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ABSTRACT 

Neuroimaging technologies aim at delineating the highly complex structural and 

functional organization of the human brain. In recent years, several unimodal as well as 

multimodal analyses of structural MRI (sMRI) and functional MRI (fMRI) neuroimaging 

modalities, leveraging advanced signal processing and machine learning based feature 

extraction algorithms, have opened new avenues in diagnosis of complex brain syndromes 

and neurocognitive disorders. Generically regarding these neuroimaging modalities as 

filtered, complimentary insights of brain’s anatomical and functional organization, 

multimodal data fusion efforts could enable more comprehensive mapping of brain 

structure and function.  

Large scale functional organization of the brain is often studied by viewing the 

brain as a complex, integrative network composed of spatially distributed, but functionally 

interacting, sub-networks that continually share and process information. Such whole-brain 



 

vi 
 

functional interactions, also referred to as patterns of functional connectivity (FC), are 

typically examined as levels of synchronous co-activation in the different functional 

networks of the brain. More recently, there has been a major paradigm shift from measuring 

the whole-brain FC in an oversimplified, time-averaged manner to additional exploration 

of time-varying mechanisms to identify the recurring, transient brain configurations or 

brain states, referred to as time-varying FC state profiles in this dissertation. Notably, prior 

studies based on time-varying FC approaches have made use of these relatively lower 

dimensional fMRI features to characterize pathophysiology and have also been reported to 

relate to demographic characterization, consciousness levels and cognition.  

In this dissertation, we corroborate the efficacy of time-varying FC state profiles of 

the human brain at rest by implementing statistical frameworks to evaluate their robustness 

and statistical significance through an in-depth, novel evaluation on multiple, independent 

partitions of a very large rest-fMRI dataset, as well as extensive validation testing on 

surrogate rest-fMRI datasets. In the following, we present a novel data-driven, blind source 

separation based multimodal (sMRI-fMRI) data fusion framework that uses the time-

varying FC state profiles as features from the fMRI modality to characterize diseased brain 

conditions and substantiate brain structure-function relationships. Finally, we present a 

novel data-driven, deep learning based multimodal (sMRI-fMRI) data fusion framework 

that examines the degree of diagnostic and prognostic performance improvement based on 

time-varying FC state profiles as features from the fMRI modality. The approaches 

developed and tested in this dissertation evince high levels of robustness and highlight the 

utility of time-varying FC state profiles as potential biomarkers to characterize, diagnose 

and predict diseased brain conditions. As such, the findings in this work argue in favor of 

the view of FC investigations of the brain that are centered on time-varying FC approaches, 

and also highlight the benefits of combining multiple neuroimaging data modalities via 

data fusion. 
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Chapter 1: Introduction 

1.1 Significance of the Problem 

Neuroimaging technologies aim at delineating the highly complex structural and 

functional organization of the human brain. Structural neuroimaging modalities evaluate 

anatomical brain structure and tissue type (e.g. structural MRI or sMRI) or brain tissue 

microstructure (e.g. diffusion MRI), whereas functional neuroimaging modalities 

indirectly estimate brain function/activity through respective characteristic “source 

signals” or “indicators” of the underlying neuronal (e.g. electroencephalography, 

magnetoencephalography), metabolic (e.g. positron emission tomography) or 

hemodynamic (e.g. functional MRI or fMRI) activity. In recent years, several unimodal as 

well as multimodal analyses of the sMRI and fMRI neuroimaging modalities, leveraging 

advanced signal processing and machine learning based feature extraction algorithms, have 

opened new avenues in diagnosis of complex mental syndromes such as schizophrenia, 

bipolar disorder, depression, anxiety, etc., neurocognitive degenerative disorders such as 

Alzheimer’s disease (AD), Huntington’s disease, Parkinson’s disease, multiple sclerosis, 

etc., developmental brain disorders such as autism spectrum disorder, attention deficit 

hyperactivity disorder, dyslexia, etc., and other trauma, breathing, cardiovascular, 

metabolic, and drug and alcohol related brain disorders. 

The fMRI neuroimaging modality is commonly used to detect and delineate brain 

regions that change their activation levels in response to experimental paradigms (task-

based fMRI) or in the resting state (rest-fMRI). In fMRI studies, the large scale functional 

organization of the brain is often studied by viewing the brain as a complex, integrative 
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network composed of spatially distributed, but functionally interacting, sub-networks that 

continually share and process information. Progressively, the whole-brain functional inter-

relationships amongst these spatially distinct functional networks of the brain, for example, 

how different brain regions couple to establish a specific function of the brain, etc., are 

typically studied as levels of their synchronous co-activation. In neuroimaging literature, 

these functional inter-relationships are widely referred to as functional connectivity (FC) 

between the different functional networks of the brain. 

Studies assessing FC primarily leverage popular approaches such as seed-based 

correlation analysis (SCA) and spatial independent component analysis (ICA) to 

decompose the preprocessed fMRI brain signals into distributed functional networks 

exhibiting high temporal correlation in intrinsic activity. Followingly, the statistical 

properties of the temporal activations estimated for these functional networks (i.e. 

functional network time-courses) are studied to evaluate whole-brain FC measures. More 

recently, there has been a major paradigm shift from measuring the whole-brain FC and 

associated summary statistics in an oversimplified, time-averaged manner to additional 

exploration of time-varying mechanisms to identify the recurring, transient “brain 

configurations” or “brain states”, referred to as “time-varying FC state profiles” in this 

work, that we discuss in detail in the next paragraph. Analysis of the temporal dynamics of 

the estimated network time-courses is generally carried on by applying a sliding window 

correlation (SWC) approach, although other approaches such as phase synchronization 

(PS), dynamic conditional correlation (DCC), co-activation patterns (CAP), time-

frequency coherence, etc. have also been proposed. 
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Most of the previous time-varying FC work has used the SWC method to evaluate 

inter-network temporal FC by calculating the correlation between the network time-courses 

at all time-points within a chosen window and repeating the process by gradually moving 

the window through the scan length. This essentially results in window-indexed correlation 

matrices that record snapshots of inter-network FC evolving in time. FC analysis using the 

SWC method is often proceeded by a rigorous FC state profile estimation and 

characterization process using clustering or blind source signal separation algorithms, 

wherein, as discussed in the previous paragraph, the FC state profiles are referred to the 

distinct discrete, transient patterns of FC, conceptually analogous to the quasi-stable EEG 

microstates. The estimated whole-brain FC state profiles represent transient patterns of FC 

that vary over time; it has been reported that subjects tend to remain in the same FC state 

profile for lengthy periods of time before transitioning to one of the other state profiles (i.e. 

transitions occur after multiple time samples). Notably, prior studies based on time-varying 

FC approaches have made use of these relatively lower dimensional fMRI features to 

characterize pathophysiology (i.e. identification of disease states), reported better 

diagnostic performance than time-averaged assessments of FC, and have also been reported 

to relate to demographic characterization, consciousness levels and cognition. 

Furthermore, generically regarding the different neuroimaging modalities as 

filtered, complimentary insights of brain’s anatomical and functional organization, 

multimodal data fusion efforts could enable more comprehensive mapping of brain 

structure and function. Studies featuring multimodal neuroimaging data fusion for 

understanding brain function and structure, or disease characterization, leverage the partial 

information available in each of the modalities to reveal data variations not exhibited 
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through the independent analyses. Several previous studies have suggested interactions 

between anatomical and functional connectivity of the brain, and it is reasonable to 

hypothesize covariation between feature spaces of a structural and functional modality. 

The joint information on such interactions between the feature spaces is extracted through 

model-driven or data-driven multimodal fusion approaches based on linear mixture models 

that differ in the optimization strategies they evolve the data sources through as well as in 

their basic limitations. Evidently, multimodal studies with advanced signal processing, 

machine learning and statistical modeling methods assume greater significance in 

diagnosis of complex brain syndromes and disorders that usually feature striking 

pathological and etiological heterogeneity. 

Studies leveraging such multimodal data fusion approaches have revealed 

significant information on clinical aspects of complex brain syndromes and disorders. The 

previously discussed, promising success of time-varying FC state profiles in recent 

neuroimaging literature suggest them to be powerful features in scope of the fMRI 

modality. Using these as features from the fMRI modality in a multimodal fusion study 

based on advanced signal processing and machine learning approaches can be useful to 

explore where and how brain structure corresponds to these time-varying functional 

connections. This can significantly improve our understanding of the brain and help in 

characterization of diseased brain conditions. 

Advanced machine learning approaches are now being increasingly used to process 

and reduce dimensionality of the very high dimensional neuroimaging data since they 

allow for information extraction at the level of the individual thus making them capable of 

assisting the investigator in diagnostic and prognostic decision-making of the patients. The 
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last few years have seen an emergence of deep structured or hierarchical computational 

learning architectures to automatically learn optimal data representations through a series 

of non-linear transformations on the input data space to enhance diagnostic classification 

performance as well as predicting cognitive decline. These architectures hierarchically 

learn multiple levels of abstract data representations at the multiple cascaded layers, 

making them more suitable to learn subtle differences in the data. Proven superiority of 

these deep architectures in the broader imaging community motivates their exploration on 

neuroimaging data. Previous multimodal studies have reported prediction performance 

improvements with use of multiple modalities as compared to a single studied modality; 

hence, such architectures could be utilized in a multimodal fusion framework to generate 

a collective feature space for identifying brain regions most discriminative of a disease as 

well as predicting a patient’s chances of progressing to a specific disease after a given time-

period. Fusing time-varying state profiles (as features from fMRI modality) with non-linear 

features extracted from rigorously training a structural data modality such as sMRI on a 

deep learning framework could be reasonably hypothesized to enhance the diagnostic or 

predictive precision. 

Overall, despite fundamental evidence of availability of considerable, interesting 

spatiotemporal dynamic connectivity information through these time-varying FC 

approaches, the robustness and statistical significance of the estimated time-varying whole-

brain FC profiles and associated statistical measures is yet not clear. Additionally, their 

utility as features for multimodal frameworks based on fMRI and sMRI modalities, and 

aimed at characterizing and predicting diseased brain conditions, has been sparingly 

explored. Indeed, these research topics assume critical importance in neuroimaging 
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literature in paving way for future methodological developments towards characterization 

of temporal coupling of the human brain, a research topic of high significance to learn how 

the human brain works and reveal how its functionality is altered under different disease 

conditions.  

1.2 Dissertation Statement 

This Ph.D. dissertation will implement advanced signal processing and machine 

learning based frameworks to estimate time-varying FC state profiles from rest-fMRI data, 

investigate robustness and statistical significance of these estimated time-varying FC state 

profiles and associated state summary measures using extensive validation testing on real 

and surrogate rest-fMRI data, and develop advanced signal processing and machine 

learning based frameworks to evaluate their utility for several applications such as disease 

characterization, establishing brain structure-function relationships, and enhancing 

diagnostic and prognostic power of neuroimaging data. 

1.2.1 Research Aims and Contributions 

The specific research aims and expected contributions of this Ph.D. dissertation are 

listed below: 

1. The first aim of this Ph.D. dissertation is to corroborate the efficacy of time-varying 

FC state profiles of the human brain at rest by implementing statistical frameworks 

to evaluate their robustness and statistical significance through an in-depth, novel 

evaluation on multiple, independent partitions of a very large resting state fMRI 

dataset, as well as extensive validation testing on surrogate rest-fMRI datasets. 

Such corroborating evidence is of utmost importance to (a) the neuroimaging 
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literature at the current stage where several studies involve use of time-varying 

approaches to study FC, and (b) the ongoing debate of nature and properties of 

fMRI features extracted through use of time-varying approaches. 

 

2. The second aim of this Ph.D. dissertation is to develop a novel data-driven, blind 

source separation based multimodal (sMRI-fMRI) data fusion framework that uses 

the time-varying FC state profiles as features from the fMRI modality to 

characterize diseased brain conditions and substantiate brain structure-function 

relationships. This development highlights (a) the utility of these fMRI features for 

disease characterization and identification of critical brain structure-function inter-

relationships disrupted during the course of a disease, and (b) the benefits of using 

the additional information available in the augmented (i.e. fused) domain for such 

disease characterization objectives. 

 

3. The final aim of this Ph.D. dissertation is to develop a deep learning based 

multimodal (sMRI-fMRI) fusion framework to examine the degree of diagnostic 

and prognostic performance improvement based on time-varying FC state profiles 

as features from the fMRI modality. This development highlights (a) the utility of 

these fMRI features for disease diagnosis and making future predictions of disease 

risk, (b) the advantages of using deep learning approaches for feature extraction to 

make such predictions, and (c) the advantages of making such predictions in the 

augmented (i.e. fused) domain space. 



Chapter 1: Introduction 

 8  

1.3 Outline of the Dissertation Structure 

In this section, we discuss the outline of the rest of this dissertation. Chapter 2 

presents a brief background of the fundamentals of the data modalities studied, data 

decomposition, data fusion and deep learning algorithms implemented, and time-varying 

statistical frameworks explored to estimate whole-brain FC in this work. 

After the brief review of the background information, the next four chapters 

(Chapters 3, 4, 5 and 6) include details of the major aspects of this dissertation. Chapter 3 

presents an in-detail evaluation of replicability of the time-varying FC state profiles and 

associated summary measures as estimated using two independent time-varying FC 

estimation frameworks. Chapter 4 demonstrates the statistical significance of the above 

time-varying FC measures by extensive internal and external validation in both tested 

dynamic frameworks.  

Chapter 5 demonstrates a disease characterization framework based on multimodal 

fusion of the sMRI and fMRI modalities. This framework proposes use of the time-varying 

FC state profiles as features from the fMRI modality with an objective of revealing and 

understanding disrupted links in brain structure and function in the diseased brain. 

Followingly the discussion on the data fusion for disease characterization work, 

Chapter 6 presents details of the novel deep learning based multimodal fusion framework 

that leverages the gray-matter and time-varying FC state profiles feature spaces to make 

future predictions on healthy and diseased brain conditions. 
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Finally, Chapter 7 provides a conclusion of the significant established contributions 

of the work undertaken in this dissertation, followed by a discussion of the scope of future 

work. 

1.4 List of Publications 

This dissertation interpolates material from my published, under review and in 

preparation manuscripts as referenced below. Apart from the chapters listed below, some 

of the material from the referenced work has also been included in Chapters 1, 2 and 7.  

Chapter 3 and 4: Abrol, Chaze et al. (2016), Abrol, Damaraju et al. (2017) 

Chapter 5: Abrol, Rashid et al. (2017)  

Chapter 6: Abrol, Bhattarai et al. (2018), Abrol, Fu et al. (2018), Abrol, Rokham et al. 

(2018)
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Chapter 2: Background  

2.1 Magnetic Resonance Imaging  

Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique 

that uses a strong magnetic field, electrical field gradient and radio waves to record detailed 

cross-sectional images of the body’s internal anatomical structures and physiological 

processes. Currently, it can be regarded as the most sensitive non-invasive imaging test of 

the brain in clinical practice and is used to diagnose conditions including tumors, stroke, 

abnormalities, hemorrhage, seizures, dementia, and several other conditions attributable to 

disorders in the brain.  

Structural MRI (sMRI) and functional MRI (fMRI) are two commonly used MRI 

modalities that are intrinsically dissimilar in acquisition and nature. While the sMRI 

neuroimaging modality measures the static anatomy or morphology of the brain by 

estimating the volumes of different brain tissues or fluids such as gray matter, white matter 

and cerebrospinal fluid, the fMRI modality provides the dynamic physiological 

information in an indirect way by recording changes in blood-oxygen levels and blood flow 

measures in response to neural activity in the brain. The brain morphology and functional 

connectivity both change considerably during childhood and adolescence, and often in old 

age and under different psychiatric or dementia conditions as well; hence, both modalities 

are being increasingly studied to identify these changes, although sMRI is more 

commonplace because of more established research findings and relative ease of 

interpretation. Furthermore, the sMRI scans are high resolution images and are often used 
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as a reference for multiple pre-processing steps such as co-registration, normalization and 

segmentation of the raw fMRI images onto a standard space. The standard preprocessing 

pipelines implemented on the raw sMRI and fMRI data involve a series of preprocessing 

operations as outlined in Figure 2-1.  

 

Figure 2-1: Standard preprocessing pipelines for sMRI and fMRI data. 

The most extensively recorded form of fMRI uses blood-oxygenation-level-

dependent (BOLD) contrast to highlight changes in blood flow related to energy consumed 

by brain cells (i.e. hemodynamic response). The recorded fMRI data is obscured by various 

noise sources that necessitate a series of statistical procedures to de-noise the underlying 

signal. This modality is used to study the functional activations induced due to some 
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experimental stimuli (i.e. task-based fMRI) or in task-free (or task-negative) resting state 

of the human brain (rest-fMRI). Task-based fMRI is primarily targeted at identification of 

brain networks that activate and/or deactivate in a specific task performance. Rest-fMRI 

investigates brain’s functional organization in absence of a task thus making the overall 

analysis challenging because of the absence of any differential behavioral performance and 

often needs sophisticated data processing and a large number of time samples to be 

recorded. However, absence of task makes rest-fMRI an attractive option for patients with 

severe psychiatric and neurological disorders, since they are likely to experience problems 

in following task instructions. In fact, rest-fMRI has generally been found to be useful in 

identifying group differences in multiple patient groups.  

2.2 Functional Segregation, Integration and Connectivity 

Functional segregation, integration and connectivity are three key concepts to 

understand the functional organization of the brain. Functional segregation refers to 

process of parcellating the brain into multiple regions according to their specific functions. 

Several atlas-based, seed-based, clustering/decomposition based (for example, spatial 

group ICA) and graph theory based parcellation schemes have been used in recent fMRI 

studies. Despite the unconstrained nature of the resting state experiments, these different 

parcellations have confirmed overwhelming evidence of reproducibility (both in context to 

anatomy and function) in the segregated brain networks at multiple spatial and temporal 

scales. Fundamental, network theory-based toy as well brain-space demonstrations of 

functional segregation adapted from Sporns (2013) are shown in Figure 2-2a and Figure 

2-2c.  
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Figure 2-2: Network theory based schematic representation of functional segregation and 

integration. (a) Functional segregation is specified in this toy network by strong functional 

coupling within communities (in red boundaries) with little functional coupling across 

communities; (b) Visualization of parcellation (functional segregation) of the brain; (c) 

Functional integration is specified in this toy network by globally high levels of functional 

coupling between the hub connections, and (d) Visualization of the functional integration 

in the brain space with thick lines showing connections between hubs. Such connections 

are central to understand the higher order cognitive and behavioral functioning of the brain. 

This figure has been used from Sporns (2013) with permission. 

On the other hand, functional integration refers to the process of estimating 

interactions between the segregated brain regions to understand higher order cognitive and 

behavioral functioning of the brain. Network theory-based demonstrations of functional 

integration adapted from Sporns (2013) are shown in Figure 2-2b and Figure 2-2d. 

Understanding the segregative and the integrative properties of the human brain that 

associate to healthy or impaired cognition is one of the critical goals of neuroscience. 

Functional Segregation Functional Integration

a. 

b. 

c. 

d. 
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BOLD-fMRI is a powerful modality to evaluate brain function, wherein functional 

integration of the brain is studied as patterns of functional connectivity (FC) between 

different brain regions. FC patterns are typically assessed as a measure of covariance 

between BOLD time series corresponding to the parcellated brain regions. FC studies are 

usually targeted at quantification of integrative relationships between the different brain 

regions amidst possible, multiple noise confounds. Studying FC allows us to identify how 

different brain regions couple to establish a specific function of the brain. Previous fMRI 

studies have used FC estimates as a tool to understand the functional organization of both 

the healthy and the diseased brain. Details of FC evaluations are discussed in more detail 

in a later section of this chapter. 

2.3 Identification of Resting State Networks  

Studies assessing FC primarily leverage seed-based correlation analysis (SCA) and 

spatial independent component analysis (ICA) to decompose brain signals into distributed 

networks exhibiting high temporal correlation in intrinsic activity. SCA decompositions 

feature computation of pairwise correlation in time-courses corresponding to the 

predefined brain regions of interest (Biswal, Yetkin et al. 1995, Fox, Snyder et al. 2005). 

Several pre-defined ROI atlases such as the automated anatomical labeling atlas (Tzourio-

Mazoyer, Landeau et al. 2002), the Talairach and Tournoux atlas (Lancaster, Woldorff et 

al. 2000), the Eickhoff-Zilles atlas (Eickhoff, Stephan et al. 2005), the Harvard-Oxford 

atlas (Makris, Goldstein et al. 2006), and the Craddock atlas (Craddock, James et al. 2012) 

are leveraged to set up seeds for which pairwise functional connectivity is estimated. These 

seed-based approaches have been largely successful in revealing useful information on 

brain-wide FC. Another widely used method in estimating seeds is the spatial ICA 
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decomposition method (McKeown, Makeig et al. 1998, McKeown and Sejnowski 1998) 

that allows for measurement of network connectivity in multiple data-driven regions of 

interest. This method yields consistent spatially segregated and functionally homogeneous 

resting state networks (RSNs) by exploiting independence in the spatial domain as opposed 

to assessment of fixed brain voxels. Consequently, current multi-subject studies frequently 

make use of the group ICA (gICA) technique (Calhoun, Adali et al. 2001) for extracting 

brain networks while retaining individual subject variability (Erhardt, Rachakonda et al. 

2011, Allen and Calhoun 2012, Allen, Erhardt et al. 2012).  

Despite the unconstrained nature of the resting state experiments, the distributed 

networks or signal variations exhibiting temporal correlation in resting state fMRI 

decompositions, referred to as RSNs, have been proven to demonstrate high levels of 

reproducibility thus suggesting a common architecture for the functional connectome 

(Damoiseaux, Rombouts et al. 2006, Fox and Raichle 2007, Margulies, Kelly et al. 2007, 

Shehzad, Kelly et al. 2009, Smith, Fox et al. 2009, Van Dijk, Hedden et al. 2010, Zuo, 

Kelly et al. 2010, Dansereau, Benhajali et al. 2017). Additionally, consistency in the 

baseline functional activity of the brain (Damoiseaux, Rombouts et al. 2006) and reliability 

in some rest-fMRI measurements (Zuo and Xing 2014) has been suggested. Although there 

is a low degree of consensus on linkage of fMRI fluctuations with neural activity, there is 

rapidly growing literature providing evidence of association of the decomposed RSNs to 

underlying neuronal connectivity (Mantini, Perrucci et al. 2007, He, Snyder et al. 2008, 

Shmuel and Leopold 2008, Britz, Van De Ville et al. 2010, de Pasquale, Della Penna et al. 

2010) which motivates investigations of spontaneous FC using rest-fMRI data with great 

optimism. 
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In this work, the group spatial ICA method has been used to parcellate the brain 

into functional networks. We discuss this method in detail in the following sub-section. 

2.3.1 Group Spatial ICA on fMRI Data 

ICA is a multivariate decomposition technique to separate additive but statistically 

independent sources. This promising blind source separation method is being increasingly 

applied to the fMRI data to identify independent data sources in space (spatial ICA) or time 

(temporal ICA). Spatial ICA on fMRI data determines a set of brain components 

(functional networks) that are maximally spatially independent of each other, each 

associated with a time-course. Group spatial ICA (Calhoun, Adali et al. 2001) allows for 

extraction of brain networks while retaining maximum individual subject variability and is 

being increasingly used in multi-subject studies. A schematic diagram of group ICA 

implementation is provided in Figure 2-3. 

Group spatial ICA (GICA) as implemented in the GIFT toolbox has been used in 

several parts and stages of this work. The fMRI data for multiple subjects is stacked in the 

time dimension and reduced in two steps before the group-level (i.e. aggregate) 

independent components are estimated. In the first data reduction step, a subject-level 

principal component analysis (PCA) reduces the temporal dimension of fMRI data by 

selecting a subset the principal components that explain most of the variation for each 

subject. This is followed by the second data reduction step where a group-level PCA is 

implemented on the concatenated subject-specific principal components. This dual 

dimension reduction allows for maximal retention of subject-level variance. Following 

dimensionality reduction, the aggregate independent components are identified by 
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implementing the Infomax ICA method on the group-level reduced data and running 

ICCASO (Himberg, Hyvarinen et al. 2004) algorithm to stabilize the estimated 

components. The estimated independent components represent the group-level spatial 

maps of the resting state functional networks (i.e. the RSNs), whereas the associated 

mixing matrix represents the group-level activation time-courses for the identified RSNs. 

Finally, subject-specific estimates of the spatial maps and time-courses are obtained by 

GICA back-reconstruction algorithm that features spatiotemporal regression.  

 

Figure 2-3: Schematic diagram of spatial group ICA including the back-reconstruction 

process as adapted from Calhoun, Liu et al. (2009). Spatial group ICA decomposes the 

fMRI data X (subjects stacked in the time dimension) into aggregate sources Sagg mixed by 

the mixing matrix A. In a following step, subject-specific spatial maps are back-

reconstructed by projecting inverse of the subject-specific mixing matrix on the subject’s 

fMRI data. The subject-specific time-courses are estimated from these subject-specific 

spatial maps in a following step.  
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In summary, group spatial ICA (GICA) allows decomposition of the preprocessed 

fMRI data into group-level RSN spatial maps and time-courses, following which GICA 

back-reconstruction or spatiotemporal regression allows for estimation of subject-specific 

RSN spatial maps and time-courses. Importantly, it is the estimated subject-specific RSN 

time-courses that are studied in whole-brain FC assessments. 

