialized. A Kriging model based on an LHS

design of NK = 100 points is constructed for objectives f1 and f3. Figure 7.33 illustrates

the CV error of objective f3. The accuracy of the global Kriging models is fairly low

here as a result of modelling discontinuities. However, since a user-preference module is

adopted, the Kriging models will focus entirely within the preferred region, providing a

more accurate depiction of the localized area. A computational budget of 450 precise

evaluations is imposed, due to the first-order discontinuities.

A further 350 precise evaluations of the objective array were performed over t ≈ 170

time-steps before the evaluation limit was breached. The additional 350 evaluations are

composed of 280 particles and 70 mutations which satisfied the reference point screening
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Figure 7.32: Selected contour slices for various parameters (normalized variable ranges)
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Figure 7.33: CV error of Kriging training dataset for f3 (CV (Y) = 11.34%)
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Figure 7.34: History of precise evaluations for the fuselage cross-sectional design case-study

criterion, as shown in Figure 7.34. It is observed from the stem plot in Figure 7.34(a)

that the largest number of update points occur in the earlier stages of the search. This

is due to the relatively poor prediction accuracy of the global Kriging models. As the

training datasets of the Kriging models become localized within the identified preferred

region, a reduced percentage of particles satisfy the reference point screening criteria. The

mutation stem plot shown in Fig. 7.34(b) conversely illustrates that during the initial

phases of the search, the searching prowess of the swarm is sufficient to gain enough

diversity and thus mutations are not recorded. As the search stagnates and there is less

consistent improvement in the archive, particles are scheduled for mutation in an attempt

to encourage further improvement. This ensures that the mutation operator has been used

effectively, as it does not disrupt the inherent searching capabilities of the swarm.

Figure 7.35(a) features the progress of the preferred design z′. For this simulation, 100

precise evaluations are required to reach within 65% of the final converged design. After
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Figure 7.35: Convergence performance for the fuselage cross-sectional design case-study

approximately 335 evaluations, the search has reached within 3% and appears to have

converged since from this point on only slight reductions in z′ are observed as the swarm

further exploits the preferred region. Figure 7.35(b) alternatively features the history of

the solution spread δ. Although the algorithm does not obtain the desired spread of 0.05,

a fairly consistent spread of δ ≈ 0.04 is observed after 330 evaluations.

The performance of KUPMOPSO is further demonstrated in Figure 7.36(a) which fea-

tures the 200 most recent precisely evaluated solutions. Attraction towards the preferred

region is observed, which progressively becomes localized. Furthermore, few solutions ap-

pear to disturb the search direction of the algorithm. The reference point criterion is also

shown to function appropriately with the mutation operator, which is non-destructive.

Featured in Figure 7.36(b) is the final set of 23 designs. The KUPMOPSO algorithm has

identified solutions which exhibit improvement over all reference values.
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Figure 7.36: Precise evaluations performed and the resulting non-dominated solutions

Final Designs

The percentage improvement of the identified preferred design over each objective with

respect to the reference point geometry is shown in Table 7.12. The geometry of the

preferred design is featured in Figure 7.37. It is observed that the cusp point is no longer

as evident as the reference design. The preferred geometry follows a more circular form,

which corresponds to the 33% recorded improvement in the stress. An evident reduction in

area is visible from the passenger lobe as well as a more comfortable seating arrangement

for passengers due to the elongation in the width. The circumferential stress distribution

Fuselage f1 f2 f3

Reference 6.9928 0.5 1.4908

Preferred 6.4952 0.552 0.9915

% Improvement 7.1 10.4 33.5

Table 7.12: Objective values for the preferred and reference designs with respective improvement
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Figure 7.37: Geometry of the preferred design compared with the Boeing 737-style design
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Figure 7.38: The circumferential stress distribution over the preferred and reference designs

around the reference and preferred geometries is featured in Figure 7.38. The von Mises

stress is recorded at each circumferential station which is normalized with respect to the

z-axis. In addition to a reduced overall operating stress, the stress distribution of the

preferred geometry is very uniform compared with the reference design. The peak stress

for both geometries occurs at the intersection of the floor.

Figure 7.39 introduces the design which provides additional improvements of 0.25%

and 0.2% respectively in area and comfort, at the expense of a 9.5% increase in the peak

stress. This is the solution with the best recorded area and thus the most aerodynamically

proficient design. The associated stress contours are illustrated. For the best aerodynamic

design an evident increase in the peak stress, which is located at the floor intersection, is

observed over the preferred design.
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(a) Boeing 737-style design (b) Best aerodynamic design (c) Preferred design
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Figure 7.39: Precise evaluations performed and the resulting non-dominated solutions

7.5 Aeroacoustic Optimization of Trailing-Edge Flow

In this section, a noise reduction problem for laminar unsteady trailing-edge flow is con-

sidered. Nearly all vehicles moving through a fluid produce noise (e.g. airframe noise,

hydrofoils, rotor blades, wind turbines, etc.). Hydrofoil noise is an area of great inter-

est for military applications, particularly for submarine detection and design. In naval

applications, hydrofoils that generate lift are used for both propulsion and control sur-

faces, requiring that they must meet specific performance criteria on lift and drag. For

military applications, hydrofoils must also be designed to meet noise and detection require-

ments. Blake [1986] demonstrates that relatively small changes in the geometry can lead

to substantial changes in the aeroacoustic performance. Marsden et al. [2004] performed

computational experiments for laminar trailing-edge flow and established the dependence

of the acoustic energy generated due to shape modifications, using their surrogate man-

agement framework. This work was later confirmed by Rumpfkeil and Zingg [2008]. In

both cases, significant reductions in the radiated acoustic power were achieved.

Since computing the acoustic source terms requires a time-accurate solution to the

Navier-Stokes equations, the construction of a surrogate model is essential. The airfoil

geometry is a shortened version of the airfoil used in the experiments by Blake [1975], as

shown in Figure 7.40. The airfoil is similar to that used by Marsden et al. [2004], and

Rumpfkeil and Zingg [2008]. The airfoil chord is ten times its thickness with a semi-circular

leading edge and beveled trailing edge. The freestream Mach number is M∞ = 0.2 with

a Reynolds number of Re = 104 and an incidence angle α = 0◦. The highlighted section

denotes the region which is allowed to deform during the optimization process.
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Figure 7.40: Blake airfoil geometry used for the aeroacoustic optimization case-study

Acoustic Analogy

Although acoustic pressure fluctuations are by definition a compressible flow phenomenon,

at low Mach numbers the acoustic source terms can be approximated by an incompressible

flow solution, and then coupled with an acoustic analogy to compute the far-field noise.

The pioneering work of Lighthill [1952] provides a theoretical framework for decoupling

the source field computation from noise propagation computations. Significant work has

been done by Wang et al. [1996] towards the development of numerical techniques for

trailing-edge aeroacoustic computations using Lighthill’s analogy. In this work, a model

problem of low Reynolds number unsteady laminar flow over a symmetrical airfoil is used

to quantify the influence of surface dipoles and volume quadrupoles using Curle’s exten-

sion to Lighthill’s analogy [Curle, 1955]. The numerical results confirm the quantitative

dominance of surface pressure dipoles to far-field sound at low Mach numbers, so that

Curle’s formulation for an acoustically compact surface is reduced to,

p(x, t) ≈ xi

4πc0 |x|2
· ∂
∂τ

∮

S
(njpij) dS, (7.18)

where τ = t − x/c0 is the retarded time to the receiver x, c0 is the speed of sound, pij

is the compressive stress tensor and nj is the unit normal to the airfoil surface S. For a

complete derivation, refer to Howe [1998]. An objective function can thus be defined, that

is directly proportional to the radiated acoustic power per unit span,

f =

(

∂

∂t
Fx

)2

+

(

∂

∂t
Fy

)2

, (7.19)

where Fi =
∮

S (njpij) is the net force exerted on the fluid by the acoustic surface in the

ith direction. The overbar denotes time-averaging for the time-interval. The acoustic

radiation is of dipole type, caused by the fluctuating lift and drag forces.
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Figure 7.41: Normal displacements of the spline control points measured from the original airfoil

