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Biclustering is becoming a popular technique for the study of gene expression data. This is mainly due

to the capability of biclustering to address the data using various dimensions simultaneously, as

opposed to clustering, which can use only one dimension at the time. Different heuristics have been

proposed in order to discover interesting biclusters in data. Such heuristics have one common

characteristic: they are guided by a measure that determines the quality of biclusters. It follows that

defining such a measure is probably the most important aspect. One of the popular quality measure is

the mean squared residue (MSR). However, it has been proven that MSR fails at identifying some kind of

patterns. This motivates us to introduce a novel measure, called virtual error (VE), that overcomes this

limitation. Results obtained by using VE confirm that it can identify interesting patterns that could not

be found by MSR.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Microarray techniques allow to simultaneously measure the
expression level of thousands of genes under different experi-
mental conditions, producing in this way a huge amount of data.
Microarray data is widely used in genomic research, and is
usually organized in matrices. In such matrices, rows and col-
umns may represent, for instance, experimental conditions and
genes, respectively. Thus, an element of such expression matrix
stands for the expression level of a given gene under a specific
experimental condition.

Different techniques have been used in order to extract
information from expression matrices. Among these, clustering
has been widely used, with the main goal of finding groups of
genes that present a similar variation of expression level under all
the experimental conditions [1]. However, relevant genes are not
necessarily related to every condition. In other words, genes might
be relevant only for a subset of experimental conditions [2]. Thus,
clustering should be performed not only on one dimension (genes)
but on two dimensions (genes and conditions) simultaneously.

For this reason, biclustering techniques [3] are becoming
popular due to the ability of simultaneously grouping both genes
and conditions. The first approach applied to microarray analysis
was proposed by Cheng and Church [4]. Biclustering bases its
essential principle on clustering, from which differs in two main
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aspects. Considering a microarray of gene expression data, a
typical clustering technique would build a set of clusters, where
each gene belongs exactly to one single cluster. Nevertheless,
many genes may be grouped into diverse clusters (or none of
them) depending on their participation in different biological
processes within the cell [5]. Another difference is found in the
fact that biclustering aims at identifying genes that are co-
expressed under a subsets of conditions. This is essential for
numerous biological problems, such as the analysis of genes
contributing to certain diseases [2], assigning biological function-
alities to genes or when the conditions of a microarray are diverse.

Finding significant biclusters in a microarray has been proven
to be a NP-hard problem [6] and much more complex than
clustering [7]. Consequently, many of the proposed techniques
are based on optimization procedures as the search heuristic. The
development of a suitable heuristic is a critical factor for dis-
covering interesting biclusters in an expression matrix. In order to
guide a search heuristic, it is essential to define a measure or cost
function for establishing the quality of bicluster. The use of a
suitable measure is a key factor, as it determines the effectiveness
of the heuristic. Moreover, such a measure can be used for
comparing the performances of different search strategies.

As already stated, Cheng and Church [4] were the first in
applying biclustering to microarray data. Their proposal was based
on a greedy search heuristic based on a cost function, called mean

squared residue (henceforth MSR). MSR measures the numerical
coherence among the genes in a bicluster. Cheng and Church
maximize the volume with an upper bound on MSR, since MSR tends
to decrease as volume of bicluster increases. MSR has also been used
as part of the cost function in some other works. Gremalschi and
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Altun [8] proposed the opposite strategy to Cheng and Church that is
to minimize MSR with a lower bound on volume of bicluster. In [9],
the authors developed an iterative algorithm for finding a prede-
fined number of biclusters. Bryan et al. [10] applied in their work a
simulated annealing heuristic. A greedy strategy was proposed in
[11], where the search starts from seed generated with the k-means
clustering algorithm. Similar strategies were proposed in [12] and in
[13], where a particle swap optimization (PSO) technique was used
to refine the initial biclusters. A multi-objective PSO approach was
proposed by Liu et al. [14], and in another work [15] they proposed a
multiple objective ant colony optimization algorithm. An approach
based on evolutionary computation was proposed by Divina and
Aguilar [7] and Bleuler et al. [16], while other authors [17] based
their proposal on fuzzy technology and spectral clustering.

Other biclustering approaches, which are not based on MSR,
include the proposal by Tanay et al. [6], based on the use of
bipartite graphs and probabilistic techniques. Sheng et al. [18]
introduced the use of Gibbs sampling for finding biclusters.
Carmona-Saez et al. [19] presented a new data mining technique,
based on matrix factorization. Madeira and Oliveira [20] found all
relevant biclusters in linear time on the size of the microarray.
Ayadi et al. [21] proposed an enumeration algorithm which uses a
tree structure to represent different biclusters discovered during
the enumeration process. The same authors also proposed a hill
climbing strategy [22]. Bicego et al. [23] rely on a probabilistic
model, called topic model, to detect groups of highly correlated
genes and conditions. Liu and Wang [24] developed a polynomial
time algorithm, which searched for optimal biclusters with the
maximum similarity score. Finally, Hanczar and Nadif [25,26] try
to improve the performances of biclustering algorithms by using
the ensemble approach.

Even if MSR has been used in many proposals for finding
biclusters, it nevertheless presents some drawbacks that will be
discussed in the next section. In this paper, we propose a
measure, called virtual error (henceforth VE), as a novel cost
function for evaluating biclusters based on the concept of beha-
vioural pattern. Gene correlation in a bicluster can be represented
by two distinct kind of patterns: shifting and scaling, being both
of them formally described by Aguilar [27]. Taking into account
the concept of pattern, it is possible to focus the analysis of
expression data on the general behaviour that genes exhibit
under subsets of conditions, instead of grouping genes with
similar expression values. Shifting patterns represent groups of
genes following exactly the same trends, i.e., parallel behaviour,
but in different range of values. Scaling patterns represent genes
in a bicluster fluctuating in unison, without presenting the same
differences through the conditions, although conserving a multi-
plicative factor.