2.4 Whole-brain Functional Connectivity  

Whole-brain FC is often summarized as a set of FCs between all possible pairs of 

RSNs and can be estimated from the subject-specific RSN time-courses in a time-averaged 

or time-varying manner as discussed in the following sub-sections. 

 

Figure 2-4: An illustration of time-averaged and time-varying FC analyses. (A) The rest-

fMRI data is decomposed by group ICA into resting state networks (RSNs) and GICA back 

reconstruction is used to estimate the subject-specific spatial maps (Si) and RSN time-

courses (Ri) from the estimated aggregate RSN spatial maps in the first step. (B) A typical 

time-varying approach estimates the covariance of the RSN time-courses (Ri). On the other 

hand, a typical sliding-window based approach estimates time-varying connectivity as a 

series of regularized covariance matrices from windowed portions of (Ri). This figure has 

been reused from Allen, Damaraju et al. (2012).  
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2.4.1 Time-Averaged vs. Time-Varying FC 

Time-averaged FC assessments assume that FC is relatively static in the resting 

brain. This assumption has been challenged by time-varying FC approaches which have 

shown the FC to evolve over few seconds. Similar to the static (i.e. time-averaged) resting 

state FC assessments, the ultimate objective of the time-varying resting state FC studies is 

to understand the driving mechanisms and cognitive implications of the observed 

fluctuations in FC of the brain regions. Studies (Chang, Liu et al. 2013, Tagliazucchi and 

Laufs 2014, Allen, Damaraju et al. 2017) have reported identification of potential 

electrophysiological correlates of fluctuations in BOLD FC thus suggesting the 

neurophysiological origin of FC and linkage to cognitive as well as vigilance states of the 

brain. Increasingly, information in the temporal variability of the correlation structure 

between RSNs is being leveraged to identify group differences between the diseased and 

healthy controls (Damaraju, Allen et al. 2014, Rashid, Damaraju et al. 2014, Miller, 

Yaesoubi et al. 2016). The most commonly used time-varying FC approaches including 

the ones used in this dissertation are discussed in the next sub-section. 

2.4.2 Time-Varying FC Approaches 

Analysis of the temporal dynamics of network time-courses, also referred to as 

time-varying FC, is generally carried out by applying a sliding window correlation (SWC), 

dynamic conditional correlation (DCC), phase synchronization (PS), co-activation patterns 

(CAPs) or a time-frequency coherence (TFC) approach.  

The SWC method (Sakoglu, Pearlson et al. 2010, Allen, Damaraju et al. 2012) 

evaluates temporal FC by calculating the correlation between the time-courses of the 
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components of interest at all time-points within a chosen window, and repeating the process 

by gradually moving the window through the scan length. This generates a series of time-

indexed windowed whole-brain correlation or covariance (FC) estimates. Recently 

introduced to the neuroimaging community, the DCC method (Lindquist, Xu et al. 2014, 

Choe, Nebel et al. 2017) is a multivariate volatility model that estimates model parameters 

through quasi-maximum likelihood methods and is widely used in the finance literature to 

estimate time-varying variances and correlations. The PS method (Glerean, Salmi et al. 

2012) involves comparison of two signals by separating the amplitude and phase 

information parts, and has been reported to have maximal temporal resolution; however, 

its use is limited to narrow band signals. The focus of the CAPs method (Liu, Chang et al. 

2013, Liu and Duyn 2013) is to identify and study instantaneously co-activating patterns. 

Lastly, the TFC approach is an extension of the coherence and time-domain approaches 

that features connectivity pattern estimation using the frequency and phase lag information, 

and has been successfully used in studying connectivity in a few brain regions of interest 

(Chang and Glover 2010) or whole-brain connectivity (Yaesoubi, Allen et al. 2015). In this 

work, we will focus on using the sliding window method as it applies minimal assumptions 

to estimate the windowed correlations and few data transformations. 

2.4.3 Time-Varying FNC State Profiles 

FC analysis using sliding window is often proceeded by a rigorous whole-brain FC 

“state” profile estimation and characterization process (originally proposed in Allen, 

Damaraju et al. (2012)) that identifies the frequency and structure of the estimated 

windowed correlations. Herein, the FC states are referred to the distinct discrete, transient 

patterns of FC, conceptually analogous to the quasi-stable EEG microstates. The estimated 
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state profiles represent transient patterns of functional connectivity that vary over time; it 

was found in Allen, Damaraju et al. (2012) that subjects tend to remain in the same state 

profile for long periods of time before transitioning to one of the other state profiles (after 

multiple TRs).  

 

Figure 2-5: (A). For all subjects, covariance estimates are estimated using the SWC 

approach. (B). The frequency and structure of this windowed data (for all subjects) is 

assessed through a state estimation and characterization procedure using multiple 

approaches including, but not limited to, the hard clustering and fuzzy meta-state 

approaches. The hard-clustering approach assigns membership of each of the observed 

high dimensional samples (i.e. windowed correlation/covariance matrices) onto one of the 

clusters, whereas the meta-state approach allows a more flexible, fuzzy membership where 

each of these observations is expressed as a weighted sum of the identified group-level FC 

state profiles.  

This hard-clustering approach (Allen, Damaraju et al. 2012) maps the high-

dimensional windowed correlation patterns to one dimension i.e. they are allocated 

membership of one of the clusters. With existence of hard defined boundaries, distant 

windowed FC patterns may still be assigned the same centroid, whereas lesser dynamically 

different windowed FC patterns may be assigned two different clusters. Such an approach 

is complemented by a more flexible, fuzzy framework of expressing connectivity in the 
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state estimation and characterization process (Miller, Yaesoubi et al. 2016) . This second 

approach is based on a meta-state framework proposed recently to allow a subject's state 

to be represented by varying degrees of multiple states and is claimed to exhibit lesser 

distortion in the windowed FC patterns and other features under investigation since 

contributions of all overlapping states are recorded. In this work, we evaluate time-varying 

FC state profiles as estimated by two frameworks - (1) the hard-clustering approach (Allen, 

Damaraju et al. 2012), and (2) the fuzzy meta-state approach (Miller, Yaesoubi et al. 2016), 

details of which are covered in the methods section of Chapter 3.   

 

Figure 2-6: An example of a whole-brain FC state profile connectogram.   

For ease of interpretation, the whole-brain FC connectivity patterns are commonly 

represented in the form of matrices (as in Figure 2-5) where each element of the matrix 

represents the FC strength in that brain connection (i.e. pair of brain regions). To avoid 
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redundancy due to symmetry, the “connectograms” (Figure 2-6) represent yet another 

favorable way to visualize the whole-brain FC patterns.  

2.5 Multimodal Fusion 

Different brain imaging modalities enable unique, filtered and complimentary 

insights of brain’s activity and organization, thus intrinsically accomplishing a more 

comprehensive view (Calhoun, Adali et al. 2006, Calhoun and Adali 2009, Schultz, Fusar-

Poli et al. 2012, Sui, Yu et al. 2012, Uludag and Roebroeck 2014, Calhoun and Sui 2016). 

Given the above benefits, multimodal neuroimaging data acquisition and analysis has 

become much more widely utilized in recent years. The multimodal data could be analyzed 

through separate or collective pipelines using a variety of univariate or multivariate 

algorithm through a model-based or data-driven approach (Calhoun and Sui 2016) as 

highlighted in Figure 2-7.  

Previous multimodal work has typically analyzed data from different modalities 

separately and correlated the independent results from the unimodal analyses or used one 

of the modalities to constrain models corresponding to the other modality. The above 

mentioned types of multimodal studies have proven to be very useful, but make minimal 

or limited use of the cross-modality (i.e. joint) information, a resource that is now being 

increasingly availed by use of “symmetric” data fusion approaches (Calhoun and Sui 

2016). “Feature-based” symmetric data fusion approaches inherently first estimate useful 

features from the different modalities independently and then evaluate relationships 

between these features, a practice that leverages the partial information available in each 

of the modalities to reveal data variations not exhibited through the independent analyses. 
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To date, there have been several interesting demonstrations of the potential of utilizing 

such cross-modality or joint information in understanding the human brain and its 

disorders, disease characterization or biomarker identification, and uncovering disrupted 

links in complex mental illness (reviewed in  Calhoun and Sui (2016)).  

Notably, multimodal studies with advanced modelling methods assume greater 

significance in diagnosis of a complex syndrome, for example schizophrenia, where 

striking pathological and etiological heterogeneity has been observed. Several previous 

studies (Olesen, Nagy et al. 2003, Bassett, Bullmore et al. 2008, Hagmann, Cammoun et 

al. 2008, Rykhlevskaia, Gratton et al. 2008, Honey, Sporns et al. 2009, van den Heuvel, 

Mandl et al. 2009, Camara, Rodriguez-Fornells et al. 2010, Michael, Baum et al. 2010, 

Skudlarski, Jagannathan et al. 2010, Yu, Sui et al. 2011, Segall, Allen et al. 2012, 

Alexander-Bloch, Giedd et al. 2013) clearly suggest interactions between structural and 

FC, and so it is reasonable to hypothesize covariation between “feature spaces” i.e. distilled 

(or lower dimensional or second/higher order) measures of brain structure and function in 

each modality. Importantly, reducing or projecting the very high dimensional data to 

feature spaces facilitates removal of redundant data while promoting identification of inter-

modality relationships in a simpler, lower-dimensional space. Hence, in symmetric fusion 

approaches, it is the lower dimensional feature spaces that are fused to extract joint 

information some examples of which include contrast maps, amplitude of low frequency 

fluctuation maps (ALFF), etc. for fMRI data, segmented gray or white matter maps for 

sMRI data, fractional anisotropy (FA) or mean diffusivity (MD) maps for diffusion tensor 

imaging (DTI) data, SNP or methylation data for genetic data, etc.  
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Figure 2-7: Multimodal Data Fusion Approaches. The relatively low-dimensional features 

extracted from the high dimensional multimodal data are fused including a range of 

symmetric or asymmetric data fusion approaches as illustrated in this figure. This figure 

has been modified adapted from Calhoun and Sui (2016). 

While model-driven approaches have their own benefits in the form of enabling 

specific hypothesis testing of inter-regional interaction (provided there is enough prior 

information available on the problem being studied), data-driven approaches, in general, 

require specification of lesser assumptions about the data upfront thus making them more 

suitable for studying complex problems, for instance a complex syndrome such as 

schizophrenia, wherein little reliable prior knowledge is available. Data-driven approaches 

typically explore use of a blind or semi-blind multivariate approach to reveal hidden 

structure of inter-relationships between two (or more) data feature spaces. The use of 

High-D Data 

(Multiple 

Modalities)

Low-D Feature 

Space 

(Multiple Modalities)

fMRI: Contrast Maps,

ALFF maps, FC/dFC

measures, etc.

Gene: SNP, 

Methylation, etc.

sMRI: segmented GM, 

segmented WM, etc.

DTI: FA, MD, etc.

Feature

Extraction

Symmetric

Model Driven Data Driven

Blind

Parallel ICA

CC-ICA 
Coefficient-

Constrained ICA 

Informed 
Multimodal PLS 

SEM

Structural Equation 
Modeling

GLM

General Linear Model

DCM (SSM)

Dynamic Causal Modeling
State Space Models

N-PLS 

Multimodal Partial Least 
Square

LLDA

Local Linear Discriminant 
Analysis

IVA and ICA

Independent Vector 
Analysis

SVM

Support Vector Machine

mCCA

Multimodal Canonical 
Correlation Analysis

jICA

Joint ICA

Linked ICA

mCCA + jICA

Multiset CCA + Joint ICA

Decomposition 
Methods

Semi-Blind

Asymmetric

EEG-Informed

fMRI Analysis

DTI-Informed 
sMRI Analysis 

Data Fusion Approaches



Chapter 2: Background 

 26  

multivariate approaches enables estimation of multiple variables jointly and has some 

additional advantages over the use of univariate approaches. Multivariate approaches are 

relatively easy to interpret due to co-varying nature of the variables (i.e. regions of interest) 

and warrant additional robustness to noise as measures from patterns are explored rather 

than measures from paired relationships (Calhoun and Sui 2016). Recently used blind 

multivariate decomposition methods include, but are not limited to, joint independent 

component analysis (jICA) (Calhoun, Adali et al. 2006), multiset canonical correlation 

analysis (mCCA) (Correa, Adalı et al. 2007), partial least squares (PLS) (Martinez-Montes, 

Valdes-Sosa et al. 2004, Chen, Reiman et al. 2009), and linked ICA (Groves, Beckmann et 

al. 2011), while adaptive (semi-blind) approaches such as coefficient constrained ICA (CC-

ICA) (Sui, Adali et al. 2009) and parallel ICA (Liu, Pearlson et al. 2009) also exist. 

The above discussed multivariate approaches are all based on linear mixture models 

but differ considerably in the optimization strategies/priorities they evolve the data sources 

through as well as in their basic limitations. Additionally, combing multiple multivariate 

algorithms has also been recently suggested to allow flexibility in the estimations by 

reducing the limiting effects of the individual approaches (Sui, Pearlson et al. 2011) as 

discussed next. The joint sources estimated by the jICA (or the linked ICA) algorithm are 

optimally maximally independent but share a common mixing matrix, thus assuming a very 

strong correlation between the joint sources. Contrarily, the mCCA algorithm jointly 

maximizes the inter-subject covariations thus allowing for varying levels of connectivity 

strengths between the joint sources. In this method, each dataset is decomposed into a set 

of sources with corresponding mixing profiles, also termed as canonical variates (CVs), 

and their corresponding correlation values, also called canonical correlation coefficients 
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(CCCs). Despite allowing for varying activation levels of the joint sources, there remains 

the possibility that the spatial maps of the emergent joint sources in mCCA are highly 

similar in some cases where, for example, the CCC estimates are not sufficiently distinct 

(Correa, Adali et al. 2010, Sui, Adali et al. 2012, Sui, He et al. 2013). Sui, Pearlson et al. 

(2011) used the mCCA+jICA algorithm for fusing the fMRI contrast maps and DTI FA 

maps to investigate group differences in healthy controls, schizophrenia patients and 

bipolar patients, and concluded increased group classification accuracy with this algorithm 

as compared to its constituent algorithms tested alone. This model basically uses mCCA in 

the first step (Sui, Pearlson et al. 2011, Sui, He et al. 2013) wherein the different feature 

spaces are first linked with flexible linkages, thus adding to the investigator’s confidence 

to perform joint ICA with an objective of identifying both highly and weakly correlated 

joint sources in the second step. Additionally, a recent paper has proposed a unifying 

framework to link together a wide variety of multimodal approaches including the ones 

mentioned above (Silva, Plis et al. 2016). 

2.6 Disease Characterization Data and Methods 

In Chapter 5, we characterize the complex brain syndrome of schizophrenia. 

Schizophrenia is a chronic mental disorder that affects how a person thinks, feels and 

behaves due to breakdown in relation between thought, emotion and behavior. To 

characterize schizophrenia, we compare a group of patients diagnosed with this disorder 

against an age and gender matched group of healthy controls from the fBIRN data 

repository (Keator, van Erp et al. 2016). To identify the complex inter-relationships as well 

as disrupted structure-function links in the brain, we pursue a multimodal data fusion 

approach. In this multimodal work, we use gray matter (GM) measures from sMRI data 
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and time-varying FC state profiles as measures from fMRI data as features for multimodal 

data fusion. We fuse these features using a data-driven, blind source separation approach 

of multiset canonical correlation analysis (mCCA) followed by joint ICA (jICA), also 

referred to as mCCA+jiCA in the previous literature.   

2.7 Disease Progression Data and Methods 

In Chapter 6, we predict the progression of patients with mild cognitive 

impairments (MCI) to Alzheimer’s disease (AD). MCI features cognitive impairments that 

do not significantly impact fundamental functioning (instrumental activities) of daily 

living, while AD is a degenerative disease with irreversible structural deterioration in the 

brain leading to cognitive and behavioral disorders in normal functioning of the patients. 

Notably, MCI can progress to some form of dementia (not necessarily AD); however, in 

absence of a narrower prodrome for AD, MCI is often used as a prodromal stage of AD. 

Identifying patients who would likely progress to AD in near future early is highly 

important not only for improving the patient’s health, but also for pharmaceutical 

companies to test effectiveness of their expensive drugs on the most relevant subjects. 

To study progression of MCI to AD, we use the Alzheimer’s disease neuroimaging 

initiative (ADNI) dataset (ADNI). The subset of subjects diagnosed as MCI at baseline 

time-points in this longitudinal study and who progressed to AD within the follow-up 

period of three years could be further stratified into the progressive MCI (pMCI) group, 

whereas the remaining MCI subjects (who did not progress to AD in the follow-up time of 

three years) could be assigned the stable MCI (sMCI) group. This implies that AD 
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progression could be (loosely, i.e. in a non-strict sense) understood as a series of transitions 

most likely to occur in the following specific order: CN-sMCI-pMCI-AD. 

In this specific multimodal work in the dissertation, we use gray matter measures 

from sMRI data and time-varying FC state profiles-based summary measures from fMRI 

data as features for multimodal data fusion. The features are fused using canonical 

correlation analysis (CCA) and a linear support vector machine is used to classify sMCI 

and pMCI groups to quantify prediction of the progression of MCI to AD. 
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Chapter 3: Framework to Evaluate Replicability of Time-Varying 

Functional Connectivity State Profiles 

3.1 Motivation 

Recent studies on assessment of temporal variation in FC in the human brain have 

made use of time-varying FC approaches to characterize pathophysiology i.e. identification 

of disease states, thus corroborating the utility of the undertaken approaches (Damaraju, 

Allen et al. 2014, Rashid, Damaraju et al. 2014, Yu, Erhardt et al. 2015, Du, Pearlson et al. 

2016, Miller, Yaesoubi et al. 2016). These studies found extensive additional information 

through use of these dynamic approaches as compared to that from static assessment of 

FC, hence advocating the use of dynamic analyses for better understanding of functional 

connectivity patterns in the brain. Furthermore, the estimated time-varying FC measures 

have been reported to relate to demographic characterization (Hutchison and Morton 2015, 

Yaesoubi, Miller et al. 2015, Preti, Bolton et al. 2016), consciousness levels (Hutchison, 

Womelsdorf et al. 2013, Amico, Gomez et al. 2014, Hudson, Calderon et al. 2014, 

Barttfeld, Uhrig et al. 2015, Yaesoubi, Allen et al. 2015, Wang, Ong et al. 2016) and 

cognition (Kucyi and Davis 2014, Schaefer, Margulies et al. 2014, Yang, Craddock et al. 

2014, Madhyastha, Askren et al. 2015).  

Despite fundamental evidence of availability of considerable, interesting 

spatiotemporal dynamic connectivity information through these time-varying FC 

approaches, no prior study has yet evaluated the canonical utility of the time-varying FC 

measures; in other words, are there certain connectivity patterns that tend to recur across 

different subjects, i.e. a chronnectome. The need to examine the reliability of the emergent 
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discrete FC patterns has indeed been mentioned in several leading reviews on this emerging 

field (Hutchison, Womelsdorf et al. 2013, Calhoun, Miller et al. 2014, Calhoun and Adali 

2016). In this chapter, we resolve this previously unaddressed issue by examining 

robustness (i.e. replicability or reproducibility) in time-varying FC patterns as estimated 

by two frameworks that used (1) the hard-clustering approach (Allen, Damaraju et al. 

2012), and (2) the fuzzy meta-state approach (Miller, Yaesoubi et al. 2016) respectively as 

we discuss in the coming sections.  

3.2 Materials and Methods 

3.2.1 fMRI Data Acquisition and Preprocessing 

This study worked with resting state data that was previously collected, 

anonymized, and had informed consent received from subjects, both healthy and patients 

(aged between 13 to 75 years), as per the institutional guidelines practiced at the University 

of New Mexico (UNM) and the University of Colorado Boulder (UC, Boulder). 

7500 resting state scans were used for this analysis all of which were acquired using 

3-Tesla Siemens TIM Trio MRI scanners with 12 channel radio frequency coils at the Mind 

Research Network (MRN) in association with UNM, or using the same hardware scanner 

at UC, Boulder. Both scanners used the exact same acquisition parameters (except for the 

repetition time) for most of the subjects. T2*-weighted functional images were acquired 

using a gradient-echo EPI sequence with TE = 29 ms, TR = 2s (6992 scans) or 1.3s (8 

scans), flip angle = 75°, slice thickness = 3.5 mm, slice gap = 1.05 mm, field of view = 240 

mm, matrix size = 64 × 64, voxel size = 3.75 mm × 3.75 mm × 4.55 mm. The sampling 

rates of the scans were matched before the dFNC analysis. The scans had variable length 
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with the minimum scan length being 150 TRs; however, only the first 150 time-points of 

all scans were studied. This data was a de-identified convenience dataset for which we do 

not have access to the health and identifier information. While it would be useful to have 

that information and evaluate possible subgroups and additional variables of interest, our 

perspective was that having this additional variability should, if anything, make the 

possibility of replicating the state patterns even less likely. 

The functional data were preprocessed using MRN’s automated preprocessing 

pipeline based on the SPM software. The data pre-processing pipeline integrated removal 

of the first three images in the scans to avert T1 equilibration effects, realignment using 

INRIalign, timing correction of slices with the middle slice fixed as reference, spatial 

normalization of data into the Montreal Neurological Institute (MNI) space, re-slicing of 

data into cubic voxels of side 3mm, and data smoothing using a Gaussian Kernel with the 

full-width at half- maximum (FWHM) set to 10 mm. 

Anomaly detection in the form of a correlation analysis on the five upper and lower 

slices of the functional images was performed on all 7500 scans to detect scans that failed 

the reorientation process or had any missing slices. This outlier detection removed 396 

subjects, thus leaving behind a total number of 7104 subjects corresponding to 

approximately 95% of the available data. 

3.2.2 Spatial Group ICA and Postprocessing 

The built-in auto-masking function in the AFNI software was leveraged to create 

an average mask to be used as the template mask input while running group ICA on the 

data that passed the anomaly detection analysis. In a multistep procedure to identify the 
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RSNs, data was decomposed into maximally spatially independent components using 

functions from the Group ICA of fMRI Toolbox (GIFT). With a higher model of 100 

(aiming at finer parcellation), this group decomposition used only the initial 150 time-

points of all scans.  

Choosing a higher number of principal components at the subject level stabilizes 

back-reconstruction and retains maximum variance in the data as shown in (Erhardt, 

Rachakonda et al. 2011). So, in the group ICA analysis, the entire dataset was transformed 

into 130 principal components using standard principal component analysis (PCA) at the 

subject level in the first data reduction step retaining maximum subject-level variance 

(greater than 99.99%), and further down to 100 components by implementing group level 

PCA in the second data reduction step. ICASSO (Himberg, Hyvarinen et al. 2004) was 

used to investigate reliability of the estimated independent components, and it was found 

that the estimates exhibited tight clustering, hence converging consistently amongst several 

runs. The spatial maps and time-courses of the individual subjects did not undergo 

backward reconstruction since it was not required for this specific analysis. Careful 

analysis on the emergent decomposition patterns confirmed 61 components having no 

correspondence to any known imaging, physiological, movement-related artifacts. 

Component map templates for these shortlisted components were assessed and distributed 

into the somatomotor, parietal, frontal, default mode, visual, temporal and cerebellar 

networks (Figure 3-1). 

To set up the maximum possible number of independent samples each having a 

large partition size, the first 7000 of the 7104 scans were partitioned into 28 age matched 

groups each having 250 scans. These age-matched groups were a mix of subjects from both 
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sites (UNM: a total of 6472 subjects, with 231.1 +- 4.3 subjects per group, all subjects with 

a TR of 2 seconds; UC: a total of 528 subjects with 18.9 +- 4.2 subjects per group, 520 

subjects with a TR of 2 seconds), and had an average age of 31.65 years with an average 

standard deviation of 13.8 years for subjects within the groups. 

With a focus on evaluating repeatability of the dFNC metrics corresponding to the 

partitioned samples, all the samples underwent separate group ICA decompositions. Like 

the entire dataset group ICA decomposition, standard PCA was performed at subject level 

for reducing data down to 130 components in the first step, and further down to 100 

components by using group level PCA in the second step. Again, alike the entire dataset 

decomposition, ICASSO (Himberg, Hyvarinen et al. 2004) was used to verify consistency 

of the estimated independent components in all 28 group decompositions. However, 

subject specific time-courses and spatial maps were also back reconstructed for these group 

decompositions since they were required for the inter-component correlation (i.e. FC) 

analysis. 

The reconstructed component time-courses went through additional processing 

steps to remove any residual noise sources mostly including low frequency trends 

originating from the scanner drift, motion related variance emerging from spatial non-

stationarity caused by movement, and other non-specific noise artifacts unsatisfactorily 

decomposed by the implemented linear mixed model. More specifically, the post-

processing steps featured de-trending existing linear, quadratic and cubic trends, multiple 

linear regression of all realignment parameters together with their temporal derivatives, 

outlier detection using 3D spike removal, and low pass filtering with high-frequency cut-

off being set to 0.15 Hz. Lastly, the time-courses were variance normalized which meant 
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the covariance structures from the sliding window approach were equivalent to the 

correlation structures. 