Trailing-Edge Shape Parameterization

The right half of the upper surface of the airfoil is allowed to deform during the optimiza-

tion process. The airfoil surface is defined by interpolation through a finite number of

control points using a Hermite spline, and displacement of the airfoil surface is normal to

the surface tangent of the original airfoil geometry [see Marsden et al., 2004]. Displace-

ment of the control points is normalized to the maximum allowable normal distance of the

airfoil surface. Each control point ai has values −1 ≤ ai ≤ 1, such that ai = 0 corresponds

to the original airfoil surface. Use of a Hermite spline as the interpolating function guar-

antees that values of all interpolated points are bounded by the minimum and maximum

values of the known control points. This ensures that no point on the surface will be

displaced further than the maximum allowable distance. A total of six control points are

used to define the trailing edge geometry. The minimum thickness requirement defined

by Marsden et al. [2004] is imposed, which is given by a straight line connecting the left

edge of the deformation region and the trailing edge, as shown in Figure 7.41. The normal

displacement is governed by the thickness constraint and is given as,

|ri| = ai ·
[

(xi − xL)2 + (yi − yL)2
]

1

2 (7.20)

where (xi, yi) is the original surface point and (xL, yL) refers to the intersection point of

the line normal to the airfoil surface and the line defining the minimum thickness.

Flow Solver

The two-dimensional Navier-Stokes equations are solved using ANSYS Fluent with a

second-order implicit time marching formulation. A C-mesh of 450× 90 nodes stretching

15 chord lengths aft of the trailing edge is generated for each candidate geometry. This
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Figure 7.42: Contours of velocity magnitude illustrating unsteady vortex shedding

mesh size provides a reasonable balance between solution accuracy and computational ex-

pense. The pressure-based solver with second-order spatial discretization is selected. The

time is made dimensionless by a factor of c/U∞ where c is the airfoil chord length and U∞

is the freestream velocity. The laminar flow around the Blake airfoil exhibits unsteady

vortex shedding, as shown in Figure 7.42.

The vortex shedding shown in Figure. 7.42 yields oscillating force coefficients over time

as illustrated in Figure 7.43(a). As a result, the acoustic radiation calculated by Eq. (7.19)

also oscillates with time. The simulation is therefore performed until the solution achieves

a quasi-steady state. Time averaging is then carried out for a sufficiently long time until

Eq. (7.19) has converged. To achieve a quasi-steady state, the simulation is first performed

until t = 20 (cycle periods), and then time-averaging is subsequently carried out until

t = 40. The non-dimensional time-step is selected as ∆t = 0.002. Figure 7.43(b) shows

the convergence history of Eq. (7.19) compared with the oscillatory function. The objective

function is scaled by the freestream Mach number M∞ for comparison with the results

published in Marsden et al. [2004] and Rumpfkeil and Zingg [2008]. The agreement with

these results is favourable, confirming the grid density and time-resolution is sufficient.

Problem Formulation and Reference Point

The studies of Marsden et al. [2004] and Rumpfkeil and Zingg [2008] were limited to a

single-objective problem to reduce the radiated acoustic power. In this study the problem

is extended to combine two conflicting objectives. The thickness constraint is regulated

implicitly by the parameterization model. The two objectives are represented as,

f1 = min
1

1 + Fy
, (7.21)

f2 = min

(

∂

∂t
Fx

)2

+

(

∂

∂t
Fy

)2

. (7.22)
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Figure 7.43: Convergence history for the original Blake airfoil (oscillation due to vortex shedding)

The objective functions make no reference to minimizing the drag coefficient as it was

established in Marsden et al. [2004] that improving the aeroacoustic performance led to

designs exhibiting reduced drag characteristics. However the results demonstrated that

aeroacoustic performance was only linked to the magnitude of lift fluctuation, rather than

the average lift value. The first objective f1 therefore relates to maximizing the time-

averaged lift generated by the profile to maximize performance during forward motion.

The second objective utilizes the acoustic analogy introduced earlier to reduce noise and

detection.

The reference point is selected as the original Blake geometry (see Figure 7.43) in order

to identify designs which maintain a similar compromise between the lift generated and

the radiated acoustic power.
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Figure 7.44: CV plots for the constructed Kriging models

Optimization Results

Kriging models are constructed based on an LHS design of NK = 50 samples. A limited

sample size has been selected to construct the global models, which allows for more precise

evaluations to be allocated during the search which is advantageous to maintain a high

prediction accuracy within a localized area of the design space. Figure 7.44 features the

CV plots for the constructed Kriging models of f1 and f2. The high CV error is not

of immediate concern at this stage, and it is expected that the prediction accuracy will

progressively improve as the preferred region becomes more localized.

A swarm population of N = 100 particles is initialized and flown until the imposed

computational budget of 200 precise evaluations is breached. The solution spread was

controlled using δ = 1×10−2. For every precise evaluation, the mesh was partitioned across

12 cores of the VPAC supercomputing cluster with AMD Barcelona 2.3 GHz quad-core
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Figure 7.45: Results of the aeroacoustic trailing edge design case-study

processors. Each simulation required approximately 3 hours to complete. An additional

150 precise evaluations were performed during the search. This resulted in a final set of

30 non-dominated designs which are featured in Figure 7.45(a).

The identified preferred designs can be further visualized through the box-plot shown

in Figure 7.45(b). Variable values are normalized hence the lower bound of the graph

is representative of the maximum negative displacement of each control point ai. It is

observed that the preferred designs have their control points positioned sinusoidally along

the trailing edge. This sinusoidal or wavy trailing edge geometry was also observed in the

studies of Marsden et al. [2004]. All designs have a collective negative displacement with

reference to the reference point trailing edge.
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Design f1 f2

Reference point 0.8590 0.8306

Preferred 0.7310 0.4396

min f1 0.7114 0.6685

min f2 0.7769 0.2989

Table 7.13: Results of the aeroacoustic trailing edge design case-study

Final Designs

The catalogued preferred designs of this case-study are the most preferred design, the

best aerodynamic design (i.e. min f1) and the best aeroacoustic design (i.e. min f2).

Table 7.13 shows the numerical results of the identified designs of interest. The preferred

design offers a 15% and 47% improvement for objectives f1 and f2 over the reference

point, respectively. The best aerodynamic design offers a further 2% improvement in the

maximum lift generated at the expense of only a 19% reduction in the noise generated.

Marsden et al. [2004] documents a 90% reduction in the total radiated acoustic power with

no lift improvement (this study utilized fifteen B-spline control points to parameterize the

trailing edge). In the current study, the best aeroacoustic design provides a 65% reduction

in the radiated acoustic power with the added advantage of a 10% increase in lift.

The trailing edge geometries of the identified designs of interest are featured in Fig-

ure 7.46. The sinusoidal geometry of each preferred design variant is clearly visible. It

is observed that the extent of this sinusoidal geometry is relative to the reduction of the

total radiated acoustic power. It is therefore concluded that the waves serve to suppress

the generation of trailing edge vortices (reducing the fluctuation in the force coefficients)

thereby reducing the generated noise. The aerodynamic design clearly aims to provide

maximum aft camber to generate lift, whilst maintaining enough sinusoidal deviation in

the trailing edge to suppress the generation of vortices.

Figure 7.47 illustrates the surrounding flow-field of the identified designs of interest.

The disturbance in the wake is a measure of the vortex generation. It is clearly shown

that the reference point geometry (see Figure 7.47(a)) sheds a consistent array of vortices,

propagating from the trailing edge. Alternatively the preferred designs (especially the

aeroacoustic design) are shown to shed vortices non-uniformly. The disturbance in the

wake of the preferred designs is not as large, which is a result of suppressed vortices, as

well as a higher dissipation rate.

