189,144 research outputs found

    Scalable Design Space Exploration via Answer Set Programming

    Get PDF
    The design of embedded systems is becoming continuously more complex such that the application of efficient high level design methods are crucial for competitive results regarding design time and performance. Recently, advances in Boolean constraint solvers for Answer Set Programming (ASP) allow for easy integration of background theories and more control over the solving process. The goal of this research is to leverage those advances for system level design space exploration while using specialized techniques from electronic design automation that drive new application-originated ideas for multi-objective combinatorial optimization

    Multi-objective co-exploration of source code transformations and design space architectures for low-power embedded systems

    Full text link
    The exploration of the architectural design space in terms of energy and performance is of mainly importance for a broad range of embedded platforms based on the System-On-Chip approach. This paper proposes a methodology for the co-exploration of the design space composed of architec-tural parameters and source program transformations. A heuristic technique based on Pareto Simulated Annealing (PSA) has been used to efficiently span the multi-objective co-design space composed of the product of the parame-ters related to the selected program transformations and the configurable architecture. The analysis of the proposed framework has been carried out for a parameterized super-scalar architecture executing a selected set of benchmarks. The reported results show the effectiveness of the proposed co-exploration with respect to the independent exploration of the transformation and architectural spaces to efficiently derive approximate Pareto curves

    Algorithmic Performance-Accuracy Trade-off in 3D Vision Applications Using HyperMapper

    Get PDF
    In this paper we investigate an emerging application, 3D scene understanding, likely to be significant in the mobile space in the near future. The goal of this exploration is to reduce execution time while meeting our quality of result objectives. In previous work we showed for the first time that it is possible to map this application to power constrained embedded systems, highlighting that decision choices made at the algorithmic design-level have the most impact. As the algorithmic design space is too large to be exhaustively evaluated, we use a previously introduced multi-objective Random Forest Active Learning prediction framework dubbed HyperMapper, to find good algorithmic designs. We show that HyperMapper generalizes on a recent cutting edge 3D scene understanding algorithm and on a modern GPU-based computer architecture. HyperMapper is able to beat an expert human hand-tuning the algorithmic parameters of the class of Computer Vision applications taken under consideration in this paper automatically. In addition, we use crowd-sourcing using a 3D scene understanding Android app to show that the Pareto front obtained on an embedded system can be used to accelerate the same application on all the 83 smart-phones and tablets crowd-sourced with speedups ranging from 2 to over 12.Comment: 10 pages, Keywords: design space exploration, machine learning, computer vision, SLAM, embedded systems, GPU, crowd-sourcin

    Optimization of Discrete-parameter Multiprocessor Systems using a Novel Ergodic Interpolation Technique

    Full text link
    Modern multi-core systems have a large number of design parameters, most of which are discrete-valued, and this number is likely to keep increasing as chip complexity rises. Further, the accurate evaluation of a potential design choice is computationally expensive because it requires detailed cycle-accurate system simulation. If the discrete parameter space can be embedded into a larger continuous parameter space, then continuous space techniques can, in principle, be applied to the system optimization problem. Such continuous space techniques often scale well with the number of parameters. We propose a novel technique for embedding the discrete parameter space into an extended continuous space so that continuous space techniques can be applied to the embedded problem using cycle accurate simulation for evaluating the objective function. This embedding is implemented using simulation-based ergodic interpolation, which, unlike spatial interpolation, produces the interpolated value within a single simulation run irrespective of the number of parameters. We have implemented this interpolation scheme in a cycle-based system simulator. In a characterization study, we observe that the interpolated performance curves are continuous, piece-wise smooth, and have low statistical error. We use the ergodic interpolation-based approach to solve a large multi-core design optimization problem with 31 design parameters. Our results indicate that continuous space optimization using ergodic interpolation-based embedding can be a viable approach for large multi-core design optimization problems.Comment: A short version of this paper will be published in the proceedings of IEEE MASCOTS 2015 conferenc

    AxOCS: Scaling FPGA-based Approximate Operators using Configuration Supersampling

    Full text link
    The rising usage of AI and ML-based processing across application domains has exacerbated the need for low-cost ML implementation, specifically for resource-constrained embedded systems. To this end, approximate computing, an approach that explores the power, performance, area (PPA), and behavioral accuracy (BEHAV) trade-offs, has emerged as a possible solution for implementing embedded machine learning. Due to the predominance of MAC operations in ML, designing platform-specific approximate arithmetic operators forms one of the major research problems in approximate computing. Recently there has been a rising usage of AI/ML-based design space exploration techniques for implementing approximate operators. However, most of these approaches are limited to using ML-based surrogate functions for predicting the PPA and BEHAV impact of a set of related design decisions. While this approach leverages the regression capabilities of ML methods, it does not exploit the more advanced approaches in ML. To this end, we propose AxOCS, a methodology for designing approximate arithmetic operators through ML-based supersampling. Specifically, we present a method to leverage the correlation of PPA and BEHAV metrics across operators of varying bit-widths for generating larger bit-width operators. The proposed approach involves traversing the relatively smaller design space of smaller bit-width operators and employing its associated Design-PPA-BEHAV relationship to generate initial solutions for metaheuristics-based optimization for larger operators. The experimental evaluation of AxOCS for FPGA-optimized approximate operators shows that the proposed approach significantly improves the quality-resulting hypervolume for multi-objective optimization-of 8x8 signed approximate multipliers.Comment: 11 pages, under review with IEEE TCAS-

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore