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Cascaded Multi-view Canonical 
Correlation (CaMCCo) for Early 
Diagnosis of Alzheimer’s Disease 
via Fusion of Clinical, Imaging and 
Omic Features
Asha Singanamalli1, Haibo Wang1, Anant Madabhushi1 & Alzheimer’s Disease Neuroimaging 
Initiative*

The introduction of mild cognitive impairment (MCI) as a diagnostic category adds to the challenges 
of diagnosing Alzheimer’s Disease (AD). No single marker has been proven to accurately categorize 
patients into their respective diagnostic groups. Thus, previous studies have attempted to develop 
fused predictors of AD and MCI. These studies have two main limitations. Most do not simultaneously 
consider all diagnostic categories and provide suboptimal fused representations using the same set 
of modalities for prediction of all classes. In this work, we present a combined framework, cascaded 
multiview canonical correlation (CaMCCo), for fusion and cascaded classification that incorporates all 
diagnostic categories and optimizes classification by selectively combining a subset of modalities at 
each level of the cascade. CaMCCo is evaluated on a data cohort comprising 149 patients for whom 
neurophysiological, neuroimaging, proteomic and genomic data were available. Results suggest that 
fusion of select modalities for each classification task outperforms (mean AUC = 0.92) fusion of all 
modalities (mean AUC = 0.54) and individual modalities (mean AUC = 0.90, 0.53, 0.71, 0.73, 0.62, 0.68). 
In addition, CaMCCo outperforms all other multi-class classification methods for MCI prediction (PPV: 
0.80 vs. 0.67, 0.63).

Alzheimer’s Disease (AD) is the most prevalent type of dementia in the US, and is primarily characterized by irre-
versible cognitive decline associated with neurodegeneration1. On account of an increasing aging population in 
the US, the annual incidence of AD is expected to double by 20502. However, studies have shown that the number 
of cases in 2050 can be reduced by 50% if the average age at the onset of the disease could be delayed by 5 years3. 
This may be achieved by early diagnosis and intervention with treatments that delay disease progression.

The original diagnostic criteria, known as NINCDS-ADRDA criteria, qualitatively combined information 
from medical history, clinical examination, neurophysiological testing and laboratory assessments to provide a 
sensitivity of 81% and a specificity of 70% for AD diagnosis4. In an attempt to diagnose AD earlier, the revised cri-
teria now include two major changes: (i) addition of an intermediate diagnostic group, mild cognitive impairment 
(MCI) as well as (ii) guidelines for interpretation of imaging and molecular markers1. The intermediate diag-
nostic category, MCI, comprises of a heterogeneous group of patients who present early symptoms of cognitive 
impairment which do not interrupt daily life. While some MCI patients progress to AD over time, some remain 
stable while a few even regress back to healthy states. Given that MCI patients are at a greater risk for AD, there is 
an opportunity for early diagnosis of AD by identifying the subpopulation of MCI patients who progress to AD. 
However, to move toward this opportunity, the most immediate challenge is to accurately distinguish MCI from 
both HC and AD. The new diagnostic criteria therefore includes recommendations for incorporation of alternate 
biomarkers that have previously shown promise in predicting presymptomatic disease5.
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Alongside recent developments in imaging and molecular diagnostic technologies, several studies have sought 
to identify biomarkers of AD. Cerebrospinal fluid (CSF) markers in particular have been extensively studied6–8 on 
account of their direct relationship with pathological characteristics of the disease such as amyloid burden and 
neuronal degeneration. On the genetic front, apolipoprotein E (ApoE) has been established as an indicator of risk 
for AD9. Structural information on 1.5 Tesla T1w Magnetic Resonance Imaging (MRI)10 such as hippocampal 
volume and functional information on [18F] fluorodeoxyglucose uptake (FDG-PET)11 such as changes in glucose 
metabolism have previously shown to be predictive of AD. Availability of multiple, complementary markers and 
data streams now presents an opportunity to combine different sources of information in order to potentially 
improve the ability to predict AD early, prior to its onset. However, qualitatively combining the vast amount 
of information is challenging and likely to result in subjective interpretations. On the other hand, quantitative 
approaches to identification of fused biomarkers is challenged by differences in data dimensionality, small sample 
size of most biomedical datasets and by the increase in data dimensionality associated with combining multiscale 
data12–15.

Several methods have previously been developed and explored to quantitatively combine multiscale biomed-
ical data. Most data fusion approaches can generally be categorized based on the level at which information is 
combined: (i) raw data level (low level fusion), (ii) feature level (intermediate level fusion) or (iii) decision level 
(high level fusion)16. Data integration at the raw data level is limited to homogeneous data sources and is thus not 
directly applicable for fusion of multiscale, biomedical data. Alternatively, decision level strategies17 bypass chal-
lenges associated with fusion of heterogeneous data types by combining independently derived decisions from 
each data source. In doing so, relationships between the different data channels remain largely unexploited14, 15.