3.2.3 Resting State Network Selection 

An extensive evaluation of the spatial maps and spectral composition of the 

components resulting from the entire dataset gICA decomposition was carried on 

identifying physiological non-artifactual, previously established networks. Specifically, 61 

template components with local peak activations in gray matter, time-courses dominated 

by low-frequency fluctuations, and high spatial overlap with known RSNs were selected 

for further analysis. For each of the 28 group decompositions, respective components were 

mapped to the identified 61 non-artifact template components from the entire dataset 

decomposition by finding best unique matches through a greedy correlation analysis. The 

37 components with highest correlation values or more specifically above the first quartile 

correlation threshold value of 0.65 and global correlation threshold value of 0.4 for all 

sample decompositions were retained for the dynamic FNC analysis. 

3.2.4 FC Estimation and Temporal Variability 

Dynamic FNCs between all 𝐶2
37  (666) RSN pairs in each of the twenty-eight group 

decompositions were estimated using a tapered sliding window featuring convolution of a 

rectangular window (width = 30 TRs = 60 seconds) with a Gaussian (σ = 3 TRs), and 

subsequently sliding this tapered window in gradual steps of 1 TR, finally resulting in as 

many as W = 120 windows. Hence, for each group, dFNC was estimated subject wise to 

get a series of correlation vectors corresponding to the series of windowed partitions of the 

subject specific time-courses. 
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Figure 3-1: Resting State Networks (RSNs). Spatial maps of the thirty-seven retained RSNs 

at the most activated sagittal, coronal and axial slices. 
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3.2.4.1 Hard-Clustering Approach 

In this approach, the frequency and structure of the reoccurring 𝐶2
37  (666) 

dimensional dynamic windowed CPs emerging from all subjects in a specific group was 

modularized by implementation of the classical hard k-means clustering. The clustering 

algorithm was implemented using the Manhattan (cityblock) distance as the similarity 

measure since the L1 norm has been suggested to be a more effectual similarity measure 

than the L2 norm for high dimensional data.  

The elbow criterion was used to derive the number of clusters input to the clustering 

algorithm. In this method, the central idea is to run k-means for different values of a 

specified number of clusters (k) and determine the case that maximizes within-cluster 

similarity and between-cluster dissimilarity concurrently. More specifically, we measured 

the ratio of within cluster sum of squared distances (dispersion in the cluster) to the sum of 

squared distances for all other observations (total variability outside that cluster). Finally, 

we evaluated this measure averaged over all clusters with respect to the number of clusters 

and validated the case after which the gain in explanation of variation in data made only a 

marginal difference. 

Furthermore, a two-level clustering was implemented to reduce the clustering error 

where an initial point input to the second level clustering was estimated in the first level 

clustering, and all windowed FNC data was clustered in the second level clustering. The 

initial point input was found by estimating and clustering the subject exemplars 

(corresponding to subject FNC windows featuring highest variance in FNC). More 

specifically, for each subject time-point (window), the standard deviation in FNC was 
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computed, and windows at the time-points exhibiting local maxima were retained as 

subject exemplars and subsequently clustered. The centroid connectivity patterns resultant 

from this first level clustering were then set as the initial point input to the second level 

clustering of all FNC data. This two-level clustering process is similar to EEG microstate 

analysis (Pascual-Marqui, Michel et al. 1995), and was thoroughly tested for consistency 

for fMRI data in Allen, Damaraju et al. (2012). Repeating the initial as well as final 

clustering 150 times to increase the likelihood of escaping local minima, stable time-

varying FC state profiles (SPs) were obtained for each of the groups.  

Connectivity SPs emergent from the group-wise clustering analysis contain 

information on inter-RSN connectivity strength and variation in a group and can be thought 

of as states that the subjects repeatedly transit into through the course of the scan. To 

evaluate replicability of state measures across groups, all sets of SPs were first sorted across 

groups in a multiple step greedy similarity analysis using Manhattan distance as the 

similarity measure. In each step, a new group was fixed as a reference to which the 

remaining groups where evaluated for similarity and then sorted according to the similarity 

distance thus eventually resulting in 28 sets of sorting orders. In the last step, the statistical 

mode over this structure of best matches of SPs was validated as the final sorting order. 

The least frequency of any of the modes was observed to be 22 out of the 28 groups, and 

similar results were achieved by using other L1 and L2 (Euclidean, squared Euclidean, 

correlation distance) similarity measures in the clustering algorithm, thus confirming 

reliability in the sorting process. Summary measures as discussed in the results sections 

were computed and compared across the sorted SPs in this clustering approach. 
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Visualizing data is considered important for quality control in any field, and hence 

we made an attempt to visualize the projections of the high dimensional CPs onto a two 

dimensional space by using the tSNE algorithm (Maaten and Hinton 2008). In the tSNE 

projection analysis, Euclidean distance between points is computed, and modelled as 

conditional probabilities with which one point would pick another as its neighbor such that 

more similar points are located nearby. Data is preprocessed with PCA reducing 

dimensionality to an initial number of dimensions at the start of the learning. Perplexity of 

Gaussian distributions in higher dimensional space can be interpreted as the smoothing 

measure of number of effective neighbors. In this projection analysis, the initial number of 

dimensions was set to be 50, initial learning rate as 500, number of iterations as 1000, and 

the Gaussian perplexity was set to 50.  

3.2.4.2 Fuzzy Meta-State Approach 

Computation of meta-states involves derivation of the windowed connectivity 

correlation data in a similar fashion as in the hard-clustering approach. In this approach, 

the 𝐶2
37  (666) dimensional windowed FNC covariance structures were decomposed into 

fewer dimensional (o) connectivity patterns (CPs) using one of the commonly used data-

driven approaches viz. temporal ICA, spatial ICA, k-means and PCA. The lower 

dimensional CPs are maximally mutually independent time-courses with overlapping 

connectivity profiles in case of temporal ICA decomposition, maximally independent 

spatial patterns in case of spatial ICA decomposition, and orthogonal projections capturing 

maximal variance for the PCA decomposition. In case of the k-means clustering approach, 

cluster memberships are assigned to get low within cluster distances and high between 

cluster distances with the cluster centroids being treated as basis correlation patterns. 
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The windowed data decomposition was followed by assessment of contributions of 

the emergent, maximally independent patterns to the actual windowed correlation CPs. 

Finally, the real-valued weights associated with these states were estimated for every 

windowed FNC pattern, and the discretized version of this lower dimensional (o = 5 for 

main discussion, and o = 2 through o = 5 for comparison of results) characterization of the 

666-dimensional CPs was achieved with a signed quartile transformation which resulted in 

meta-states. In our work, we compare results from the different decomposition methods, 

but mainly focus on the temporal ICA decomposition throughout the meta-state analysis 

discussion. The overall objective in this approach is again to calculate and compare group 

wise statistics from the meta-state profiles derived from all time windows of all the subjects 

in a given group. 

3.3  Results 

In this section, we first describe results from the feature (or component) selection 

process following the group level ICA decompositions, and subsequently discuss findings 

from both dFNC approaches used in this study. 

3.3.1 Feature Selection 

The spatial maps of the 37 retained RSNs were thresholded (𝑡𝑐) by using mean (𝜇𝑐) 

and standard deviation (𝜎𝑐) parameters estimated using a normal-gamma-gamma (NGG) 

model (𝑡𝑐 > 𝜇𝑐 + 8𝜎𝑐) to show regions contributing to the networks (Allen, Erhardt et al. 

2011). The thresholded spatial maps of the RSNs at the most activated sagittal, coronal and 

axial slices are plotted in Figure 3-1. Co-ordinates of peak activations in MNI space, 

maximum activation level, activation region voxel volume, and associated Brodmann areas 
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for the retained 37 RSNs are summarized in Appendix A Table 1. It can be easily confirmed 

that the retained RSNs demonstrate high similarity to RSNs from previous high-order 

decomposition studies (Allen, Erhardt et al. 2011, Allen, Damaraju et al. 2012).  

3.3.2 Hard Clustering Approach 

3.3.2.1 Optimal Clustering Analysis 

The elbow criterion suggested an optimal number of five clusters for all groups 

(Figure 3-2A). For all groups and each k, the method was repeated 10 times as a consistency 

check. The group-wise boxplots of the validated number of clusters over the different runs 

are shown in Figure 3-2B. 

 

Figure 3-2: Optimal Clustering Analysis. (A) Elbow plot for a sample run; (B). Group-wise 

boxplots of the estimated optimal number of clusters over 10 independent runs. (B) The x-

axis labels in Figure 3B illustrate the number of runs for that group (out of a total of 10 

runs) that estimated the optimal value of k equal to 5. In all, 241 out of the 280 independent 

runs estimated the optimal value of k equal to 5; hence, this value of k was validated as the 

optimal clustering case for the rest of the study. 



Chapter 3: Framework to Evaluate Replicability of Time-Varying Functional Connectivity State Profiles 

 42  

 

Figure 3-3: State summary measures in the clustering approach. (A) State profiles (SPs) 

averaged over all groups; (B) 1-sample t-test results on the SPs; (C) 1-sample t-test results 

averaged over the domains; (D) Boxplots of pairwise linear correlations of the SPs; (E) 

Boxplots of average occurrence % of the SPs; (F) Boxplots of the average mean dwell 

times of the SPs; (G) Boxplots of average fractional times of the SPs; (H) Occurrence 

percentages of the SPs modeled w.r.t. time; and (I) Mean and std. deviation of average state 

transition probabilities (modelled as a first order Markov chain). 
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3.3.2.2 State Summary Measures 

Characterizing states and summarizing state metrics provides important and useful 

information e.g. the time spent in a particular state, the directional probability of transitions 

between two particular states, etc. that help us quantify replicability between the 

independent group decompositions. The state summary measures and similarity statistics 

evaluated in the hard-clustering approach are shown in Figure 3-3, and their relevance and 

contribution in eventually investigating replicability of the temporal dynamics is discussed 

subsequently.  

The average state metric (Figure 3-3A) provides information on averaged 

connectivity and the percentage of occurrence considering all independent samples as one 

large sample, whereas the one-sample t-statistic metric (Figure 3-3) highlights regions with 

high mean and smaller standard deviations, and hence the connections in the region can be 

considered to be more reliable. The 1-sample t-test statistics averaged over pairs of network 

domains can be seen in Figure 3-3C to highlight the most reliable network domain pairs in 

a particular state. Figure 3-3D shows the pairwise linear correlations of the mapped SPs 

across all the groups. Evidently, states 1 to 4 have high correlation numbers (first quartiles 

greater than 0.8) suggesting these states are highly reproducible across the independent 

samples, whereas state 5 with higher spread is not as fully reproducible as the other states. 

The considerably larger spread of state 5 in the correlation boxplot is explained in the t-

distributed Stochastic Neighbor Embedding (tSNE) projection analysis (Maaten and 

Hinton 2008) in the coming sub-section where state 5 is actually observed as mixture of 

states 1 and 2.  
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We also compare the state occurrence percentage, mean dwell time spent in each 

of the states, and fractional times for each of the states for all groups as shown in the 

boxplots in Figure 3-3E, 4F and 4G. For each of the boxplots, the group-wise state 

measures are well concentrated within their respective ranges with state 2 consistently 

observed as the most frequent (39.5 % average occurrence time), and hence with higher 

dwell and fractional times.  

The number of occurrences of the states is next modeled as a function of time 

(Figure 3-3H) so as to observe how the state occurrence frequencies increase or decrease 

with time. Due to the unconstrained nature of resting state, it is unlikely to obtain consistent 

temporal trends in the cognitive states of the brain. However, we could investigate 

existence of any consistent temporal trends in occurrence of the FC state profiles to 

motivate theories on their relation to vigilance, sleep or arousal states. Similar to earlier 

work (Allen, Damaraju et al. 2012), we observe a state with increased thalamocortical anti-

correlation probably related to drowsiness (State 3) for which frequency of occurrence 

increases with time spent in the scanner and that occurs about 10% of the time in all groups. 

This observation is consistent with Tagliazucchi and Laufs (2014) who report reliable drifts 

between wakefulness and sleep during typical waking rest fMRI scans. Furthermore, EEG 

correlates suggest that this state corresponds to increase in low frequency delta and theta 

power suggestive of reduced vigilance (Allen, Damaraju et al. 2017). 

Finally, state transition behavior is captured by a first order Markov model which 

helps in understanding the propagation of probability transitions through the network i.e. 

probabilities associated with entering or exiting a given state. For readability of this model, 

the average values of probabilities (𝑝) of group-averaged state transitions across all groups 
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have been transformed through a −𝑙𝑜𝑔10𝑝 transformation. Hence, smaller values in the 

averaged state transition matrix (on the left in Figure 3-3I) correspond to high probabilities 

of transition from one state to another. The standard deviations in the averaged state 

transition matrices across all groups are shown to the right in Figure 3-3I. It can be observed 

that there is a high probability of being in the same state at the next time instant (high 

probability along the diagonals), as well as a high reliability of transition to and from state 

2 as compared to other states as they tend to have higher mean transition probabilities and 

smaller standard deviations. However, transition probabilities, with high standard 

deviations in some cases, can also be highly variable. 

3.3.2.3 Visualizing State Profiles 

The tSNE algorithm is known to preserve the local structure of the data by 

projecting similar higher dimensional structures (with smaller pointwise distance) closer 

in the 2D space than the relatively distinct ones as the algorithm learns at a predefined 

learning rate while the data is being processed over a predefined number of iterations. In 

this analysis, we used tSNE to project the exemplar high-dimensional windowed FNC data 

from all of the 28 groups onto a two-dimensional space.  

The final projection of the exemplar data can be visualized in Figure 3-4A which 

suggests states 1, 2, 3 and 4 to be clustering consistently, whereas state 5 showed high 

variance and appeared more similar to states 1 and 2. This observation suggests that the 5th 

state is not fully reproducible as the other states. Figure 3-4B shows the data for states 1 to 

4 only (for all groups), and these 4 classes can be seen to be clustered in distinct but 

touching regions. An assessment of the class conditional density peaks for these states in 2 
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dimensions (Figure 3-4C) and 3 dimensions (Figure 3-4D) revealed distinct density peaks 

for all 4 classes thus further supporting the existence of structure in the clustered data.  

 

Figure 3-4: High-dimensional windowed FNC data projection onto a two-dimensional 

space using the t-distributed Stochastic Neighbor Embedding (tSNE) framework. (A) tSNE 

visualization of the windowed FNC data from all 28 groups suggests consistent clustering 

for states 1, 2, 3 and 4 for all groups, touching class boundaries and low degree of 

homogeneity for state 5. Additionally, from the state summary measures, State 5 was seen 

to be less reproducible as compared to the other 4 states. (B) tSNE visualization for states 

1 to 4 for all groups confirms distinct (but touching) clustering regions for these different 

data classes. (C) and (D) Class conditional densities for the states 1 to 4 in 2 dimensions 

(Figure 5C) and 3 dimensions (Figure 5D) reveal distinct peaks for all 4 classes thus 

validating the structure in the data. 
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3.3.3 Fuzzy Meta-State Approach 

3.3.3.1 State Summary Measures 

For the fuzzy meta-state approach, to evaluate replicability in the group statistics, 

several meta-state metrics such as number of distinct meta-states occupied (n), number of 

switches in meta states (s), longest state span (r: largest L1 distance possible in occupied 

meta-state vectors) and finally the total distance covered by a subject (d: sum of L1 

distances between meta-state vectors covered by a subject) are computed from the 

emergent meta-states. The group-wise histograms of subject meta-state metrics from the 

temporal ICA decomposition method as plotted in Figure 3-5A show similar spread and 

distribution across the groups. Figure 3-5B, the mean stem plots and standard deviation 

boxplots suggest low variation in the estimated group summary metrics (𝜎𝑠 =  1.0015,

𝜎𝑛 =  1.0678, 𝜎𝑟 =  0.5373,  𝜎𝑑 =  4.5790).  

Similar results from alternative decompositions such as spatial ICA, PCA, and k-

means clustering (Figure 3-5C) confirm the low variation observed in temporal ICA 

decomposition metrics. It must be noted that k-means clustering uses only 4 discrete states 

(1 to 4), and hence has dis-similar numbers as compared to the other three decompositions 

with a maximum 8 possible states (-4 to -1, 1 to 4). Nonetheless, meta-state metrics from 

the k-means decomposition are similar across the different groups showing low variation 

for the estimated dynamic measures (𝜎𝑠 = 1.3192,  𝜎𝑛 = 1.0840, 𝜎𝑟 = 0.5033, 𝜎𝑑 =

1.6242).  
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Figure 3-5: State summary measures in the meta-state approach. (A) Histogram plots of 

the estimated subject-specific temporal ICA meta-state metrics demonstrate similar 

distributions across all groups; (B) Boxplots of group-wise averages of temporal ICA meta-

state metrics indicate low variation in group summary metrics; (C) Similarity of group 

summary metrics across separate groups within and across different decomposition 

methods. Notably, the metrics are consistent across groups in k-means, but different from 

other methods since k-means uses only 4 discrete states (1 to 4), as compared to other 

methods that use 8 states (-4 to -1 and 1 to 4). 
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3.4 Discussion 

Robustness of time-varying FC profiles and summary measures as evaluated using 

two previously used chronnectomic frameworks were evaluated over multiple age-

matched, large and independent resting state datasets. Current findings from our analyses 

provide a substantial and novel advancement on the debate of robustness of inferences on 

temporal dynamics through the undertaken methods.  

From group analysis in the hard-clustering approach, we confirmed high correlation 

in sorted state profiles across the independent decompositions with the first quartiles (25th 

percentiles) of pairwise correlations greater than 0.8 for 4 out of 5 states. Using tSNE as a 

quality control measure, we successfully projected the high dimensional state profiles from 

all independent groups onto a two-dimensional space and could confirm existence of 

structure in the windowed FC data from all groups and infer results consistent with the 

metrics derived in this approach. However, this visualization also suggested possible 

improvements in the chosen clustering algorithm since one of the states appeared as a 

mixture of two other primary states.  

Using the fuzzy meta-state approach as a second pass analysis, we evaluated 

multiple decomposition methods to explore generic replicability from a distinct 

perspective. As expected, we found low values of standard deviation for all derived average 

group-wise meta-state metrics through the temporal ICA decomposition method. This early 

identification was found to be consistent with similar evidence from replicability analysis 

using the k-means, spatial ICA and PCA decomposition techniques.  
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Taken together, results from our analyses provide several lines of evidence of 

substantial reproducibility in the basic connectivity patterns amidst an ensemble of inter-

regional connections. We test the statistical significance of the time-varying FC state 

profiles and validate our replicability findings through extensive internal and external 

validation procedures on real and surrogate fMRI datasets in Chapter 4.  
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Chapter 4: Validation and Statistical Significance Testing of Time-

Varying Functional Connectivity State Profiles 

This chapter focuses on the validation and statistical significance testing of the 

estimated time-varying FC state profiles and associated state summary measures 

respectively.  

4.1 Motivation 

Delimiting validation, robustness and generalization of the research results through 

specific preset statistical criterion is an important quality control process in research. We 

seek these boundaries by conducting rigorous tests for correspondence across different 

model orders on the real fMRI data (internal validation) and permutation tests are 

conducted using artificially synthesized surrogate data (external validation) in both the 

implemented time-varying FC frameworks tested in the previous chapter.  

Internal validation i.e. testing correspondence across inferences for a range of 

model orders in both tested approaches is rather straightforward, and general 

correspondence in the structure of state profiles and range of meta-state metrics across the 

range of model orders in both frameworks could be expected. However, external validation 

i.e. testing for statistical significance of the observed measures (on real fMRI data) through 

a given framework is not as straightforward. This requires generation of a null distribution 

of the observed measure in absence of the phenomenon of interest (i.e. windowed 

correlations and higher order measures based on this metric). The value of the statistical 

measure of interest estimated from real data is then compared against the null distribution 

of that measure as generated from surrogate data. As such, a rejection of the null hypothesis 
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would evince statistical significance of the captured measures, and hence the statistical 

framework that was used to capture the phenomenon of interest in the first place. On the 

other hand, a failure to reject the null hypothesis would simply imply lack of evidence that 

the statistical framework indeed captured the phenomenon of interest. The real problem, 

however, lies in the generation of “appropriate” surrogate data to estimate a valid and 

useful null distribution (Miller, Abrol et al. 2018). 

To generate null data from surrogate data, undoubtedly, it would be highly useful 

to replicate the behavior of “noiseless” BOLD data by “appropriate” simulations; however, 

an absence of a baseline, i.e. ground truth for resting state, makes this very step extremely 

challenging. Null models must therefore be approximated using the available fMRI data. 

Previous research has used the phase randomization (PR) and vector auto-regressive 

(VAR) models for this purpose. These models allow testing for the hypothesis that the 

observed data is generated by a linear, stationary Gaussian process. In this work, we 

conduct statistical significance testing through use of the PR model to generate surrogate 

data. We discuss details of the surrogate data generation and phenomenon of interest we 

test for both approaches in the methods section, present outcome of the analysis in the 

results section, and discuss inferences and limitations on these inferences in the discussion 

section.  

4.2 Methods 

4.2.1 Surrogate Data Modeling 

Statistical significance testing was conducted to verify the driving factor of the 

emergent discrete FC state profiles (SPs). Surrogate data generation was conducted by 
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phase randomization (Prichard and Theiler 1994) of the RSN time-courses. Similar to the 

phase randomization procedure used in few recent fMRI studies (Handwerker, 

Roopchansingh et al. 2012, Damaraju, Allen et al. 2014, Hindriks, Adhikari et al. 2016), 

the surrogate RSN time-courses were generated by Fourier transforming the RSN time-

courses estimated from real fMRI data, adding a uniformly distributed random phase to 

each frequency in this frequency domain data, and finally inverse Fourier transforming the 

frequency domain data back to the time-domain.  

Adding the same random phase to the same frequency components of the RSNs 

preserves the static FNC and the lagged cross-covariance structure in the surrogate datasets. 

This class of surrogates, hereinafter referred to as “consistent” phase randomized (CPR) 

surrogates, correspond to the null hypothesis that the real RSN time-courses are explained 

by a linear, stationary Gaussian process (Schreiber and Schmitz 2000, Borgnat, Flandrin et 

al. 2010, Richard, Ferrari et al. 2010, Liegeois, Laumann et al. 2017). Alternatively, adding 

different random phases to the same frequency components of the RSNs disrupts the static 

FNC and the lagged cross-covariance structure in the surrogates. This alternate class of 

surrogates, hereinafter referred to as “inconsistent” phase randomized (IPR) surrogates, 

instead correspond to the null hypothesis that the real RSN time-courses are explained by 

a linear Gaussian process with static FNC approximately equal to zero (Hindriks, Adhikari 

et al. 2016). 

4.2.2 External Validation: Significance Testing of States and Summary Measures 

In the hard-clustering approach, the FC state profiles estimated from CPR and IPR 

surrogate data were compared to those generated from the original data. In this specific 
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analysis, the IPR surrogates were used only to seek explanation to clustering as the null 

generated from this class is not appropriate to make inferences about stationarity of the 

observed data since lesser than required properties of the observed data are preserved by 

construction. It must also be noted that by construction of surrogate RSN time-courses, the 

mean, variance and power spectrum of both surrogate classes are identical to that of the 

real RSN time-courses, and subsequently using an extension of the Weiner-Khintchine 

theorem (Prichard and Theiler 1994), both surrogate classes will have the same temporal 

autocorrelation as the real RSN time-courses. In the second part of this analysis, the 

observed sum of pair-wise inter-state distances from real fMRI data was tested against the 

corresponding null distribution from the CPR surrogates datasets to confirm statistical 

significance of the framework used to capture the state profiles. 

Similarly, null distributions for the four different measures estimated in the fuzzy 

meta-state approach (i.e. number of changes in states, number of distinct states, longest 

state span, and the total distance between the states) were generated using the CPR 

surrogate datasets. Following that, the measures of these metrics from real fMRI data were 

assessed against the generated metric-specific null distributions. 

4.3  Results 

4.3.1 Hard Clustering Approach 

4.3.1.1 Clustering for a Range of Model Orders 

With an objective of using the same dataset to internally validate results from the 

hard-clustering approach, time-varying FC state profiles were estimated for a range of 
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number of clusters (k = 2 to 10) and compared to each other. Figure 4-1 plots the state 

profiles over this range for the first group.  

It must be noted that within every group, the state connectivity profiles had to be 

sorted since the order of the centroids or clusters emergent from the k-means algorithm is 

not unique. After sorting through a greedy algorithm, it can be clearly seen in Figure 4-1 

that clustering results for different clustering indices (i.e. model orders 2 to 10) are 

consistent. 

 

Figure 4-1: Internal validation in the hard-clustering approach. Clustering results for a 

range of number of clusters (k = 2 to 10) demonstrate high similarity of the emergent state 

profiles across this tested range of model orders. The occurrence percentage of each state 

is given in the title of the state image plot. 
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Figure 4-2: External Validation in the hard-clustering approach. (A). SPs emergent from 

clustering windowed FNC data corresponding to real fMRI data exhibit high correlation 

with SPs from similar analysis on 100 synthesized surrogate datasets of RSN time-courses 

with consistent phase randomization (CPR) and low correlation in case of inconsistent 

phase randomization (IPR); and (B) Observed sum of pair-wise inter-state distances in real 

data in comparison to the null distribution of this test statistic approximated from 100 CPR 

surrogate datasets. 