In order to test the effectiveness of VE, we incorporated it in a
multi-objective evolutionary biclustering algorithm. Experiments
show that VE yields the algorithm at finding interesting biclus-
ters, confirming the validity of our proposal.

This paper is organized as follows. In the next section, we
present the main motivations for this work. In Section 3 an
analysis of the shifting and scaling patterns is given; we then
provide a formal definition of VE in Section 4, followed by a
description of the algorithm used in the experiments in Section 5.
In Section 6 experimental results obtained from different datasets
are presented and discussed. Finally, in Section 7, we summarize
the main conclusions.
2. Motivation

Let, from now on, B be a bicluster containing I conditions and J

genes, and let bij denote the elements of B, where 1r ir I and
1r jr J. Then B can be represented as follows:

B¼

b11 b12 � � � b1J

b21 b22 � � � b2J

^ ^ & ^

bI1 bI2 � � � bIJ

0
BBBB@

1
CCCCA

where rows are relative to conditions and columns to genes.
The MSR of a bicluster B is then given by Eq. (1)

MSRðBÞ ¼ 1

I � J

XI

i ¼ 1

XJ

j ¼ 1

ðbij�mci
�mgj
þmBÞ

2
ð1Þ

where mci
and mgj

are the means of ith row (condition ci) and jth
column (gene gj), respectively; and mB is the mean of the whole
bicluster.

The lower the MSR, the better the numerical coherence among
the genes is and, therefore, the better the quality of a bicluster
seems to be. Thus, when the genes of a bicluster B show exactly
the same shape, with the only difference that they started with
different initial values, then the MSR of B is equal to 0 [27].

Nevertheless, biclusters with constant genes, i.e., that present
a flat behaviour across all the experimental conditions, will also
have MSR equal to 0. The same holds for a bicluster containing
only one gene or condition. Thus, MSR equals to 0 does not always
identify a good bicluster. Other measures, such as the volume and
the gene variance of biclusters may be used in combination to the
MSR, in order to reject trivial biclusters.

The volume is the number of rows multiplied by the number of
columns ðI � JÞ, and the gene variance of a bicluster B is given in Eq. (2)

varB ¼
1

I � J

XI

i ¼ 1

XJ

j ¼ 1

ðbij�mgj
Þ
2

ð2Þ

If a bicluster presents a high gene variance, it means that its genes
exhibit fluctuating trends under the same subset of conditions.

From the above considerations, it becomes evident that a
criterion needs to be used in order to establish when the MSR of
a bicluster can be considered low. In [4] a user parameter,
denoted as d, is used as threshold: biclusters with MSR higher
than d are rejected. Before applying biclustering, d needs to be
independently set for each dataset [28].

MSR has been proven to be inefficient for finding some kind of
biclusters in microarray data, especially when they present strong
scaling tendencies. In [27] an in-depth analysis on the conse-
quences of using MSR as a quality measure for searching biclus-
ters is proposed. One of the main conclusions is that MSR is not
capable of assessing the quality of biclusters containing shifting
trends, as shifting behaviour does not affect the MSR. Moreover,
scaling patterns have an undesirable effect for evaluating biclus-
ters: small scaling variations in data lead to great increases of
MSR. Therefore, good biclusters may have a score greater than d.

Fig. 1 shows an example of a bicluster discovered in the
Human B-cells dataset [29]. This is a typical visualization of
bicluster, where conditions are represented in the X-axis, the
values of gene expression are represented in the Y-axis and each
line is a gene. Cheng and Church [4] set d to 1200 for this dataset.
From a visual inspection of the bicluster, it can be seen that it is a
quality bicluster, since the genes are highly co-expressed, pre-
senting strong scaling trends. Nevertheless, the MSR for this
example is 3470.15, almost three times the value of d.

These observations motivate us to propose a novel approach
for evaluating biclusters, taking into account the scaling beha-
viour inherent to gene data. This behaviour is more difficult to
detect than the shifting one, but it is more probable in nature.
Being able to find biclusters containing also scaling patterns
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would be essential to help scientists obtain relevant information
for numerous biological problems.
3. Patterns

The concepts of shifting pattern and scaling pattern were
formally defined by Aguilar [27]. The main idea is that the
expression values of the genes included in a bicluster have
common components. These concepts are essential to understand
the foundations of our approach VE.

Genes in a bicluster might present either one of these patterns
or both of them simultaneously. In the following we provide
formal definitions for the concepts of patterns, and provide some
examples that helps to clarifying these concepts.
Fig. 1. Example of a quality bicluster with MSR¼ 3470:15.

Fig. 2. Graphical representation of a biclust
3.1. Shifting pattern

Let us suppose each gene gj (jth column) of the bicluster B has
a typical value pj, and that the expression values bij may be
obtained by adding to pj a value bij. Then, we can write any
expression value as bij ¼ pjþbij. If for each condition ci (ith row)
these values bij are the same for all genes, then we can express
them as bi. We name bi shifting coefficient for the ith condition.

So we can express bij as

bij ¼ pjþbi ð3Þ

When the expression values of a bicluster fulfil Eq. (3), such
bicluster follows a perfect shifting pattern. Graphically, a perfect
shifting pattern gives a parallel behaviour of the genes. Fig. 2
illustrates an example of bicluster presenting a perfect shifting
pattern. This bicluster contains four genes gj (with 1r jr4) and
five conditions ci (with 1r ir5). Below the graphic, the expres-
sion values (matrix on the left) are provided next to the typical
pattern values ðpjÞ and shifting coefficients ðbiÞ. As we can
observe, pj is constant for each gene (column), while the shifting
coefficient bi is constant for each condition (row). Furthermore, if
we compute the MSR for the bicluster in Fig. 2, we can see that it
is equal to 0.

