641 research outputs found

    Cascaded Multi-View Canonical Correlation (CaMCCo) for Early Diagnosis of Alzheimer\u27s Disease via Fusion of Clinical, Imaging and Omic Features

    Get PDF
    The introduction of mild cognitive impairment (MCI) as a diagnostic category adds to the challenges of diagnosing Alzheimer\u27s Disease (AD). No single marker has been proven to accurately categorize patients into their respective diagnostic groups. Thus, previous studies have attempted to develop fused predictors of AD and MCI. These studies have two main limitations. Most do not simultaneously consider all diagnostic categories and provide suboptimal fused representations using the same set of modalities for prediction of all classes. In this work, we present a combined framework, cascaded multiview canonical correlation (CaMCCo), for fusion and cascaded classification that incorporates all diagnostic categories and optimizes classification by selectively combining a subset of modalities at each level of the cascade. CaMCCo is evaluated on a data cohort comprising 149 patients for whom neurophysiological, neuroimaging, proteomic and genomic data were available. Results suggest that fusion of select modalities for each classification task outperforms (mean AUC = 0.92) fusion of all modalities (mean AUC = 0.54) and individual modalities (mean AUC = 0.90, 0.53, 0.71, 0.73, 0.62, 0.68). In addition, CaMCCo outperforms all other multi-class classification methods for MCI prediction (PPV: 0.80 vs. 0.67, 0.63)

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Predictive analytics applied to Alzheimer’s disease : a data visualisation framework for understanding current research and future challenges

    Get PDF
    Dissertation as a partial requirement for obtaining a master’s degree in information management, with a specialisation in Business Intelligence and Knowledge Management.Big Data is, nowadays, regarded as a tool for improving the healthcare sector in many areas, such as in its economic side, by trying to search for operational efficiency gaps, and in personalised treatment, by selecting the best drug for the patient, for instance. Data science can play a key role in identifying diseases in an early stage, or even when there are no signs of it, track its progress, quickly identify the efficacy of treatments and suggest alternative ones. Therefore, the prevention side of healthcare can be enhanced with the usage of state-of-the-art predictive big data analytics and machine learning methods, integrating the available, complex, heterogeneous, yet sparse, data from multiple sources, towards a better disease and pathology patterns identification. It can be applied for the diagnostic challenging neurodegenerative disorders; the identification of the patterns that trigger those disorders can make possible to identify more risk factors, biomarkers, in every human being. With that, we can improve the effectiveness of the medical interventions, helping people to stay healthy and active for a longer period. In this work, a review of the state of science about predictive big data analytics is done, concerning its application to Alzheimer’s Disease early diagnosis. It is done by searching and summarising the scientific articles published in respectable online sources, putting together all the information that is spread out in the world wide web, with the goal of enhancing knowledge management and collaboration practices about the topic. Furthermore, an interactive data visualisation tool to better manage and identify the scientific articles is develop, delivering, in this way, a holistic visual overview of the developments done in the important field of Alzheimer’s Disease diagnosis.Big Data é hoje considerada uma ferramenta para melhorar o sector da saúde em muitas áreas, tais como na sua vertente mais económica, tentando encontrar lacunas de eficiência operacional, e no tratamento personalizado, selecionando o melhor medicamento para o paciente, por exemplo. A ciência de dados pode desempenhar um papel fundamental na identificação de doenças em um estágio inicial, ou mesmo quando não há sinais dela, acompanhar o seu progresso, identificar rapidamente a eficácia dos tratamentos indicados ao paciente e sugerir alternativas. Portanto, o lado preventivo dos cuidados de saúde pode ser bastante melhorado com o uso de métodos avançados de análise preditiva com big data e de machine learning, integrando os dados disponíveis, geralmente complexos, heterogéneos e esparsos provenientes de múltiplas fontes, para uma melhor identificação de padrões patológicos e da doença. Estes métodos podem ser aplicados nas doenças neurodegenerativas que ainda são um grande desafio no seu diagnóstico; a identificação dos padrões que desencadeiam esses distúrbios pode possibilitar a identificação de mais fatores de risco, biomarcadores, em todo e qualquer ser humano. Com isso, podemos melhorar a eficácia das intervenções médicas, ajudando as pessoas a permanecerem saudáveis e ativas por um período mais longo. Neste trabalho, é feita uma revisão do estado da arte sobre a análise preditiva com big data, no que diz respeito à sua aplicação ao diagnóstico precoce da Doença de Alzheimer. Isto foi realizado através da pesquisa exaustiva e resumo de um grande número de artigos científicos publicados em fontes online de referência na área, reunindo a informação que está amplamente espalhada na world wide web, com o objetivo de aprimorar a gestão do conhecimento e as práticas de colaboração sobre o tema. Além disso, uma ferramenta interativa de visualização de dados para melhor gerir e identificar os artigos científicos foi desenvolvida, fornecendo, desta forma, uma visão holística dos avanços científico feitos no importante campo do diagnóstico da Doença de Alzheimer