The non-uniformity of the vortex shedding is a result which has not been documented

before for this case-study (to the best knowledge of the author). The generation of vor-
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(a) Reference point design
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Figure 7.47: Contours of stream function illustrating the flow-field

tices can be more clearly visualized using statistical time-averaged data collected from the

simulation. Figure 7.48 features contours of RMS (Root-Mean-Square) static pressure.

Areas of high RMS pressure provide a fairly clear observation of where vortices are form-

ing. Figure 7.48(a) features the reference point design, and it is evident that vortices are

shed fairly uniformly from the pressure and suction surface which yields the oscillating

force coefficients over time. Alternatively the best aeroacoustic design (with the charac-
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(a) Reference point design

(b) Best aeroacoustic design

Figure 7.48: Contours of RMS static pressure

teristic sinusoidal trailing edge) clearly shows the formation of other vortices due to the

wavy geometry. The magnitude of the vortex strength progressively reduces yielding less

disturbance at the trailing edge.

To gain further insight to the physical reasoning behind this phenomenon it is necessary

to visualize the force fluctuation. The formation of additional vortices due to the trailing

edge geometry will result in changes to the oscillation of the force coefficients over time.

Figures 7.49(a) and 7.49(b) illustrate a segment of the time-history convergence for the

lift and drag coefficients of the identified preferred designs. The lift and drag coefficients

of the reference point design oscillate in phase, with an additional mid-phase vortex shed

due to the fluctuating drag coefficient. This is evident from Figure 7.49(c) which clearly

shows two peaks in vortex shedding, at Strouhal numbers of approximately 2 and 4. The

coefficients of the preferred and best aerodynamic designs oscillate at a lower amplitude,

and the vortex shedding is in fact shown to be similar (yet out of phase) to the reference

point design. Alternatively the best aeroacoustic design oscillates at various frequencies

confirming the formation of several phases of harmonic fluctuation (as per Figure 7.48(b)).
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Figure 7.49(c) further demonstrates the appearance of other fluctuations, since minor

peaks are now evident at Strouhal numbers of approximately 1, 3 and 5.

7.6 Aerodynamic High-lift Configuration Design

This section describes the final application of this framework for the aerodynamic de-

sign of a transport high-lift configuration. To achieve sufficient low-speed performance

without compromising cruise performance requires a fairly sophisticated high lift con-

figuration [van Dam, 2002]. The primary goal of an aerodynamic high-lift system is to

increase payload-carrying capacity and reduce take-off and landing distances by maximiz-

ing the lift coefficient for a given angle of incidence, without the onset of massive flow

separation [Smith, 1975]. Studies confirm that relatively small changes in the aerody-

namic performance of a high-lift system potentially translate to major benefits in aircraft

payload-carrying capacity and performance [Garner et al., 1991]. For this reason, high-lift

aerodynamic and system design remain at the forefront of aerospace research.

For a typical high-lift configuration design, involving a forward (slat) element and an aft

(flap) element, the flow field is physically complex due to the element interactions [Smith,

1975; van Dam, 2002]. Combined with the intricacy of system support and actuation, this

has traditionally led to an experiment intensive development process. However, due to the

recent development of numerical modelling capabilities, CFD techniques are superseding

physical experimentation design methods [Rumsey and Ying, 2002]. In particular, the

significant progress achieved in synthesizing automated optimization tools and high-fidelity

CFD has significantly reformed the aerodynamic high-lift design philosophy [Kim et al.,

2004; Keane and Nair, 2005].

Problem Formulation

High-lift configuration design is a highly multi-disciplinary process. For the present study,

the problem is simplified to a two-dimensional aerodynamic optimization of a high-lift con-

figuration. This simplification allows for a higher-fidelity solver, providing an interesting

challenge for the developed algorithm. The baseline three-element configuration for this

optimization study is selected as the McDonnell-Douglas 30P/30N, shown in Figure 7.50.

The 30P/30N configuration has already been highly optimized for maximum lift. Wind-

tunnel measurements have been extensively performed for this configuration [Ying et al.,

1999], and the results of many CFD computations for this geometry have been reported

using a variety of numerical schemes [Rogers et al., 1994; Rumsey et al., 1998].

The variables used in the optimization study are the relative positions of the slat and
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chord, c

Figure 7.50: The MDC 30P/30N configuration with deployed slat and flap components

flap components. These variables measure the gap, overlap and deflection angle relative

to the main component. For the present study, relative positions of the slat and flap are

specified indirectly, through ± x/c and ± y/c directional translations, and rotation ± θ.
In these measurements, c refers to the clean airfoil chord with retracted flap and slat (as

shown in Figure 7.50). In this way, the design variables are geometrically independent and

their relative influence on the design space is easily identifiable. The design variables are

initialized relative to the position of the original configuration. Figure 7.51 illustrates the

translational and rotational displacement of the slat and flap components.

The proficiency of the proposed framework is demonstrated by maximizing the lift

generated on the 30P/30N configuration at various design conditions, motivated by the

work of Ying et al. [1999]. All simulations are performed at a Reynolds number Re =

9 × 106 and Mach number M = 0.2. The reference point geometry is logically selected

as the original 30P/30N configuration. Three objectives are formulated for the problem,

which are f1 = min(1/Cl) and f2 = min(Cd/Cl) at α = 8◦, and f3 = min(1/Cl) at

α = 19◦, where Cl and Cd are the configuration lift and drag coefficient respectively. The

objectives f1 and f2 are optimized at an angle of incidence α = 8◦, typical of an approach

configuration. The objective f3 is optimized at an angle α = 19◦, nearing the angle where

maximum lift is generated. Neither objective is discontinuous, but the third objective is

highly non-linear, as some configurations will lead to premature separation and stall. The

boundaries of the design space are selected such that there is a smooth transition of the

grid and do not result in any infeasible configurations (e.g. component intersection, etc.).

The design variable ranges are shown in Table 7.14.

Multi-block grid

Due to the complexity of the geometry, most methods for high-lift configurations are

typically based on unstructured grids or overset grids [Vatsa et al., 1994]. These strategies

are optimal for complex geometries, yet the computational efficiency and accuracy is poor

relative to an orthogonally structured mesh. In this study, the block-structured grid

generator Gridpro is utilized. The grid topology is divided into a number of many-to-one
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(b) Flap component parameterization

Figure 7.51: Parameterization variables for high-lift configuration

elementary blocks, which allows for accurate meshing of geometry, without the need to

propagate dense grids to the computational far-field. Figure 7.52(a) illustrates a partial

view of the grid topology generated for this problem.

The O-grid topology consists of 234 blocks, resulting in a total mesh size of approxi-

mately 80000 elements. The far-field boundary extends 20c radially from the origin. The

grid is algebraically clustered at the surface where the first grid point has a y-plus magni-

tude of O(1), which is critical for adequate resolution of the boundary layer. It is shown in

Figure 7.52(a) that there is a rather dense topology in regions of interest and the topology

around the trailing edges of each component are mapped to an interior circular surface to

preserve orthogonality. Also shown are close-ups of the slat and flap grids. Gridpro gen-

erates the resulting grid by individually meshing each topology block. Therefore, during

the optimization process, the airfoil element surfaces and surrounding topological blocks

are translated and rotated according to the design variable notation.
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(a) Full multi-block grid topology

(b) Slat multi-block grid

(c) Flap multi-block grid

Figure 7.52: Multi-block grid topology generated for the 30P/30N configuration
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Parameter Description Lower bound Upper bound

∆xS Slat translation ∆x/c -0.04 0.01

∆yS Slat translation ∆x/c -0.03 0.04

∆θS Slat rotation ∆θ -10◦ 10◦

∆xF Flap translation ∆x/c -0.02 0.04

∆yF Flap translation ∆x/c -0.07 0.005

∆θF Flap rotation ∆θ -10◦ 10◦

Table 7.14: Design variable ranges for optimization study

Flow solver

Significant progress in formulating a theoretical basis for high-lift aerodynamics was pi-

oneered by the work of Smith [1975]. Figure 7.53(a) illustrates the stream pattern over

the MDC 30P/30N configuration. The circulation of a forward element or the slat effect

reduces the leading edge suction peak, thus delaying separation. The trailing element

however induces a circulation effect on the forward element which tends to increase the

loading or lift generated. These flow phenomena are predominantly inviscid, yet viscous

effects also arise due to the individual wakes from each element. While wakes reduce the

pressure peak of trailing elements, they often tend to merge with the boundary layer of

the trailing element resulting in a thicker shear layer, termed a confluent boundary layer,

increasing the likelihood of separation. Figure 7.53(b) shows the development of the con-

fluent boundary layer as the wake from the slat element merges with the forming boundary

layer of the main element.