3.2. Scaling pattern

As we discussed before, it is likely to find genes that follows a
shifting pattern. Nevertheless, it is also interesting to discover
genes that have the same behaviour, but not with the same scale.
In the shifting case, the adjustment for condition ci is obtained in
an additive way. For the scaling pattern, this adjustment is
obtained in multiplicative way. In this case, let us suppose the
expression values bij can be obtained by multiplying pj by a
constant value for each condition ci. We name such value as
scaling coefficient and denote it by ai. In such a case, a bicluster
er containing a perfect shifting pattern.
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shows a perfect scaling pattern when the values bij can be obtained
by applying Eq. (4)

bij ¼ pj � ai ð4Þ

In Fig. 3, an example of perfect scaling pattern is displayed. The
bicluster contains four genes and five conditions. The expression
values are also provided next to the pattern typical values and
scaling coefficients, pj and ai, respectively. In this case, the genes
do not follow a parallel tendency. Although the genes present the
same behaviour with regard to the regulation, changes are more
abrupt for some genes than for others.

In this case, the MSR for the bicluster in Fig. 3 is 423.98. It is a
very high value, taking into account that the bicluster is very
small. Thus, the scaling pattern leads to great increase of MSR.

3.3. Combined pattern: shifting and scaling

A bicluster may include some of the aforementioned patterns
or even both of them, shifting and scaling, at the same time. In
fact, it is the most probable case when real data are used. When
both kind of patterns are included simultaneously, we say that
the bicluster contains a combined pattern. In such a case, the
expression value of the gene gj and the condition ci is calculated
by multiplying and adding the scaling and shifting coefficients to
the typical value pj, respectively. Thus, we can obtain the
following expression by combining Eqs. (3) and (4):

bij ¼ pj � aiþbi ð5Þ

Observe the example given in Fig. 4. This bicluster includes
simultaneously the perfect patterns shown in Figs. 2 and 3,
keeping the same scaling and shifting coefficients. Nevertheless,
to visually identify that this bicluster follows a combined pattern
is more difficult to find a single shifting or scaling pattern, since
the effects of one has influence on the other.
Fig. 3. Graphical representation of a biclust
At first sight, genes g1, g3 and g4 have similar behaviour,
although g4 differs for the last condition. However, gene g2 seems
independent of the other genes, since it has ascending tendency
across every conditions, while the other genes presents a fluctu-
ating behaviour. This fact happens when the shifting coefficients
bi are of the same magnitude that pj � ai. Note this aspect by
observing the second column (gene g2) of the matrix. It is also
interesting that the shifting causes the genes g1, g2 and g3 to
significantly change for the last condition with regard to Fig. 3.
Observe that the shifting coefficient for this condition (fifth row of
the matrix), that is 83, has the same magnitude that pj � ai for
such genes. Therefore, when a bicluster includes shifting and
scaling patterns simultaneously, identifying it as a good bicluster
is a difficult task [30].

Regarding the MSR for the bicluster in Fig. 4, it is equal to
423.98 that is the same value than the scaling pattern case
(Fig. 3). This fact reasserts that shifting behaviour does not affect
the MSR and, furthermore, good biclusters may have a high
MSR score.
4. Virtual error

In this section, we propose a new cost function, called virtual

error (VE), for establishing the quality of biclusters. The basic idea
behind VE is to measure how genes follow the general tendency
within the bicluster. This is because if all the genes of a bicluster
follow the same tendency under a given set of conditions, then it
means that they are activated/deactivated under the same experi-
mental conditions. If follows that such a bicluster may be
potentially biologically interesting.

In order to catch the general tendency of the genes across the
conditions contained in the bicluster, we first calculate a new
er containing a perfect scaling pattern.



Fig. 4. Graphical representation of a bicluster containing perfect shifting and scaling patterns.

1 Appendix A states two theorems and their corresponding proofs demon-

strating that VE is zero when a bicluster follows a shifting or scaling pattern.
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column from the genes of the bicluster, called virtual pattern,
defined as follows:

Definition 1 (virtual pattern). Given a bicluster B, we define its
virtual pattern r as the set of elements r¼ fr1,r2, . . . ,rIg, where
ri, 1r ir I, is defined as the mean of the ith row:

ri ¼
1

J

XJ

j ¼ 1

bij ð6Þ

Each of the points of the virtual pattern represents the average
value for all genes under a specific condition. Thus, if we
graphically represent this values next to the real genes, the virtual
pattern symbolizes the common tendency of the set of genes for
the given bicluster.

Once the virtual pattern r has been computed, we can assess
how well a specific gene gj of the bicluster follows the general
tendency. In order to do this, we compute the differences
between the expression level values of gj and the values of r for
each experimental condition of the bicluster.

However, computing such differences using the original
expression values can yield to a misclassification of the bicluster.
In fact, the range of values of the expression values of the genes
may be very far from each other. In order to remove or minimize
these range differences, we will use the standardized gene
expression values. In general, given a set of values V ¼ fv1,
v2, . . . ,vNg, the standardization of V, that we denote as V̂ , is the
set V̂ ¼ fv̂1,v̂2, . . . ,v̂Ng with v̂k ¼ ððvk�mV Þ=sV Þ (for 1rkrN),
where mV and sV are the mean and the standard deviation of
the elements of V, respectively. By using this numerical transfor-
mation, we standardize the expression values of every gene,
including the virtual pattern. In this way, we scale the values to
a common range.
We now define VE as the average value of all the differences
between the standardized expression values and the standardized
virtual pattern:

Definition 2 (virtual error). The virtual error of a bicluster B,
denoted by VEðBÞ, is defined as

VEðBÞ ¼ 1

I � J

XI

i ¼ 1

XJ

j ¼ 1

9b̂ij�r̂i 9 ð7Þ

where b̂ij is the standardized expression value of the element
bijAB, and r̂ i is the standardized value of the element ri in the
virtual pattern r.

VE computes the differences between the real genes and the
virtual pattern, once they have been standardized. Therefore, the
more similar the genes are, the lower the value for VE. In fact, if a
bicluster follows a perfect shifting or scaling, VE is zero.1 It
follows that the lower the VE the better the bicluster.