Most previous work in prediction of AD employ feature level integration where raw data is first converted into 
quantitative feature representations which are then combined using concatenation-based18, 19, kernel-based20, 21, 
manifold-based22 and most recently deep learning-based23, 24 methods. A brief summary of select related previ-
ous work is provided in Table 1. While feature concatenation18, 19 provides a simple method for investigating the 
added predictive value of each modality, it is sub-optimal for combining modalities with significantly different 
dimensionalities as modalities with larger feature sets are likely to dominate the joint-representation and hence 
the fused predictor12. Kernel-based and manifold-based methods20–22 alternatively transform raw data from the 
original space to a high dimensional embedding space where the different data types are more homogeneously 
represented, thereby making them more amenable for fusion. However, such methods are prone to overfitting25, 26  
particularly given the small sample sizes of most biomedical datasets and the noise associated with each of the 
biomedical data sources which, if unaccounted for, may drown the increase in signal achievable by fusion. Suk 
et al.23 and Liu et al.24 presented deep learning based fusion approaches which seek to learn integrated structural 
and functional feature representations from MRI and PET. However, the method is limited to fusion of spatially 
aligned imaging data. In addition, deep learning methods generally require very large datasets in order to model 
complex non-linear relationships via several hidden layers. This could very easily result in overfitting on datasets 
with small sample size, especially in the presence of noise.

Regardless of the fusion strategy employed, most previous studies evaluate their methods by simplifying the 
multiclass problem (HC vs. MCI vs. AD) into the following binary classification tasks – AD vs. HC, MCI vs. HC. 
Recent work24 showed that multiclass classification resulted in significantly lower predictive performance as com-
pared to that of the aforementioned binary classification tasks, suggesting that all the diagnostic classes must be 
considered to estimate the performance of a proposed model in a clinical setting. Generally, there are three com-
mon methods for multiclass classification – one vs. another, one vs. all (OVA) and one shot classification (OSC). 
For classification task with  = …c c c{ , , }n1 2  classes, the one vs. another classifier attempts to independently solve 
binary class problems ci vs. cj, ≠i j arising from all pairwise combinations of classes. With this strategy, it is 
unclear how to combine results from the multiple binary problems in order to then determine the overall classi-
fier performance. Alternatively, OVA seeks to solve ci vs {cj}, j = 1 … n, ≠j i, while OSC attempts to simultane-
ously solve c1 vs. c2 vs. … vs. cn. OVA may not be able to appropriately classify intermediate classes such as MCI 
where the ‘all’ category comprises of data points that lie on either extrema of disease spectrum (i.e. healthy and 
AD). While OSC, which classifies multiple classes at once, overcomes the aforementioned limitations of the other 
two strategies, it assumes that the same set of modalities are optimal for separating all classes. When addressing 
multiclass problem in the context of data fusion, it may not be realistic to expect the same combination of modal-
ities to be the most informative for all the various classes. In addition, some classification tasks may require infor-
mation from fewer modalities to provide sufficiently accurate information while other, more challenging tasks 
may require additional information.

In this work, we introduce the cascaded multiview canonical correlation (CaMCCo) framework which brings 
together three different unique ideas; data fusion approach, modality selection concept and a cascaded classifica-
tion scheme. The CaMCCo approach is employed in this paper for the problem of AD diagnosis. CaMCCo seeks 
to fuse a subset of modalities from T1w MRI, FDG PET, ApoE, CSF, plasma proteomics and neurophysiological 
exam scores in order to optimize classifier performance at each level of the cascade (Fig. 1). For data fusion, 
CaMCCo employs supervised multiview canonical correlation analysis (sMVCCA)27, 28 which provides a com-
mon, low dimensional representation that is discriminative of classes and allows for combining any number of 
heterogeneous forms of multidimensional, multimodal data. The fusion scheme operates under the assumption 
that information overlap increases with increasing number of data sources or ‘views’ as all views fundamentally 
capture information pertaining to the same object. As such, it seeks to maximize correlations between modalities 
and with class labels.

Previous work27, 28 has shown the application of sMVCCA in the context of predicting prostate cancer prog-
nosis where sMVCCA based fusion of histologic and proteomic features was found to be more discriminative 
of classes as compared to individual modalities as well as several fused representations including LDA, CCA, 
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MVCCA, PCA, regularized CCA (RCCA), supervised regularized CCA (SRCCA), and generalized embedding 
concatenation (GEC). Although sMVCCA is able to fuse any number of modalities, the practicality of its applica-
tion in a clinical setting where the trade-off between added improvement in performance and increased burden of 
additional tests must be leveraged29. CaMCCo therefore extends on previous work to address clinical challenges 
associated with AD diagnosis by employing the fusion methodology within cascaded classification framework 
where only a subset of modality(ies) that maximize the performance for each classification task are fused at each 
level of cascade. Unlike most prior applications of multiclass classification methods to AD diagnosis, CaMCCo 
simultaneously considers all diagnostic classes via its cascaded classification approach. Unlike most prior appli-
cations of data fusion methods for AD diagnosis, CaMCCo seeks to identify, selectively retain and combine only 
the most informative data source(s) for each class label. As shown in Fig. 1, each patient is first classified as being 
healthy or cognitively impaired (CI) using ADAS-Cog score, CSF and APOE. If classified as CI, the ADAS-Cog 
and PET are used to distinguish between MCI and AD cases.