To portray each of these flow phenomena, a high-fidelity flow solver is essential. In this

study, the general purpose finite volume code ANSYS Fluent is used. The compressible

steady-state RANS equations are solved with the implicit pressure-based scheme using

second order upwind spatial discretization and SIMPLE pressure-velocity coupling. The

FMG initialization scheme is employed, with coarsening of the grid to 100 cells. The

one-equation Spalart-Allmaras turbulence closure model is selected to compute the eddy

viscosity. The advantage of this model over two-equation turbulence models is that its

robust convergence rate makes it suitable for high fidelity aerodynamic flows over complex

geometries. Presented in Figure 7.54 is the accuracy of the computational flow solver

compared to experimental data acquired from the NASA Langley Research Center [Ying

et al., 1999]. Excellent agreement is observed across the entire geometry, although the

suction peaks predicted by the computational solver are marginally higher.



204 7.6. Aerodynamic High-lift Configuration Design

(a) Stream pattern

(b) Velocity contour

Figure 7.53: Contours illustrating the inviscid and viscous flow phenomena of high-lift flow

Variable screening

Global Kriging models are constructed for the aerodynamic coefficients from a stratified

sample of NK = 100 design points based on an LHS design. The global Kriging models

are initially trained via cross-validation. Illustrated in Fig. 7.55 are the cross-validation

curves for the Kriging models. The subscripts to the aerodynamic coefficients refer to the

respective angle of incidence.

It is observed in Figures 7.55(a) and 7.55(b) that the constructed Kriging models for

the aerodynamic coefficients at α = 8◦ are able to reproduce the training samples with

sufficient confidence, recording error margin values of 3.21% and 3.83% respectively. Fig-

ure 7.55(c) demonstrates that the largest error margin occurs in predicting the maximum

lift (i.e. Cl19
), since at larger angles of incidence the non-linear effects of flow separation

and stall begin to dominate. In order to model a more correlated landscape, the sample

from Figure 7.55(c) is conditioned, by eliminating all configurations which exhibit pre-

mature stall characteristics, such as unsteady flow. By conditioning the training sample,
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Figure 7.54: Comparison of experimental and computational surface Cp plots for the 30P/30N

configuration at Re = 9× 106, α = 19◦

the design points are reduced to NK = 91 and the error margin is reduced from 9.64% to

7.07%, which is highlighted in Figure 7.56.

To investigate the effect of each design variable on the objective landscapes, a quanti-

tative visualization analysis via the Morris method is conducted. Figure 7.57 features the

results obtained from the design variable screening study. It is immediately observed that

in the approach condition (i.e. α = 8◦) the lift generated is almost entirely dependent

on the position and orientation of the flap. This is expected, since the flap component is

primarily responsible for increasing the loading of the high-lift configuration. The position

of the slat has a more significant effect on the drag (and most importantly ∆xS) since

this may effect the development of the confluent boundary layer and thus the shear stress

distribution. The slat effects become much more significant at the maximum lift condition

(i.e. α = 19◦). This is due to the fact that the slat component is primarily responsible

for reducing the leading edge suction peak of the trailing elements, thus delaying flow

separation. The slat influence is almost completely dictated by ∆xS and ∆θS suggesting

that ∆yS has no elementary effect on the maximum lift generated. Similar deductions can

be made by examining the variable influence on dz shown in Figure 7.57(d). The variable

influence on dz is case-specific and entirely dependent on the reference point chosen for the

proposed optimization study. Since the value of dz is a means of ranking the success of a

multiobjective solution as one single scalar, variables may be ranked by influence, which is

otherwise not possible when considering a multiobjective array. Preliminary conclusions

to the priority weighting of the objectives to the reference point compromise can also be

made. It is important to observe that slat effects are significant in the computation of dz,

which suggests that the maximum lift condition drives the design.
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Figure 7.55: CV curves for the constructed Kriging models
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Figure 7.56: CV curve for conditioned sample for Cl19

Parameter µ∗(Cl8) [%] µ∗(Cd8
) [%] µ∗(Cl19

) [%] µ∗(dz) [%] Relative Rank

∆xS <0.01 5.98 11.27 5.60 5

∆yS 0.78 3.34 <0.01 0.34 6

∆θS 2.32 0.69 19.00 9.58 4

∆xF 30.76 25.20 27.42 31.84 1

∆yF 33.03 19.71 13.45 23.34 3

∆θF 33.12 45.08 28.84 29.28 2

Table 7.15: Results of the design variable screening study and variable ranking

Table 7.15 consolidates the results of the design variable screening study, by ranking

variable importance according to its influence on dz. It is observed that the flap variables

are the most significant variables, contributing to approximately 85% of the total influ-

ence. Once again, slat effects are almost entirely dependent on ∆xS and ∆θS , with ∆yS

contributing to less than 1% of the total influence. In an industry setting, this result could

be used to reduce the dimensionality of the problem by omitting the least influential vari-

able ∆yS , which could potentially facilitate the optimization process. In this setting the

variable ∆yS is not omitted since its negligible effect is a counter-intuitive result, and may

be due to insufficient sampling. Nonetheless, the true effect of ∆yS will be reconfirmed

during the subsequent optimization and post-optimization processes.

Optimization results

A swarm population of N = 100 particles was initialized for this optimization problem. A

computational budget of 250 evaluations is imposed. Based on the initial stratified sample

of design points, a further 150 precise evaluations were performed over t ≈ 70 time-steps

until the computational budget was breached. As shown in Figure 7.58(a), and what
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(a) Lift Cl8 (b) Drag Cd8

(c) Lift Cl19
(d) dz

∆xS ∆yS ∆θS ∆xF ∆yF ∆θF

Figure 7.57: Variable influence on aerodynamic coefficients (subscripts refer to angle of incidence)

is a recurring characteristic of this algorithm, the largest number of update points are

recorded during the initial explorative phase. As the preferred region is identified and the

prediction error is reduced, the algorithm begins exploitation and the number of update

points reduce steadily. Figure 7.58(b) features the progress of the preferred solution z′ as

the number of precise evaluations escalates. The reference point criterion is observed to

filter out poorer solutions during exploration since only 50 evaluations are required to reach

within 65% of the most preferred solution and an additional 50 evaluations to reach within

15%. Consistent improvement is then recorded due to exploitation of the preferred region

until the search begins to converge after approximately 240 evaluations. Figure 7.59(a)

features the 150 most recent solutions scheduled for precise evaluation, which once again

demonstrates a preferred search trajectory. Featured in Figure 7.59(b) is the final set of

30 non-dominated solutions. The algorithm was successful in obtaining solutions which

exhibit improvement over all objectives compared with the reference point.

Trade-off Visualization

Figure 7.60 features the trade-off visualization study conducted using SOMine of the iden-

tified set of non-dominated solutions shown in Figure 7.59(b). The charts are clustered
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Figure 7.58: KUPMOPSO performance for high-lift optimization case-study

using eight SOM-ward clusters, organized by increasing values of dz. It is immediately ob-

served that the dz chart most closely resembles the f3 chart, indicating that this objective

(i.e. maximum lift) has the highest priority. This complements the conclusion made from

the variable screening analysis. In subsequent optimization studies, to identify solutions

which are more inclined to the other objectives, the reference value for f3 should be less

stringent. Objectives f1 and f2 have a similar weighting and are within the mid-range of

the identified objective boundaries.