A diagram on how VE is computed for any input bicluster is
shown in Fig. 5. The whole process is comprised by four different
steps: calculation of the virtual pattern, standardization of both
the virtual pattern and the whole bicluster, and finally VE is given
by the average of the differences between every standardized
gene component and its corresponding standardized pattern
element.

The smoothing effect of the standardization is clear in Fig. 6(b),
where the range of values in the y-axis is significatively narrower
than the original one shown in Fig. 6(a).

The bicluster in the example has a VE of 0.21, i.e., near to zero.
This result shows that the genes follow a very similar behaviour
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across the conditions, as Fig. 6(a) confirms. Therefore, this low
value of VE indicates the good quality of the bicluster.

In general, we can conclude that VE is robust when a bicluster
follows a shifting or scaling pattern since, in these cases, the value
of VE is equals to zero. The same does not hold as far as MSR is
concerned. In fact, it is true that when a bicluster presents a
shifting pattern, its MSR is equals to zero. However, the MSR of a
bicluster is not zero when the bicluster follows a perfect scaling
pattern [27]. This is due to the fact that MSR is very sensitive to
this kind of patterns, as shown in Section 3.2. This property
Fig. 5. Virtual error computation diagram.

Fig. 6. Example to illustrate the virtual error. (a) Bicluster and the virtual p
demonstrates the effectiveness of the VE measure with respect to
MSR.
5. Multi-objective evolutionary biclustering algorithm

In the previous section, VE was introduced as a quality
measures that can be used to guide an optimization heuristic in
order to discover biclusters in an expression matrix. However, the
problem cannot be addressed by only optimizing the VE of
biclusters. In fact, this approach may lead to the discovery of
uninteresting biclusters. For instance, flat biclusters will have a
low value of VE, or, again, biclusters containing few genes and
conditions will typically have lower values of VE, if compared to
biclusters characterized by higher volume. The same hold for the
MSR. This is because the more genes or conditions are contained in
a bicluster, the less likely the genes are to follow the same
behaviour. Such biclusters are not very interesting, and, in order
to solve this issue, other properties of the biclusters are usually
optimized, e.g., the volume.

In particular, we are interested in finding biclusters with high
volume, good quality (being quality measured by an appropriate
metric such as VE or MSR) and relatively high gene variance. Thus,
we can individuate at least three objectives to be optimized and
these objectives are usually in conflict with each other.

For this reason, the problem of finding biclusters in an
expression matrix can be straightforwardly seen as a multi-
objective problem. Moreover, by addressing this problem as a
multi-objective problem, it is not necessary to combine all the
objectives into single cost function, which might become compli-
cated, especially when both maximization and minimization are
involved. Finding a way to combine the objectives in a single
function can be problematic, and may require more parameters to
set [31].

For these reasons, we incorporate VE into a multi-objective
heuristic. In this section, before describing the algorithm used in
this paper, we first provide a brief introduction to multi-objective
optimization.

5.1. Multi-objective optimization

In a multi-objective optimization problem (MOP) [32], several
objectives are to be optimized simultaneously. Often, these
objectives are in conflict with each other. It becomes then difficult
attern. (b) Standardized bicluster and the standardized virtual pattern.
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to solve such problems, especially if all objectives are combined
into a single objective to be optimized.

A solution to a MOP problem can be described by an decision

vector ðx1, x2, . . . ,xmÞ in the decision space X. A function f : X-Y

evaluates the quality of a specific solution, by assigning it an
objective vector ðy1, y2, . . . ,ynÞ in the objective space Y. For
instance, in the problem of finding biclusters, a decision vector
could specify which genes and conditions belong to a bicluster,
while the relative objective vector may specify the VE and volume
of the bicluster.

If there was only one objective to be optimized, then assessing
if a solution is better than another would be trivial. For instance, if
the objective was to be maximize, then a solution x1AX would be
better than x2AX is f ðx1Þ4 f ðx2Þ, or equivalently if y14y2 ðy1,
y2AYÞ. In this case, there exists only a single optimum in the
objective space.

If the objectives to be optimized are more than one, evaluating
if x1 is better than x2 is more complex. Following the well known
concept of Pareto dominance [33], we say that an objective vector
y1 dominates y2 if no component of y1 is worse than any
component of y2 and at least one component of y1 is better than
y2. We can then say that a solution x1 is better than x2 if y1

dominates y2. We then say that x1 dominates x2. In contrast with
single objective problems, with multiple objectives, there exist
several optimal objective vectors representing different trade-off
between all the objectives. The set of optimal solution in the
decision space is called Pareto set, and its image in the objective
space is called the Pareto front.

Evolutionary algorithms (EAs) are particularly suited for sol-
ving MOPs [33–35]. In fact they can approximate the Pareto front
in a single optimization run. This is due to the ability of EAs to
deal with a set of solutions simultaneously, and to exploit
similarities among solutions by means of genetic operators.
Moreover, EAs are less influenced by the shape of the Pareto
front than other search techniques.
5.2. Sequential multi-objective biclustering

In this section we will give a brief description of the algorithm
used in this paper. The algorithm is called SMOB (for sequential
multi-objective biclustering). For a more detailed description of
SMOB, we refer the reader to [36].

We individuate four objectives that are to be optimized: MSR,
VE, the gene variance and the volume of the biclusters. However,
as it will be described in Section 6, we will use three different
settings of the algorithm, where only three objectives will be
optimized at a time. The objectives that will always be considered
are the volume and the gene variance.

SMOB adopts a sequential covering strategy. A MOEA is called n

times, and each time a bicluster is returned. The returned
bicluster is stored in a list L that contains all the biclusters found
so far. When MSR is used as an objective, the returned bicluster is
Table 1
Datasets used in the experimentation.