4.3.1.2 Clustering Surrogate Data 

100 CPR and 100 IPR surrogate datasets for the real RSN time-courses were 

generated each of which underwent dFNC analysis and subsequent clustering individually. 

The SPs emergent from the different surrogate datasets were mapped to the SPs in the real 

fMRI dataset, and finally a scalar correlation distance (averaged across the SPs) was 

computed for each surrogate dataset. Figure 4-2A illustrates the distributions 
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corresponding to the two surrogate classes where it can be seen that the CPR surrogates 

show a very small correlation distance (very high correlation), and the IPR surrogates show 

very large correlation distance (very low correlation) as compared to the real data SPs. This 

observation suggests that clustering is substantially driven by the lagged cross-covariance 

structure of the RSN time-courses and not solely by the linear autocorrelation structure of 

the RSN time-courses or dissimilarities in mean and variance across subjects.  

Additionally, the presence of any significant differences in the statistical measures 

from the real and CPR surrogate data was explored by approximating the null distribution 

for a test statistic, namely sum of pair-wise inter-state distances, from the multiple CPR 

datasets, and subsequently comparing the observed value of this statistic for real data 

against the generated null (Figure 4-2B). The CPR null was rejected for this test statistic in 

all groups which suggests presence of non-Gaussianity, non-linearity or non-stationarity, 

or a combination of these properties in the observed time-courses. Unfortunately, further 

non-trivial testing is required to narrow down on the cause of the rejection of the CPR null, 

a topic out of scope of the focus of this study and worth exploring in the future. 

Nonetheless, the two results in Figure 4-2 jointly suggest that clustering was substantially, 

but not completely, explained by the lagged cross-covariance structure of the RSN time-

courses.  

4.3.2 Fuzzy Meta-State Approach 

4.3.2.1 Decomposing for a Range of Model Orders 

On the other hand, for the fuzzy meta-state approach, sensitivity of the replicability 

results to the number of dimensions (model order) in the meta-state approach is tested by 
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performing the meta-state analysis for a range of model orders (o = 2 to 5). Sensitivity of 

the replicability results to the number of dimensions (model order o) in the meta-state 

approach is tested by performing the meta-state analysis with this parameter ranging from 

2 to 5. As evident from the bar graphs and low standard deviations in Figure 4-3, there is 

great similarity in all meta-state summary metrics in all model orders, which further 

substantiates evidence of the replicability of the meta-state approach summary metrics 

across the independent samples. Notably, the averaged meta-state statistics for the entire 

dataset increase with the number of dimensions since the range of possible meta-states in 

the state space increases with the model order; however, within a given model order, high 

group-wise similarity in the dynamic measures is observed. 

4.3.2.2 Decomposing Surrogate Data 

Correspondence of the meta-state summary metrics to the RSN time-courses 

corresponding to real fMRI data was tested by meta-state permutation testing on a set of 

100 CPR surrogate datasets of RSN time-courses. For all meta-state metrics, the outcome 

from the real dataset was determined and compared against the null distribution for the 

respective meta-state metrics generated from the different surrogate datasets. Figure 4-4 

shows that all summary metrics for the real dataset are located completely outside the 

synthesized null distribution for the temporal ICA, spatial ICA and PCA decomposition 

methods. Equivalent results were observed for the k-means decomposition method as well. 

This rejection of the CPR null model for the studied meta-state metrics for different 

decomposition methods adds further evidence to presence of non-Gaussianity or non-

linearity or non-stationarity, or any combination of these three properties in the observed 
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RSN time-courses. Spotting the specific cause of rejection of the CPR null hereon is non-

trivial and an interesting topic for future.  

 

Figure 4-3: Internal Validation in the meta-states approach. (A) Sensitivity test of number 

of dimensions (o = 2 to 5) to the meta-states framework validates similarity in group 

summary measures; (B) Averaged metrics are consistent across groups but increase with 

model order as range of meta-states is proportional to model order. 
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Figure 4-4: External validation in the meta-states approach. Meta-state metrics 

corresponding to real fMRI data were observed to fall outside the respective null 

distributions generated from meta-state metrics corresponding to 100 CPR surrogate 

datasets of RSN time-courses. Results for the temporal ICA, spatial ICA and PCA methods 

are shown; similar result was observed for k-means method.  

4.4 Discussion 

Surrogate data analysis for this approach confirmed clustering to be substantially 

(but not completely) explained by the lagged cross-covariance structure of the RSN time-



Chapter 4: Validation and Statistical Significance Testing of Time-Varying Functional Connectivity State 

Profiles 

 61  

courses, while also suggesting the presence of non-linearity or non-stationarity, or both 

non-linearity and non-stationarity in this observed data. In the fuzzy meta-state approach, 

validation analysis through permutation testing on the synthesized surrogate datasets 

confirmed evidence of presence of non-Gaussianty, non-linearity or non-stationarity (or 

any combination of these properties) in the observed RSN time-courses. In this study, we 

saw the CPR null model being rejected for one test statistic in the hard-clustering approach 

and four test statistics in the meta-state approach. Overall, these observations confirm 

statistical significance of the tested metrics and also suggested that the fMRI data is not 

fully explained by the linear Gaussian data model. 

A major drawback of the used null hypothesis is that it too general, and if rejected, 

it is not possible to conclude the specific cause of rejection to be non-Gaussianity, non-

linearity, non-stationarity or some combination of these properties, and hence there is need 

for additional analysis. In case of rejection of these null models, it would make sense to 

test for Gaussianity of the observed data as it is more straightforward, and if the data is 

concluded to be Gaussian, subsequent advanced statistical testing, for example testing the 

degrees of non-stationarity and non-linearity, could be explored to further comment on the 

specific property causing the rejection of the null model. Other recently used alternatives 

to the CPR and VAR null models include the amplitude-adjusted phase randomization 

(AAPR) null (Betzel, Fukushima et al. 2016) and the null as used in Laumann, Snyder et 

al. (2016). The null hypothesis in AAPR model associates to the observed data being a 

monotonic non-linear transformation of a linear Gaussian process (Theiler, Eubank et al. 

1992, Schreiber and Schmitz 2000) and generates data that preserves the amplitude 

distribution exactly but the power spectrum approximately. Finally, the null used in 
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Laumann, Snyder et al. (2016) is matched to the covariance structure exactly i.e. preserves 

the static FC exactly, but to the power spectrum on average i.e. does not preserve the cross-

lagged covariance structure exactly as in the CPR and VAR models. Since these different 

models correspond to different null hypothesis and preserve different properties of the 

observed data, exploring and utilizing additional knowledge on the nature of the observed 

data is recommended to appropriately choose the null hypothesis in a given study. In 

nutshell, there is need for additional work in the field of null model development for 

statistical validation by surrogate testing, and hopefully more specific null models and/or 

frameworks to test existing null models in literature will emerge and eventually allow for 

more specific inferences. 

Besides, some innovative ways of using null data to draw conclusions about time-

varying nature and consistency of the FC fluctuations have also been recently explored 

(Zalesky, Fornito et al. 2014, Betzel, Fukushima et al. 2016, Hindriks, Adhikari et al. 

2016). Zalesky, Fornito et al. (2014) used a novel framework to provide evidence of a 

consistent set of “dynamic” inter-RSN connections that exhibited pronounced fluctuations 

in strength over time. This framework records a non-linear “excursion” test statistic 

quantifying the extent of time-varying fluctuations in the windowed FNC data for both 

original data as well as a set of VAR surrogate datasets. In the next step, connections that 

reject the null distributions of this test statistic are retained for further analysis wherein 

binary graphs are constructed for each subject using only the top-few most “dynamic” 

connections and degree of each region in these binary graphs is evaluated. Finally, this 

degree is summed across the subjects to frame an “index of consistency” of these dynamic 

connections (i.e. how consistently the regions were dynamic across the subjects). Next, 
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Hindriks, Adhikari et al. (2016) reported absence of evidence for dFNC in real fMRI data 

for individual sessions and concluded that using the CPR null model it is difficult to 

distinguish two test statistics, namely the standard deviation of the windowed data and the 

non-linear test statistic as originally explored in Zalesky, Fornito et al. (2014). Our analysis 

with the CPR surrogate datasets generated from fMRI data used in our study suggests the 

presence of significant “dynamic” inter-regional connections which we also evaluated for 

consistency through the “index of consistency” metric for both the standard deviation of 

windowed FNC data and the excursion test statistics (Appendix A - Figure 1). Evaluating 

consistency of these significantly “dynamic” inter-regional connections across numerous 

independent samples similar to this study is definitely an interesting work for future. 

Recently, Laumann, Snyder et al. (2016) suggested stability of the FC structure 

observed in resting state BOLD fMRI data over tens of seconds. The authors clearly 

mention in their work that this demonstrated stability of the FC structure, computed by 

integrating over time, did not cross paths with time-varying studies analyzing shorter time-

scales. Furthermore, recent collaborative work from the same authors has formally 

demonstrated that even statistically stationary data does not imply absence of brain states 

(Liegeois, Laumann et al. 2017). The authors also suggested the emergence of the observed 

states mostly due to sampling variability and physiological confounds in the fMRI data. 

Our perspective on sampling variability is that such variability (between subjects) is 

certainly possible but does not by itself argue for or against the presence of dynamic states 

any more than sampling variability visible in an analysis of GLM maps enables us to detect 

the presence of the widely studied resting networks in second level task-based fMRI data 

(Smith, Fox et al. 2009, Allen and Calhoun 2012) argues against the presence of resting 
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fMRI networks. In addition, there does appear to be agreement that the FC fluctuations in 

the data ‘indistinguishable’ from statistically stationary null data could demonstrate 

behavioral relevance (Shine and Poldrack)  and electrophysiological correlates as discussed 

in the concluding paragraph.  

A straightforward implication of rejection of the CPR null model by the summary 

metrics as seen in this work would be the inability of the CPR null model to fit all of the 

statistical properties of the resting state fMRI data. This provides support for time-varying 

connectivity models to study FC; however, the best model of FC data (i.e. by “states” or 

“meta-states” as used in this paper or with other proposed dynamic models in the time-

varying FC literature) is still a matter of debate. It must also be noted that there could be 

several diverse ways of capturing the temporal dynamics in fMRI data and in turn 

illuminating the brain function; the methods studied in this paper do not claim a specific 

number of states in the fMRI data any more than a specific number of resting state networks 

in fMRI data could be claimed. Rather, the focus is on illustrating that such a 

decomposition may be useful for studying the brain, and this necessitates the ability to 

identify stable connectivity patterns from the data that can replicate, and which show 

similar temporal dynamic properties. There is already evidence for usefulness of the 

dynamic state models explored in this work as previous work has demonstrated that such 

patterns are better than static connectivity at predicting patient groups which suggests that 

such decompositions as explored may be useful for helping differentiate patients and 

controls (Damaraju, Allen et al. 2014, Rashid, Damaraju et al. 2014, Yu, Erhardt et al. 

2015, Du, Pearlson et al. 2016, Miller, Yaesoubi et al. 2016).  
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Chapter 5: Characterizing Diseased Brain Conditions by Multimodal 

Fusion of Time-Varying Functional Connectivity State Profiles and 

Gray-Matter Feature Spaces 

This chapter demonstrates a disease characterization framework based on 

multimodal fusion of the sMRI and fMRI modalities. This framework proposes use of the 

time-varying FC state profiles as features from the fMRI modality with an ultimate 

objective of revealing and understanding disrupted links in brain structure and function in 

the diseased brain. The motivation section introduces the benefits and different approaches 

of multimodal fusion followed by a discussion of the selected feature spaces for fusion in 

scope of this work. 

5.1 Motivation 

Studies leveraging the above mentioned multivariate approaches have revealed 

significant information on clinical aspects of schizophrenia as discussed in several recent 

reviews on multimodal fusion (Bießmann, Plis et al. 2011, Schultz, Fusar-Poli et al. 2012, 

Sui, Adali et al. 2012, Lahat, Adali et al. 2015, Calhoun and Sui 2016). Simultaneous 

analysis of anatomical and functional connectivity in Skudlarski, Jagannathan et al. (2010) 

suggested that fusion allowed identification of deficits in white matter anatomy, and 

complex alterations in FC. In another multivariate, multimodal analysis, Michael, Baum et 

al. (2010) fused structural and functional brain images to reveal decreased overall structure-

function linkage in schizophrenia as compared to healthy controls both in a working 

memory and an auditory sensorimotor task. Camchong, MacDonald et al. (2011) revealed 

convergent findings in multiple modalities (DTI and fMRI) consistent with the 

disconnection hypothesis in medial frontal regions in subjects with schizophrenia. Joint 
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ICA was used in Sugranyes, Kyriakopoulos et al. (2012) to characterize linked functional 

and white-matter changes related to working memory dysfunction, and in Stephen, 

Coffman et al. (2013) to identify structure-function relationships using MEG and DTI 

modalities. The latter study concluded impairments in a posterior visual network in 

schizophrenia, with reduced FA and MEG amplitude, and overall weaker cognitive 

performance. Furthermore, Xu, Pearlson et al. (2009) used joint source based morphometry 

(joint SBM) to identify linked white and gray matter (GM) differences in regions 

comprising temporal-corpus callosum, occipital/frontal-inferior fronto-occipital 

fasciculus, parietal/frontal-thalamus and frontal/parietal/temporal-superior longitudinal 

fasciculus.  

Using the mCCA multivariate algorithm, Sui, Pearlson et al. (2015) identified 

linked structural and functional deficits in distributed cortico-striato-thalamic circuits and 

their association with cognitive impairments as measured through the Measurement And 

Treatment Research to Improve Cognition in Schizophrenia (MATRICS) consensus 

cognitive battery (MCCB). Finally, several classification studies have made use of 

multivariate, multimodal approaches to demonstrate improved classification with use of 

multiple modalities as compared to the use of a single modality in classifying patients from 

controls (Yang, Liu et al. 2010, Ulaş, Castellani et al. 2011, Nieuwenhuis, van Haren et al. 

2012, Sui, He et al. 2013, Peruzzo, Castellani et al. 2015, Cabral, Kambeitz-Ilankovic et 

al. 2016, Cetin, Houck et al. 2016).  

As discussed earlier, recent work assessing dynamic (i.e. time-varying) functional 

network connectivity (dFNC) suggests availability of substantial information beyond time-

averaged FC estimates in both resting state and task based (Hutchison, Womelsdorf et al. 
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2013, Calhoun, Miller et al. 2014, Preti, Bolton et al. 2016). Several studies have shown 

the above discussed time-varying FC states to be functionally and behaviorally relevant by 

demonstrating direct links with signatures of consciousness (Hutchison, Womelsdorf et al. 

2013, Amico, Gomez et al. 2014, Hudson, Calderon et al. 2014, Barttfeld, Uhrig et al. 2015, 

Wang, Ong et al. 2016), tracking day-dreaming/mind-wandering (Kucyi and Davis 2014, 

Kucyi 2017), sleep and awake states (Tagliazucchi and Laufs 2014), ongoing cognitive 

function and performance (Craddock, James et al. 2012, Schaefer, Margulies et al. 2014, 

Gonzalez-Castillo, Hoy et al. 2015, Madhyastha, Askren et al. 2015, Shine, Bissett et al. 

2016, Shine, Koyejo et al. 2016).  

Furthermore, evidence of potential electrophysiological signatures of dynamic 

BOLD FC also hints the fluctuations in the BOLD FC (as captured in the states) to be 

interesting i.e. having a neurophysiological origin (Tagliazucchi, von Wegner et al. 2012, 

Chang, Liu et al. 2013, Allen, Damaraju et al. 2017), although further confirmation is still 

needed. Besides, several studies have also used time-varying connectivity measures to 

characterize pathophysiology i.e. identification of disease states (Damaraju, Allen et al. 

2014, Rashid, Damaraju et al. 2014, Yu, Erhardt et al. 2015, Du, Pearlson et al. 2016, 

Miller, Yaesoubi et al. 2016). The proven replicability and statistical significance of these 

fMRI features, and the above listed utilities make a compelling case for their use as features 

for the fMRI modality in a multimodal study.  

In this work, we focus on feature based fusion analysis of brain structural (sMRI) 

and functional (fMRI) images hypothesizing correspondence between brain structure and 

function, or more specifically, the feature spaces of the two studied modalities. We propose 

exploring where and how gray matter (GM) corresponds to time-varying functional 
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connections will improve our understanding of both structural and functional connectivity. 

We estimate the feature space for the functional data as subject-specific states that are 

revealed from the wFC data using a novel framework featuring temporal ICA and dual 

regression (Figure 5-1A). More specifically, aggregate states are estimated by 

decomposing the wFC data using temporal ICA in the first step, followed by a dual 

regression analysis to estimate the subject-specific states in the second step. This derived 

feature space from fMRI data, referred to as “functional data feature space” hereon, is 

simultaneously analyzed with the corresponding “structural data feature space”, i.e. GM 

maps from sMRI data, using the mCCA+jICA data fusion algorithm. 

The fusion analysis in this work could be explained in a four-stage process (Figure 

5-1B). In the first stage, mCCA reveals links between the modalities by maximizing the 

correlations between their mixing matrices i.e. CVs. In the second step, the associated maps 

to the CVs, i.e. the CCCs, are concatenated and decomposed using joint ICA to estimate 

the joint sources. In the third step, the (effective) modality-specific mixing matrices are 

estimated for the combined framework and analyzed for group differences for each joint 

source. In the last step, we focus on qualitative analysis of the joint sources that feature 

linked, highly correlated and significant group difference showing structural and functional 

component maps from the jICA decomposition.  

Our exploratory investigation on data from 151 Schizophrenia patients and 163 

healthy controls shows general correspondence between GM and time-varying FC and also 

reveals few missing links in Schizophrenia, details of which are presented in the following 

sections of this chapter.   
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Figure 5-1(A) Estimation of the functional (fMRI) data feature space. Aggregate states 

were estimated by decomposing the windowed correlations by temporal ICA. Subject-
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specific states were next estimated through a spatio-temporal (dual) regression procedure 

wherein, for each subject, the aggregate states were regressed into the subject’s windowed 

FNC data to estimate subject-specific component time-courses in the first regression step, 

and the estimated time-courses were regressed into the subject’s windowed FNC to derive 

the subject-specific states in the second regression step; (B) Summary of the mCCA + jICA 

framework. For each subject, the functional data feature space as estimated in (A) was 

concatenated with the smoothed, modulated and warped gray matter maps (as the structural 

data feature space) and fused using the joint “mCCA+jICA” framework. This framework 

combines the mCCA and jICA algorithms to decompose the observed data into a linear 

combination of sources mixed through “effective” modality-specific mixing matrices as 

illustrated above. 

5.2 Materials and Methods 

5.2.1 Multimodal Data Acquisition and Preprocessing 

This study worked with T1-weighted structural and T2*-weighted resting state 

(eyes-closed) functional images from 151 Schizophrenia patients (114 males, 37 females; 

average age 37.8), and age and gender matched 163 healthy controls (117 males, 46 

females; average age 36.9). This data was collected at seven different sites across the 

United States as a part of the fBIRN data repository (Keator, van Erp et al. 2016). Informed 

consent was received from the participants as per institutional guidelines practiced at the 7 

collection sites.  

Six sites used the 3T Siemens Tim Trio System while one site used the 3T General 

Electric Discovery MR750 scanner. A total number of 162 volumes of standard gradient 

echo planar imaging (EPI) BOLD fMRI data were captured with a repetition time (TR) of 

2 seconds, echo time (TE) of 30 seconds, field of view (FOV) of 220 × 220 mm (64 × 64 

matrix), flip angle (FA) of 770 and 32 sequential ascending axial slices of 4 mm thickness 

and 1 mm skip. 
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The sMRI data were spatial normalized, bias corrected, and segmented using the 

SPM unified segmentation model in an automated analysis pipeline developed at MRN 

(Bockholt, Scully et al. 2010) to obtain the smoothed (using a full width half maximum 

Gaussian kernel of 10mm), modulated and warped gray matter images for all subjects. The 

GM maps were then used as the input feature space to the fusion algorithm with an 

objective of estimating the patterns of brain structure that exhibit co-variations across 

subjects.  

The fMRI data were pre-processed using the SPM, AFNI and GIFT toolboxes as 

well as custom code written in Matlab in a similar fashion as implemented in Damaraju, 

Allen et al. (2014). Briefly, rigid body motion correction was performed using the 

INRIAlign SPM toolbox for subject head motion correction. This was followed by slice-

timing correction step to account for any timing differences in scan acquisition following 

which the data were de-spiked using AFNI’s “3dDespike” algorithm so as to reduce the 

impact of outliers.  

Next, the data were warped to a MNI template and resampled to 3 mm cubic 

isotropic voxels. Since the fBIRN data came from multiple sites, the site or scanner 

variability needed to be smoothed equivalently. This was done using AFNI’s 

“BlurToFWHM” algorithm, an approach that has been shown to decrease scanner-specific 

variability in smoothness and provide “smoothness equivalence” to the multi-site data 

(Friedman, Hastie et al. 2008). Finally, the voxel time-courses were variance normalized 

before running the group independent component analysis (gICA). 
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5.2.2 Feature Space Estimation 

5.2.2.1 Spatial Group ICA, Resting State Network Selection, and Postprocessing  

The pre-processed fMRI data were decomposed using spatial group ICA to reveal 

spatially independent components each with a unique time-course profile (Calhoun, Adali 

et al. 2001, Calhoun and Adalı 2012). The pre-processed datasets were first reduced to 130 

principal components in the time-point dimension at the subject level. Using a (relatively) 

higher number of principal components at the subject level has been shown to stabilize 

back-reconstruction and retain maximum variance in the data, and if this is the case the 

specific number does not substantially impact the results (Erhardt, Rachakonda et al. 2011). 

Accordingly, the entire dataset was transformed into 130 principal components using 

standard principal component analysis (PCA) at the subject level in the first data reduction 

step of the group ICA analysis (similar to Damaraju, Allen et al. (2014) on the same fBIRN 

phase 3 dataset).  

Using a relatively high number of principal components in this step retained a very 

high percentage of subject level variance (greater than 99.99%). In the second data 

reduction step, the PCA reduced subject data were then concatenated along the time 

dimension and further reduced to 100 components by implementing group level PCA. A 

higher model order for group ICA was chosen to enable a more refined (i.e. finer) RSN 

parcellation (Kiviniemi, Starck et al. 2009, Abou-Elseoud, Starck et al. 2010), thus 

allowing evaluation of sub-nodes within network domains (Allen, Damaraju et al. 2012, 

Sockeel, Schwartz et al. 2016, Abrol, Damaraju et al. 2017, Fu, Tu et al. 2017, Li, Zhang 

et al. 2017). The reliability of the estimated independent components from this step was 
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evaluated using ICASSO (Himberg, Hyvarinen et al. 2004), and it was found that the 

estimates exhibited tight clustering and converged consistently amongst several (twenty) 

runs. Finally, subject-specific component spatial maps (SMs) and time-courses (TCs) were 

estimated using the GICA back-reconstruction methods as implemented in the GIFT 

toolbox (Erhardt, Rachakonda et al. 2011).  

The back-reconstructed subject-specific SMs and TMs for the 100 independent 

components were extensively analyzed to identify the physiological non-artefactual, 

previously established resting state networks (RSNs). More specifically, 47 components 

whose spatial maps showed peak activations in gray matter and low overlap with any 

known imaging, physiological or movement-related artifacts, and mean power spectra 

exhibited higher low frequency content were established as RSNs for further analysis. The 

RSNs were assessed and distributed into the sub-cortical (SC), auditory (AUD), visual 

(VIS), sensorimotor (SM), attention/cognitive control (CC), default-mode (DMN) and 

cerebellar (CB) network domains (Figure 5-2). 

Subject-specific TCs corresponding to the retained RSNs underwent additional 

post-processing steps. The TCs were de-trended to remove any existing linear, quadratic 

or cubic low frequency trends originating from scanner drift, orthogonalized with respect 

to estimated subject motion and realignment parameters, and de-spiking using AFNI’s 

3dDespike function to replace outlier points with values estimated from third order spline 

fit to neighboring portions of the TCs.  
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Figure 5-2: Resting State Networks (RSNs). Spatial maps of the forty-seven retained RSNs 

at the most activated sagittal, coronal and axial slices. 
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5.2.2.2 Functional Connectivity Estimation and Temporal Variability 

Similar to previous works (Allen, Damaraju et al. 2012, Damaraju, Allen et al. 

2014), time-varying FC was estimated by sliding a window of length 22 TRs (44 s) in steps 

of 1 TR (2 s). This sliding window analysis used a tapered window generated by convolving 

a rectangular window of length 22 TRs (44 s) with a Gaussian window of standard 

deviation equal to 3 TRs. The window length parameter has a significant impact on the 

observed dynamics, however our choice of 44 seconds (similar to window duration as used 

in Damaraju, Allen et al. (2014) on the same fBIRN phase 3 dataset) falls within 

recommended ranges in multiple works.  

In background, Leonardi and Van De Ville (2015) proposed a lower limit for 

window length using the (inverse of minimum frequency) thumb rule, which Zalesky and 

Breakspear (2015) formally demonstrated to be overly conservative especially in moderate 

SNR conditions (i.e. relatively shorter windows than as suggested by the thumb rule can 

be used to capture the fluctuations in time-varying connectivity).  