A box-plot (see Figure 7.61) is generated of the solutions from Figure 7.60. It is ob-

served from Figure 7.61 that the preferred region of the non-dominated front as dictated by

the reference point is well defined. A reduced flap rotation angle (increased flap deflection)

increases the loading by effectively increasing the camber of the airfoil configuration. The

reduced slat rotation angle may effectively reduce the magnitude of flow acceleration over

the slat upper surface, injecting energy into the trailing element boundary layer whilst



210 7.6. Aerodynamic High-lift Configuration Design

0.3

0.32

0.34

0

0.1

0.2
0.225

0.23

0.235

0.24

 

 

f1f2

f
3

(a) Scatter plot of precise evaluations

0.25

0.3

0.35

0.4

0.01

0.02

0.03

0.04
0.22

0.24

0.26

0.28

 

 

f1f2

f
3

(b) Identified set of non-dominated solutions

Figure 7.59: Precise evaluations performed and the resulting non-dominated solutions

reducing the tendency of the flow to separate from the slat. The vertical translation of the

flap ∆yF is at the upper bound, which could cause concern for system actuation. Both

the horizontal translation of the slat and flap components are compacted such that they

effectively reduce the chord, which is no doubt reflected in the increase of the lift-to-drag

ratio over the reference point. The vertical translation of the slat ∆yS is the only variable

shown which does not shift largely from the reference value (i.e. does not differ from

the reference point 30P/30N configuration). This suggests that the variable already lies

within the optimum region and thus does not have a significant impact on the dynamics

of the swarm. This result coincides with the conclusion derived from the design variable

screening analysis. The optimization process could confidently be re-performed with ∆yS

constant at the reference value, thereby alleviating some of the computational burden.

Final designs

Despite the apparent complexity of the problem, through visualization of the SOM charts

the trade-off relationships between solutions becomes quite clear. Utilizing these charts,
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Figure 7.60: SOM charts to visualize optimal trade-offs between the design objectives

the designer may select the solution which best fits the target application. Figure 7.62

features the preferred configuration over the original reference configuration.

To facilitate the performance comparison between configurations, the objective func-

tions are referred to by their aerodynamic coefficient equivalents. The values of the pre-

ferred configuration are listed in Table 7.16. Also tabulated are configurations which

exhibit the most optimal value for the respective design conditions. The additional so-
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Figure 7.61: Box-plot of final non-dominated design variables
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Figure 7.62: Comparison of the MDC 30P/30N configuration (- -) and the preferred solution

(—)

Configuration Cl8 (Cl/Cd) Cl19

MDC 30P/30N 2.995 55.05 4.236

Preferred 3.286 58.92 4.423

min f1 3.371 62.94 4.374

min f2 3.194 64.84 4.335

min f3 3.278 57.08 4.427

Table 7.16: Performance of each configuration representing the most optimal values for each

design condition

lutions provide an understanding to the extent of the preferred region. The preferred

solution provides an approximate 9.7%, 7.1% and 4.4% improvement over the reference

30P/30N configuration for the first, second and third design conditions respectively. The

preferred solution is clearly inclined towards the Cl19
condition (confirming the results of

the visualization analyses) which is evident from the similarity to the min f3 solution.



Chapter 8

Conclusion

This research was concerned with the exploration of concepts and techniques to improve

the synthesis of the aerodynamic design optimization architecture. It was established that

the role of the designer is of high importance in managing and facilitating optimization

in a high-fidelity design environment. A method to give the designer a more active role

within the optimization loop was introduced, to develop a preference-based multi-objective

evolutionary algorithm capable of focusing the computational effort on identifying designs

of interest. The preferences of the designer are articulated through selection of a refer-

ence point, which is a viable reflection of the preferred compromise. The use of surrogate

modelling and data-mining techniques for the management of complex and high-fidelity

problems was further incorporated within the framework, with favourable results. A sum-

mary of the research is hereafter presented, where the formulated research questions are

revisited and the relevant findings are discussed. Avenues for further study are presented,

where directions to future research which may be potentially warranted are provided.

8.1 Summary

A novel optimization framework has been developed for the application of high-fidelity

aerodynamic design problems. There are three principal elements to the aerodynamic de-

sign architecture; the shape parameterization method, which governs the dimensionality of

the optimization problem and is used to generate candidate shapes; the computational flow

solver, which essentially dictates the fidelity of the final design and is the most computa-

tionally intensive element; and the optimization algorithm, which provides the candidate

search direction and attempts to optimize the objective functions within the allocated

computational budget. Evolutionary algorithms for optimization are held in high regard

owing to their ability to navigate multi-modal landscapes and converge to global optima.
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However such techniques are used sparingly within aerodynamic design frameworks due

to the excessive number of expensive computational fluid dynamic evaluations required to

achieve convergence. It is argued that improving the synthesis and efficiency of evolution-

ary aerodynamic design frameworks can be achieved by utilizing the domain knowledge

of the designer. Control measures are therefore implemented to focus all computing effort

on identifying only solutions which reflect the preferred interests of the designer.

In this research, an efficient strategy to incorporate designer preferences into a multi-

objective particle swarm optimization algorithm has been presented. Particles in the

swarm each represent a candidate design and co-operatively navigate the design space

to identify promising regions. A reference point is stipulated by the designer, which

is a reflection of the preferred compromise which can ideally be based on an existing

or fictitious design. The reference point proves an effective guidance mechanism for the

swarm, by selecting candidates for swarm leaders based on an inexpensive distance metric.

This effectively reduces the scale of the design space, confined to exclusively focus on

preferred regions. The final set of preferred non-dominated solutions are identified at

a reduced computational cost over conventional search techniques. The framework is

assisted by the construction of Kriging models which are progressively updated during

the search. The Kriging models are updated through a novel screening criterion, which

utilizes the reference point distance metric to assess the feasibility of a candidate solution

for precise evaluation. Qualitative and quantitative data mining tools are applied to

visualize the design space, allowing for meaningful information to be extracted which aids

the pre-optimization and decision making processes. The integration of all components

of the optimization framework is entirely achieved through the use of the reference point

distance metric which provides a scalar measure of the success of a candidate design. Multi-

objective test function suites were utilized to illustrate the operation of the algorithm and

demonstrate its superiority over conventional search methods. The proposed preference-

based framework was applied to a series of aerodynamic design problems of varying fidelity

and complexity.

The developmental effort of the proposed framework discussed in this research is to

reduce the often prohibitive computational cost of multi-objective optimization to the level

of practical affordability for high-fidelity aerodynamic design problems. The formulated

problems introduced focus on disparate design philosophies, utilizing inviscid potential flow

theory to full transient viscous simulations. The preference-based framework is observed

to perform proficiently for all case-studies within the allocated computational budget,

resulting in a final set of optimized designs that are clearly reflective of the preferred
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interest of the designer. The case-studies confirm the relative simplicity in assigning a

reference point to identify preferred designs within the allocated computational budget.

8.2 Research Analysis

The research outcome is analyzed by first addressing the research questions formulated

in Chapter 1, and subsequently highlighting the contributions and additional findings.

This research has significantly added to the current body of knowledge in the area of

preference-based optimization for design applications, and has offered a unique perspective

to managing high-fidelity aerodynamic design problems.

8.2.1 Research Outcome

The following research questions were formulated in the introductory Chapter 1 in an

attempt to consolidate the main theme of this research which is incorporating the designer

within the aerodynamic design architecture for the management of high-fidelity multi-

objective optimization problems. The research questions are here addressed referring to

the research and study documented in previous chapters.