Methods
Supervised Multiview Canonical Correlation Analysis for Data Fusion. We apply supervised 
Multiview Canonical Correlation Analysis (sMVCCA)27, 28, an extension of canonical correlation analysis (CCA) 
and multiview canonical correlation analysis (MVCCA)30, to obtain a low-dimensional, shared representation of 
the modalities of interest. CCA31 is a linear dimensionality reduction method commonly used for data fusion as 
it accounts for relationships between two sets of input variables. MVCCA generalizes CCA by finding the linear 
subspace where pairwise correlations between multiple (more than two) modalities can be maximized. However, 

Previous Work Modalities Methods N Classes and Performance

Gray et al. (NeuroImage, 2013)22 Baseline T1w MRI, FDG PET, CSF
Joint embedding of manifolds constructed 
using random forest based similarity 
measure

147 AD/HC (Acc: 89% +/−0.7), MCI/HC (Acc: 74.6% 
+/−0.8), pMCI/sMCI (Acc: 58% +/−0.9)

Zhang et al. (NeuroImage, 2011)20 Baseline T1w MRI, FDG PET, CSF Kernel combination method embedded 
with support vector machine classifier 202

AD/HC (Acc: 93.2%, Sen: 93%, Spec: 93.3%), MCI/
HC (Acc: 76.4%, Sen: 81.8%, Spec: 66%; 91.5% 
pMCI and 73.4% sMCI classified as MCI)

Hinrichs et al. (NeuroImage, 2011)21
Baseline and longitudinal T1w 
MRI, FDG PET, cognitive measures; 
Baseline CSF, ApoE

Multi-kernel learning framework with 
support vector machine classifier 233

AD/HC (Acc: 92.4%, Sen: 86.7%, Spec: 96.6%, AUC: 
0.977), pMCI/rMCI (AUC: 0.97), pMCI/sMCI 
(AUC: 0.77)

Westman et al. (NeuroImage, 2012)39 Baseline T1w MRI, CSF Orthogonal partial least squares (OPLS) 369

AD/HC (Acc: 91.8%, Sen: 88.5%, Spec: 94.6%, 
AUC: 0.958), MCI/HC (Acc: 77.6%, Sen: 72.8%, 
Spec: 84.7%, AUC: 0.876), pMCI/sMCI using AD/
HC model (Acc: 58.6%, 65.8%, 66.4%, 66.1%, AUC: 
0.594, 0.647, 0.610, 0.578 for conversion within 12, 
18, 24 and 36 months, respectively)

Da et al. (NeuroImage, 2014)18 Baseline T1w MRI, Cognitive 
scores, CSF, ApoE

SVM Classification of concatenated 
features 432, 381 AD/HC (T1w MRI AUC: 0.98), sMCI/pMCI Kalpan 

Meier analysis

Davatzikos et al.  
(Neurobiology, 2011)19

Baseline T1w MRI (SPARE-AD), 
CSF

SVM Classification of concatenated 
features; pMCI and sMCI categorization 
based on global CDR score change at 
follow-up (6–36 months)

239 sMCI/pMCI (T1w MRI AUC: 0.734, T1w 
MRI + CSF AUC: 0.671)

Suk et al. (NeuroImage, 2014)23 Baseline T1w MRI, FDG PET
Joint feature representation of image 
patches using Deep Boltzman Machine 
(DBM)

194, 305, 
204

AD/HC (Acc: 95.35%, AUC: 0.9877), MCI/HC (Acc: 
85.67%, AUC: 0.88), pMCI/sMCI (Acc: 75.92%, 
AUC: 0.747)

Zhu et al. (NeuroImage, 2014)40 T1w MRI, FDG PET, CSF
Feature selection method and regression 
to predict clinical variables in addition to 
class labels

202
AD/HC (Acc: 95.9%, AUC: 98.8), MCI/HC (Acc: 
82.0%, AUC: 87.0), sMCI/pMCI (Acc: 72.6%, AUC: 
78.8%)

Liu et al. (IEEE TMI, 2015)24 Baseline T1w MRI, FDG PET
Fused data representation of image patches 
using stacked autoencoder for multiclass 
classification

331
AD/HC (Multiclass Precision: 59.1 +/− 19.7, 
52.2 +/− 11.8, 40.2 +/− 14.4, 64.1 +/− 15.24 for 
HC, sMCI, pMCI and AD, Acc: 53.8 +/− 4.8, Sen: 
52.1 +/− 11.8, Spe:87 +/− 9.6)

Table 1. Summary of related previous work.

Figure 1. The cascade and the modalities for fusion at each level of the cascade were determined on training 
set and validated on independent testing set. Neurophysiological test scores (ADAS-Cog) are fused with CSF 
proteomics and APOE at the first level of the cascade to identify healthy controls (HC). At the second level, 
ADAS-Cog scores are combined with PET to distinguish between patients with Alzheimer’s Disease (AD) and 
mild cognitive impairment (MCI).
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both CCA and MVCCA are unsupervised and therefore do not guarantee a subspace that is optimal for class 
separation. sMVCCA is a supervised form of MVCCA where class labels are embedded as one of the variable 
sets. Additional details and formulations for CCA and MVCCA are provided in the appendix and the theoretical 
framework for sMVCCA is provided below. Table 2 provides a summary of notations used in this section.