Moreover, recent studies have reported peak maximum detection probability of 

time-varying fluctuations (Hindriks, Adhikari et al. 2016) and peaks of significance of 

window lengths (Liégeois, Ziegler et al. 2016) in a similar (40 to 60 seconds) range. 

Furthermore, there are several studies that corroborate that varying the window length 

parameter over a range beyond a certain “safety limit” did not change the overall observed 

dynamics (Allen, Damaraju et al. 2012, Li, Zhu et al. 2014, Yaesoubi, Miller et al. 2015, 

Deng, Sun et al. 2016, Preti, Bolton et al. 2016). Hence, we use our previously use window 

parameters for estimation of time-varying FC. 
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5.2.2.3 Feature Spaces for Multimodal Fusion 

The wFNC data were decomposed using temporal ICA to reveal a set of “n” 

aggregate connectivity patterns (or aggregate states) shared amongst subjects and a set of 

“n” temporally independent connectivity patterns. Notably, the “n” temporally independent 

connectivity patterns are a concatenation of “n” individual subject time-courses which are 

not independent subject-wise. We estimate the feature space for the functional data as 

subject-specific “versions” of the aggregate states through a modified form of spatio-

temporal (dual) regression (Filippini, MacIntosh et al. 2009, Erhardt, Rachakonda et al. 

2011). In this analysis, the aggregate states are regressed into each subject’s wFNC data to 

obtain a set of subject-specific time-courses in the first regression step which are then 

regressed into each subject’s wFNC data to get the subject-specific states in the second 

regression step. The estimated functional data feature space is next simultaneously 

analyzed with the GM maps estimated from structural data using the mCCA+jICA data 

fusion algorithm.  

5.2.3 Multimodal Fusion through mCCA + jICA Framework 

As a framework to evaluate fusion of feature spaces from two imaging modalities, 

this method reveals flexible, i.e. both highly and weakly correlated, joint sources from both 

the modalities. The framework (Figure 5-1B) assumes the multimodal dataset (Xk) to be a 

linear mixture of a (M) number of sources (Sk) mixed with non-singular matrices (Ak), 

where k is the modality index. Following (Sui, Pearlson et al. 2011, Sui, He et al. 2013), 

we used the minimum description length (MDL) criterion to estimate the number of 
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independent components to be nine. Hence, we evaluate the feature spaces for a total 

number of nine components (M = 9) for both the fMRI and sMRI modalities.  

In the first phase of the joint framework, the mCCA algorithm commences with 

dimensionality reduction of the feature spaces of each of the modalities using principal 

component analysis. In this work, we reduce the input data to a high (number of subjects - 

one) number of principal components so as to capture maximum subject level variance. 

Next, the canonical variates (Dk) are estimated by maximizing the sum of squared 

correlations (SSQCOR) cost (Kettenring 1971) in the “M” columns of canonical variates. 

In the last step of the first phase, the canonical correlation coefficients (CCCs) are 

estimated as associated maps (Ck) by inverting the Xk  = DkCk model (i.e. Ck  = pinv(Dk)Xk). 

In the second phase of the joint framework, the estimated CCCs are concatenated 

([C1 .. Ck]) and input to the jICA algorithm which enables transformation of these CCCs to 

an orthogonal space. This decomposition reveals “M” maximally independent joint sources 

(S) each of which can be interpreted as a stacked form of co-varying modality-specific 

components i.e. S = [S1 … Sk]. The stacked components for the different modalities share 

a common mixing matrix (W) with the jICA linear mixing model evaluated as [C1 .. Ck] = 

W [S1 .. Sk]. Hence, the effective mCCA+jICA can be summarized as Xk  = (DkW-1)Sk, 

where the effective modality-specific mixing matrices are estimated as  Ak  = DkW-1. The 

combined framework is illustrated in Figure 5-1B and further details on the parametrical 

and methodological choices in the algorithm can be found in the referenced original works 

(Sui, Pearlson et al. 2011, Sui, He et al. 2013).  
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5.3  Results 

The mCCA+jICA framework identified two sMRI-fMRI joint sources with (1) 

significant correlations between their constituent structural and functional components; 

and (2) significant group differences in each of these constituent structural and functional 

components. Figure 5-3 and Figure 5-4 show the spatial maps for the constituent structural 

component, the connectivity strengths for the co-varying functional component’s inter-

regional connections and other associated results for the first and the second joint source 

respectively. It must be noted that the constituent structural components in the joint sources 

estimated here are patterns of brain structure (i.e. clusters of brain voxels) that exhibit co-

variations across subjects. These could be interpreted analogous to sources as identified 

with source based morphometry (SBM) (Xu, Groth et al. 2009, Caprihan, Abbott et al. 

2011, Turner, Calhoun et al. 2012, Castro, Gupta et al. 2014, Gupta, Calhoun et al. 2015), 

an approach that can be essentially considered as a multivariate extension of a voxel based 

approach, for example, voxel based morphometry (VBM). For display purposes, only the 

high (and low) activation regions for the structural component and only the edges or 

connections with high (and low) connectivity strengths for the functional component are 

shown. More specifically, the structural component maps are lower thresholded at 25% of 

the maximum absolute activation value, whereas for the functional component, the inter-

regional connectivity strengths, after converting to z-scores are thresholded at |z| > 3. For 

the functional component, we will hereon refer to the (post-thresholding) retained inter-

regional connections as “significant links”.   
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5.3.1 Resting State Networks 

The retained 47 RSNs were assessed and distributed into the sub-cortical (SC), 

auditory (AUD), visual (VIS), sensorimotor (SM), attention/cognitive control (CC), 

default-mode (DMN) and cerebellar (CB) network domains (Figure 5-2). 

5.3.2 Joint Source 1 

As illustrated in Figure 5-3A, the structural component for the first joint source 

consists of peak activations in the superior parietal lobule (major constituent), precuneus, 

postcentral gyrus and inferior parietal lobule. The number of significant connections in the 

linked functional component were high for the default mode, cognitive control and visual 

network domains in state 2, whereas the other states had a lot fewer total number of 

significant connections (five in state 4, one each in states 1 and 5, and none in state 3) as 

seen in Figure 5-3B. For this joint source, these constituent co-varying structural and 

functional components were found to be significantly correlated (r = -0.28, p = 1.08 x 10-

6) as also evident from the scatterplot of their loading parameters in Figure 5-3C. Since 

negative correlation was observed, participants showing lower gray matter loadings 

generally exhibited higher connectivity strength in the functional connections. Finally, the 

structural component showed significant group difference (p = 0.0032) with a significantly 

lower group mean of the loadings for patients with SZ (Figure 5-3D), whereas its linked 

i.e. co-varying functional correlate also showed significant group difference (p = 0.0072) 

with a significantly lower group mean for controls. 
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5.3.3 Joint Source 2 

The structural component for the second joint source depicted in Figure 5-4A 

consisted of two major positively activated regions. The first major activation comprised 

regions from the medial frontal gyrus and superior frontal gyrus, whereas the second major 

activation comprised regions from the superior temporal gyrus, inferior temporal gyrus, 

insula, fusiform gyrus and middle temporal gyrus. The number of significant connections 

in the linked functional component were high particularly for the default mode, cognitive 

control and visual network domains in state 1 (an observation similar to state 2 of the 

functional component corresponding to the first joint source) and moderate for the 

cognitive control, sensorimotor, and visual domains in state 2, whereas the other states had 

a lot fewer total number of significant connections (one each in states 4 and 5, and none in 

state 3) as seen in Figure 5-3B. For this joint source, these constituent co-varying structural 

and functional components were found to be significantly correlated (r = -0.40, p = 3.91 x 

10-13) and the corresponding scatterplot of their loading parameters can be seen in Figure 

5-4C. Similar to the first joint source, since negative correlation was observed, participants 

showing lower gray matter loadings had higher connectivity strength in the functional 

connections. Finally, the structural component showed significant group difference (p = 

0.0022) with a significantly reduced group mean for the SZ patients, whereas its linked i.e. 

co-varying functional correlative also showed significant group difference (p = 0.0438) 

reflecting a significantly lower group mean for controls. 
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Figure 5-3: Joint Source 1. (A) Spatial maps of the most activated regions for the structural 

component in the first joint source; (B) A visualization of significant links (functional 

connections with highest connectivity strengths i.e. with z-scores of connectivity strengths: 

|z| >3) and their connectivity strengths for the functional component in the first joint source; 

(C) Scatterplot of the functional data loadings with the structural data loadings revealed a 

significant correlation (r = -0.28, p = 1.08 x 10-6); and (D) The group mean for the loading 

parameters was significantly lower for participants with SZ, thus suggesting significant 

reductions in gray matter volume for this structural component. 
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Figure 5-4: Joint Source 2. (A) Spatial maps of the most activated regions for the structural 

component in the second joint source; (B) A visualization of significant links (functional 

connections with highest connectivity strengths i.e. with z-scores of connectivity strengths: 

|z| >3) and their connectivity strengths for the functional component in the second joint 

source; (C) Scatterplot of the functional data loadings with the structural data loadings 

revealed a significant correlation (r = -0.40, p = 3.91 x 10-13); and (D) The group mean 

for the loading parameters was significantly lower for participants with SZ, thus suggesting 

significant reductions in gray matter volume for this structural component.  
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5.4  Discussion 

In this study, we investigated whether a relationship between gray matter and time-

varying FC measures exists and if that relationship could be used to study characteristic 

brain aberrations in SZ. Using a novel, unified framework, we estimated distilled, 

(relatively) lower-dimensional feature spaces from the high-dimensional fMRI and sMRI 

data, and then performed joint analysis on the estimated feature spaces leveraging a 

symmetric fusion approach, mCCA+jICA, to extract jointly co-varying structural and 

functional components and characterize interactions between these components. In this 

specific section, we will discuss our results specifically addressing few important 

questions, such as how the co-variation in the inter-modality components could be 

interpreted and how the underlying associations are meaningful etc., and finally highlight 

some critical facets and limitations that could be explored in immediate future work. 

Specifically, our results revealed two mCCA+jICA joint sources that featured 

significant correlation between their constituent modality–specific components and 

highlighted group difference in both of their modality-specific components. Both the joint 

sources showed significant negative correlations between their modality-specific 

constituent components (joint source 1: r = -0.28, p = 1.08 x 10-6; joint source 2: r = -0.40, 

p = 3.91 x 10-13), as seen in Figure 5-3C and Figure 5-4C. This implies that from joint 

source 1, for a given subject, if the gray matter volumes in the positively activated regions 

in the structural component (superior parietal lobule, precuneus, postcentral gyrus and 

inferior parietal lobule) are estimated to be higher, it will exhibit significantly decreased 

connectivity strength in the inter-regional links in the functional component (i.e. the 

absolute magnitude of inter-regional links with positive connectivity strengths in the 
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functional component will show significant decrease, and the absolute magnitude of inter-

regional links with negative connectivity strengths in the functional component will show 

significant increase). Alternatively, decreased observed gray matter volumes in the 

positively activated regions would imply higher connectivity strengths in the significant 

functional links for that given subject. Similar inferences can be deduced for source 2 

wherein changes in gray matter volumes in both of the positively activated distinct regions 

in the structural component (i.e. medial frontal gyrus and superior frontal gyrus; and 

superior temporal gyrus, inferior temporal gyrus, insula, fusiform gyrus and middle 

temporal gyrus) would drive the estimated significant inter-regional links accordingly. 

An introspection of the modality-specific components of the joint sources revealed 

several lines of evidence of conformance with previously reported findings in the literature 

as discussed next. To begin with, the structural components in both joint sources showed 

significant group differences in the loading parameters (joint source 1:  p = 0.0032; joint 

source 2: p = 0.0022), with significantly lower group mean for the SZ group, thus 

suggesting a significant decrease in gray matter volume in the brain regions depicted by 

these components in participants with SZ. Our results are consistent with several previous 

studies (as discussed in detail next), where reduced gray matter volume in SZ has been 

reported in the similar brain regions as identified in our structural components. The first 

joint source highlighted peak activations in the superior parietal lobule (major constituent), 

precuneus, postcentral gyrus and inferior parietal lobule brain regions as the structural 

modality component (as illustrated in Figure 5-3A). Interestingly, a recent study on source-

based morphometry (SBM) and voxel-based morphometry (VBM) evaluating gray matter 

abnormalities in SZ patients also found a similar structural component showing positive 
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activation patterns and that captured group differences between SZ and healthy controls 

(Gupta, Calhoun et al. 2015). Besides, previous studies have also concluded reduced gray 

matter volume in superior parietal regions (Buchanan, Francis et al. 2004), precuneus 

(Hulshoff Pol, Schnack et al. 2001) and postcentral gyrus (Glahn, Laird et al. 2008); thus 

our work adds further evidence that abnormal patterns of gray matter volume in these 

regions play an important role as SZ biomarkers. Similar evidence could be established for 

the significant structural component in the second joint source captured by our framework 

(as illustrated in Figure 5-4A). This structural component included two major positively 

activated brain regions, where one of them consisted of regions from the medial frontal 

gyrus, anterior cingulate and superior frontal gyrus, and the other included regions from 

the superior temporal gyrus, inferior temporal gyrus, insula, fusiform gyrus and middle 

temporal gyrus. Particularly, the anterior cingulate has been recognized as a vital structure 

for social cognitive processing and has been previously identified as one of the major 

sources of social dysfunction in SZ patients (Fujiwara, Hirao et al. 2007). Additionally, 

very-similar fronto-temporal gray matter changes capturing group difference between SZ 

and healthy participants were also found in Gupta, Calhoun et al. (2015). In fact, there are 

several other studies/reviews on gray matter differences in SZ patients that have suggested 

significant reduction in gray matter volume in the temporal and frontal cortices (Shenton, 

Dickey et al. 2001, Thompson, Vidal et al. 2001, Giuliani, Calhoun et al. 2005).  

Significant correspondence with previously reported studies in literature could also 

be drawn for few evaluated significant inter-regional (i.e. inter-RSN) links in the estimated 

functional components. Firstly, the functional components for both of the retained joint 

sources showed significant connectivity links in time-varying connectivity states 1, 2, 4 
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and 5. For the first functional component (joint source 1), most of the significant inter-RSN 

links are captured in state 2, where both positive and negative connectivity strengths across 

various network domains can be observed (Figure 5-3B). In this state, RSNs in the DMN 

domain showed significant connectivity within themselves and with RSNs from CC, SM 

and VIS domains as well. Interestingly, one of the DMN RSNs, IC95, highlighted by the 

brain regions in left angular gyrus, showed positive connectivity weight with a RSN from 

the CC domain, IC35, left precuneus. This is in line with a previous study that has shown 

aberrant connectivity patterns between angular gyrus and precuneus in SZ patients (Rashid, 

Damaraju et al. 2014). Indeed, studies have widely reported the involvement of angular 

gyrus in language processing, memory and social cognition (Hall, Fussell et al. 2005, 

Binder, Desai et al. 2009, Price 2010, Clos, Langner et al. 2014), and abnormal connectivity 

patterns in SZ in the precuneus, which is involved in episodic memory (Rugg and Henson 

2002), mental imagery recall (Fletcher, Shallice et al. 1996) and self-processing operations 

(Cavanna and Trimble 2006). Furthermore, several studies have shown strong evidence of 

disrupted DMN connectivity in SZ patients (Garrity, Pearlson et al. 2007, Ongur, Lundy et 

al. 2010), and so it would be interesting to explore significant links involving the DMN 

RSNs. As an example, in state 2 of this functional component (joint source 1), we observed 

negative connectivity strength between another DMN component (IC61: left middle 

temporal gyrus) and a VIS RSN (IC43: right calcarine gyrus), while the same DMN RSN 

(IC61) showed negative connectivity strength with a SM RSN (IC5; bi-lateral precentral 

gyrus) as well. For this functional component (joint source 1), we also note that the other 

states in this functional component (i.e. states 1,4 and 5) showed significant inter-RSN 

links between VIS and CC domains (state 1), between DMN and CC, between AUD and 
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CB domains, within DMN, CC and VIS domains (state 4), and between DMN and VIS 

domains (state 5). Furthermore, an examination of the functional component from joint 

source 2 revealed some interesting significant links in state 1, the most densely connected 

state (Figure 5-4B). In this state, a DMN RSN (IC95; left angular gyrus) showed significant 

positive connectivity strength with a CC RSN (IC35; left precuneus), an observation also 

found in state 2 emergent in the first joint source. Again, similar to state 2 from the first 

joint source, another DMN RSN (IC61; left middle temporal gyrus) showed significantly 

positive connectivity strength with the same CC RSN (IC35; left precuneus). In fact, 

dysfunctional temporal lobe connectivity has been reported in several SZ connectivity 

studies (Shenton, Kikinis et al. 1992, Ford, Mathalon et al. 2002), suggesting that networks 

from the temporal regions play a significant role in SZ etiology. Finally, for this functional 

component (joint source 2) the other states (i.e. states 2, 4 and 5) showed significant inter-

RSN links from the DMN, CC and SM and CB domains.  

While we closely evaluate a few interesting connections in scope of this work, there 

is much more that could be done to evaluate these results to further enhance our 

understanding of the structure-function relationships and further contribute to 

characterizing schizophrenia. In the specific context of findings from our mCCA+jICA 

based framework as studied in this work, it would be most appropriate to first extensively 

validate the significant findings in a future analysis evaluating multiple multimodal 

datasets featuring SZ participants. We also note that while different combinations of cost 

functions and model orders can yield equivalent results, they can also introduce 

decompositions different to a degree; hence, comparing performance of the mCCA+jICA 

approach for a range of these parameters would be another interesting future work. Further 
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investigations could also benefit from evaluating associations between SZ risk factors and 

the structural and functional component patterns.  

In conclusion, multimodal data fusion through symmetric approaches provides an 

opportunity to understand brain complexities. Using a multivariate symmetric fusion 

approach, we were able to identify co-varying GM and time-varying FC components that 

revealed disrupted links in Schizophrenia. This highlights the utility of time-varying FC 

based features for disease characterization. We suggest that studying such interactions can 

provide a useful way of evaluating structure-function relationships and characterizing SZ 

or other brain conditions. 
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Chapter 6: Predicting Diseased Brain Conditions by Deep Multimodal 

Fusion of Time-Varying Functional Connectivity State Profiles and 

Gray-Matter Feature Spaces 

This chapter demonstrates development and application of a multimodal data 

fusion framework that uses a deep learning framework to extract non-linear features 

from the gray matter maps and fuses these sMRI features with the time-varying FC state 

profiles (fMRI features) to predict progression to diseased brain conditions. In the first 

part of this chapter, we explore the predictive power of the tested deep-learning-based non-

linear feature extraction framework using sMRI modality alone to substantiate its utility in 

the multimodal (sMRI-fMRI) fusion framework developed to predict progression to 

Alzheimer’s disease (AD) in the later part of this chapter. Additionally, while, in this 

study, we test this framework to study and predict progression to AD, application of this 

framework to study other diseases would be straightforward.  

In the motivation section, we discuss the importance of detecting AD early, 

previous applications of machine learning methods on sMRI data to study AD and a 

brief outline of the analyses conducted in this chapter. 

6.1 Motivation  

Dementia is vastly underdiagnosed in most health systems mainly due to lack of 

educational/awareness programs and accessibility to dementia diagnostic, treatment and 

care services (Wilkins, Wilkins et al. 2007, Bradford, Kunik et al. 2009, Connolly, Gaehl 

et al. 2011). Diagnosis typically occurs at relatively late stages, following which the 

prognosis is poor in most cases since even the state of the art (FDA-approved) 
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medications in these stages are, at best, only modestly effective in alleviating cognitive 

and behavioral symptoms of the disease. As such, early therapeutic interventions can 

not only help to improve the cognitive and behavioral function of the elderly patients, 

but also empower them to take important decisions about their health care while they 

can, and significantly improve their overall quality of life. 

The most widely reported form of dementia in the elderly population is 

Alzheimer’s disease (AD) that features progressive, irreversible deterioration in 

memory, cognition and behavioral function. Mild cognitive impairment (MCI) has been 

identified as an intermediate condition between typical age-related cognitive 

deterioration and dementia (Markesbery 2010). This condition often leads to some form 

of dementia (not necessarily AD) and hence is often referred to as the prodromal stage 

of dementia. However, in absence of an exact (i.e. narrower) prodrome for AD, this 

broader population of MCI is currently an attractive target for testing preventive 

treatments of AD. As mentioned before, the currently approved preventive medications 

are effective only over a limited (early) time period (Casey, Antimisiaris et al. 2010); as 

such, the modest effectiveness and extremely high costs of these drugs has been a matter 

of constant debate especially in terms of cost to benefit balance. Hence patients showing 

MCI symptoms must ideally be diagnosed at early stages and be followed up on a regular 

basis to identify potential risks of progression to AD (or other types of dementia). 

Several studies are currently focused in this direction with an impressively increasing 

collection and study of multimodal neuroimaging, genetic, and clinical data. As a 

straightforward example, there are as many as thirty-four different live datasets that can 

be accessed from the Global Alzheimer’s Association Interactive Network (GAAIN) 
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funded by the Alzheimer’s Association (GAAIN 2017). Today, out of these impressive 

data collection efforts, it is especially the longitudinal studies that act as a bridge in 

between clinical and neuropathological models (Markesbery 2010).  

The sMRI neuroimaging modality enables tracing of brain damage (atrophy, 

tumors and lesions) and assists in ruling out any possible causes of dementia other than 

AD. This modality has additional advantages for its non-invasive test nature, high spatial 

resolution, and ease of procedure availability. Over the last two decades, several studies 

have contributed to the identification of potential AD biomarkers and prediction of 

progression to AD using sMRI data independently or in a multimodal pipeline (Falahati, 

Westman et al. 2014, Arbabshirani, Plis et al. 2017, Rathore, Habes et al. 2017, Weiner, 

Veitch et al. 2017). At the same time, the neuroimaging community has increasingly 

started to witness successful application of standard (i.e. classical) and advanced (i.e. deep 

or hierarchical) machine learning (ML) approaches to extract discriminative and diagnostic 

information from the high dimensional neuroimaging data (Plis, Hjelm et al. 2014, Litjens, 

Kooi et al. 2017, Shen, Wu et al. 2017, Vieira, Pinaya et al. 2017). ML approaches are 

being increasingly preferred also because they allow for information extraction at the level 

of the individual thus making them capable of assisting the investigator in diagnostic and 

prognostic decision-making of the patients. The ML methods could range from standard 

classification frameworks (for example, logistic regression or support vector machines) 

that usually require manual feature engineering as a preliminary step to deep learning 

architectures that automatically learn optimal data representations through a series of non-

linear transformations on the input data space. The last few years have seen an emergence 

of deep structured or hierarchical computational learning architectures to learn data 
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representations that enable classification of brain disorders as well as predicting cognitive 

decline. These architectures hierarchically learn multiple levels of abstract data 

representations at the multiple cascaded layers, making them more suitable to learn subtle 

differences in the data. Some popular deep learning architectures including multilayer 

perceptron, autoencoders, deep belief nets, and convolutional neural networks have indeed 

been applied for AD classification and predicting progression of MCI patients to AD (Suk 

and Shen 2013, Falahati, Westman et al. 2014, Liu, Zhang et al. 2014, Chen, Shi et al. 

2015, Li, Tran et al. 2015, Liu, Liu et al. 2015, Suk, Lee et al. 2015). 

Convolutional neural networks (CNNs) are a class of feed-forward artificial neural 

networks that have absolutely dominated the field of computer vision over the last few 

years with the success of strikingly superior image classification models based on models 

including AlexNet (Krizhevsky, Sutskever et al. 2012), ZF Net (Zeiler and Fergus 2014), 

VGG (Simonyan and Zisserman 2015), GoogleNet (Szegedy, Liu et al. 2015), and ResNet 

(He, Zhang et al. 2016). Deep CNN models typically stack combinations of convolutional, 

batch normalization, pooling and rectifier linear (ReLU) operations as a mechanism to 

reduce number of connections/parameters in the model while retaining the relevant 

invariants, and this entire network is typically preceded by a fully connected layer at the 

end that supports inter-node reasoning. The deep residual neural network (ResNet) learning 

framework as proposed by He, Zhang et al. (2016) has a similar baseline architecture as 

the deep CNNs but additionally features parameter-free identity mappings/shortcuts that 

simplifies gradient flow to lower layers during the training phase. Additionally, each block 

of layers learns not only from the activations of the preceding block but also from the input 

to that preceding block. Additionally, in the original work (He, Zhang et al. 2016), these 
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models have been shown to enable ease and simplification of neural network architecture 

training, thus allowing them to use deeper networks and effectively enhance the overall 

learning performance. These networks essentially improve optimization of the “residual” 

mappings as compared to the collective and unreferenced original mappings (He, Zhang et 

al. 2016) as we will discuss next in more detail in the methods section. 

Enhanced performance of this advanced version of CNNs i.e. the ResNet 

architecture in the broader imaging community motivated us to explore their 

prognostic/diagnostic suitability using sMRI data in this work. In a systematic approach, 

we first comprehensively evaluate the diagnostic and prognostic performance of the 

ResNet architecture based on an open-source Pytorch GPU implementation (Pytorch 2017) 

on a large dataset (n = 828; see Figure 6-1 for detailed demographics) featuring cognitively 

normal (CN), MCI and AD classes.  