Dataset Name

Yeast Yeast Saccharomyces cerevisiae cell cycle

Human Human B-cells

Colon Colon cancer

Malaria Malaria Plasmodium parasites life cycle

Embryonal Embryonal tumours of the central nervous system

Leukemia Leukemia

RatCNS Rat central nervous system

Steminal Steminal cells

PBM Peripheral blood monocytes
stored in the list only if its MSR is lower than the threshold d. In
order to avoid overlapping among biclusters, we associated a
weight wðeijÞwith each element eij of the expression matrix. These
weights are adjusted right after a bicluster is returned. wðeijÞ is
equal to the number of biclusters stored in L that contain eij.
When evaluating a bicluster the weights of its elements are used
in order to penalize biclusters overlapping with elements of L, as
it will be explained in the following. Notice that the sequential
coverage strategy adopted is such that the order in which
biclusters are discovered does not reflect their quality nor their
biological relevance.

Each individual encodes a single bicluster. The encoding of
biclusters is the one proposed in [7,37], where bit strings are
evolved.

Tournament selection is used, and selected individuals
undergo crossover and mutation. Elitism is applied by letting
the non-dominated individuals survive to the next generation.
The way individuals are evaluated differs slightly from [36]. In
fact, the version of SMOB used in this paper adopts a strategy
similar to NSGA [38]. Individuals are divided into different non-
dominated fronts, and individuals belonging to the same front
have the same starting fitness rank(x). For instance, a non-
dominated individual x1 will have rankðx1Þ ¼ 0.

The fitness of an individual x is then defined as

f ðxÞ ¼ rankðxÞþshðxÞþPðxÞ ð8Þ

where sh(x) is the phenotypic sharing [39] and PðxÞ ¼ 1�ðVðxÞ�P
i,jAxwðeijÞÞ=VðxÞ, where V(x) is the volume of x. In our imple-

mentation sh(x) is the minimal euclidian distance, computed on

the objectives to the other individuals. Thus, 8yax : shðxÞ ¼

minð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1ðxi�yiÞ
2

q
Þ, where n is the number of objectives, y is

an individual, and xi,yi are the objectives used.
As mentioned earlier in this section, P(x) is used in order to

avoid overlapping among biclusters. From the definition of P(x), it
follows that if a bicluster has low volume and it covers elements
of the expression matrix that are already contained in many
biclusters already found, P(x) will be high. On the other hand, if
the bicluster has a high volume and it overlaps with few
biclusters, the penalty will be lower. If the bicluster x does not
overlap with any bicluster then P(x) is zero.
6. Experiments

In order to assess the validity our proposal, we conduct
experiments on nine datasets shown in Table 1. The embryonal
dataset was preprocessed as in [28], where each entry of the
original dataset was substituted by its normalized value between
0 and 600. All the other datasets were preprocessed as in [4]. The
most important preprocessing operation regards missing values.
They are replaced with random values, although it is known the
existing risk that these random numbers can affect the discovery
# Genes # Conditions Ref.

2884 17 [41]

4026 96 [29]

2000 62 [41]

3719 16 [42]

7129 60 [43]

7129 72 [44]

112 9 [45]

26,127 30 [46]

2329 139 [47]
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of biclusters [40]. The expectation was that these random values
would not form recognizable patterns.

The aim of the experimentation is to assess the validity of
VE as a quality measure. In particular, we aim to test whether
VE can yield the discovery of biclusters characterized by higher
gene variance and volume. Moreover, we are interested in
comparing the results achieved by using VE as a measure of the
quality of a bicluster against the results obtained when MSR is
used. In order to do this, we compare the algorithm described in
Section 5.2 against a version that uses as an objective MSR instead
of VE. Another point we want to test, is whether the use of a too
low threshold d may prevent the algorithm from finding inter-
esting biclusters, since the search is limited to biclusters with
MSR lower than d.

In the experimentation, we use three settings of the algorithm,
that differ for the objectives subject of optimization:
�

Ta

Va

D

Y

H

C

M

E

L

R

S

P

SMOB-d. In this setting the objectives are: volume, gene
variance and MSR, with d shown in the second column of
Table 2.

�
 SMOB-VE. In this setting the objectives are: volume, gene

variance and VE.

�

Table 4
Average MSR obtained on each dataset.

Dataset MSR
SMOB-D. In this setting the objectives are: volume, gene
variance and MSR, with d shown in the third column of Table 2.

In both SMOB-d and SMOB-D, if the algorithm returns a biclus-
ter whose MSR is higher than d, such bicluster is rejected. As it can
be noticed, the only difference between settings SMOB-D and
SMOB-d lies in the value used for the threshold d. SMOB-D was
included for testing the limitations, in terms of biclusters found,
that the use of a low d can impose on an algorithm.

In order to perform a fair comparison, we use the same
parameter setting in all the versions of the algorithm. This setting
is given in Table 3. The values of these parameters were obtained
after a number of preliminary runs aimed at testing different
parameter settings.

The values of d used in SMOB-d on the human and the yeast
dataset were taken from [4], while for the other datasets they
were established using a procedure suggested in [4]. The values of
d used in SMOB-D were determined as follows. For each dataset,
ble 2

lues of d used in the settings SMOB-d and SMOB-D.

ataset d for SMOB-d d for SMOB-D

east 300 3400

uman 1200 23,000

olon 500 3300

alaria 600 19,000

mbryonal 1800 10,000

eukemia 1800 23,130,700

atCNS 5 11

teminal 10 130

BM 0.3 1.3

Table 3
Parameter settings for the algorithm.

Parameter Value

Generations 100

Population size 200

Crossover probability 0.85

Mutation probability 0.2

Tournament size 4
we first run the experiments with SMOB–VE. We calculated the
MSR of all the bicluster found, and then we selected the highest as
d to be used in SMOB-D. In this way we can test whether the use of
d prevented SMOB-d from discovering some interesting biclusters,
only because their MSR was higher than the used d. Therefore,
SMOB-D could obtain similar biclusters to those produced by
SMOB–VE guaranteeing in this way a fair comparison.

On each dataset, we obtained 100 biclusters for each setting of
the algorithm. The average MSR and VE are reported in
Tables 4 and 5, respectively. Table 6 reports both the average
gene variance and the average volume.