    A Novel Hybrid Ordinal Learning Model with Health Care Application

    Full text link
    Ordinal learning (OL) is a type of machine learning models with broad utility in health care applications such as diagnosis of different grades of a disease (e.g., mild, modest, severe) and prediction of the speed of disease progression (e.g., very fast, fast, moderate, slow). This paper aims to tackle a situation when precisely labeled samples are limited in the training set due to cost or availability constraints, whereas there could be an abundance of samples with imprecise labels. We focus on imprecise labels that are intervals, i.e., one can know that a sample belongs to an interval of labels but cannot know which unique label it has. This situation is quite common in health care datasets due to limitations of the diagnostic instrument, sparse clinical visits, or/and patient dropout. Limited research has been done to develop OL models with imprecise/interval labels. We propose a new Hybrid Ordinal Learner (HOL) to integrate samples with both precise and interval labels to train a robust OL model. We also develop a tractable and efficient optimization algorithm to solve the HOL formulation. We compare HOL with several recently developed OL methods on four benchmarking datasets, which demonstrate the superior performance of HOL. Finally, we apply HOL to a real-world dataset for predicting the speed of progressing to Alzheimer's Disease (AD) for individuals with Mild Cognitive Impairment (MCI) based on a combination of multi-modality neuroimaging and demographic/clinical datasets. HOL achieves high accuracy in the prediction and outperforms existing methods. The capability of accurately predicting the speed of progression to AD for each individual with MCI has the potential for helping facilitate more individually-optimized interventional strategies.Comment: 16 pages, 3 figures, 2 table

    Frameworks to Investigate Robustness and Disease Characterization/Prediction Utility of Time-Varying Functional Connectivity State Profiles of the Human Brain at Rest

    Get PDF
    Neuroimaging technologies aim at delineating the highly complex structural and functional organization of the human brain. In recent years, several unimodal as well as multimodal analyses of structural MRI (sMRI) and functional MRI (fMRI) neuroimaging modalities, leveraging advanced signal processing and machine learning based feature extraction algorithms, have opened new avenues in diagnosis of complex brain syndromes and neurocognitive disorders. Generically regarding these neuroimaging modalities as filtered, complimentary insights of brain’s anatomical and functional organization, multimodal data fusion efforts could enable more comprehensive mapping of brain structure and function. Large scale functional organization of the brain is often studied by viewing the brain as a complex, integrative network composed of spatially distributed, but functionally interacting, sub-networks that continually share and process information. Such whole-brain functional interactions, also referred to as patterns of functional connectivity (FC), are typically examined as levels of synchronous co-activation in the different functional networks of the brain. More recently, there has been a major paradigm shift from measuring the whole-brain FC in an oversimplified, time-averaged manner to additional exploration of time-varying mechanisms to identify the recurring, transient brain configurations or brain states, referred to as time-varying FC state profiles in this dissertation. Notably, prior studies based on time-varying FC approaches have made use of these relatively lower dimensional fMRI features to characterize pathophysiology and have also been reported to relate to demographic characterization, consciousness levels and cognition. In this dissertation, we corroborate the efficacy of time-varying FC state profiles of the human brain at rest by implementing statistical frameworks to evaluate their robustness and statistical significance through an in-depth, novel evaluation on multiple, independent partitions of a very large rest-fMRI dataset, as well as extensive validation testing on surrogate rest-fMRI datasets. In the following, we present a novel data-driven, blind source separation based multimodal (sMRI-fMRI) data fusion framework that uses the time-varying FC state profiles as features from the fMRI modality to characterize diseased brain conditions and substantiate brain structure-function relationships. Finally, we present a novel data-driven, deep learning based multimodal (sMRI-fMRI) data fusion framework that examines the degree of diagnostic and prognostic performance improvement based on time-varying FC state profiles as features from the fMRI modality. The approaches developed and tested in this dissertation evince high levels of robustness and highlight the utility of time-varying FC state profiles as potential biomarkers to characterize, diagnose and predict diseased brain conditions. As such, the findings in this work argue in favor of the view of FC investigations of the brain that are centered on time-varying FC approaches, and also highlight the benefits of combining multiple neuroimaging data modalities via data fusion
    • …
    corecore