Following this, we focus on prediction of progression to AD within the MCI class 

(i.e. predicting which MCI subjects would progress to AD within 3 years) to test the 

predictive performance of our learning architecture and test robustness of our final 

predictive model (generated by fine-tuning on all available data) by comparing surrogate 

models (i.e. models for each cross-validation fold) with the final predictive model, and 

after that focus on the human brain regions maximally contributing to the prediction of 

MCI subjects progressing to AD as suggested by the implemented framework. We also 

present a qualitative analysis of these results discussing the degree of success (in 

comparison to previously tested machine learning approaches). 
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After evaluating the performance of the deep learning framework on sMRI data in 

the first part of this work, the second part of this work conducts a multimodal data fusion 

analysis using the subset of ADNI subjects that had data for both modalities (sMRI and 

fMRI) and adequate progression information available. On this smaller multimodal dataset, 

we conduct unimodal prediction for each modality separately as well as a multimodal 

prediction analysis by fusing the estimated features from the unimodal analyses. For ease 

of interpretation, we refer to the prediction analysis in the first part of the work as “SMRI 

Prediction on Dataset 1”, and the three different analyses in the second part of this work as 

“SMRI Prediction on Dataset 2”, “FMRI Prediction on Dataset 2”, and “Multimodal 

Prediction on Dataset 2” respectively. Next, we present the details of the data and methods 

used in the above analyses followed up by a discussion of the results and limitations of the 

study. 

6.2 Materials and Methods 

6.2.1 MRI Data 

Data used in this study were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator Michael W. 

Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure 

the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease 

(AD). For up-to-date information, see www.adni-info.org. 
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6.2.1.1 Dataset 1 

The first part of this study worked with all sMRI scans available in the ADNI 

1/2/GO/3 phases (as of November 6, 2017) that passed specific class selection criterion 

and the image preprocessing pipeline quality check. Normal aging controls with no 

conversions in a minimum of 3 years of follow-up from their baseline scans were 

retained in the cognitively normal (CN) class. Subjects diagnosed as MCI with no 

conversions/reversions in a minimum of 3 years of follow-up from their baseline visit 

were grouped into the stable MCI (sMCI) class, while those converting to AD (multiple 

conversions excluded) within 3 years were grouped into the progressive MCI (pMCI) 

class. Subjects diagnosed as AD at baseline and showing no reversions in a minimum of 

2 years of follow-up were retained in the AD class. Only the baseline scan for each 

subject was used in all analyses.  

Detailed scanning parameters could be accessed from the ADNI data resource 

webpage (ADNI). A total number of 830 subjects passed this criterion with further 

elimination of only 2 subjects that failed the image preprocessing pipeline quality 

analysis thus resulting in a total sample size of 828 subjects for this work. Figure 6-1 

shows the clinical and demographic characterization of these studied CN, sMCI, pMCI 

and AD classes.  

6.2.1.2 Dataset 2 

In the second part of this work, the sample size for the subset of subjects with 

both (sMRI and fMRI) modalities and adequate progression information available, post-

quality control, was reduced to 132 (CN: 34, sMCI: 36, pMCI: 24 and AD: 38). Since 
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very few subjects satisfied the above discussed inclusion criterion for this specific study, 

the minimum follow-up time criterion was relaxed for the AD subjects from two years 

to having at least one additional follow-up session (in another visit) in addition to the 

baseline scanning sessions. Next, we discuss the data preprocessing details for both parts 

of this work.  

 

Figure 6-1: A comparison of data demographics and average clinical scores for the studied 

classes. This study included all subjects in the ADNI repository that passed the minimum 

selection criterion (minimum follow-up time, conversion or reversion rules) and pre-

processing qualitative analysis. Only the baseline scan for each subject was used for all 

analyses in this study. Clinical scores for diagnosis: MMSE: Mini-Mental State Exam; 

FAQ: Functional Activities Questionnaire; CDRSB: Clinical Dementia Rating Sum of 

Boxes; ADAS: Alzheimer’s Disease Assessment Scale; RAVLT: Rey Auditory Verbal 

Learning Test. 
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6.2.2 Data Preprocessing 

6.2.2.1 Dataset 1 

For the first part of this work, the sMRI images were pre-processed via the 

statistical parametric mapping 12 (SPM12) toolbox. The sMRI images were segmented to 

identify the gray matter brain areas which were spatially normalized and finally smoothed 

using a 3D Gaussian kernel to 6 mm full width at half maximum (FWHM). The smoothed 

3D gray matter images were fed into the deep learning model for diagnostic/prognostic 

classification.  

A quality analysis correlation check was conducted with the population mean 

thresholded image to eliminate outlier (poorly registered) scans. This quality check 

discarded only 2 subjects thus retaining 828 out of the 830 subjects that satisfied the 

selection criterion which we use for the different diagnostic/prognostic classification tasks 

conducted in the first part of this work. 

6.2.2.2 Dataset 2 

For the second part of this work, the sMRI scans in the second dataset were 

preprocessed using a similar pipeline as discussed for dataset 1. As for the fMRI data in 

the second dataset, Matlab scripts based on statistical parametric mapping (SPM12) 

software were used. The data pre-processing pipeline integrated removal of the first five 

images in the scans to avert T1 equilibration effects, rigid body motion correction to correct 

subject head motion, slice-timing correction to account for timing difference in slice 

acquisition, warping into the standard Montreal Neurological Institute (MNI) space using 
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an echo planar imaging (EPI) template, resampling to 3 × 3 ×3 mm3 isotropic voxels and 

smoothing using a Gaussian kernel with a full width at half maximum (FWHM) = 6 mm.   

For quality control, an average mask using the first time-points of the fMRI images 

was generated. A correlation analysis was conducted to eliminate outlier subjects whose 

first fMRI time-point showed a correlation value of less than 0.9 with the estimated average 

mask. All 134 scans that satisfied the inclusion criterion for the multimodal analysis passed 

this criterion. Following this, subjects with fMRI scans with excessive head motion (a 

translation parameter > 3mm or a rotation parameter > 3 degrees) were identified and 

discarded since repetitions of fMRI scans were not available for these subjects. This quality 

control procedure discarded 2 subjects, leaving behind a total number of 132 subjects (CN: 

34, sMCI: 36, pMCI: 24, and AD: 38) for the unimodal and multimodal prediction 

analyses on the second dataset. 

6.2.3 Deep Residual Learning to Estimate Structural Feature Space 

A non-linear, deep residual neural network (ResNet) learning framework (He, 

Zhang et al. 2016) was used to extract a series of relatively lower dimensional feature 

spaces from the very high dimensional smoothed 3D images to enhance diagnostic 

classification as well as identify brain regions affecting progression from MCI to AD. 

Similar to the deep CNNs, the deep ResNets are small blocks of multiple convolutional 

and batch normalization layers followed by a non-linear activation function (typically a 

rectified linear unit). While traditional neural networks (NNs) learn to estimate a layer’s or 

a small stack of layers’ output activation (𝑦) as a function (𝑓) of the input image or 

activation (𝑥) such that 𝑦 =  𝑓(𝑥), ResNets, on the other hand, feature shortcut identity 
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mappings of input space so as to enable layers to learn incrementally, or in residual 

representations, with the activations approximated as 𝑦 =  𝑓(𝑥)  +  𝐼(𝑥)  =  𝑓(𝑥)  +  𝑥, 

where 𝐼(∗) is the identity function (He, Zhang et al. 2016, He, Zhang et al. 2016). As such, 

the latter layers in the ResNets learn not only from the output of the previous layer but also 

from the input to the preceding residual block, thus gaining extra information at each block 

in comparison to the traditional NNs. The shortcut connection approach in these networks 

is similar to that suggested in the “highway networks” (Srivastava, Greff et al. 2015), but 

differs in being parameter-free (i.e. shortcut connections are identity) as compared to 

highway networks where shortcut connections are data dependent and parameterized. It 

has been recently shown (Xie, Girshick et al. 2017) that the aggregated transformations in 

this framework allow for substantially stronger representation powers in a homogenous, 

multiple branched architecture that strikingly requires setting a very small number of 

hyperparameters.  

6.2.3.1 Dataset 1: ResNet Framework 

In the first part of this work (that uses dataset 1), we adapt the ResNet model to 

evaluate the architecture’s performance in pair-wise (binary), mixed-class (binary but using 

all data by fusing more similar classes hence using more data for training) and multi-class 

(4-way) diagnostic classifications as shown in Table 6-1. While we focus on the 

progression of the MCI class to the AD class, all other binary classification tasks were 

undertaken to confirm appropriateness of learning trends (in terms of classification 

performance and class separability) in the diagnostic classification of the several disease 

stages.  
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Table 6-1: Diagnostic/prognostic classification tasks evaluated through the deep ResNet 

architecture. Standardized 10-repeat, 5-fold (stratified) cross-validation (CV) framework 

was employed on each of the mentioned tasks except for the mixed-class task (Task TB 

below) that varied in that the AD and CN classes were also used for training but only the 

MCI population was used for testing. Classification task TC corresponds to the multi-class 

classification task where a four-way classification was performed using the same 

standardized cross-validation procedure. 

Task Class 1 Class 2 Class 3 Class 4 5-fold stratified CV (10 repeats) 

TA1 CN AD - - Standard Binary 

TA2 CN pMCI - - Standard Binary 

TA3 sMCI AD - - Standard Binary 

TA4 sMCI pMCI - - Standard Binary 

TA5 CN sMCI - - Standard Binary 

TA6 pMCI AD - - Standard Binary 

TB CN, sMCI pMCI, AD - - 
Modified Binary; Split MCI subjects only 

TC CN sMCI pMCI AD Standard 4-way 

  

For this specific part, we use a modified form of an open-source Pytorch 

implementation of this learning framework (Pytorch 2017) evaluated for different depths, 

and reducing the final fully-connected layer to class probabilities to verify classification 

performance and appropriateness for the studied neuroimaging data. The 3D input data 

(smoothed gray matter maps) are fed into the deep learning ResNet framework (Figure 6-2) 

which has a series of 3D convolutional units (CUs), 3D batch-normalization units (BNUs) 

and non-linear activation units (Rectifier Linear Units or ReLUs) followed by a max-

pooling unit (MPU) from where features are fed to the following residual blocks (RBs). 

Each RB has two small stacks of layers, also termed building blocks (BBs), with each BB 

having two CUs, two BNUs and 1 ReLU in the same specific order (CU-BNU-ReLU-CU-
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BNU). Following the original recommendation (Ioffe and Szegedy 2015), BNUs were 

adopted following every CU and before any activation functions. The activation at the 

output of the final residual block adder is fed into an average pooling (AP) unit for 

dimension reduction, and then flattened (from 3D to 1D) to feed a fully connected (FC) 

layer featuring 512 output nodes. The relatively lower dimensional flattened feature space 

at the output of the first FC layer (FC1) is fed into a second FC layer (FC2) to estimate the 

diagnostic class probabilities/scores.  

Training and testing routines were implemented on an NVIDIA CUDA parallel 

computing platform (accessing 3 independent servers each with 4 GeForce GTX 1080 11 

GB GPUs) using GPU-accelerated CUDA toolkit/compilation and Pytorch python package 

tensor libraries. The Adam stochastic optimization algorithm (Kingma and Ba 2015) was 

preferred for its computational efficiency, relatively little memory requirements, and 

suitability for problems with large data/parameters size. A batch size of 16, fixed learning 

rate parameter of 0.001 and L2 weight decay parameter of 0.01 were chosen for the final 

model selection, and all further classifier performance and feature estimation routines 

based on a preliminary analysis that suggested (1) insignificant effect of batch-size on 

learner performance, and (2) the above values of learning rate and L2 weight decay 

parameter through a grid-search cross-validation analysis.  

Due to computational (GPU) memory constraints, we tested only for batch sizes 2, 

4, 8 and 16 and since batch-size did not affect performance, the maximum batch-size of 16 

was chosen to speed up computations (as compared to batch sizes 2, 4 and 8). Followingly, 

learner performance for different model depths (number of residual blocks) was compared 
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to choose the appropriate model depth for consistent comparison across several 

classification tasks as demonstrated in Table 6-1. 

 

Figure 6-2: A deep residual neural network learning framework is composed of multiple 

residual blocks that are small stacks of convolutional and batch normalization layers 

followed by non-linear activation functions such as rectified linear units. In this study, as 

suggested by the data (Figure 6-5), we use a model with 3 residual layers for evaluating 

diagnostic classification performance and progression to AD.  

6.2.3.2 Dataset 1: Architecture Depth Selection, Regularization and Validation 

The ResNet architecture with different depths (D = 1, 2, 3, 4; where D is number 

of residual blocks) was tested for diagnostic/prognostic classification performance for the 

CN vs. AD classification task. We retained the architecture depth with the best performance 

as suggested in this analysis (D = 3) for all other classification tasks for consistent 

comparison. Figure 6-2 illustrates the modular structure of the selected framework, 

whereas Figure 6-5 shows a comparison of the model performances at different depths. As 

shown in Figure 6-2, following the MPU, this architecture featured three RBs followed by 

two FCUs; hence, in all, thirteen convolutional and two fully connected layers were used 

in this fifteen-layer model.  
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Use of BNUs, default L2 weight decay (regularization) in the Adam Optimizer, 

repeated stratified k-fold cross-validation for the diagnostic/prognostic classification tasks 

and early stopping were measures undertaken to prevent any overfitting and reduce 

classification performance bias. This chosen architecture was then used to extract the 

features and class probability scores for the different binary/mixed-class/multi-class 

classification tasks as discussed in the following section. 

6.2.3.3 Dataset 1: Diagnostic/Prognostic Classification Tasks 

Classification performance for the different binary diagnostic/prognostic 

classification tasks (CN vs. AD, CN vs. pMCI, sMCI vs. AD, sMCI vs. pMCI, CN vs. 

sMCI, and pMCI vs. AD) for the 4 studied groups was evaluated (Tasks TA1 through TA6 

in Table 6-1). Additionally, mixed-class inter-MCI (Task TB: CN+sMCI vs. pMCI+AD; 

training on all CN and AD data plus 80% of sMCI and pMCI data; testing on 20% sMCI 

and pMCI data) and multi-class (Task TC: 4-way) classification tasks were performed to 

enhance classification performance and extract additional information than that conveyed 

by the binary classifiers respectively. The mixed inter-MCI class classification task was 

evaluated to explore any additional benefits of domain transfer learning (Cheng, Liu et al. 

2015) i.e. if training the classifier with more data samples (i.e. all CN and AD datasets) 

resulted in an improvement in the classification performance.  

While all other classification tasks were conducted to evaluate the framework 

performance as compared to frameworks used in similar studies in the recent literature, 

only the mixed/modified inter-MCI classification task that assumes the highest clinical 

relevance (in terms of learning about progression to AD) was focused on to seek evidence 
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of the most affected brain areas while progressing to AD. All classification tasks were 

conducted using repeated (n = 10), stratified 5-fold cross-validation procedures. 

Classification performance metrics including accuracy, sensitivity, specificity, and 

balanced accuracy were computed, and additionally complimented by conducting the 

receiver operating characteristic (ROC) curve analysis to estimate the area under the curve 

(AUC) performance metric for the various classification tasks. 

6.2.3.4 Dataset 1: Model Verification: Testing Filter Weights and Activations 

Following the preceding performance analysis of the several diagnostic/prognostic 

classification tasks, we focused only on the modified inter-MCI (i.e. mixed class; Table 6-

1, Task TB) prognostic classification task for identification of the most discriminative brain 

regions in progression to AD. We hereon refer to the models trained for each cross-

validation fold as surrogate models and finetune the final predictive model on all data. In 

this iterative learning approach, the surrogate models were additionally regularized by use 

of a validation-error-based early stopping mechanism to avoid overfitting and impose 

control over the increase in generalization error. As such, the model training phase was 

simply terminated at a point (iteration number) whereon there was no significant increase 

in the model performance (in terms of validation accuracy). The number of epochs 

parameter suggested by the early stopping method was averaged over the cross-validation 

folds, and the final predictive model was run for this averaged parameter value to allow 

learning of the final prediction model in a totally unsupervised way. Once the final 

predictive model was generated, additional tests were performed on filter weights and 

output activations at the first convolutional layer for each of the surrogate models as well 

as the final predictive model to ensure proper training which we discuss next.  
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During the training phase, the network iteratively learns the data and updates the 

filter weights in the multiple channels of convolutional layers to minimize the training 

error. Likewise, as in case of any CNN architecture, resembling (i.e. highly correlated) 

filters almost certainly indicate over-parameterization, or incorrect updating of the loss 

function and thus inappropriate learning directionality. Hence, we performed a similarity 

analysis on the weights of the 64 (size 3 x 3 x 3) filters learnt at the first convolution layer 

as a simple sanity check.  

Next, while inference on discriminative brain regions was done from the features 

from the final predictive models that trained on all data, projections estimated from the 

surrogate models must ideally confirm similar learning trends i.e. robustness of the 

extracted features. To inspect this, we compared the activations at the output of the first 

convolutional layer (post batch-normalization and non-linear activation) for the multiple 

surrogate models with the final predictive model. Finally, the brain regions most 

discriminative of likely progression to AD were localized by projecting the sub-sampled 

mean activations at the output of the first convolutional layer (batch-normalized and post 

non-linear activation) back to the brain space. 

6.2.3.5 Dataset 2: ResNet Framework 

For the second part of this work (that uses dataset 2 for unimodal and multimodal 

prediction), the non-linear sMRI features were estimated using a slightly modified form of 

the ResNet framework used in the first part. The modified framework for the analyses in 

this part (on dataset 2) made use of an additional fully connected layer at the end of the 

network. Hence, in the modified architecture, three fully connected (FC) layers were used 
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in the ResNet architecture. The first FC layer reduced the preceding input data 

dimensionality to 512, the second FC layer mapped this 512-dimensional data further down 

to 5 dimensions and the final FC layer reduced this 5-dimensional data to a 2-dimensional 

space that represented scores for each of the two classes. For sMRI only prediction using 

the second dataset, a SoftMax classifier was used to estimate the classification accuracy 

from the 2-dimensional output of the ResNet; however, the multimodal prediction on the 

second dataset instead used the 5-dimensional sMRI features estimated at the output of the 

second FC layer in the modified ResNet architecture. This architecture tweak was enabled 

specifically to match the output dimension of the sMRI features to the state model order of 

the fMRI features (k = 5) which is discussed in the next section. 

6.2.3.6 Dataset 2: Cross-Validation Procedure 

All data from the CN and AD groups was used for training; however, stratified, 

repeated (n = 10) k-fold (k = 3) cross-validation folds were generated for the MCI data. 

Notably, as the number of subjects was only 132, fewer folds (k = 3) were used in each 

repetition of cross-validation to keep a large test sample size for reliable cross-validation. 

For each of the 30 cross-validation folds, early stopping was implemented to select the 

models that were used to make predictions. This estimated a distribution of the prediction 

accuracy metric for prediction from the sMRI features (dataset 2) that was later compared 

to distributions of similar metrics generated from the fMRI and multimodal prediction 

analyses on the same dataset. 
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6.2.4 Time-varying FC based Extraction of Functional Feature Space  

6.2.4.1 Group ICA 

To extract the subject-specific functional networks from the preprocessed fMRI 

data (dataset 2; n = 132), group information guided ICA (GIG-ICA) as implemented in the 

GIFT toolbox was used (Du and Fan 2013). For this GIG-ICA decomposition, we used the 

guiding networks estimated in a prior study (Du, Fu et al. 2018) that used two large, 

independent datasets of healthy controls to find the most reliable (n = 54) networks 

common to both used datasets. The retained functional networks were grouped into the 

sub-cortical (5), auditory (2), sensorimotor (10), visual (9), cognitive control (16), default 

mode (7), and cerebellar (5) network domains. 

6.2.4.2 Time-varying FC 

The time-courses estimated from the GIG-ICA decomposition were post-processed 

by z-scoring, regressing motion, detrending, despiking, and band-filtering (0.01-0.15HZ). 

The windowed correlation data for each of the 𝐶2
54  (1431) brain connections was then 

estimated from the post-processed network time-courses using the SWC method. A tapered 

sliding window featuring convolution of a rectangular window (width = 20 TRs i.e. 

approximately 60 seconds) with a Gaussian (standard deviation of 3 TRs) was used, and 

subsequently moved in gradual steps of 1 TR, resulting in 115 windows. Hence, for each 

subject, a total number of 115 1431-dimensional windows were estimated. The optimal 

value of number of clusters was estimated to be 5 for this windowed data. However, instead 

of the standard hard-clustering approach on the entire data, a fold-and-diagnostic-group-

specific clustering procedure (as outlined in Figure 6-3) was implemented within the cross-
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validation procedure to estimate the prediction accuracy from time-varying FC based fMRI 

features as discussed in detail in the next section. 

 

Figure 6-3: Unimodal (fMRI) prediction framework based on fMRI feature estimation from 

time-varying FC based fMRI feature extraction (Rashid, Arbabshirani et al. 2016). 

6.2.4.3 Cross-Validation Procedure 

A rigorous, nested cross-validation procedure was implemented to estimate the 

prediction accuracy of progression from MCI to AD. For a consistent comparison, the exact 

same folds as used in the sMRI prediction analysis on this dataset (dataset 2) were used. 

This procedure featured a linear support vector machine (SVM) to measure the disease 
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prediction performance of the time-varying FC based fMRI features. Furthermore, a FC 

state regression pipeline, as described next and as previously deployed in Rashid, 

Arbabshirani et al. (2016), was leveraged to find the subject-specific, lower-dimensional 

fMRI features to be used to train the linear SVM. The schematic diagram of the employed 

framework is shown in Figure 6-3. 

The FC state regression pipeline involved a fold-and-diagnostic-group-specific 

clustering to estimate the FC state profiles. In other words, for each fold, the windowed 

correlation data of training subjects of each diagnostic group were clustered separately to 

identify the set of diagnostic-group-specific FC state profiles for that fold. Thus, for each 

fold, for a model order k = 5, and two diagnostic groups, a set of 2*k i.e. 10 FC state 

profiles were estimated. This set of states was used as a regression matrix to test the 

contribution of each of the centroids in each of the windowed correlation observations. 

Hence, each of the windowed correlation observations (for training subjects of both 

diagnostic groups) for a given fold was regressed onto the estimated regression matrix for 

that fold, and their contribution weights (i.e. beta coefficients) were computed. The 

estimated beta coefficients were averaged across all observations (i.e. windows) for each 

subject, thus resulting in 10-dimensional features for each subject. These features were 

then used to train the linear SVM in a nested cross-validated setup, where the regularization 

parameter was optimized in the inner loop and the SVM trained using this optimal hyper-

parameter value was used to test the testing samples in the outer loop. Hyper-parameter 

tuning in the previous step used 50 values from a logarithmic parameter sweep in the range 

[1e-03, 1e+01]. The entire procedure was repeated for each of the 30 cross-validation folds, 

thus generating a distribution of the prediction accuracy metric for the time-varying FC 
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based fMRI features that was later compared to distributions of similar metrics from the 

sMRI and multimodal prediction analyses. 

6.2.5 Multimodal Prediction  

The fMRI and sMRI feature spaces estimated from the previous discussed analyses 

on dataset 2 were fused using canonical correlation analysis (CCA). CCA infers 

information from the cross-covariance matrix of the features by finding linear 

combinations of the two feature spaces that maximize their correlations (Sun, Zeng et al. 

2005, Haghighat, Abdel-Mottaleb et al. 2016). This method was preferred as it enables 

generation of a fused feature space that is more discriminative than the individual feature 

spaces or a simple concatenation of the feature spaces.  

Similar to the fMRI and sMRI prediction analyses, a stratified, repeated (n = 10) k-

fold (k = 3) nested cross-validation was performed to measure the multimodal prediction 

performance. For a consistent comparison, the same training and testing folds as in the 

previous unimodal analyses on dataset 2 were used. For each fold, the fused training 

features estimated by the CCA algorithm were input to train a linear SVM. To estimate the 

optimal value of the regularization parameter, a parameter sweep was conducted using fifty 

logarithmically spaced values of this parameter in the range [1e-03, 1e+01]. The linear 

SVM was trained on the optimal hyper-parameter value and prediction accuracies on the 

fused test features were computed. This generated a distribution of the prediction accuracy 

metric for the multimodal prediction case which was compared to distributions of similar 

metrics from the fMRI and sMRI prediction analyses. A summary of this three-way 

comparison is illustrated in Figure 6-4. 
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Figure 6-4: An overview of the unimodal and multimodal analyses comparison conducted 

in this work.  