1. Is there an intuitive method for identifying solutions which reflect the pre-

ferred interests of the designer? The field of preference-based optimization was

introduced in Chapter 3. With preference-based optimization it is sought to combine

the searching prowess of multi-objective evolutionary algorithms with a simple and

logical a priori method for articulating designer preferences. Providing the designer

a more interactive role in the optimization architecture is a concept which became

popular in the nineties. It is however only in the last decade that researchers have

attempted to utilize the fast convergence properties of a priori methods to mitigate

or alleviate the drawbacks of multi-objective evolutionary methods. In this research,

a relatively new evolutionary multi-objective algorithm based on the theory of parti-

cle swarm intelligence has been proposed. The designer may provide a true reflection

of their preferred interests by stipulating a reference point on the Pareto landscape,

which is an intuitive method of specifying the preferred compromise and does not

represent the target or goal solution. This reference point is used as a guidance

mechanism for the swarm, such that swarm leaders are selected based on the in-

formation provided by the reference point at each time-step. This ensures that the

search trajectory of the swarm remains consistent and the preferred region of the

Pareto front is quickly identified by expending less computational effort.
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2. Can this method be applied to aerodynamic design, such that the domain

knowledge of the designer is exploited? The reference point utilized in this

framework is a true reflection of the domain knowledge of the designer. The refer-

ence point is stipulated by the designer, which can ideally be based on an existing

or fictitious design. It was demonstrated that a reference design may be located

in either a feasible or infeasible area of the design space, and will invariably result

in the same preferred region, provided the reference point compromise is the same.

This concept was highlighted in this research, and for all design case-studies it was

demonstrated how preferred solutions may be identified which improve on all perfor-

mance attributes of an applicable existing design, whilst maintaining a similar level

of compromise. Designs are ranked in terms of preference through an inexpensive

reference point distance metric, which provides an effective guidance mechanism for

the swarm, by selecting candidates for swarm leaders. A preferred region is intro-

duced, where the extent of the region is a measure of the confidence of the designer

in the reference point. If the confidence in the reference point is high, the extent

of the preferred region may be reduced, such that only the most preferred designs

are identified. Alternatively at the expense of increased computational effort, the

extent of the preferred region may be larger, offering other interesting alternatives

to the designer. Visualization techniques are also introduced to extract case-specific

information, based on the preferred interests of the designer. The increase in compu-

tational efficiency is attributed to the fact that the framework utilizes the knowledge

possessed by the designer. The solutions obtained are hence reflective of the preferred

interests of the designer.

3. Can it be applied to the level of practical affordability for high-fidelity

design? The benefits of evolutionary algorithms are continuously reported in the

literature, especially in the context of multi-objective problems. Its unpopularity for

aerodynamic design problems is due to the often excessive number of simulations

required to achieve convergence. Simulations which, in order to achieve the desired

levels of accuracy, are sometimes measured in hours or days for an industry-type

setting. Surrogate modelling has been adopted by many researchers in aerodynamic

design to alleviate the computational burden of multi-objective design. In Chapter

6, surrogate techniques were introduced and incorporated within the preference-

based framework for the management of high-fidelity problems. Driving a surrogate-

assisted particle swarm towards a sector of special interest on the Pareto front was

shown to be an effective searching mechanism. A distinct attraction towards the

preferred region is observed for all experiments, which implies the reference point
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criterion is adept at filtering out solutions which deviate from the optimal search

path. In this way, the full potential of the algorithm may be utilized without the risk

of an excessive computational effort. Visualization tools are also applied to screen

variable elementary influence and quantify their relative influence to the preferred

interests of the designer. Initial design drivers can hence be easily identified. Data

mining tools are also applied to facilitate a qualitative trade-off visualization study.

These analyses provides an insight into the relative priority of each objective and

their influence on the preferred compromise, and with the aid of the integrated

surrogate model can be achieved with minimal computational effort.

8.2.2 Contributions

The major contributions extracted from this research were highlighted in Chapter 1. These

contributions are briefly revisited in this section, to provide coherence to this thesis report.

• The multi-objective particle swarm optimization algorithm: provides a superior con-

vergence rate over other multi-objective methods, and the integrated Gaussian mu-

tation operator is ideal for the management of highly multi-modal problems.

• Integration of the reference point method: provides additional guidance to the op-

timizer to converge to the preferred region of the Pareto front, thereby focusing all

computing effort on identifying solutions of interest. The reference point is tailored

to reflect a target or existing design, and thus is used to place performance priority

on specific design conditions.

• Integration of surrogate modelling: novel attempt at incorporating surrogate mod-

elling within the preference-based (aerodynamic) optimization architecture. The

search effort remains consistent, with the added advantage that less precise evalua-

tions are performed.

• Development of a novel screening criterion: this novel criterion determines, with

sufficient confidence, which candidate designs are feasible for precise evaluation. It

is proficient in identifying solutions which are expected to provide improvement

within the preferred region of the design space.

• The practical application of visualization tools: with the aid of the reference point

metric, which measures the success of a solution as a single scalar rather than an

array of objective values, the use of data mining and screening techniques to visualize

a multi-objective optimization landscape is facilitated.
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• Synthesis of the aerodynamic design architecture: achieved by incorporating all

components of the design framework to the reference point metric which is a measure

of the domain knowledge and preferred interests of the designer.

• Practical application of the algorithm: a wide range of aerodynamic design prob-

lems of varying fidelity and complexity have been considered to demonstrate the

performance of the optimization framework.

8.2.3 Additional Findings and Interest

Beyond the research contributions which were documented in Chapter 1 and briefly re-

visited in the previous section, additional findings from this research have been identified

which offer some novel or interesting concepts that are applicable to the current body of

knowledge.

• Visualizing two-dimensional contour projections of the multi-dimensional design

space is a fairly straightforward procedure to determine the multi-modality of a

design landscape. Through analysis of the contour projections it is possible to de-

termine whether or not a variable screening study is feasible.

• The reference point screening criterion is shown to be adept at filtering out poorly

performing solutions during the search. This is evident from the scatter plots gener-

ated for the design case-studies. A distinct attraction towards the preferred region

dictated by the reference point is evident, which progressively becomes localized as

the search continues.

• The mutation operator, although used sparingly in this research, is demonstrated to

be non-destructive. The mutation operator becomes active as the search stagnates

and the swarm is no longer identifying update solutions via the conventional search

techniques. It effectively manages to generate enough diversity to avoid premature

convergence.

• Monitoring the progress of the most preferred design or the preferred region spread

provides a crude, but reasonable measure of convergence. For most case-studies it

was demonstrated that convergence was observed within the allocated computational

budget by plotting the reference point distance value of the most preferred solution

after each additional update evaluation. From these plots, it was possible to extract

meaningful results such as the rate of convergence or the balance between exploration

and exploitation.
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• The initial accuracy of the constructed global Kriging models is by no means a

measure of the complexity of the optimization problem. It was demonstrated that

Kriging models constructed by limited samples, thereby resulting in high prediction

errors, allows for more update evaluations to be allocated during the search. Con-

sidering that the Kriging models are only expected to predict solutions within the

localized preferred region, it is advisable to keep the number of samples required to

construct the global Kriging models to a minimum.

• Certain case-studies presented in this research were, wherever practical, comple-

mented with the use of visualization techniques to extract case-specific information.

It was demonstrated that in the majority of instances, the conclusions derived from

each visualization technique complemented each other.

• Box-plots provide a suitable technique to measure the extent of a non-dominated

solution spread. Through a statistical representation of the non-dominated solu-

tion variable set, it is possible to visualize the localized preferred region of the de-

sign space. While box-plots do not provide any information regarding objective

comparison, they do provide a means of envisioning the geometrical profiles of the

non-dominated solution set, such that conclusions can be made on the surrounding

flow-field phenomena.

• During the course of optimization it may be necessary to shift the preferred region

without the added computational expense of reinitializing the swarm. It was demon-

strated in this research that the search direction of the swarm is able to deviate at

any time-step during flight by manipulating the reference point. Despite the abrupt

change in search direction, the swarm can quickly adapt to the change in preferences

and converge to the updated preferred region.