Consider a multimodal dataset ∈ … …x x xX { , , , , }k K1  in  ×n M, where n is the number of subjects, K is the 
number of modalities and xk in  ×n Mk refers to the feature matrix of modality k containing Mk features. 
Additionally, X has a corresponding binary class label matrix Y in  ×n G, where G is the total number of classes. 
sMVCCA seeks to maximize correlation within the modalities in X and between X and Y as shown below

∑∑ ∑+

. . = … = =

... ... ≠

s t
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This can be expressed in a compact matrix form as follows:
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where Y is a matrix in which class labels are encoded using Soft-1-of-Class strategy32.
Solving Equation 3 consists of two steps: (i) Ignoring the constraint in (4) leaves us with a quadratic program-

ming problem, whose W* corresponds to eigenvectors of the n-largest eigenvalues of a generalized eigenvalue 
system: λ=C W C Wxy dxy

; (ii) Imposing constraint (4) upon obtaining the optimal eigenvectors W* by normal-
izing the corresponding section of each modality: = = …−⁎⁎ ⁎ ⁎ ⁎ j kW W W C W( ) , 1, ,j j j

T
jj j

1
2 .

Symbol Description

n, N subjects, total number of subjects

k, K modalities, total number of modalities; xk, k ∈ {1, …, k}

m, Mk features, total number of features in each modality; m ∈ {1, …, Mk}

M total number of features over all modalities; M = ∑k Mk

xk data matrix containing features from modality k for all subjects,  ×n Mk

X concatenated data matrix containing all features from all modalities …x x[ , , ]K1 ,  × +…+n M MK( 1 )

wk weight vector for modality k,  ×Mk 1

Wk weight matrix for modality k,  ×Mk n

w concatenated weight vector over all modalities …w w w[ , , , ]T T
K
T T

1 2 ,  ×M 1

Wx weight matrix for all modalities …W W W[ , , , ]M1 2 ,  ×M n

Y label matrix  ×n G

g, G classes, total number of classes

Wy notation used in sMVCCA to denote W for all labels  ×g n

i data vector of selected modalities ⊆i k

p total number of features over modalities in i, = ∑p Mi i

Xi concatenated data matrix containing all features from a subset of modalities [xi],  ×n p

d dimensionality of the fused data subspace

Table 2. Summary of Notations.
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Cascaded Multi-view Canonical Correlation Analysis (CaMCCo). As shown in Fig. 2, CaMCCo 
divides the classification task for a multiclass, multimodal dataset into a cascade of multiple, sequential binary 
classification tasks, for each of which the optimal fused representation is independently determined and provided 
as input to the classifier. For the multimodal dataset X in  ×n M, consider a label matrix Y in  ×n G. A subset 
modalities suitable for classifying class g from all input samples can be denoted as i where ⊆i k. Features from 
modalities in i are concatenated to generate ′Xi in  ×n p, where = ∑p Mi i and ≤p M. The i modalities are fused 
via sMVCCA to reduce the dimensionality from p to d, where d p, resulting in ″Xi . Subsequently, ″Xi  serves as 
the input to a classifier which predicts if each sample does or does not belong to class g, =ŷ 1g  and =ŷ 0g , respec-
tively. The multimodal dataset consisting of only samples classified as =ŷ 0 subsequently serves as the input for 
the next level of cascade where the modality selection, data fusion and classification steps are repeated for another 
class in Y.

Therefore, designing the cascaded classifier for CaMCCo requires determination of (a) the sequence of classi-
fication tasks that provide the best overall classifier performance, as well as the respective (b) number and (c) type 
of modalities to combine at each level of the cascade. In this work, these parameters were determined experimen-
tally on the training cohort as described in Section 3.5.

Experimental Design
Dataset Description. Data used in the preparation of this work were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 with 
the primary goal of testing whether serial magnetic resonance imaging (MRI), positron emission tomography 
(PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The initial goal of ADNI 
was to recruit 800 adults, ages 55 to 90, to participate in the research – approximately 200 cognitively normal 
older individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people with 
early AD to be followed for 2 years (see www.adni-info.org for up-to-date information). The research protocol 
was approved by each local institutional review board and written informed consent. In addition to raw data, the 
ADNI database contains several post-processed and individually evaluated biomarkers.

In this work, we consider a subset of cases for which the following was available in the database (i) 
pre-computed features from T1w MRI and FDG PET, (ii) neurocognitive ADAS-cog score, (iii) complete record 
of CSF Proteomics, Plasma Proteomics, ApoE and (iv) clinical diagnosis at baseline. 149 ADNI participants who 
fulfilled the criteria were included, of which 52 were diagnosed with Alzheimer’s Disease (AD), 71 were diag-
nosed with mild cognitive impairment (MCI), and 26 were healthy controls (HC).

Table 3 provides the clinical and demographic details of the population considered in this study as per their 
diagnosis at baseline. The unique ADNI database provided RID of all patients considered in this study is provided 
in the Appendix.