6.3 Results 

6.3.1 Dataset 1: Deep Learning Architecture Depth Selection 

In a repeated (n=10), stratified 5-fold cross-validation framework, the CN and AD 

datasets were evaluated for 100 epochs. The stratified cross-validation procedure was 

performed on the pooled CN and AD classes to study the effect of adding depth to the 

implemented architecture (i.e. further convolutional layers or residual blocks). This 

analysis reported significant improvement in validation accuracy by a model that used 3 

residual blocks (D3: depth = 3) as compared to a model that used 2 residual blocks (D2: 
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depth = 2; p = 1.6996e-07) and a model that used 1 residual block (D1: depth = 1; p = 

4.5633e-13). Adding another residual block (i.e. depth = 4) did not result in significant 

improvement in performance; hence, we have settled on the D3 model and validated it in 

the several classification/prediction tasks, as will be shown in the forthcoming sub-

sections. In this particular analysis, the models were run for 100 epochs for each depth and 

used the exact same training and test datasets in each of the cross-validation folds for 

consistency in performance comparison. A comparison of training error, training loss and 

validation error for the different depths is shown in Figure 6-5A. Additionally, the 512-

dimensional feature space at the output of the first fully connected layer in the ResNet 

model was projected onto a two-dimensional space using the t-distributed stochastic 

neighbor embedding (tSNE) algorithm (Maaten and Hinton 2008) to visualize class 

separation differences with model order. We show projections from a surrogate model 

(from a sample cross-validation fold) for a sample epoch around which the D3 model 

clearly exhibits significant differences in validation accuracy (Figure 6-5B); projections 

from other surrogate model (from other cross-validation folds) and other epochs beyond 

the significant difference showing epoch could be expected to exhibit a similar pattern 

because of evidence from results in Figure 6-5A. 
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Figure 6-5: (A) Repeated (n=10) stratified k-fold (k = 5) cross-validation was performed 

on the pooled cognitively normal (CN) and Alzheimer’s Disease (AD) classes to study the 

effect of adding depth (i.e. adding further convolutional layers or residual blocks) in the 

implemented framework. Significant improvement in validation accuracy was reported by 

a model that used 3 residual blocks (D3: depth = 3) as compared to a model that used 2 

residual blocks (D2: depth = 2; p = 1.6996e-07) and a model that used 1 residual block 

(D1: depth = 1; p = 4.5633e-13). Adding another residual block (i.e. depth = 4) did not 

result in a significant improvement in performance; hence, we’ve settled on the D3 model 

and validated it in the several classification/prediction tasks for a consistent comparison. 

For this specific analysis, all models were run for 100 epochs and used the exact same 

training and test datasets in each of the cross-validation folds for consistency in 

performance comparison. (B) The feature spaces at output of the first fully connected layer 

in the three surrogate models (for a sample cross-validation fold at the epoch demonstrated 

by the vertical black line in Figure 6-5A) were projected onto a two-dimensional space 

demonstrate additional separation enabled by addition of residual blocks in the ‘D3’ model 

as compared to the ‘D2’ and ‘D1’ models. The ‘Tr’ abbreviation corresponds to the training 

samples whereas ‘Te’ corresponds to the samples used to test the learnt model. 
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6.3.2 Dataset 1: Diagnostic and Prognostic Classification Tasks 

6.3.2.1 Binary Diagnostic/Prognostic Classification 

The performance of the validated (depth = 3) deep learning framework on pair-wise 

(binary) classification tasks was compared to identify how well the pMCI and AD 

populations separated from the CN and sMCI populations. The different binary 

classification tasks were conducted using repeated (n = 10), stratified 5-fold cross-

validation procedures and model training was conducted with an early stopping with a 

patience level of 20 epochs (20% of the set maximum number of epochs) to prevent 

overtraining the model. The results in Figure 6-6 reflect a clear tend with the average 

(cross-validated over 50 folds) classification metrics for the classification of CN or sMCI 

classes from pMCI or AD classes distinctly higher than the average metrics for the CN vs. 

sMCI and pMCI vs. AD classification tasks. Specifically, for the first four classification 

tasks (CN vs. AD, CN vs. pMCI, sMCI vs. AD, and sMCI vs. pMCI), we report a cross-

validated median accuracy of 91%, 86%, 86% and 77% respectively. The reported 

sensitivity for these tasks is 85%, 79%, 81% and 71% respectively, whereas the reported 

specificity is 95%, 92%, 90% and 82% respectively. The learner’s appropriate separability 

trend across the different classes and genuinely high classification metrics as compared to 

previous findings in literature (reviewed recently in Moradi, Pepe et al. (2015) and Vieira, 

Pinaya et al. (2017)) in such a large heterogenous sample clearly highlight the usefulness 

of the deep learning model. 
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Figure 6-6: Six possible binary diagnostic and prognostic classification tasks from the four 

studied classes were considered. A repeated (n = 10), stratified 5-fold cross-validation 

procedure was conducted for each of these classification tasks. The ResNet framework was 

trained independently for each classification task for a maximum of 100 epochs but with 

an early stopping with a patience level of 20 epochs (20% of the set maximum number of 

epochs) to prevent overtraining the model. Classification performance was quantified using 

the accuracy, sensitivity, specificity, and balanced accuracy metrics. Each boxplot shows 

a spread of the specific reported metric over the 50 cross-validation folds. The first four 

classification tasks in specific order as in the legend (CN vs. AD, CN vs. pMCI, sMCI vs. 

AD, and sMCI vs. pMCI) could be considered more clinically relevant and reported a 

cross-validated median accuracy of 91%, 86%, 86% and 77% respectively, sensitivity of 

85%, 79%, 81% and 71% respectively, and specificity of 95%, 92%, 90% and 82% 

respectively. The performance in the binary classification tasks is comparable or better than 

previously assessed machine learning architectures while the number of samples is much 

higher in this specific study. We further explore possible improvements in prediction of 

progression to AD in the ‘Mixed-class Prognostic Classification’ section. 

For further introspection into the diagnostic ability of the binary classifiers, we 

estimated the classification-task-specific receiver operating characteristic (ROC) curves. A 

comparison of the area under the ROC curve (AUC) metric confirmed a similar trend as 

suggested in the previous analysis (Figure 6-6) as illustrated in Figure 6-7. We report a 

cross-validated AUC of 0.93 for CN vs. AD, 0.87 for CN vs. pMCI, 0.89 for sMCI vs. AD 

and 0.81 for the sMCI vs. pMCI classification tasks. These initial results indicate high 
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suitability of the evaluated framework for our desired objective; further possible 

improvements in prediction of progression to AD was explored with the mixed-class 

prognostic classification analysis as discussed in the next section. This is followed by a 

thorough, in-depth comparison of our prediction performance with previous literature. 

 

Figure 6-7: Receiver operating characteristic (ROC) curves were estimated for each of the 

classification tasks to further evaluate the diagnostic ability of the trained ResNet 

framework. As expected, the reported area under the curve (AUC) metric follows a similar 

trend as in Figure 6-6 thus further adding evidence to the superior performance of the tested 

architecture for the undertaken analysis.   

6.3.2.2 Mixed-class Prognostic Classification 

The sMCI vs. pMCI classification task could be considered as the most clinically 

relevant task amongst the several binary classification tasks since identifying MCI subjects 

who are highly likely to progress to AD is very crucial; hence, in this specific analysis we 

focus on exploring ways to improve separability between these two classes. A recent study 

(Cheng, Liu et al. 2015) explored advantages of domain transfer learning to enhance MCI 
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conversion predictability rates which is similar to what we pursue in the section. In general, 

training the learner with more data is highly likely to improve its classification/prediction 

performance on unseen data since the learner assimilates the additional variability provided 

by the previously unseen datasets and adjusts its weights accordingly for more generalized 

training (i.e. decrease in generalization error). In a scenario where availability of MCI data 

is severely limited, we hypothesized that training the learner with all data from the CN and 

AD classes (or domains) together with some part of the two MCI classes (or domains), and 

then testing with the remaining part of the MCI classes (or domains) could enhance 

classification performance. For this analysis, we conducted the above discussed modified 

form of repeated (n=10) stratified 5-fold cross-validation and report significantly improved 

cross-validated median accuracy of 83%, sensitivity of 78%, and specificity of 87% (Figure 

6-8A), and a cross-validated mean AUC of 0.88 (Figure 6-8B). The results clearly reflect 

substantial improvement (6% in accuracy, 7% in sensitivity, 5% in specificity and 7% in 

AUC) with the addition of domain transfer learning in the training phase. Finally, the 

performance of this modified inter-MCI case was confirmed as a significant improvement 

over a standard machine learning approach such as the classical support vector machine 

(SVM) classifier (p = 2.5762 x 10-8) applied on the same training/testing cross-validation 

folds. In this specific analysis, for estimating the performance of the SVM classifier, the 

classical univariate feature selection procedure using F-test (ANOVA) was implemented 

for dimension reduction following which the optimal value of the penalty (cost) parameter 

in the linear SVM was estimated. The boxplots for the accuracies for the different cross-

validation folds using the Resnet and SVM models are shown in Figure 6-8C. 
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Figure 6-8: Mixed-Class Prognosis Classification. A modified form of repeated (n = 10), 

stratified 5-fold cross-validation procedure was conducted to evaluate the separability of 

the two MCI sub-classes. Hypothesizing an improvement with an increase in amount of 

training data provided by other classes (analogous to domain transfer learning), the learner 

was trained with all datasets from the CN and AD classes (or domains) in addition to the 

cross-validation-fold-respective training sMCI/pMCI datasets followed by testing on the 

cross-validation-fold-respective testing sMCI/pMCI datasets. (A) and (B) A significant 

improvement for all studied classification metrics (6% in accuracy, 7% in sensitivity, 5% 

in specificity and 7% in AUC) was observed for this mixed-class classification task as 

compared to the standard inter-MCI class classification task (i.e. sMCI vs. pMCI 

classification task as shown in Figure 6-6 and bottom left panel in Figure 6-7). (C) The 

mixed-class classification task reported a significant performance improvement over the 

classical SVM model with a p-value of 2.5762e-8. 

6.3.2.3 Comparison with previous literature 

In this section, we compare the prediction performance of AD progression in our 

study (modified inter-MCI task) to previous deep learning work in recent literature (Table 

6-2). In order to identify previous studies that used deep learning on neuroimaging data to 

study psychiatric or neurological disorders, we conducted a search on PubMed (May 25, 

2018) using search terms very similar to a recent review (Vieira, Pinaya et al. 2017). 

Specifically, the following search terms were used: (“deep learning” OR “deep 

architecture” OR “artificial neural network” OR “autoencoder” OR “convolutional neural 

network” OR “deep belief network”) AND (neurology OR neurological OR psychiatry OR 

A. B. C. 
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psychiatric OR diagnosis OR prediction OR prognosis OR outcome) AND (neuroimaging 

OR MRI OR “magnetic resonance imaging” OR “fMRI” OR “functional magnetic 

resonance imaging” OR PET OR “positron emission tomography”). Following this, we 

manually screened these articles to identify the relevant subset of studies that applied deep 

learning to study MCI to AD progression.  

A comparison of prediction using MRI data only confirms the superior performance 

of our method as compared to other undertaken approaches. Using just MRI data, the 

prediction accuracy obtained in our study (82.7%) is more than 7% greater than the second 

best performer (using MRI data only) that used a multiscale deep NN in a very recent study 

(Lu, Popuri et al. 2018). Considering use of multiple modalities, only Suk, Lee et al. (2015) 

(83.3% using MRI, PET and CSF modalities) and Lu, Popuri et al. (2018) (82.93% using 

MRI and PET) report slightly higher performance as compared to our study.  

Interestingly, despite using multiple modalities, the methods used in these two 

particular studies report only marginal improvements (0.6% and 0.2% respectively) over 

our unimodal analysis. Working with multiple modalities generally enhances the prediction 

performance (variably from 3% to greater than 20% in studies included in Table 6-2), so it 

would be reasonable to expect further improvement in prediction performance through our 

method if complimentary information from an additional modality is leveraged. Table 6-2 

lists the details of the comparison of sample sizes, machine learning architecture, MCI to 

AD conversion period, cross-validation parameters, studied modalities and performance of 

MCI to AD prediction accuracy for these studies. 
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Table 6-2: Comparison of MCI to AD prediction accuracy using ADNI dataset.  

Study Sample 
Size 

Conversion 
Period 

Architecture Cross-
validation 

Accuracy (%) 

This work CN = 237 
sMCI = 245 
pMCI = 189 
AD = 157 
 

36 months 
 

Residual  
Neural Network 

Repeated (n = 10) 
Stratified 5-Fold  

82.7 (MRI) 

Suk, Lee et al. 
(2015)  
 

CN = 52 
sMCI = 56 
pMCI = 43 
AD = 51 
 

18 Months Stacked Auto-Encoder Repeated (n = 10) 
10-Fold 

69.3 (MRI) 
83.3 (MRI+PET+CSF) 

Suk, Lee et al. 
(2015)  
 

CN = 52 
sMCI = 56 
pMCI = 43 
AD = 51 
 

CN = 229 
sMCI = 236 
pMCI = 167 
AD = 198 
 

18 Months 
 
 
 
 

18 Months 
 

Deep sparse multi-task 
learning 
 
 
 

Deep sparse multi-task 
learning 

Repeated (n = 10) 
10-Fold 
 
 
 

Repeated (n = 10) 
10-Fold 

69.8 (MRI) 
74.2 (MRI+PET) 
 
 
 

73.9 (MRI) 

Li, Tran et al. 
(2015) 

CN = 52 
sMCI = 56 
pMCI = 43 
AD = 51 
 

18 Months 
 

Multi-layer perceptron Repeated (n = 10) 
10-Fold 

57.4 (MRI+PET+CSF) 

Suk and Shen 
(2013)  

CN = 52 
sMCI = 56 
pMCI = 43 
AD = 51 
 

18 Months 
 

Stacked Auto-Encoder + 
Multi-task learning 

Repeated (n = 10) 
10-Fold 

55 (MRI) 
75.8 (MRI+PET+CSF 
         +SCORES) 

Suk, Lee et al. 
(2017) 

CN = 186 
sMCI = 167 
pMCI = 226 
AD = 226 
 

-- Same -- 
 

18 Months Multi-Output Linear 
Regression + Deep 
Convolution Neural 
Network (CNN) 
 

Joint Linear and Logistic 
Regression + Deep CNN 

Repeated (n = 10) 
10-Fold 
 
 
 

Repeated (n = 10) 
10-Fold 
 

73.28 (MRI+SCORES) 
 
 
 
 

74.82 (MRI+SCORES) 

Shi, Zheng et al. 
(2018)  

CN = 52 
sMCI = 56 
pMCI = 43 
AD = 51 
 

18 Months Stacked Deep Polynomial 
Network 

Repeated (n = 5) 10-
Fold 
 

78.88 (MRI+PET) 

Suk, Lee et al. 
(2014)  

CN = 101 
sMCI = 128 
pMCI = 76 
AD = 93 
 

Unmentioned Deep Boltzmann 
Machine 

10-Fold 72.42 (MRI) 
75.92 (MRI+PET) 

Lu, Popuri et al. 
(2018)  

CN = 360 
sMCI = 409 
pMCI = 217 
AD = 238 

0 to 36 Months Multiscale Deep Neural 
Network 

10-Fold 75.44 (MRI) 
82.93 (MRI+PET) 
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Furthermore, Moradi, Pepe et al. (2015) (see Table 7 in their manuscript) and 

Korolev, Symonds et al. (2016) (see Table 3 in their manuscript) did extensive comparisons 

of other (non-deep-learning) studies and showed their respective approaches to result in 

better precision than other approaches in previous literature. Moradi, Pepe et al. (2015) 

studied progression with ADNI data (large sample of 825 subjects) using a regularized 

logistic regression approach to report classification accuracy of 74% using MRI biomarker 

only and 82% using their aggregate biomarker that used the patient age and clinical scores 

as features in addition to the MRI biomarker. Korolev, Symonds et al. (2016) worked with 

only ADNI-1 MCI subjects (n = 259) to predict progression to AD from MCI using a 

probabilistic, kernel-based pattern classification approach to report a prediction accuracy 

of 79.9% using MRI and clinical (cognitive and functional) scores. Our method predicted 

more accurately (82.7%) using a large sample of 828 subjects (MRI data alone) than these 

two multimodal, non-deep-learning studies and all studies reviewed in these two studies. 

6.3.2.4 Multi-class (4-way) Diagnostic/Prognostic Classification 

For the multi-class (4-way) case, the learning framework scored a cross-validated 

median accuracy of 54% that is higher than recent studies evaluating such a 4-way 

classification (as reviewed in Table 2 in Vieira, Pinaya et al. (2017)). Although this 

accuracy level is substantially higher than chance (25%), the appropriateness of the data 

trends learnt in this relatively much harder classification problem was further confirmed 

by in-depth ROC and feature projection analyses as discussed next. As an extension of 

binary ROC analysis, for each class, we estimated a single ROC curve by comparing it to 

all other classes (i.e. one vs all comparison). ROC curves for the multi-class case can also 

be estimated by micro-averaging which measures true and false positive rates by 
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considering each element of each class as a binary prediction, or by macro-averaging which 

essentially averages over the several class-specific classification metrics. In this analysis, 

the AD and CN classes reported a higher AUC followed by the micro-averaged and macro-

average cases, whereas the pMCI and sMCI classes showed lower AUC (Figure 6-9A).  

In the multi-class feature projection analyses (Figure 6-9B and Figure 6-9C), the 

512-dimensional features at the output of the first fully-connected layer in the employed 

learning framework were projected onto a two-dimensional space using the tSNE algorithm 

(Maaten and Hinton 2008). The tSNE algorithm embeds similar observations as nearby 

points and non-similar observations as distant points with high probability; so more similar 

classes could be expected to cluster in vicinity of each other in the projection space. This 

feature projection analysis was performed to confirm the learning directionality of 

validated models in our multi-class classification case expecting majority observations for 

more similar classes being projected/clustered together.  

Figure 6-9B demonstrates projections from a sample surrogate model (i.e. model 

validated for a sample cross-validation fold). Although the classes are not separable in the 

projection space, yet a clear pattern can be traced easily across the projection spectrum. 

More specifically, we can observe classes ordered in increasing severity of disease from 

left to right (i.e. CN, sMCI, pMCI and AD in this specific order) although some outlier 

observations do exist. The disease severity or the class pattern is further confirmed by 

coloring the same two-dimensional projections (as in Figure 6-9B) with the six clinical 

(cognitive and functional) scores (Figure 6-9C). The MMSE and RAVLT clinical scores 

reveal a clear increase across the spectrum (left through right), whereas the FAQ, CDRSB, 
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ADAS11 and ADAS13 clinical scores (by nature of score characterization) reveal a clear 

decrease across the same spectrum.  

 

Figure 6-9: Multi-class ROC and Classification Projection Analysis. (A) For the multi-

class classification, ROC analysis for each class was performed by comparing observations 

from that class to all other classes (i.e. one vs all comparison). Additionally, micro-

averaged and macro-averaged ROC estimates were computed to find singular performance 

metrics for multi-class classification. Higher AUC was reported by the AD and CN classes 

followed by the micro-averaged and macro-average cases, while both MCI classes reported 

lower AUC. (B) and (C) A feature projection analysis was conducted to confirm 

appropriateness of the learning directionality in the multi-class classification task. In this 

analysis, the features at the output of the first fully-connected layer in a sample surrogate 

multi-class model were projected onto a two-dimensional space using the tSNE algorithm. 

Barring few outliers, the projections of the observations are appropriately ordered by 

disease severity in terms of diagnostic label (panel B) and clinical scores (panel C). In panel 

B, the ‘Tr’ abbreviation in the figure legend corresponds to the training samples whereas 

‘Te’ corresponds to the test samples. In panel C, the following clinical scores were used: 

MMSE: Mini-Mental State Exam, FAQ: Functional Activities Questionnaire, CDRSB: 

Clinical Dementia Rating Sum of Boxes, ADAS: Alzheimer’s Disease Assessment Scale, 

and RAVLT: Rey Auditory Verbal Learning Test. 

C. 

A. B. 

MMSE FAQ ADAS11

RAVLT ADAS13CDRSB
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Figure 6-10: (A) The filters for the first convolutional layer were compared in each of the 

50 surrogate models (columns 1 to 50 in panel A) as well as the final predictive model 

(column 51 in panel A) for the modified sMCI vs. pMCI (i.e. mixed-class) classification 

task. Low pair-wise correlations in the learnt 64 filters in each of these 51 models confirms 

appropriate learning directionality of the mixed-class framework in the training phase. (B) 

A. 

1:50 - Surrogate Models (SMs) ; 51 - Predictive Model (PM)

B. 
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The mean activations/features at the output of the first convolution layer (normalized and 

post non-linear activation) were projected back to the brain space to localize activations 

contributing most to the classification. The 3D activation maps were compared pairwise-

across the 51 models pairwise (correlation boxplot on left in panel B); additionally, the 3D 

activation maps for the 50 surrogate models were compared to the maps from the final 

predictive model (correlation boxplot on right in panel B). In both cases, a very high 

median correlation value was observed thus confirming similar features being extracted 

across the different models. (C) This panel shows the spatial maps of the brain regions 

corresponding to the peak activations identified by the final predictive model. Hotter 

(towards red) color imply higher mean activations, while cooler (towards blue) colors 

imply lower mean activations. The discriminative brain regions at these peak activations 

were identified in correspondence to the AAL brain atlas. 

6.3.2.5 Model Validation for the Mixed Class (modified inter-MCI) Classification Task 

The mixed class (i.e. modified sMCI vs. pMCI) binary classification task was 

focused on to identify the most discriminative brain regions in early AD. To ensure proper 

learning in the training phase, additional tests were performed on filter weights and output 

activations at the first convolutional layer. As in the case of any CNN architecture, similar 

(i.e. highly correlated) filters almost certainly indicate incorrect convergence of the loss 

function and thus an inappropriate local minimum. To control for that, we performed a 

similarity analysis on the weights of the 64 (size 3 x 3 x 3) filters learnt at the first 

convolution layer as a sanity check. More specifically, the filter weights for each of the 

channels in the first convolutional layer were compared pair-wise in each of the 50 

surrogate models as well as the final predictive model.  

The boxplots in columns 1 to 50 in Figure 6-10A show the pair-wise correlations 

of filter weights for each of the 50 surrogate models, whereas those for the final predictive 

model are shown in the boxplot in column 51. Since low pair-wise correlations in the learnt 

64 filters in each of these 51 models were observed, it can be concluded that the trained 

model indeed learnt the local minima.  
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While inference on discriminative brain regions was done from the features of the 

final predictive models that were trained on all data, ideally, projections of data samples 

into the representation space estimated by the surrogate models must be similar to confirm 

similar learning trends and robustness of the extracted features. For this comparison, the 

final predictive model and the 50 surrogate models for this classification task were 

compared in the mean activations (across the 64 channels) at the output of the first 

convolutional layer (batch-normalized and post non-linear activation).  

A pairwise similarity (i.e. correlation) comparison of the 3D activation maps across 

these 51 models is shown on the left in Figure 6-10B, whereas the comparison of the 

similarity in activation maps for the 50 surrogate models to the activation maps from the 

final predictive model is shown on the right in the same panel. In both cases, a very high 

median correlation value was observed thus confirming similar discriminative features 

extracted across different surrogate models and the final predictive model.  

6.3.2.6 Localizing Abnormalities: Discriminative Brain Regions 

Peak activations of the identified brain regions which are most discriminative of 

progression of MCI to AD were localized by projecting the sub-sampled mean activations 

at the output of the first convolutional layer (batch-normalized and post non-linear 

activation) back to the brain space. Notably, the activations at the output of the first 

convolutional layer could be expected to be fine-tuned to small degrees in the deeper layers. 

However, we restricted our analysis to the first layer since there is a substantial loss of 

spatial resolution as we go deeper into the networks, and estimating and back-propagating 

the relative importance of the features at each layer needs dedicated developmental efforts 
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that are outside the scope of the current work. Hence, we restrict our abnormality 

localization analysis to features at the output of the first convolutional layer.  

The brain regions at the peak activations were identified in correspondence to the 

AAL brain atlas. Figure 6-10C illustrates the spatial maps at the most activated sagittal, 

coronal and axial slices as tracked from the final predictive model for the modified sMCI 

vs. pMCI classification task. In this figure, hotter (towards the red spectrum) colors imply 

higher mean activations, while cooler (towards the blue spectrum) colors imply lower mean 

activations. Specifically, peak activations were observed in the sub-cortical regions 

including hippocampus, amygdala, caudate nucleus, putamen and thalamus, cortical 

regions including anterior cingulate gyrus and middle cingulate gyrus, temporal regions 

including fusiform gyrus, temporal pole, and temporal inferior gyrus, frontal 

superior/middle gyrus, cerebellum, parietal regions including angular gyrus, precuneus and 

supramarginal gyrus, and occipital regions including calcarine, cuneus and lingual gyrus. 

In the discussion section, we will discuss these discriminative brain regions in 

correspondence to several previously reported findings in the AD/MCI literature.  

6.3.3 Dataset 2: Comparison of Unimodal and Multimodal Prediction Analyses 

A three-way comparison of cross-validated prediction performance from the fMRI 

features, sMRI features and the fused features was conducted. The mean normalized 

accuracies for the fMRI, sMRI and multimodal prediction were 0.70, 0.75 and 0.78 

respectively. Results evince that the prediction performance with the multimodal fused 

features significantly outperform (p < 0.005) that from either of the unimodal classification 

analyses as shown in Figure 6-11. Additionally, the sMRI modality significantly 
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outperformed the fMRI modality (p < 0.005). However, the improvement of multimodal 

prediction over that from the sMRI features corroborates the additional diagnostic 

information provided by the fMRI features derived from time-varying FC analyses. 