• The Kriging method is utilized to construct a fairly accurate representation of a

discontinuous objective landscape. This is due to the fact that it is only of interest

to model the preferred region, rather than the global landscape. This favourably

results in a larger number of samples focused within a localized area of the design

space, thereby facilitating the model construction.

8.3 Recommendations for Future Study

This research describes an attempt at improving the synthesis of the aerodynamic de-

sign architecture via the development of a preference-based optimization framework. The
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performance of this framework was highlighted through the application of a series of aero-

dynamic and multi-disciplinary problems of varying fidelity and complexity. While the

proposed framework is complete, certain areas could be further explored or improved.

This section provides a list of potential avenues for future research:

• When examining mathematical problems or problems where the preferred region of

the Pareto front is known, a procedure for establishing and monitoring convergence

was introduced using the Hyper-Volume metric. In the case of high-fidelity aero-

dynamic design problems, convergence was dictated once a computational budget

had been breached. This method at this time seems the most logical choice for an

industry-type setting. Convergence may be estimated by monitoring progress of the

most preferred solution, or the total variance of solutions within the preferred region,

but a mathematical proof of convergence is lacking which truly reflects whether the

swarm has converged to the Pareto front.

• In the reported problems, it was observed that the preference-based framework was

able to locate novel designs which improved on the reference point design whilst

maintaining a similar level of compromise. While the framework is capable of ex-

ploring the concept of multiple reference points, its advantages or deficiencies were

not examined in this research. Multiple reference points could be of practical im-

portance in certain applications where the selection of a suitable reference point is

ambiguous or the design space is ill-defined, or problems where multiple preferred

solutions may be required.

• The aerodynamic problems which have been reported in this research are more in-

clined towards conceptual design and are not truly representative of an industrial-

type multi-disciplinary problem. The proposed framework is developed for multi-

objective problems and the preference-based strategy is tailored to efficiently nav-

igate multi-dimensional landscapes. It has been demonstrated that the benefits of

implementing user-preferences become more apparent as the number of objectives

increase. Therefore, the most logical avenue for future research is the application

of large-scale problems consisting of many objectives and many variables. Certain

aspects of the framework, such as the use of the dominance criterion or the Kriging

method, may not be suitable for large-scale problems. Other suitable techniques

may be explored for the management of true multi-disciplinary problems.

• This framework proposed the construction of Kriging models for the management of

high-fidelity problems subject to a computational budget. For simplicity the origi-
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nal Kriging method was utilized, where a global training dataset was maintained to

estimate the fitness at unobserved locations. However, for certain applications, it

may be prudent to consider other surrogate modelling methods. For example, Arti-

ficial Neural Networks (ANN) allow for the construction of high-dimensional models

involving large training datasets. Alternatively the use of a co-Kriging methodol-

ogy may be beneficial for computationally intensive simulations, where lower-fidelity

substitutes may be utilized to obtain a crude approximation to the high-fidelity

fitness landscape. Certain surrogate methods may be specifically suited to certain

objectives within a multi-objective environment. Future research in managing vari-

ous surrogate models (which has already been given proposed for multi-disciplinary

studies) may also be of particular significance in managing multi-fidelity problems.

• The online Kriging update criterion developed to screen predicted particles for pre-

cise evaluation utilizes the lower-bound confidence strategy. Therefore only particles

which are expected to provide improvement over the current most preferred solution

are scheduled for precise evaluation. While this strategy provides favourable conver-

gence rates, the performance of other screening criteria has not been substantially

provided. The expected improvement strategy could clearly provide further advan-

tages. It was discussed in Section 5.3.2 that implementing the original expected

improvement strategy for this framework is difficult due to the ambiguity associ-

ated in defining a threshold to the number of particles which may be scheduled for

evaluation. Furthermore, the expected improvement criterion guides the swarm to

explore areas which offer improvement in either objective rather than focusing on

the preferred compromise. Future research could be directed towards developing a

strategy which predicts the expected improvement in the reference point distance

rather than any specific objective.

• The reference points selected for the case-studies presented in this research have

generally been selected based on a previous design, or initial geometrical shape which

resembles an existing design. A possible avenue for future research could involve a

more thorough analysis of the influence of multiple reference point locations with a

view to formulate a selection process for a suitable reference point tailored for each

design case-study.

• A final avenue for future research would be to further explore and evaluate the

influence of visualization tools for optimization. In this research, visualization and

variable screening tools were predominately utilized to confirm the relative influence

of the design variables on the optimization landscape. The conclusions derived from
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these analyses could however be further utilized to facilitate the optimization process

by omitting variables which have a negligible influence and assist in making informed

decisions which can potentially minimize the scale of the optimization problem.

These recommendations explore only certain possible avenues for future research within

the field of preference-based optimization for aerodynamic and aerospace design. It is

also of the opinion of the author that visualization is a field which is relatively still in

its infancy, and may offer a very interesting topic especially in the context of design.

It is clear that preference-based optimization and visualization has the potential to offer

many other improvements to the canonical aerodynamic design architecture, beyond those

investigated in this research.



Appendix A

Mathematical Test Functions

In this appendix all test functions are described sequentially as they appear in this thesis

(except those which have been described in the text). For the multi-objective ZTD and

DTLZ test suites, only problems which have been considered in this thesis are reproduced.

The reader is referred to the original authors for details on all remaining functions. All

functions are to be minimized unless otherwise stated.

Single-objective Test Functions

The single-variable multi-modal function is given as:

f = (6x− 2)2 · sin (6x− 2)2 where 0 ≤ x ≤ 1 (A.1)

The convex function of De Jong is given as:

f =
n
∑

i=1

x2
i where − 5.12 ≤ x, y ≤ 5.12 (A.2)

The multi-modal function of Rastrigin is given as:

f = 10 · n+
n
∑

i=1

(

x2
i − 10 cos 2πxi

)

where − 5.12 ≤ x, y ≤ 5.12 (A.3)

The multi-modal function of Branin is given as:

f(x1, x2) = a ·
(

x2 − b · x2
1 + c · x1 − d

)2
+ e · (1− f) · cosx1 + e

where − 5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15 (A.4)

a = 1, b =
5.1

4π2
, c =

5

π
, d = 6, e = 10, f =

1

8π
(A.5)

These single-objective functions are graphically shown in Figure A.1.
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Figure A.1: Single-objective test functions

The example analytical expression of the conceptual estimate of the weight of a light

aircraft wing (as extracted from Forrester et al. [2008]) is given as:

W = 0.036S0.758
W W 0.0035

fw

(

A

cos2Λ

)0.6

q0.006λ0.04
(

100tc
cosΛ

)−0.3

(NzWdg)
0.49 + SwWp. (A.6)

ZTD Test Suite

The general format of the test functions is given as:

f1 = x1 (A.7)

f2 = g(x) · h(x) (A.8)

The characteristic functions of the ZTD1 test problem are:

g(x) = 1 + 9
n
∑

i=2

xi
n− 1

(A.9)

h(x) = 1−
√

f1
g(x)

(A.10)
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where n = 30 and 0 ≤ xi ≤ 1. The ZTD1 test problem has a convex Pareto front, which

is obtained when g(x) = 1.

The characteristic functions of the ZTD2 test problem are:

g(x) = 1 + 9
n
∑

i=2

xi
n− 1

(A.11)

h(x) = 1−
(

f1
g(x)

)2

(A.12)

where n = 30 and 0 ≤ xi ≤ 1. The ZTD2 test problem has a concave Pareto front, which

is obtained when g(x) = 1.

The characteristic functions of the ZTD3 test problem are:

g(x) = 1 + 9
n
∑

i=2

xi
n− 1

(A.13)

h(x) = 1−
√

f1
g(x)
−
(

f1
g(x)

)

sin 10πf1 (A.14)

where n = 30 and 0 ≤ xi ≤ 1. The ZTD3 test problem has a discontinuous Pareto front,

which is obtained when g(x) = 1.