Feature Description. Table 4 summarizes the number and types of features considered in this study for each 
modality. From imaging data, we consider volumetric features extracted from T1w MRI and measures of hippocam-
pal glucose metabolism33, 34 from FDG PET. Considered molecular markers include proteomic measurements from 
cerebrospinal fluid (CSF), plasma from the biomarker consortium and geneotype ApoE data. We additionally 
included a neurophysiological test score as such tests serve as the primary means for diagnosis in the current clin-
ical setting. Although the Mini-Mental State Examination (MMSE) is the most commonly performed clinical test, 
we avoid using MMSE scores as they were used to determine the “ground truth” labels on which we train and test 
CaMCCo. Therefore, we use an alternate test score, modified Alzheimer’s Disease Assessment Scale - Cognition 
(ADAS-Cog) which has been used to assess the effects of experimental treatments for AD in clinical trials35.

Classification Model. The dataset was split into training and a holdout validation set with each comprising 
40% and 60% of the data, respectively. Classification and fusion parameters were determined on the training set 
using 10 iterations of 5-fold stratified cross validation, upon which the optimized classifier trained on the full 
training set was applied to the independent validation set. Naive Bayes classifier36 was used to evaluate the various 
fused and individual modality representations. Naive Bayes is a widely used, well-established probabilistic classi-
fier that is known to perform well on small datasets.

Evaluation metrics. Performance measures used to evaluate each classification task include: accuracy 
(ACC), balanced accuracy (BACC)37, area under the receiver operating characteristic curve (AUC)38, sensitivity 
(SEN), specificity (SPE) and positive predictive value (PPV). The definitions and descriptions of each of these 
metrics are provided in Table 8 in the Appendix.

Figure 2. Cascaded multiview canonical correlation analysis (CaMCCo) algorithm for constructing the joint 
multimodal data fusion and multiclass classification framework.

http://www.loni.ucla.edu/ADNI
http://www.adni-info.org
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CaMCCO Model. Class groupings and modalities selected for fusion at each level of the cascaded classifica-
tion design employed by CaMCCo (Fig. 1) was determined experimentally on the training set. One-vs-all (AD vs. 
all, MCI vs. all, HC vs. all) classifiers were constructed and evaluated independently for each considered modality. 
The task that most consistently resulted in the highest AUC across all modalities served as the first level of the 
cascade so as to reduce error propagation. Among AD, MCI and HC, the remaining classes were assigned to the 
second level of the cascade.

For every classification task within the cascade, each modality was ranked based on the AUC it achieved 
across iterations and cross validation folds within the training set. The n highest performing modalities were 
fused via sMVCCA, where n was varied from 2 to 6 (total number of considered modalities). The n modalities, 
which in combination, provided the highest training AUC were selected.

Comparative Strategies. CaMCCo represents a framework () composed of multiple modules corre-
sponding to modality selection (), multimodal data fusion ( ), and multiclass classification (). Accordingly, 
the comparative strategies against which we evaluate CaMCCo involve systematically replacing the method used 
for one or more of these modules with an alternative strategy. Table 5 lists the notation for each of these strategies 
and provides a short description.

Single Modality and Multimodality Approaches. Each modality was evaluated using a single modality framework 
(MRI, PET, CSF, PP , APOE, ADAS ) consisting of cascaded classification ( CAS ) to ensure fair comparison 
with CaMCCo. In addition, we compared classification performance of CaMCCo with that of a cascaded classifi-
cation model where all modalities were fused at each level of the cascade (ALL).

Principal Component Analysis for Data Fusion. Principal Component Analysis (PCA) is a dimensionality reduc-
tion method which projects input data onto an alternate subspace defined by orthogonal basis vectors which 
capture the direction of variance in the data. Consider a high dimensional, concatenated multimodal data matrix 

= … … ∈ × +…+ +…+x x xX [ , , , ]k K
n M M M

1
k K1  where K refers to the number of modalities, n refers to the num-

ber of subjects, and Mk refers to the number of features in modality k.

=U S V XX[ , , ] SVD( )T

Singular value decomposition is applied to mean centered data matrix, X, which results in U, S, V. The columns 
of ∈ +…+ +…+ × +…+ +…+V M M M M M M( ) ( )k K k K1 1  are the principal components of X or the orthogonal basis vectors, 
ordered decreasingly by the amount of variance in the dataset explained by each component. 

Diagnosis N(F/M) Age MMSE Score

AD 52 (16/24) 75.1 +/− 8.1 23.8 +/− 2.0

MCI 71 (17/37) 74.1 +/− 7.2 27.1 +/− 1.7

HC 26 (10/14) 74.9 +/− 7.3 28.6 +/− 1.4

Total 149 (43/75) 74.2 +/− 7.2 26.3 +/− 2.6

Table 3. Clinical and demographic information of the 149 ADNI subjects considered in this study, selected 
based on the availability of imaging, non-imaging and clinical metrics at baseline. The dataset was split into 
independent training set with 60 cases (40%) and a holdout validation set with 89 cases (60%). Note that gender 
information was unavailable for a subset of the data, as a result of which N does not equal to the sum of females 
(F) and males (M).