 

Figure 6-11: A comparison of accuracies from the two unimodal and multimodal prediction 

analyses. Multimodal prediction performance was found to be significantly better than the 

performance from the unimodal prediction analyses. The mean normalized accuracies for 

the fMRI, sMRI and multimodal prediction were 0.70, 0.75 and 0.78 respectively. A 

comparison of the cross-validation accuracies demonstrated significant differences (p < 

0.005) between all three groups, with the p-values increasing the following order: fMRI 

vs. sMRI, sMRI vs. fMRI+sMRI, and fMRI vs. fMRI+sMRI.      

6.4 Discussion 

In this work, we extensively test the ability of the ResNets to learn abstract 

neuroanatomical alterations in sMRI data. The tested deep learning architecture provided 

close to the state of the art prognostic classification performance following which we 

focused on the inter-MCI classification task to predict the MCI sub-group who would 

progress to AD within three years. The principle progression analysis of our work is the 
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mixed-class (i.e. modified) inter-MCI classification task where we used principles of 

domain transfer learning (additionally training with data from other domains). This 

analysis bears high clinical relevance. Importantly, on the MRI data alone we achieved 

classification accuracy of 82.7% which is a significant improvement over state of the art 

with either MRI based (75.44% as reported in Lu, Popuri et al. (2018)) and very close to 

state of the art performance with multimodal results (83.3% as reported in Suk, Lee et al. 

(2015)). The accuracy in this modified inter-MCI class classification task is significantly 

higher than that in the standard inter-MCI case which suggests the performance 

improvement was also enabled by additional training information acquired from other (AD 

and CN) domains.  

Furthermore, the learning directionality and trends were verified in the multiclass 

case by projecting the features at output of the first fully-connected layer onto a two-

dimensional surface. The projection/clustering class sequence in Figure 6-9B and Figure 

6-9C support the appropriateness of the extracted features and their association with the 

clinical scores, thus confirming the high learning capacity and potential of this deep 

architecture. The learning directionality and trends were further validated by additionally 

testing for similarity in the filter weights and activations at the first convolutional layer 

(Figure 6-10A and Figure 6-10B) for the different surrogate models and the final predictive 

model. Notably, the reported performance metrics were obtained from a large dataset (n = 

828), a rigorous cross-validation procedure featuring 10 repeats and a sufficiently large 

(20%) test size in each of the folds (i.e. a total number of 50 large-sized stratified folds). 

These results evince that the ResNets can be considered well-suited to neuroimaging data 

and future studies to uncover further potential of such or similar architectures must be 
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undertaken. Additionally, a high level of conformance Next, we discuss the discriminative 

brain regions suggested by the ResNet in context to previous findings in literature. 

AD is characterized by serious trouble in performing familiar tasks, solving 

problems, planning, reasoning, judgement and thinking, and generally features increased 

confusion and discomfort in speech, vision, reading, focusing, and spatial or temporal 

perception. Struggling with these symptoms, the person undergoes mood and personality 

changes and increasingly loses interest in favorite activities and social life. A sizable 

amount of previous work has related the above mentioned cognitive, behavioral and 

emotional phenomenon to specific structural changes in the brain, which we discuss next 

in context to the discriminative brain regions identified by the ResNet framework.  

The hippocampus and amygdala subcortical regions in the medial temporal lobe 

have been consistently reported as most prominent discriminative regions in early AD. 

Hippocampus is strongly related to memory formation and recall, and recent evidence 

suggests more pronounced hippocampal atrophy in the progressive MCI class (Braak and 

Braak 1991, Visser, Verhey et al. 2002, Devanand, Pradhaban et al. 2007, Burton, Barber 

et al. 2009, Kantarci, Weigand et al. 2009, Risacher, Saykin et al. 2009, Walhovd, Fjell et 

al. 2010, Costafreda, Dinov et al. 2011). Similarly, structural changes in amygdala, a brain 

region mainly responsible for emotional experiences and expressions, have been related to 

personality changes, for example, increased irritability and anxiety, in AD (Unger, Lapham 

et al. 1991, Whitwell, Shiung et al. 2008, Poulin, Dautoff et al. 2011). Other highly 

activated subcortical regions included thalamus and the dorsal striatum (putamen and 

caudate). While the main function of thalamus is to relay motor and sensory signals to the 

cerebral cortex, and regulate consciousness and sleep, the dorsal striatum is believed to 
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contribute directly to decision-making subjective to desired goals. Observed aberrations in 

the dorsal striatum (putamen and caudate) and thalamus regions are typical of subjects with 

AD (Braak and Braak 1991, De Jong, Van Der Hiele et al. 2008, Jiji, Smitha et al. 2013, 

Cho, Kim et al. 2014, Aggleton, Pralus et al. 2016) with impairments in the thalamus in 

AD associated to deteriorating consciousness, bodily movement and coordination, 

attentional, and motivation levels and impairments in the dorsal striatum associated to very 

slow or absent decision-making abilities.  

Apart from the above widely studied and highly discriminative medial temporal 

lobe, we also report peak activations in the fusiform gyrus, inferior temporal gyrus and 

temporal pole regions on the temporal lobe. These regions have been known to be 

associated with pattern (e.g. face, body, object, word, color, etc.) recognition and reported 

to be affected by AD in a few previous studies (Chan, Fox et al. 2001, Galton, Patterson et 

al. 2011). In the frontal lobe, peak activations were observed in the superior and middle 

frontal gyrus. These regions are also associated with decision making and problem solving, 

reportedly highly damaged in AD (Johnson, Jahng et al. 2005, Whitwell, Shiung et al. 2008, 

Sluimer, Van Der Flier et al. 2009) and are believed to lead to higher lethargy levels, 

bizarre/inappropriate behavior and situations of being stuck in a certain condition (repeating 

same things over and over again).  

Besides the above discussed frontotemporal networks, AD is characterized by decline 

in important parietal networks such as precuneus (Scahill, Schott et al. 2002, Apostolova and 

Thompson 2008, Whitwell, Shiung et al. 2008, Fennema-Notestine, Hagler et al. 2009, 

Walhovd, Fjell et al. 2010, Bailly, Destrieux et al. 2015), and the angular and supramarginal 

gyrus regions (Walhovd, Fjell et al. 2010, Yun, Kwak et al. 2015). Cerebellum, a critical 
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brain region in several motor, cognitive and behavioral functions, in also more recently 

being increasingly suggested as a direct contributor to cognitive and neuropsychiatric 

deficits in AD (Guo, Tan et al. 2016, Schmahmann 2016, Jacobs, Hopkins et al. 2017) with 

deteriorating cerebellum health resulting in several symptoms such as lack of balance and 

coordination, tremors, slurred speech and abnormal eye movements in the elderly. 

Cortical regions including anterior cingulate gyrus and middle cingulate gyrus that 

are primarily responsible for higher cognitive (i.e. decision-making) and emotional (e.g. 

social interactions, empathy, etc.) processes have also been suggested to be highly 

vulnerable in AD (Killiany, Gomez-Isla et al. 2000, Huang, Wahlund et al. 2002, Scahill, 

Schott et al. 2002, Jones, Barnes et al. 2006, Fennema-Notestine, Hagler et al. 2009, Bailly, 

Destrieux et al. 2015). Finally, damages to the occipital lobe are associated with increased 

misinterpretations of the surrounding environment (e.g. hallucinations, illusions, 

misidentification, misperceptions, etc.) and occipital regions comprising the calcarine, 

cuneus and lingual gyrus regions have indeed been reported to be compromised in 

progression to AD. 

The above discussed findings add further evidence that the localized abnormal 

patterns in the brain structure could play a significant role in prediction of early AD 

biomarkers and are of potential clinical application. In fact, a few of the discriminative 

regions that we report are rarely used as prognostic biomarkers to study conversion of MCI 

to AD; our work and the citied literature in this discussion provide a compelling evidence 

of including these additional biomarkers to allow for a complete characterization of the 

structural changes in AD progression. 



Chapter 6: Predicting Diseased Brain Conditions by Deep Multimodal Fusion of Time-Varying Functional 

Connectivity State Profiles and Gray-Matter Feature Spaces 

 133  

Finally, the three-way comparison of prediction performance from the fMRI, sMRI 

and the fused (fMRI + sMRI) features confirmed superior prediction performance through 

the fused features as compared to the unimodal features. This analysis also reported a 

significantly superior prediction performance using the non-linear sMRI features than the 

time-varying FC based fMRI features. Evidently, a significant improvement in the 

prediction accuracy from the fused feature space over the sMRI features validates the 

presence of complimentary diagnostic information available in the fMRI features. These 

observations indicate the benefits of using multimodal fusion, deep learning to extract non-

linear sMRI features and time-varying FC approaches for estimating discriminative fMRI 

features. 

6.4.1 Limitations and future scope 

Here we note some basic limitations of our work that could be addressed in the 

future depending on algorithmic computational tractability, and availability of data 

resources and data processing algorithms. As with other neuroimaging studies, the 

foremost limitation is a limited training data size. In generic image processing applications, 

this limitation is often addressed with data augmentation procedures by using simple 

rotation, translation, scaling and other data transformations (also see (Castro, Ulloa et al. 

2015, Ulloa, Plis et al. 2015) for more elaborate data augmentation examples with 

structural MRI). We expect even further increases in performance with employing such 

techniques in the future work. This broadens perspectives for our models that are already 

performing at or above the state of the art. 
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Interestingly, a recent study (Casanova, Hsu et al. 2012) demonstrated an increase 

in classification performance with increase in sample size using ADNI sMRI data. 

Similarly, in our work as well, we saw a substantial increase in performance with more 

training data being fed to the ResNet framework in the modified inter-MCI class 

classification task as compared to the standard inter-MCI class classification task. This 

makes a compelling case to test use of multiple datasets to extract features in a pooled or 

separate fashion, and then use the pooled or separate information to train the machine 

learning framework. With increasing data availability and standardization in data 

preprocessing and pooling procedures, further substantial improvement in diagnostic 

and/or prognostic classification performance could be expected in future multi-study deep 

learning research efforts. 

Due to the computationally expensive nature of training deep CNNs, few 

limitations regarding computational tractability within realistic study time remain. This 

tends to restrict extensive fine-tuning of each involved hyperparameter through random or 

grid search analysis on multiple hyperparameters and additionally backing up statistical 

trends using methods such as Monte-Carlo. As such, the most important hyperparameters 

must be prioritized and optimized to estimate generic performance trends of the algorithm 

within the realistic study period. For this specific work, we optimized the initial learning 

rate and L2 weight decay parameter on a sample cross-validation fold using extensive grid 

analysis and retained the values for other dataset partitions. Although the same 

hyperparameters would likely achieve close to actual performance on other data folds, yet 

this fine-tuning could have a small effect on the performance of the respective surrogate 

models (e.g. reported performance metrics could be slightly lower than the original) but 
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also on that of the final predictive model. It must be noted that this limitation is for 

performance quantification only; it is least likely to affect the qualitative analysis (e.g. 

localizing discriminative brain regions) by a significant margin.  

Choosing stopping criterion for learning a classifier typically involves a tradeoff 

between generalization error and learning time. While this study approximated the stopping 

criterion with information across all cross-validation folds, further detailed introspection 

using relatively unestablished but promising variants of early stopping criterion could be 

explored in future investigations (Prechelt 1998). Similarly, effect of algorithmic variations 

in bottleneck residual block structures (size and depth), training time, and loss optimization 

procedures could be understood in future studies to further enhance the prediction 

performance. Finally, while we focus on activations at the output of the first convolutional 

layer, we could expect sequential fine-tuning of such activations as we move down in the 

architecture. This however happens at the cost of substantial loss of spatial resolution. 

Independent frameworks are now being proposed to study multi-layer relevance 

propagation (Bach, Binder et al. 2015, Lapuschkin, Binder et al. 2016) in 2D image 

processing applications using deep CNN or ResNet frameworks. In fact, multi-layer 

relevance propagation is currently an independent, rich research topic as it is equally 

important to understand/interpret the predictions as predicting itself, and even more so in 

medical applications. However, interpreting these deep non-linear models and optimally 

representing extracted features is not trivial. In absence of a framework to allow for fine-

tuned optimal representations of the features/activations in the used architecture, we 

restricted our analysis to the activations at the first convolutional layer as these 

representations could be considered as a good representation of the discriminative features 
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that are further fine-tuned to small degrees at each layer. Nonetheless, it would be 

interesting to explore any significant activation changes with more deep relevance 

propagation frameworks once they become available.  

Several other approaches for enhancing predictive performance of AD progression 

could be explored in future work. Diagnosis for the subjects is currently established 

through clinical scores but diagnosis-specific neuroanatomical or neurofunctional 

abnormalities might actually not show in each subject in each class due to the 

heterogeneous nature of age-related dementia. In such a scenario, it could be interesting to 

constrain this heterogeneity by training the machine learning model on the most 

homogeneous samples (i.e. samples most representative of the given class) and then 

evaluate change in the performance of the diagnostic/prognostic classification or change in 

the feature space of interest. Another approach could be to fuse the low-dimensional 

clinical scores used to make the clinical diagnosis with the MRI features to further enrich 

feature learning process. This approach has reportedly resulted in enhanced performance 

in few studies as also suggested in Table 6-2. Other widely used low dimensional features 

chosen by experts (e.g. volumetric MRI features or similar features from other modalities) 

could also further enhance diagnostic/prognostic performance. 
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Chapter 7: Summary of the Dissertation and Future Research Directions 

This doctoral dissertation proposes approaches to investigate robustness and 

statistical significance, and disease characterization and prediction utilities of time-

varying FC state profiles of the human brain at rest. The building blocks of the novel 

approaches framed in this dissertation leveraged several advanced signal processing and 

machine learning tools including spatial ICA, temporal ICA, PCA, k-means clustering, 

tSNE, joint ICA, CCA, multiset CCA, ResNet, linear regression, and linear SVM. These 

concepts were pipelined in an integrative manner to probe robustness and statistical 

significance of the time-varying FC state profiles in Chapters 3 and 4, propose a blind 

source separation based multimodal data fusion framework for disease characterization 

in Chapter 5, and a deep learning based multimodal data fusion for prediction 

progression to disease in Chapter 6.  

In the following sections, we summarize the major aspects and contributions of 

this dissertation and propose possible research directions that can be pursued going 

forward. 

7.1 Summary of the Dissertation 

In Chapters 3 and 4 of this dissertation, we employed the hard-clustering and fuzzy 

meta-state chronnectomic approaches to estimate time-varying FC state profiles in 

numerous, large independent partitions of a huge fMRI dataset. This mega-analysis 

reported high levels of replicability in the time-varying FC state profiles and corroborated 

the statistical significance of the associated FC state summary measures. We also found 
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that the time-varying FC state profiles were robust against variation in data quality, 

analysis, grouping, and decomposition methods. 

In Chapter 5 of this dissertation, we proposed a novel blind-source separation based 

multimodal fusion framework to characterize schizophrenia by highlighting disrupted links 

in gray matter and FC strengths in brain connections in schizophrenia. Using the 

multivariate symmetric fusion approach of mCCA+jICA, we were able to identify two joint 

sources with significantly co-varying and group difference exhibiting gray matter and time-

varying FC components that revealed disrupted links in schizophrenia. We discuss how 

results from this disease characterization framework conform to previously reported 

findings on gray matter and FC aberrations in Schizophrenia, the new findings reported in 

this study and ways to interpret results from this framework going forward. We suggest 

that studying such interactions can provide a useful way of evaluating structure-function 

relationships and characterizing schizophrenia or other brain conditions. 

In chapter 6 of this dissertation, we proposed a novel multimodal framework based 

on deep learning of sMRI features and time-varying FC based fMRI features to predict 

progression of people with MCI to AD. The work undertaken in this chapter was aimed 

at testing the presence of any additional disease predictive value of the time-varying FC 

features and also exploring how multimodal frameworks based on deep learning and 

making use of time-varying FC based fMRI features can be extended to diagnosis and 

prediction of diseased brain conditions through neuroimaging data. Using a big sMRI 

dataset, we predicted the subset of MCI subjects that would progress to AD. This sMRI 

analysis reported better than state-of-the-art performance and boosted our confidence to 

use the extracted non-linear features in a multimodal framework to further boost the 
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prediction performance. Hence, the non-linear sMRI features extracted with the deep 

learning method were fused with the time-varying FC based fMRI features using CCA 

to estimate the multimodal prediction performance. Our preliminary, rigorously cross-

validated results suggest a significant performance improvement with prediction from 

the fused (multimodal) feature space as compared to the individual (unimodal) feature 

spaces, thus highlighting the additional diagnostic information provided by use of fMRI 

features based on time-varying FC state profiles. 

In summary, the approaches developed and tested in this dissertation evince high 

levels of robustness and highlight the utility of time-varying FC state profiles as potential 

biomarkers to characterize, diagnose and predict diseased brain conditions. The findings in 

this work argue in favor of the view of FC investigations of the brain that are centered on 

time-varying FC approaches, and additionally highlight the benefits of combining multiple 

neuroimaging data modalities via data fusion.  

7.2 Future Research Directions 

As discussed in the previous section, taken together, the findings from the work 

accomplished in this dissertation assume high significance in future studies on time-

varying FC estimation and multimodal data fusion approaches in the neuroimaging 

literature. However, there are various interesting research directions and extensions to the 

proposed approaches that could be pursued in future as we discuss in the concluding part 

of this dissertation. 

In this work, we evaluate robustness of two chronnectomic, time-varying FC 

estimation approaches, both based on estimation of temporal correlations using the sliding 
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window method. An important extension to the current replicability discussion could be to 

evaluate and compare robustness of several other commonly used time-varying approaches 

based on time-series correlations, dynamic conditional correlations, phase synchronization, 

time-frequency coherence and graph theory. Statistical significance of measures from these 

approaches could be tested and compared in the similar fashion. Furthermore, while we 

confirm replicability in the whole-brain patterns, we can dig a level deeper by attempting 

identification of specific brain connections that appear more robustly dynamic across 

independent groups, for example, by using the approach proposed in Zalesky, Fornito et 

al. (2014) and tested in Abrol, Damaraju et al. (2017). Finally, robustness of time-varying 

FC based measures could be studied in different homogeneous diagnostic groups and 

compared with similar measures from healthy controls for extensive validation of 

similarities and differences in FC. 

Going forward, investigating the functional and neurophysiological relevance of 

the observed time-varying FC states, meta-states or other robust connectivity descriptors 

assumes critical importance and needs further confirmation. Demonstrating functional 

relevance is currently an active topic with several interesting works establishing direct links 

with ongoing cognitive function and effective cognitive performance (Craddock, James et 

al. 2012, Schaefer, Margulies et al. 2014, Gonzalez-Castillo, Hoy et al. 2015, Madhyastha, 

Askren et al. 2015, Shine, Bissett et al. 2016, Shine, Koyejo et al. 2016), identifying 

signatures of consciousness (Hutchison, Womelsdorf et al. 2013, Amico, Gomez et al. 

2014, Hudson, Calderon et al. 2014, Barttfeld, Uhrig et al. 2015, Wang, Ong et al. 2016) , 

tracking day-dreaming/mind-wandering (Kucyi and Davis 2014, Kucyi 2017), and 

decoding signatures of sleep and awake states (Tagliazucchi and Laufs 2014). Additionally, 



Chapter 7: Summary of the Dissertation and Future Research Directions 

 141  

simultaneous recording of electrophysiological data in conjunction with BOLD fMRI data 

not only enables charting of the human brain activity at high spatial as well as high temporal 

resolutions, but also linking variability in FC fluctuations to external measures of neuronal 

activity. Recently found evidence of potential electrophysiological signatures of dynamic 

BOLD FC clearly hint fluctuations in the BOLD FC to be interesting i.e. having a 

neurophysiological origin (Tagliazucchi, von Wegner et al. 2012, Chang, Liu et al. 2013, 

Allen, Damaraju et al. 2017). Such preliminary observations clearly suggest that multi-

modal studies may play a key role in determining neural or behavioral relevance of the 

observed FC states in the fMRI data. Future work would hence likely involve recognition 

of a multi-modal, multi-level theoretical framework that would very likely be able to 

capture the underlying physiological correspondences that enable switching of the 

established FC patterns.  

Neuronal correlates of time-varying FC have been previously suggested in few 

studies (Liu, Chang et al. 2013, Thompson, Merritt et al. 2013, Kragel, Knodt et al. 2016), 

and more recently Matsui, Murakami et al. (2017) claims a link between time-varying FC 

and neuronal origins, however, a lot of additional work is still needed to affirm the 

correspondence of the time-varying FC state descriptions with underlying neuronal 

activity. Other lesser explored alternate approaches that have shown promise include casual 

manipulation of the FC states using pharmacology (Hutchison, Womelsdorf et al. 2013, 

Barttfeld, Uhrig et al. 2015, van den Brink, Pfeffer et al. 2016) or direct brain simulation 

techniques (Liu, Lee et al. 2015, Cocchi, Sale et al. 2016) to trace functional or 

neurophysiological relevance (Shine and Poldrack). We predict such tailored investigations 

probing the functional and neurophysiological relevance of the time-varying FC states will 
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play a major part in uncovering the underlying relationships we are pursuing; confirmation 

of replicability and statistical significance could thus be regarded as an initial step forward. 

Future inferences from the disease characterization multimodal framework 

employed in Chapter 5 of this work could be further tested on multiple multimodal datasets 

featuring the studied diagnostic group. We anticipate that similar methods could be easily 

extended to the study of other brain conditions; likewise, different feature spaces, 

combinations of neuroimaging modalities and algorithms could be evaluated in the 

proposed fashion. Other potential factors such as subject’s consciousness, anxiety levels in 

the scanner and disease risk levels could be investigated in future studies, for a fuller 

interpretation of the results.  

Finally, the deep learning based multimodal disease prediction framework 

proposed in Chapter 6 of the dissertation could be improvised to make use of an end to end 

multimodal fusion approach that uses the same network to train data (raw or preprocessed) 

or features from all modalities. This unified framework would likely enable better tuning 

and optimization of network weights as compared to the unimodal training case as 

implemented in the current work. Furthermore, an extensive comparison across several 

other deep learning approaches could be conducted to identify the framework most suited 

for diagnostic classification and prediction applications using neuroimaging data. Also, 

while, in this study, we test this framework to study and predict progression to 

Alzheimer’s disease (AD), application of this framework to study other diseases would 

be straightforward. 
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APPENDIX A 

A.1 Resting State Networks 

 

Appendix A – Table 1: Resting State Networks (RSNs). Broadmann areas (BA), activation 

cluster volumes (vol_cmm), peak activation intensities (max_act) and peak activation 

coordinates (peak_act) corresponding to the RSN spatial maps. 
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A.2 Evaluation of time-resolved connectivity with the CPR null model 

In this analysis, we considered the consistent phase randomized (CPR) null model 

(used in Hindriks, Adhikari et al. (2016) to evaluate time-resolved dFC using a linear and 

a non-linear test statistic as also tested using auto-regressive surrogate data in Zalesky, 

Fornito et al. (2014) and amplitude-adjusted phase randomized models in Betzel, 

Fukushima et al. (2016). Similar evidence as in Zalesky, Fornito et al. (2014) and Betzel, 

Fukushima et al. (2016) for presence of “dynamic” inter-regional connections that rejected 

this null model after FDR correction was found. More specifically, alike Hindriks, Adhikari 

et al. (2016) and following Zalesky, Fornito et al. (2014), we estimated the standard 

deviation across the time (i.e. window) dimension of the windowed FNC data (as the linear 

test statistic) and the same non-linear statistic as used in Zalesky, Fornito et al. (2014) for 

all subjects in a group. These test statistics could be considered as the extent of time-

varying fluctuations in the correlation coefficients. For each subject, for each ROI-pair 

(referred to as a “connection” in the original work), a null distribution of these test statistics 

was estimated, and the connections that rejected the null hypothesis were retained for 

further analysis. For each subject, binary graphs highlighting only the top-10 most 

“dynamic” connections (approximately 1.5% of total number of connections as in Zalesky, 

Fornito et al. (2014)) were constructed and the degree of each region in these graphs was 

evaluated. This degree was summed across the subjects to frame an index of consistency 

of these dynamic connections (i.e. how consistently the regions were dynamic across the 

subjects). The regionally sorted versions of this index for the real and 1000 surrogate 

datasets are presented in SI Figure 1 below. Similar to Zalesky, Fornito et al. (2014), the 

vertical lines represent the FDR corrected p-values with a cut-off of 0.05; therefore, the 
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regions to the right of these vertical lines could be considered dynamic more consistently 

than that would be expected by chance alone. For the first group, the consistent regions 

were all but one (10 out of 11) found to be the same for both test statistics. Despite this 

preliminary evidence of dynamic nature of the inter-regional connections as conveyed by 

use of the CPR null model, results from use of this null model must be interpreted with 

caution, especially if they are to be used as evidence for or against non-stationary nature of 

the fMRI data, since the level to which this null model disrupts the relevant dynamics in 

the data is yet not clear (as it has yet not been framed mathematically or reviewed in 

detail in previous literature).  

 

Appendix A – SI Figure 1: Evaluation of regions most consistently forming dynamic 

connections using an approach similar to Zalesky, Fornito et al. (2014). The plots show the 

regionally sorted index of consistency for real data (in blue) and mean of the index of 

consistency of the 1000 surrogate datasets (also regionally sorted) with the error bars (in 

black) for (A) the linear test statistic; and (B) the non-linear test statistic. The regions to 

the right of the p= 0.05 cutoff could be considered dynamic more consistently than that 

would be expected by chance alone.        
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