Standard deviation is reported next to each result. In order to
test the statistical significance of the results, we applied Student’s
T-test of difference of means with confidence level of 1%. In the
tables, a minus (plus) symbol next to a result indicates that the
average is statistically significantly lower (higher) than the
average obtained by SMOB–VE on a given dataset. So, for instance,
the average MSR obtained by SMOB-d on the yeast dataset is
significantly lower than the average MSR obtained by SMOB–VE.

In order to present the results in a clearer way, we have not
included in the tables information about the statistically signifi-
cance of the differences of results obtained by SMOB-d and
SMOB-D. However, we can say that in Table 4, all the results
obtained by SMOB-D, but the results obtained on the RatCNS
datasets, are significantly higher than those obtained by SMOB-d.
The average VE of biclusters obtained by SMOB-D is significantly
higher than those obtained by SMOB-d on five datasets, and in
particular on the yeast, human, colon, malaria and the leukemia
dataset. As far as the gene variance is concerned, SMOB-D obtained
significantly higher results on all the datasets but the RatCNS
dataset. The average volume characterizing biclusters found by
SMOB-D is significantly higher on five datasets: yeast, human,
colon, malaria and leukemia.

As it can be noticed from Table 4, SMOB-d obtains the lowest
values of MSR. This result was expected, since MSR is one of the
SMOB–VE SMOB-d SMOB-D

Yeast 1419:67513:8 272:0724:9 � 1062:07274:8 �

Human 16441:173323:2 1103:5786:7 � 10742:572321:3 �

Colon 2491:07408:9 455:2745:5 � 2107:27306:3 �

Malaria 14456:172227:3 449:77174:6 � 12095:52298:1 �

Embryonal 1506:071932:6 398:27344:2 � 802:9771243:1 �

Leukemia 81:0e5745:0e5 1533:17169:2 � 49:2e5729:3e5 �

RatCNS 3:4372:6 1:6371:3 � 2:1772:0 �

Steminal 43:87737:2 4:0772:1 � 13:13712:9 �

PBM 0:4770:1 0:1970:1 � 0:3070:1 �

Table 5
Average VE obtained on each dataset.

Dataset VE

SMOB–VE SMOB-d SMOB-D

Yeast 0:8370:05 0:7370:08 � 0:8670:05 þ

Human 0:9070:04 0:8270:07 � 0:9270:04 þ

Colon 0:5370:04 0:3370:07 � 0:5370:03

Malaria 0:7370:06 0:4870:18 � 0:7570:05 þ

Embryonal 0:7070:08 0:8870:07 þ 0:8970:08 þ

Leukemia 0:8270:08 0:7270:09 � 0:9570:06 þ

RatCNS 0:5870:18 0:7170:17 þ 0:7370:18 þ

Steminal 0:7070:10 0:9870:10 þ 1:070:10 þ

PBM 0:2870:10 0:3470:10 þ 0:3570:10 þ
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objective subject to optimization in SMOB-d. Moreover, in this
setting a small threshold is used in order to reject biclusters.
However, when this threshold is relaxed, as in SMOB-D the
average MSR of the biclusters obtained by SMOB–VE is compar-
able, even if slightly higher in general. The fact that the MSR ob-
tained by SMOB-D is lower than that obtained by SMOB–VE is due
to the fact that SMOB-D considers the MSR as an objective to be
optimized, whilst SMOB–VE does not. Moreover, the results
obtained by SMOB-D are in general significantly higher than those
obtained by SMOB-d. Only on the RatCNS dataset the two algo-
rithms obtain an average MSR that is not statistically significant.
This result shows that a too low threshold restrict the search
performed by the algorithm too tightly. This fact can be clearly
seen by inspecting Table 6. This table presents on the left part the
average row variance and on the right part the average volume
obtained on the 100 biclusters found for each dataset. We can
notice that SMOB-D obtains biclusters characterized by higher
gene variance and volume than those discovered by SMOB-d.

As Table 5 shows, SMOB-d obtained the lowest values of VE on
five datasets. This may seem odd, since SMOB-d does not consider
VE as an objective to be optimized. Nevertheless, this is explained
by the fact that low values of MSR correspond to low values of VE.
Moreover, in SMOB-d a low threshold was used to limit the values
of MSR. This kind of threshold is not used in SMOB–VE. Notice that
VE is not the only objective being optimized by SMOB–VE, being
the other ones the volume and the gene variance. This fact, in
combination with the above considerations, explains why the
values of VE obtained by SMOB–VE are, on average, higher than
those obtained by SMOB-d. It is worth to note that when the
threshold d is relaxed, the results obtained by SMOB–VE are
significantly better than those provided by SMOB-D.

Due to the presence of shifting patterns in biclusters with low
MSR, low values of MSR correspond to very low values of VE.
However, the opposite is not true, i.e., low values of VE do not
correspond to low values of MSR. This is explained by the presence
of scaling patterns, which do not affect VE, but have the effect of
remarkably increasing the values of MSR, as proven in [27].

From Table 6, we can notice that, on the two common
objectives (i.e., gene variance and volume) subject of optimization
by all the three settings of the algorithm, SMOB–VE obtains the
best results. In particular the gene variance obtained by SMOB–
VE is much higher than the gene variance of the biclusters found
by SMOB-d. This is because gene variance is in conflict with MSR. In
fact, the presence of scaling patterns have the effect of increment-
ing the gene variance. On the other hand, MSR is also incremented
by the presence of scaling patterns. Thus, since both the gene
variance and the MSR are being optimized at the same time in
SMOB-d most scaling patterns are rejected. This is because such
patterns would lead to biclusters with a MSR higher than the used
threshold d. It is also interesting to notice that SMOB–VE obtains
biclusters with higher gene variance and volume than those
Table 6
Average gene variance and volume obtained on each dataset.

