54 research outputs found

    An Archived Multi Objective Simulated Annealing Method to Discover Biclusters in Microarray Data

    Get PDF
    With the advent of microarray technology it has been possible to measure thousands of expression values of genes in a single experiment. Analysis of large scale geonomics data, notably gene expression, has initially focused on clustering methods. Recently, biclustering techniques were proposed for revealing submatrices showing unique patterns. Biclustering or simultaneous clustering of both genes and conditions is challenging particularly for the analysis of high-dimensional gene expression data in information retrieval, knowledge discovery, and data mining. In biclustering of microarray data, several objectives have to be optimized simultaneously and often these objectives are in conflict with each other. A multi objective model is very suitable for solving this problem. Our method proposes a algorithm which is based on multi objective Simulated Annealing for discovering biclusters in gene expression data. Experimental result in bench mark data base present a significant improvement in overlap among biclusters and coverage of elements in gene expression and quality of biclusters

    Fine-grained parallelization of fitness functions in bioinformatics optimization problems: gene selection for cancer classification and biclustering of gene expression data

    Get PDF
    ANTECEDENTES: las metaheurísticas se utilizan ampliamente para resolver grandes problemas de optimización combinatoria en bioinformática debido al enorme conjunto de posibles soluciones. Dos problemas representativos son la selección de genes para la clasificación del cáncer y el agrupamiento de los datos de expresión génica. En la mayoría de los casos, estas metaheurísticas, así como otras técnicas no lineales, aplican una función de adecuación a cada solución posible con una población de tamaño limitado, y ese paso involucra latencias más altas que otras partes de los algoritmos, lo cual es la razón por la cual el tiempo de ejecución de las aplicaciones dependerá principalmente del tiempo de ejecución de la función de aptitud. Además, es habitual encontrar formulaciones aritméticas de punto flotante para las funciones de fitness. De esta manera, una paralelización cuidadosa de estas funciones utilizando la tecnología de hardware reconfigurable acelerará el cálculo, especialmente si se aplican en paralelo a varias soluciones de la población. RESULTADOS: una paralelización de grano fino de dos funciones de aptitud de punto flotante de diferentes complejidades y características involucradas en el biclustering de los datos de expresión génica y la selección de genes para la clasificación del cáncer permitió obtener mayores aceleraciones y cómputos de potencia reducida con respecto a los microprocesadores habituales. CONCLUSIONES: Los resultados muestran mejores rendimientos utilizando tecnología de hardware reconfigurable en lugar de los microprocesadores habituales, en términos de tiempo de consumo y consumo de energía, no solo debido a la paralelización de las operaciones aritméticas, sino también gracias a la evaluación de aptitud concurrente para varios individuos de la población en La metaheurística. Esta es una buena base para crear soluciones aceleradas y de bajo consumo de energía para escenarios informáticos intensivos.BACKGROUND: Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. RESULTS: A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. CONCLUSIONS: The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.• Ministerio de Economía y Competitividad y Fondos FEDER. Contrato TIN2012-30685 (I+D+i) • Gobierno de Extremadura. Ayuda GR15011 para grupos TIC015 • CONICYT/FONDECYT/REGULAR/1160455. Beca para Ricardo Soto Guzmán • CONICYT/FONDECYT/REGULAR/1140897. Beca para Broderick CrawfordpeerReviewe

    Biclustering on expression data: A review

    Get PDF
    Biclustering has become a popular technique for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. Most of biclustering approaches use a measure or cost function that determines the quality of biclusters. In such cases, the development of both a suitable heuristics and a good measure for guiding the search are essential for discovering interesting biclusters in an expression matrix. Nevertheless, not all existing biclustering approaches base their search on evaluation measures for biclusters. There exists a diverse set of biclustering tools that follow different strategies and algorithmic concepts which guide the search towards meaningful results. In this paper we present a extensive survey of biclustering approaches, classifying them into two categories according to whether or not use evaluation metrics within the search method: biclustering algorithms based on evaluation measures and non metric-based biclustering algorithms. In both cases, they have been classified according to the type of meta-heuristics which they are based on.Ministerio de Economía y Competitividad TIN2011-2895

