5 research outputs found

    Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm with the interleaved multi-start scheme

    Get PDF
    The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-GOMEA requires its two parameters, namely the population size and the number of clusters, to be set properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner. In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent performance of the original MO-GOMEA

    Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm with the interleaved multi-start scheme

    No full text
    The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-GOMEA requires its two parameters, namely the population size and the number of clusters, to be set properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner. In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent performance of the original MO-GOMEA

    Fast and insightful bi-objective optimization for prostate cancer treatment planning with high-dose-rate brachytherapy

    Get PDF
    Purpose: Prostate high-dose-rate brachytherapy (HDR-BT) planning involves determining the movement that a high-strength radiation stepping source travels through the patient's body, such that the resulting radiation dose distribution sufficiently covers tumor volumes and safely spares nearby healthy organs from radiation risks. The Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA) has been shown to be able to effectively handle this inherent bi-objective nature of HDR-BT planning. However, in clinical practice there is a very restricted planning time budget (often less than 1 h) for HDR-BT planning, and a considerable amount of running time needs to be spent before MO-RV-GOMEA finds a good trade-off front of treatment plans (about20–30 min on a single CPU core) with sufficiently accurate dose calculations, limiting the applicability of the approach in the clinic. To address this limitation, we propose an efficiency enhancement technique for MO-RV-GOMEA solving the bi-objective prostate HDR-BT planning problem.Methods: Dose-Volume (DV) indices are often used to assess the quality of HDR-BT plans. The accuracy of these indices depends on the number of dose calculation points at which radiation doses are computed. These are randomly uniformly sampled inside target volumes and organs at risk. In available HDR-BT planning optimization algorithms, the number of dose calculation points is fixed. The more points are used, the better the accuracy of the obtained results will be, but also the longer the algorithms need to be run. In this work, we introduce a so-called multi-resolution scheme that gradually increases the number of dose calculation points during the optimization run such that the running time can be substantially reduced without compromising on the accuracy of the obtained results.Results and conclusion: Experiments on a data set of 18 patient cases show that with the multi-resolution scheme, MO-RV-GOMEA can achieve a sufficiently good trade-off front of treatment plans after five minutes of running time on a single CPU core (4–6 times faster than the old approach with a fixed number of dose calculation points). When the optimization with the multi-resolution scheme is run on a quad-core machine, five minutes are enough to obtain trade-off fronts that are nearly as good as those obtained by running optimization with the old approach in one hour (i.e., 12 times faster). This leaves ample time to perform the selection of the preferred treatment plan from the trade-off front for the specific patient at hand. Furthermore, comparisons with real clinical treatment plans, which were manually made by experienced BT planners within 30–60 min, confirm that the plans obtained by our approach are superior in terms of DV indices. These results indicate that our proposed approach has the potential to be employed in clinical practice.</p

    Achieving highly scalable evolutionary real-valued optimization by exploiting partial evaluations

    Get PDF
    It is known that to achieve efficient scalability of an Evolutionary Algorithm (EA), dependencies (also known as linkage) must be properly taken into account during variation. In a Gray-Box Optimization (GBO) setting, exploiting prior knowledge regarding these dependencies can greatly benefit optimization. We specifically consider the setting where partial evaluations are possible, meaning that the partial modification of a solution can be efficiently evaluated. Such problems are potentially very difficult, for example, non-separable, multimodal, and multiobjective. The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) can effectively exploit partial evaluations, leading to a substantial improvement in performance and scalability. GOMEA was recently shown to be extendable to real-valued optimization through a combination with the real-valued estimation of distribution algorithm AMaLGaM. In this article, we definitively introduce the Real-Valued GOMEA (RV-GOMEA), and introduce a new variant, constructed by combining GOMEA with what is arguably the best-known real-valued EA, the Covariance Matrix Adaptation Evolution Strategies (CMA-ES). Both variants of GOMEA are compared to L-BFGS and the Limited Memory CMA-ES (LM-CMA-ES). We show that both variants of RV-GOMEA achieve excellent performance and scalability in a GBO setting, which can be orders of magnitude better than that of EAs unable to efficiently exploit the GBO setting
    corecore