240 research outputs found

    A combined Mixed Integer Programming model of seaside operations arising in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely the Berth Allocation Problem, the Quay Crane Assignment Problem, and the Quay Crane Scheduling problem, which have to be solved to carry out these seaside operations in container ports. Each one of these problems is complex to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence the need to solve them in a combined form. The problem is formulated as a mixed-integer programming model with the objective being to minimise the tardiness of vessels. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX

    An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports

    Get PDF
    This paper puts forward an integrated optimisation model that combines three distinct problems, namely berth allocation, quay crane assignment, and quay crane scheduling that arise in container ports. Each one of these problems is difficult to solve in its own right. However, solving them individually leads almost surely to sub-optimal solutions. Hence, it is desirable to solve them in a combined form. The model is of the mixed-integer programming type with the objective being to minimize the tardiness of vessels and reduce the cost of berthing. Experimental results show that relatively small instances of the proposed model can be solved exactly using CPLEX. Large scale instances, however, can only be solved in reasonable times using heuristics. Here, an implementation of the genetic algorithm is considered. The effectiveness of this implementation is tested against CPLEX on small to medium size instances of the combined model. Larger size instances were also solved with the genetic algorithm, showing that this approach is capable of finding the optimal or near optimal solutions in realistic times

    Disruption Response Support For Inland Waterway Transportation

    Get PDF
    Motivated by the critical role of the inland waterways in the United States\u27 transportation system, this dissertation research focuses on pre- and post- disruption response support when the inland waterway navigation system is disrupted by a natural or manmade event. Following a comprehensive literature review, four research contributions are achieved. The first research contribution formulates and solves a cargo prioritization and terminal allocation problem (CPTAP) that minimizes total value loss of the disrupted barge cargoes on the inland waterway transportation system. It is tailored for maritime transportation stakeholders whose disaster response plans seek to mitigate negative economic and societal impacts. A genetic algorithm (GA)-based heuristic is developed and tested to solve realistically-sized instances of CPTAP. The second research contribution develops and examines a tabu search (TS) heuristic as an improved solution approach to CPTAP. Different from GA\u27s population search approach, the TS heuristic uses the local search to find improved solutions to CPTAP in less computation time. The third research contribution assesses cargo value decreasing rates (CVDRs) through a Value-focused Thinking based methodology. The CVDR is a vital parameter to the general cargo prioritization modeling as well as specifically for the CPTAP model for inland waterways developed here. The fourth research contribution develops a multi-attribute decision model based on the Analytic Hierarchy Process that integrates tangible and intangible factors in prioritizing cargo after an inland waterway disruption. This contribution allows for consideration of subjective, qualitative attributes in addition to the pure quantitative CPTAP approach explored in the first two research contributions

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Models and Solutions Algorithms for Improving Operations in Marine Transportation

    Get PDF
    International seaborne trade rose significantly during the past decades. This created the need to improve efficiency of liner shipping services and marine container terminal operations to meet the growing demand. The objective of this dissertation is to develop simulation and mathematical models that may enhance operations of liner shipping services and marine container terminals, taking into account the main goals of liner shipping companies (e.g., reduce fuel consumption and vessel emissions, ensure on-time arrival to each port of call, provide vessel scheduling strategies that capture sailing time variability, consider variable port handling times, increase profit, etc.) and terminal operators (e.g., decrease turnaround time of vessels, improve terminal productivity without significant capital investments, reduce possible vessel delays and associated penalties, ensure fast recovery in case of natural and man-made disasters, make the terminal competitive, maximize revenues, etc.). This dissertation proposes and models two alternatives for improving operations of marine container terminals: 1) a floaterm concept and 2) a new contractual agreement between terminal operators. The main difference between floaterm and conventional marine container terminals is that in the former case some of import and/or transshipment containers are handled by off-shore quay cranes and placed on container barges, which are further towed by push boats to assigned feeder vessels or floating yard. According to the new collaborative agreement, a dedicated marine container terminal operator can divert some of its vessels for the service at a multi-user terminal during specific time windows. Another part of dissertation focuses on enhancing operations of liner shipping services by introducing the following: 1) a new collaborative agreement between a liner shipping company and terminal operators and 2) a new framework for modeling uncertainty in liner shipping. A new collaborative mechanism assumes that each terminal operator is able to offer a set of handling rates to a liner shipping company, which may result in a substantial total route service cost reduction. The suggested framework for modeling uncertainty is expected to assist liner shipping companies in designing robust vessel schedules

    The multi-port berth allocation problem with speed optimization and emission considerations

    Get PDF
    The container shipping industry faces many interrelated challenges and opportunities, as its role in the global trading system has become increasingly important over the last decades. On the one side, collaboration between port terminals and shipping liners can lead to costs savings and help achieve a sustainable supply chain, and on the other side, the optimization of operations and sailing times leads to reductions in bunker consumption and, thus, to fuel cost and air emissions reductions. To that effect, there is an increasing need to address the integration opportunities and environmental issues related to container shipping through optimization. This paper focuses on the well known Berth Allocation Problem (BAP), an optimization problem assigning berthing times and positions to vessels in container terminals. We introduce a novel mathematical formulation that extends the classical BAP to cover multiple ports in a shipping network under the assumption of strong cooperation between shipping lines and terminals. Speed is optimized on all sailing legs between ports, demonstrating the effect of speed optimization in reducing the total time of the operation, as well as total fuel consumption and emissions. Furthermore, the model implementation shows that an accurate speed discretization can result in far better economic and environmental results

    Barriers to implementing ports energy efficiency and greenhouse gas emission reduction measures: Kenya’s Mombasa Port in consideration

    Get PDF

    An analysis on the optimization of general cargo storage year apace in the comprehensive port: Take the storage yard of DHL in Jungong Lu port as example

    Get PDF
    • …
    corecore