    Dynamic biclustering of microarray data by multi-objective immune optimization

    Get PDF
    Abstract Background Newly microarray technologies yield large-scale datasets. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. Systematic analysis of those datasets provides the increasing amount of information, which is urgently needed in the post-genomic era. Biclustering, which is a technique developed to allow simultaneous clustering of rows and columns of a dataset, might be useful to extract more accurate information from those datasets. Biclustering requires the optimization of two conflicting objectives (residue and volume), and a multi-objective artificial immune system capable of performing a multi-population search. As a heuristic search technique, artificial immune systems (AISs) can be considered a new computational paradigm inspired by the immunological system of vertebrates and designed to solve a wide range of optimization problems. During biclustering several objectives in conflict with each other have to be optimized simultaneously, so multi-objective optimization model is suitable for solving biclustering problem. Results Based on dynamic population, this paper proposes a novel dynamic multi-objective immune optimization biclustering (DMOIOB) algorithm to mine coherent patterns from microarray data. Experimental results on two common and public datasets of gene expression profiles show that our approach can effectively find significant localized structures related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The mined patterns present a significant biological relevance in terms of related biological processes, components and molecular functions in a species-independent manner. Conclusions The proposed DMOIOB algorithm is an efficient tool to analyze large microarray datasets. It achieves a good diversity and rapid convergence

    An effective measure for assessing the quality of biclusters

    Get PDF
    Biclustering is becoming a popular technique for the study of gene expression data. This is mainly due to the capability of biclustering to address the data using various dimensions simultaneously, as opposed to clustering, which can use only one dimension at the time. Different heuristics have been proposed in order to discover interesting biclusters in data. Such heuristics have one common characteristic: they are guided by a measure that determines the quality of biclusters. It follows that defining such a measure is probably the most important aspect. One of the popular quality measure is the mean squared residue (MSR). However, it has been proven that MSR fails at identifying some kind of patterns. This motivates us to introduce a novel measure, called virtual error (VE), that overcomes this limitation. Results obtained by using VE confirm that it can identify interesting patterns that could not be found by MSR

    Configurable Pattern-based Evolutionary Biclustering of Gene Expression Data

    Get PDF
    BACKGROUND: Biclustering algorithms for microarray data aim at discovering functionally related gene sets under different subsets of experimental conditions. Due to the problem complexity and the characteristics of microarray datasets, heuristic searches are usually used instead of exhaustive algorithms. Also, the comparison among different techniques is still a challenge. The obtained results vary in relevant features such as the number of genes or conditions, which makes it difficult to carry out a fair comparison. Moreover, existing approaches do not allow the user to specify any preferences on these properties. RESULTS: Here, we present the first biclustering algorithm in which it is possible to particularize several biclusters features in terms of different objectives. This can be done by tuning the specified features in the algorithm or also by incorporating new objectives into the search. Furthermore, our approach bases the bicluster evaluation in the use of expression patterns, being able to recognize both shifting and scaling patterns either simultaneously or not. Evolutionary computation has been chosen as the search strategy, naming thus our proposal Evo-Bexpa (Evolutionary Biclustering based in Expression Patterns). CONCLUSIONS: We have conducted experiments on both synthetic and real datasets demonstrating Evo-Bexpa abilities to obtain meaningful biclusters. Synthetic experiments have been designed in order to compare Evo-Bexpa performance with other approaches when looking for perfect patterns. Experiments with four different real datasets also confirm the proper performing of our algorithm, whose results have been biologically validated through Gene Ontology

    Clustering Algorithms: Their Application to Gene Expression Data

    Get PDF
    Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and iden-tify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure
    corecore