Modality Features Description Number

Neurophysiologic Exam Modified ADAS-Cog score41

Score based on cognitive test 
assessing memory, praxis, 
orientation, word recall and 
recognition

1

T1w MRI Volumetric Measurements Volumetric measures of atlas 
based segmented brain regions 327

FDG PET Hippocampal Glucose 
Metabolism33, 34

Pons normalized left and 
right hippocampal glucose 
metabolism

2

CSF Proteomics t-tau, Aβ1–42, p-tau181

Markers of neuronal 
degeneration, plaque 
formation and tau 
hyperphosphorylation42

3

Plasma Proteomics Adiponectin, Insulin, 
Fibrinogen etc43

Concentrations of signaling 
proteins in blood, measured by 
multiplex immunoassay panel

146

ApoE Genotype ApoE alleles 1 & 2 Combination of allele forms ε2, 
ε3, ε4

1

Table 4. Summary of features considered in this study from each modality.
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∈ × +…+ +…+U n M M Mk K1  c ont a i ns  t h e  pro j e c t i ons  o f  X  on  t h e  s u b s p a c e  d e f i n e d  by  V . 
∈ +…+ +…+ × +…+ +…+S M M M M M M( ) ( )k K k K1 1  is a diagonal matrix. To reduce data dimensionality, the top d princi-

pal components containing most of the variance in the data are retained, onto which the data is projected.

Multiclass Classification. For a classification task with G classes, One-vs-All (OVA) method constructs G classi-
fiers, each tailored to separate one class from the rest. One Shot Classification (OSC) generates a single classifier 
designed to simultaneously distinguish between all the classes. The last comparative strategy involves the follow-
ing binary classification tasks, AD vs. HC and MCI vs. HC.

Experiment 1: Single Modality and Multi-Modality Cascaded Classification. The objective of this 
experiment is to examine (i) classification performance achieved by combining multiple modalities as compared 
to any single modality for all classification tasks within the cascade design. In addition, the experiment seeks to 
determine if (ii) combining subsets of modalities tailored to optimize classification at each level of the cascade 
provides comparable and/or improved performance as compared to combining all the modalities for all tasks. 
Finally, it also evaluates (iii) the impact of the chosen fusion method on the findings for (i) and (ii).

To meet these objectives, we compare the data fusion ( ) and modality selection () modules in CaMCCo 
(H C F K= + +CAMCCO CAS SMVCCA SEL) with other fusion (PCA), and modality selection ( ALL ) approaches, 
including the simple single modality (MRI, PET , CSF, PP, APOE, ADAS) classification. For individual modality 
experiments, PCA was applied to the experiments where the number of features were larger than the number of 
samples to avoid curse of dimensionality. For fused and concatenated classifiers, the number of reduced dimen-
sions was optimized on the training set. Therefore, we consider all the combinations of modalities and fusion 
methods listed below:

H C F K
H C F K
H C F K
H C K
H C K
H C K
H C K

H C K
H C K

= + +
= + +
= + +
= +
= +
= +
= +
= +
= +

ALL CAS SMVCCA ALL

PCA CAS PCA SEL

PCAL CAS PCA ALL

MRI CAS MRI

PET CAS PET

CSF CAS CSF

PP CAS PP

APOE CAS APOE

ADAS CAS ADAS

Experiment 2: Comparison of Multi-Class Classification Strategies for Fused Predictors. The 
objective of this experiment is to compare the cascaded classification method CAS used in CaMCCo 
( = + +CAMCCO CAS SMVCCA SELH C F K ) with other multiclass classification methods including OVA (OVA) and 
OSC (OSC). To ensure that only the classification module of the CaMCCo framework is evaluated, comparative 
classification strategies are combined with the same data fusion (SMVCCA) and modality selection method (SEL) 
as CaMCCo. Therefore,H C F K= + +OVA OVA SMVCCA SEL, and = + +OSC OSC SMVCCA SELH C F K . As with 
CaMCCo, the optimal set of modalities to combine for each classification task associated with OVA and OSC are 
determined experimentally from the training set.

Experiment 3: Evaluation of Fused Representation on Binary Classification Tasks. We perform 
binary classification ( BIN ) for the following two sets of classes, HC vs. AD and MCI vs. HC, in order to allow for 
direct comparison of the performance of fusion approach used in CaMCCo (SMVCCA + SEL) with that reported 
in literature. As with CaMCCo, the optimal set of modalities to combine for each classification task are deter-
mined experimentally from the training set. In addition, we also report binary classification results achieved by 
individual modalities to examine the effect of fusion for these classification tasks and also to gain insight into the 
differences in classifier performance on account of the data cohort used in this study as compared to those in 
other studies.

Results and Discussion
Experiment 1: Single Modality and Multi-Modality Cascaded Classification. Figure 3 shows the 
performance of cascaded classifier when applied to (i) single modalities ( MRI , PET , CSF , PP , APOE , ADAS ), 
(ii) fusion of all modalities ( ALL , PCAL) and (iii) fusion of selected modalities with multiple fusion methods 
( CAMCCO , PCA ) for prediction of HC, MCI and AD on the testing cohort. As shown in Fig. 1, ADAS-Cog, CSF 
and APOE were combined at the first cascade level (HC vs. All) and ADAS-Cog, and PET were combined at the 
second level (AD vs. MCI) in both CAMCCO and PCA. For HC vs. all, CAMCCO  shows higher performance 
(AUC = 0.97) as compared to all individual modalities (max AUC = 0.93), PCA  (AUC = 0.94), PCAL  and ALL  
(AUC = 0.52). Among the individual modalities, ADAS, CSF  and APOE  provided the top 3 classification AUCs, 
which was consistent with observations in the training set which led to these three modalities being selected for 
fusion in CaMCCo.

