Modern multi-core systems have a large number of design parameters, most of
which are discrete-valued, and this number is likely to keep increasing as chip
complexity rises. Further, the accurate evaluation of a potential design choice
is computationally expensive because it requires detailed cycle-accurate system
simulation. If the discrete parameter space can be embedded into a larger
continuous parameter space, then continuous space techniques can, in principle,
be applied to the system optimization problem. Such continuous space techniques
often scale well with the number of parameters.
We propose a novel technique for embedding the discrete parameter space into
an extended continuous space so that continuous space techniques can be applied
to the embedded problem using cycle accurate simulation for evaluating the
objective function. This embedding is implemented using simulation-based
ergodic interpolation, which, unlike spatial interpolation, produces the
interpolated value within a single simulation run irrespective of the number of
parameters. We have implemented this interpolation scheme in a cycle-based
system simulator. In a characterization study, we observe that the interpolated
performance curves are continuous, piece-wise smooth, and have low statistical
error. We use the ergodic interpolation-based approach to solve a large
multi-core design optimization problem with 31 design parameters. Our results
indicate that continuous space optimization using ergodic interpolation-based
embedding can be a viable approach for large multi-core design optimization
problems.Comment: A short version of this paper will be published in the proceedings of
IEEE MASCOTS 2015 conferenc