Dataset Gene variance

SMOB–VE SMOB-d SMOB-D

Yeast 1661:77502:2 408:5777:2 � 1245:37294:5

Human 17395:773376:4 1412:27168:6 � 11412:472476:8

Colon 5597:67617:4 2836:771026:7 � 4876:27548:6

Malaria 20245:672433:4 2667:373765:7 � 16707:672914:7

Embryonal 1683:372126:2 428:87365:9 � 849:471304:1

Leukemia 8:94e674:82e6 2391:37660:1 � 5:27e673:10e6

RatCNS 4:673:4 2:171:6 � 2:772:3

Steminal 50:8740:9 4:472:3 � 13:8713:6

PBM 1:370:2 0:570:2 � 0:870:2
obtained by SMOB-D. This confirms the fact that VE is more
successful than MSR in guiding the search performed by the
algorithm towards the discovery of more interesting biclusters.
In fact, a low threshold imposed on MSR prevents the algorithm
from finding biclusters containing certain patterns, and even if
this threshold is increased, the algorithm obtains biclusters that
are less interesting that those obtained when VE is used as one of
the objectives.

6.1. Biological validation

In this section, we propose a biological validation of the results
obtained by the three settings of the algorithm on three datasets:
Embryonal, Leukemia and Steminal. We have selected these
datasets because they were the ones having the highest percen-
tage of gene names that could be found in Gene Ontology (GO)
[48] and because of their significance. GO is a cross-species,
controlled vocabulary describing three major functional features
of gene products: molecular function (MF), cellular component
(CC) and biological process (BP). In order to validate the results,
we first use the gene functional dissimilarity (GFD) measure [49]
and then, for each method, the number of significant biclusters,
according to GO, is extracted.

GFD assigns a numerical value, between zero and one, to the
gene set contained in a bicluster for each of the three GO sub-
ontologies (MF, CC and BP). The value assigned to a biclusters
represents the functional cohesion of the genes, where lower
values represent higher functional similarity. We decided to use
GFD since this measure presents the advantage that it can identify
the most common function for all of the genes involved in a
biological process.

Table 7 shows the average GFD for all the biclusters obtained
on the three datasets by the three settings of the algorithm,
according to each GO sub-ontology. Standard deviation is also
reported next to the averages. In order to test whether the results
are significantly different, we performed a two-tailed t-test.
Results of this test, with confidence levels of 5% and 1%, are
reported in the right part of the table. Thus, for instance, the
average GFD obtained on the Embryonal dataset by SMOB–VE and
SMOB-d is significantly different for the MF and CC sub-ontologies
with a confidence level of 1%, while for the BP ontology the
difference is significant with a 5% confidence level. From the table,
we can notice that SMOB–VE obtains the lowest GFD in all the
cases but one: on the Steminal dataset for the BP ontology, where
the three settings of the algorithm obtains basically the same
results. This implies that, on average, the genes contained in the
biclusters obtained on these datasets by using VE present a
stronger functional similarity than those obtained by using MSR.
It is also interesting to notice that in some cases, e.g., on the
Leukemia dataset for the MF sub-ontology, SMOB-D obtains a
lower value of GFD than SMOB-d. This means that in such cases
Volume

SMOB–VE SMOB-d SMOB-D

� 606:47216:7 226:1777:3 � 461:4795:8 �

� 1430:67473:2 362:67106:7 � 1128:37260:5 �

� 1402:77514:4 197:5785:1 � 1172:47334:5 �

� 628:57179:2 54:6731:5 � 461:97108:2 �

� 1121:67401:7 1456:17577:3 þ 1423:67519:26 þ

� 1110:07348:0 441:77141:2 � 1132:27220:4

� 128:5763:4 128:5781:1 128:6769:5

� 999:67336:0 1312:57371:8 þ 1286:77399:4 þ

� 1427:97616:1 1659:77701:2 1744:87687:9 þ



Table 8
Number of significant biclusters for the three GO ontologies, at two different

levels.

Dataset p-Value Number of biclusters

SMOB–VE SMOB-d SMOB-D

Embryonal o0:01 1 2 5

o0:05 16 6 10

Leukemia o0:01 4 2 2

o0:05 12 6 9

Steminal o0:01 11 1 2

o0:05 27 10 4

Table 7
Average GFD values for each of the three sub-ontologies of GO.

Dataset GO’s sub-ontology Average GFD Statistical significance (T-test)

SMOB–VE SMOB-d SMOB-D SMOB–VE vs SMOB-d SMOB–VE vs SMOB-D

o0:05 o0:01 o0:05 o0:01

Embryonal MF 0:42570:100 0:46470:099 0:47470:106 � � � �

BP 0:60370:077 0:62670:068 0:63370:067 � � �

CC 0:38970:098 0:44670:068 0:44270:083 � � � �

Leukemia MF 0:44270:098 0:50570:114 0:47170:074 � � �

BP 0:64270:050 0:64870:077 0:65270:050

CC 0:43970:081 0:47370:102 0:44470:067 � �

Steminal MF 0:61770:044 0:63270:038 0:64170:036 � � � �

BP 0:71070:036 0:71070:023 0:71570:022

CC 0:49270:071 0:52770:052 0:52870:051 � � � �
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the average functional cohesion is stronger for the biclusters
discovered by relaxing the threshold d used with MSR. Thus, in
some cases, a too strict threshold may prevent the algorithm from
finding interesting biclusters.

To further analyse the results, we have used the ontologizer
tool [50] to directly compute the most significantly enriched GO
terms associated to the set of genes of every bicluster. For each
bicluster, ontologizer provides a list with all the GO terms
associated to the genes of the biclusters, detailing the GO category
(BP, CC or MF) and the adjusted p-value (using the hypergeo-
metric distribution and the Bonferroni multiple-hypothesis cor-
rection) for every GO term. Results of this analysis are reported in
Table 8, which shows the number of biclusters with at least one
significant GO term in any ontology, at two different levels: 1%
and 5%. For Leukemia and Steminal datasets, SMOB–VE discovers
more significant biclusters than SMOB-d and SMOB-D with both
levels. As far as the Embryonal dataset is concerned, SMOB–
VE outperforms the other two versions of the algorithm when
the p-value considered is lower than 0.05. In this case, of all the
biclusters discovered by SMOB–VE, 16 are significant, while only
6 biclusters found by SMOB-d are significant and SMOB-D finds 10
significant biclusters. If the threshold on the p-value is lowered to
0.01, only 1 bicluster is significant for SMOB–VE, whereas the
other two settings finds 2 and 5 significant biclusters.
7. Conclusions

In this paper we introduce a novel measure for assessing the
quality of biclusters, called virtual error (VE), which is based on
the idea of measuring how well the genes in a bicluster follow the
general tendency.