For AD vs. MCI, CAMCCO, PCA  and ADAS showed similar performances (AUC = 0.89). This may, in part, be 
on account of the lack of orthogonality in the features being fused. A correlation test between the ADAS and PET 
features showed correlation coefficients between −0.49 and −0.51 with p-value < 0.01. In fact, the modality 
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selection strategy employed in this work is limited in that it does not account for relationships between modalities 
to identify those that optimize the performance when fused. Instead, the selection of modalities are simplified and 
are based on their individual performances. However, it is interesting to note that despite the significantly poorer 
performance of PET as compared to ADAS, combining PET with ADAS-Cog does not degrade the performance. 
We note that, similar to HC vs. All, CAMCCO significantly outperforms ALL .

Experiment 2: Comparison of Multi-Class Classification Strategies for Fused Predictors. Table 6 
shows the performance of CAMCCO , OVA  and OSC for prediction of HC, MCI and AD. Across all 3 classes, it is 
evident that OVA and CAMCCO outperform OSC . OVA and CAMCCO show comparable AUCs for AD classifi-
cation, although OVA  shows incrementally higher accuracy, sensitivity and specificity as compared to CAMCCO. 
For MCI classification however, CAMCCO significantly outperforms OVA  in terms of all metrics (OVA 
AUC = 0.78 vs. CaMCCo AUC = 0.88). This is on account of the lower classification performance of MCI vs. all 
which is a challenging task provided the heterogeneity of the ‘all’ category which consists of both AD and HC 
patients. Therefore, CaMCCo provides the most optimal performance overall, across all 3 classes.

Experiment 3: Evaluation of Fused Representation on Binary Classification Tasks. Table 7 shows 
BIN  results obtained by combining select few modalities (SEL) via sMVCCA ( SMVCCA ) for the following binary 
classification tasks: (i) AD vs. HC and (ii) MCI vs. HC. On the training set, the fusion of ADAS-Cog and CSF 
provided the best classification AUC for AD vs. HC whereas the fusion of ADAS-Cog, CSF and PET provided the 

Symbol Description

Classification Methods

CAS Cascaded Classifier

OSC One Shot Classifier

OVA One-vs-All Classifier

BIN Binary Classifier

Data Fusion Methods

SMVCCA Supervised Multiview CCA data fusion approach

PCA Principal component analysis of concatenated features as baseline fusion 
approach

Modality Selection

ALL Multimodal dataset comprising all modalities considered in this study

SEL Multimodal dataset comprising select subset of all available modalities

MRI Unimodal dataset containing quantitative attributes extracted from MRI

PET Unimodal dataset containing quantitative attributes extracted from PET

CSF Unimodal dataset containing proteomic measurements from CSF

PP Unimodal dataset containing plasma proteomic data

APOE Unimodal dataset containing APOE data

ADAS Unimodal dataset containing ADAS-Cog scores

Comparative Methods

MRI  (CAS + MRI ) Cascaded classification of single modality MR data

PET  (CAS + PET) Cascaded classification of single modality PET data

CSF  ( CAS  + CSF) Cascaded classification of single modality CSF data

PP (CAS + PP) Cascaded classification of single modality Plasma Proteomics data

APOE  (CAS + APOE) Cascaded classification of single modality APOE data

ADAS ( CAS  + ADAS ) Cascaded classification of single modality ADAS-Cog data

CAMCCO (CAS + SMVCCA + SEL ) Classifier resulting from CaMCCo framework, which is comprised of cascaded 
classifier, sMVCCA data fusion and modality selection

ALL  (CAS + SMVCCA + ALL ) Cascaded classifier in combination with sMVCCA based data fusion method to 
combine all modalities

PCAL (CAS + PCA + ALL ) Cascaded classifier with PCA reduced representation of data concatenated from 
all modalities

PCA  (CAS + PCA + SEL ) Cascaded classifier with PCA reduced representation of data concatenated from 
selected subset of modalities

OVA  (OVA + SMVCCA  + SEL ) One-vs-all classifier constructed from sMVCCA fused data from selected 
modalities.

OSC  (OSC + SMVCCA + SEL ) One shot classifier constructed from sMVCCA fused data from selected 
modalities.

BIN  ( BIN  + SMVCCA + SEL ) Binary classifier constructed from sMVCCA fused data from selected modalities.