The characteristic functions of the ZTD4 test problem are:

g(x) = 1 + 10(n− 1) +
n
∑

i=2

(

x2
i − 10 cos 4πxi

)

(A.15)

h(x) = 1−
√

f1
g(x)

(A.16)

where n = 10, 0 ≤ x1 ≤ 1 and −5 ≤ xi ≤ 5. The ZTD4 test problem has a convex Pareto

front, which is obtained when g(x) = 1. This problem is highly multi-modal with 219 local

fronts.

The characteristic functions of the ZTD6 test problem are:

f1 = 1− exp−4x1 sin6 6πx1 (A.17)

g(x) = 1 + 9

(

(
∑n
i=2 xi)

n− 1

)0.25

(A.18)

h(x) = 1−
(

f1
g(x)

)2

(A.19)

where n = 10 and 0 ≤ xi ≤ 1. The ZTD6 test problem has a concave Pareto front, which

is obtained when g(x) = 1.
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Figure A.2: ZTD test problem suite

DTLZ Test Suite

The DTLZ test suite is scalable to any number of objectives and decision variables. The

function g is used to generate the objectives and is defined by a subset of the decision

variable vector. The subset is given as xm = [xm, xm+1, . . . , xn] where 0 ≤ xi ≤ 1.

The characteristic functions of the DTLZ1 test problem are:

f1 =
1

2
x1x2 . . . xm−1(1 + g) (A.20)

f2 =
1

2
x1x2 . . . (1− xm−1)(1 + g) (A.21)

...

fm−1 =
1

2
x1(1− x2)(1 + g) (A.22)
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fm−1 =
1

2
(1− x1)(1 + g) (A.23)

g = 100

[

‖xm‖+
∑

xi∈xm

(xi − 0.5)2 − cos(20π(xi − 0.5))

]

(A.24)

where the number of variables n = m+ 4 and ‖xm‖ = 5. The DTLZ1 test problem has a

linear Pareto front, which is obtained when xm = 0. This problem is highly multi-modal

with 115 − 1 local fronts.

The characteristic functions of the DTLZ2 test problem are:

f1 = (1 + g) cos

(

x1
π

2

)

cos

(

x2
π

2

)

. . . cos

(

xm−2
π

2

)

cos

(

xm−1
π

2

)

(A.25)

f2 = (1 + g) cos

(

x1
π

2

)

cos

(

x2
π

2

)

. . . cos

(

xm−2
π

2

)

sin

(

xm−1
π

2

)

(A.26)

f3 = (1 + g) cos

(

x1
π

2

)

cos

(

x2
π

2

)

. . . sin

(

xm−2
π

2

)

(A.27)

... (A.28)

fm−1 = (1 + g) cos

(

x1
π

2

)

sin

(

x2
π

2

)

(A.29)

fm−1 = (1 + g) sin

(

x1
π

2

)

(A.30)

g =
∑

xi∈xm

(xi − 0.5)2 (A.31)

where n = m + 9 and ‖xm‖ = 10. The DTLZ2 test problem has a concave Pareto front,

which is obtained when xm = 0.

The characteristic functions of the DTLZ3 test problem are:

f1 = (1 + g) cos

(

x1
π

2

)

cos

(

x2
π

2

)

. . . cos

(

xm−2
π

2

)

cos

(

xm−1
π

2

)

(A.32)

f2 = (1 + g) cos

(

x1
π

2

)

cos

(

x2
π

2

)

. . . cos

(

xm−2
π

2

)

sin

(

xm−1
π

2

)

(A.33)

f3 = (1 + g) cos

(

x1
π

2

)

cos

(

x2
π

2

)

. . . sin

(

xm−2
π

2

)

(A.34)

... (A.35)

fm−1 = (1 + g) cos

(

x1
π

2

)

sin

(

x2
π

2

)

(A.36)

fm−1 = (1 + g) sin

(

x1
π

2

)

(A.37)

g = 100

[

‖xm‖+
∑

xi∈xm

(xi − 0.5)2 − cos(20π(xi − 0.5))

]

(A.38)

where n = m + 9 and ‖xm‖ = 10. The DTLZ3 test problem has a concave Pareto front,

obtained when xm = 0. This problem is highly multi-modal with 310 − 1 local fronts.
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Figure A.3: DTLZ test problem suite

The characteristic functions of the DTLZ7 test problem are:

f1 = x1 (A.39)

f2 = x2 (A.40)

... (A.41)

fm−1 = xm−1 (A.42)

fm = (1 + g) · h (A.43)

g = 1 +
9

‖xm‖
∑

xi∈xm

xi (A.44)

h = m−
m−1
∑

i=1

[

fi
1 + g

(1 + sin (3πfi))

]

(A.45)

where n = m + 19 and ‖xm‖ = 20. The DTLZ7 test problem has a disconnected Pareto

front, with 2m−1 disconnected regions which are obtained when xm = 0.
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Constrained Functions

The constrained test functions used in this thesis do not pertain to any specific test suite

but are rather extracted independently from the literature.

The KITA [Kita et al., 1996] test function is given as:

f1 = max −x2
1 + x2 (A.46)

f2 = max
x1

2
+ x2 + 1 (A.47)

where 0 ≤ x1, x2 ≤ 7

The constraints for the KITA problem are:

g1 =
x1

6
+ x2 −

13

2
≤ 0 (A.48)

g2 =
x1

2
+ x2 −

15

2
≤ 0 (A.49)

g3 =
5

x1
+ x2 − 30 ≤ 0 (A.50)

The OSY [Osycza and Kundu, 2004] test function is given as:

f1 = −
(

25 · (x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2
)

(A.51)

f2 = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 (A.52)

where 0 ≤ x1, x2, x6 ≤ 10, 1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6

The constraints for the OSY problem are:

g1 = x1 + x2 − 2 ≥ 0 (A.53)

g2 = 6− x1 − x2 ≥ 0 (A.54)

g3 = 2− x1 + x2 ≥ 0 (A.55)

g4 = 2− x1 + 3 · x2 ≥ 0 (A.56)

g5 = 4− (x3 − 3)2 − x4 ≥ 0 (A.57)

g6 = (x5 − 3)2 + x6 − 4 ≥ 0 (A.58)

The two-bar truss design problem [Deb, 2000] is given as:

f1 = x1

√

16 + x2
3 + x2

√

1 + x2
3 (A.59)

f2 = max(σ1, σ2) (A.60)

σ1 = 20
√

16 + x2
3 ·

1

x1x3
(A.61)

σ2 = 80
√

1 + x2
3 ·

1

x2x3
(A.62)

where 0 ≤ x1, x2 ≤ 0.01, 1 ≤ x3 ≤ 3
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The constraint for the two-bar truss design problem are:

g1 = max(σ1, σ2) ≤ 105 (A.63)

The welded beam design problem [Deb, 2000] is given as:

f1 = 1.10471 · h2 · l + 0.04811 · t · b(14 + l) (A.64)

f2 = 2.1952 · 1

t3 · b (A.65)

τ =

√

(τ ′)2 + (τ ′′)2 + l · τ ′ · τ ′′
√

0.25(l2 + (h+ t)2)
(A.66)

τ ′ =
6000√
2 · h · l

(A.67)

τ ′′ =
6000(14 + 0.5 · l)

√

0.25(l2 + (h+ t)2)

2
√

2 · h · l · (l2/12 + 0.25(h+ t))2
(A.68)

σ =
504000

t2 · b (A.69)

Pc = 64746.022(1− 0.0282346 · t) · t · b3 (A.70)

where 0.125 ≤ h, b ≤ 5, 0.1 ≤ l, t ≤ 10

The constraint for the two-bar truss design problem are:

g1 = 13600− τ ≥ 0 (A.71)

g2 = 30000− σ ≥ 0 (A.72)

g3 = b− h ≥ 0 (A.73)

g4 = Pc − 6000 ≥ 0 (A.74)
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