The main motivation for the developing of VE is to improve
the performance MSR, more precisely with respect to the draw-
backs of MSR at recognizing biclusters presenting scaling patterns.
VE is, on the other hand, capable of dealing with both scaling
and shifting patterns, being in this sense more robust than MSR.
Moreover, when MSR is used, a user defined threshold must be
supplied in order to reject non-interesting biclusters. Such thresh-
old must be set for each dataset, and setting its value is not a
trivial. VE does not need such a threshold, so that an algorithm
using VE has less constraints through the search.

In order to assess the validity of VE, we conducted experiments
on nine microarray datasets. For this, we have incorporated VE into
a multi-objective evolutionary algorithm, called SMOB–VE, where
the other objectives were the gene variance and the volume of the
bicluster. We have compared the results of the previous algorithm
with two other settings of the algorithm, called SMOB-d and
SMOB-D. These last two settings use MSR instead of VE. Specifically,
the former uses a small threshold, while in the latter version this
thresholds was removed. The last version of the algorithm was
used in order to test whether the use of a too small threshold
would prevent the algorithm from finding interesting biclusters.

From these experiments we can conclude that VE yields the
algorithm obtaining good results on all the datasets. In general,
biclusters found by VE are characterized by a greater volume and
gene variance. An interesting result is that in the SMOB-d setting
of the algorithm, the average VE obtained is lower than in SMOB–
VE. This is easily explained by the fact that low values of
MSR correspond to low values of VE. We have also confirmed that
the use of a threshold may prevent an algorithm from finding
good results, when its value is too small.

We have also conducted a biological validation of the results
obtained on three datasets. From this validation, it emerges that
VE yields the discovery of biclusters whose genes have a stronger
functional coherence. Moreover when the algorithm used VE, it
discovers more significant biclusters, according to the adjusted p-value.

As for future developments, we intend to incorporate a
biological evaluation of the biclusters in the algorithm. In fact,
notice that at the moment, the sequential coverage strategy
adopted is such that the order in which biclusters are discovered
does not reflect their quality nor their biological relevance. We
are also planning to investigate the effect of using the median
instead of the mean in the functions used for computing VE. This
may be beneficial if the data presents a condition imbalance. In
this case, a preliminary analysis of the data could help to
automatically decide whether to use the mean of the median.

In general, we can conclude that VE is an effective measure for
assessing the quality of biclusters. In particular, VE is effective at
recognizing biclusters containing both shifting and scaling pat-
terns as quality biclusters. The same conclusions do not hold for
MSR, which is negatively influenced by the presence of scaling
patterns. It follows that VE can be used effectively within any
heuristics for finding biclusters in gene expression data.
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Appendix A. Theorems

In this appendix we formally prove that a bicluster presenting
either a shifting or a scaling pattern has VE equal to zero.

Theorem 1. A bicluster presenting a perfect shifting pattern has

virtual error equal to zero.

Proof. If B contains a perfect shifting pattern, then we can
represent each element as bij ¼ pjþbi.

Applying two simple algebraic properties,2 it is easy to obtain

the mean and deviation of each gene gj as

mgj
¼ pjþmb

sgj
¼ sb

We use this results to standardize bij

b̂ij ¼
bij�mgj

sgj

¼
pjþbi�pj�mb

sb
¼ fracbi�mbsb ðA:1Þ

Combining the same properties (see footnote 1) it is easy to

obtain the mean and standard deviation for the virtual pattern as

mr ¼ mpþmb

sr ¼ sb

Finally, the standardized values of the virtual pattern are

represented by

r̂ i ¼
ri�mr
sr

¼
mpþbi�mp�mb

sb
¼

bi�mb

sb
¼ b̂ij ðA:2Þ

This result points out that when a bicluster follows a perfect

shifting pattern, the virtual pattern is equal to all the real genes

after standardizing them. This means that VE is equal to zero for

every bicluster with a perfect shifting pattern. &

Theorem 2. A bicluster presenting a perfect scaling pattern has

virtual error equal to zero.

Proof. If B contains a perfect scaling pattern, then we can
represent each element as bij ¼ pj � ai.

Following the same reasoning than for Theorem 1, the mean

and deviation of each gene gj are the following:

mgj
¼ pj � ma

sgj
¼ pj � sa

We use these results to standardize the values of the bicluster

b̂ij ¼
bij�mgj

sgj

¼
pj � ai�pj � ma

pj � sa
¼
ai�ma
sa

ðA:3Þ
2 Being f ðxÞ ¼ gðxÞ � c1þc2, we can enumerate these two properties related to

the arithmetic mean ðmf ðxÞÞ and the standard deviation ðsf ðxÞÞ of f(x) as:

mf ðxÞ ¼mgðxÞ � c1þc2 and sf ðxÞ ¼ sgðxÞ � c1.
We next obtain the mean and standard deviation for the virtual

pattern

mr ¼ mp � ma

sr ¼ mp � sb

And the standardized values of the virtual pattern

r̂ i ¼
ri�mr
sr

¼
mp � ai�mp � ma

mp � sa
¼
ai�ma
sa

¼ b̂ij ðA:4Þ

As we can observe, the result of the last equation shows that

when a bicluster follows a perfect scaling pattern, the virtual

pattern is equal to all the real genes after standardizing them.

Therefore, we can state that VE is equal to zero for every bicluster

with a perfect scaling pattern. &
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