Table 5. Summary of notations used to refer to comparative strategies evaluated in this work.
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best classification for MCI vs. HC. Thus, BIN  for the two classification tasks fused the respective, aforementioned 
modalities for the test set. For the former classification task, the performance of BIN  was similar to that of the 
best performing individual modality, ADAS-Cog, which already provided near perfect AUC leaving little scope 
for improvement. According to other evaluation metrics, ADAS-Cog outperforms the fused representation. For 
the more challenging MCI vs. HC classification task however, BIN  improves classifier performance slightly in 
terms of AUC (0.92 vs. 0.93) but more significantly in terms of BACC (0.77 vs. 0.82) and SPEC (0.65 vs. 0.71). In 
comparison to most previous work, our individual modality and fused modality results appear to be slightly 
higher possibly on account of the features that were considered in this work, all of which were quality controlled 
and independently proven to provide good performance previously. In addition, this work considers a neurocog-
nitive score (ADAS-Cog), a measure that is mostly either used as a response variable or unconsidered in many 
fusion studies. The ADAS score appears to be strongly predictive of all classification tasks, possibly on account of 
a strong correlation with the MMSE scores, which were used to derive the ground truth class labels. Therefore, 
most gains in classification accuracy appears to be only slightly incremental. A correlation test between ADAS 
scores and MMSE scores across 118 patients, who had the latter data available, showed that the two were indeed 
highly correlated with a coefficient of −0.65 and p-value < 0.01.

Conclusion
In this work, we present a joint cascaded classification and radio-omics data fusion framework, called Cascaded 
Multiview Canonical Correlation (CaMCCo), for early diagnosis of Alzheimer’s disease. CaMCCo employs a 
unique strategy as compared to most previous approaches in that it accounts for multiclass classification while 
attempting to optimize classification accuracy by fusing a select subset of modalities for prediction of each class. 
As a framework, CaMCCo is comprised of three modules: (i) data fusion, (ii) modality selection and (iii) mul-
ticlass classification. Experiments were designed to investigate the choice of methods used for each CaMCCo 

Figure 3. Performance of single and multi modality cascaded classifiers. Area under the ROC curve (AUC) 
for prediction of (a) healthy control (HC) from all cognitive impairments, and (b) mild cognitive impairment 
(MCI) from Alzheimer’s Disease (AD).

ACC BACC AUC SEN SPEC PPV

CN
OSC 0.69 0.63 0.96 0.34 0.92 0.75

OVA 0.89 0.77 0.97 0.59 0.96 0.77

CAMCCO 0.89 0.77 0.97 0.59 0.96 0.77

MCI

OSC 0.69 0.69 0.77 0.68 0.70 0.67

OVA 0.68 0.68 0.77 0.78 0.59 0.63

CAMCCO 0.80 0.78 0.89 0.88 0.69 0.80

AD
OSC 0.69 0.67 0.84 0.53 0.82 0.69

OVA 0.85 0.82 0.90 0.72 0.91 0.81

CAMCCO 0.80 0.78 0.89 0.69 0.88 0.80

Table 6. Performance of multiclass classification strategies – one shot classifier (OSC), one vs. all (OVA), 
cascaded classifier in CaMCCo – upon fusion of modalities chosen from training set for each classification task. 
The highest accuracy (ACC), balanced accuracy (BACC), area under the ROC curve (AUC), sensitivity (SEN), 
specificity (SPE) and positive predictive value (PPV) achieved for each class are shown in bold. These results 
indicate that although the performance of both OVA  and CAMCCO  are comparable for CN and AD 
classification, CAMCCO  outperforms all other methods for MCI classification.
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module independently. In the first experiment, for instance, classification method was held constant while the 
data fusion and modality selection modules were varied and compared with that of CaMCCo. In the second 
experiment, the modality selection and data fusion methods were held constant and the cascaded classifier in 
CaMCCo was compared against other multiclass classification methods. Experimental findings on the ADNI 
dataset, comprising imaging, proteomics, genomics and neurophysiological data, consistently indicated that 
fusion of select multi-scale data channels, as in CaMCCo, outperforms fusion of all available modalities. In addi-
tion, the results showed that cascaded classification used in CaMCCo is better suited than other multi-class clas-
sification methods for MCI prediction. Finally, CaMCCo was compared against individual modalities for the 
two most commonly investigated binary classification tasks in most related studies, AD vs. HC and MCI vs. HC. 
While AD vs. HC was a simpler task well resolved by a single modality in our study, MCI vs. HC was a more chal-
lenging task where the application of CaMCCo appeared to improve classification, most significantly in terms of 
specificity. CaMCCo appears to be better able to distinguish between MCI and HC as compared to most previous 
studies, some of which are listed in Table 5.

However, the work presented in this paper is limited mainly by the method with which the modalities to be 
combined at each level of the cascade is determined. We only combine the modalities that independently provide 
the best accuracies on the training set, which may not be complementary. Nonetheless, we found that considering 
a subset of modalities provides improved performance over fusing all modalities. These findings indicate that 
incorporation of a more advanced modality selection method and additionally a feature selection method into 
the framework may provide further improvement in performance. Another limitation of the proposed strategy 
is the propagation of error from one level of the cascade to the next. To minimize this error, we therefore begin 
the cascade with the one-vs-all classification providing the least error. Despite these limitations, current findings 
indicate that the presented framework provides a promising platform for fusion of multiscale, multimodal data 
for early diagnosis of Alzheimer’s Disease.
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