72 research outputs found

    Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients

    Get PDF
    In Monte Carlo methods quadrupling the sample size halves the error. In simulations of stochastic partial differential equations (SPDEs), the total work is the sample size times the solution cost of an instance of the partial differential equation. A Multi-level Monte Carlo method is introduced which allows, in certain cases, to reduce the overall work to that of the discretization of one instance of the deterministic PDE. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. The overall complexity of computing mean fields as well as k-point correlations of the random solution is proved to be of log-linear complexity in the number of unknowns of a single Multi-level solve of the deterministic elliptic problem. Numerical examples complete the theoretical analysi

    A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger

    Full text link
    We present an adaptive version of the Multi-Index Monte Carlo method, introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coefficients that are random fields. A classical technique for sampling from these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm is based on the adaptive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel (2003), and automatically chooses the number of terms needed in this expansion, as well as the required spatial discretizations of the PDE model. We apply the method to a simplified model of a heat exchanger with random insulator material, where the stochastic characteristics are modeled as a lognormal random field, and we show consistent computational savings

    Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM

    Get PDF
    Elliptic boundary value problems which are posed on a random domain can be mapped to a fixed, nominal domain. The randomness is thus transferred to the diffusion matrix and the loading. While this domain mapping method is quite efficient for theory and practice, since only a single domain discretisation is needed, it also requires the knowledge of the domain mapping. However, in certain applications, the random domain is only described by its random boundary, while the quantity of interest is defined on a fixed, deterministic subdomain. In this setting, it thus becomes necessary to compute a random domain mapping on the whole domain, such that the domain mapping is the identity on the fixed subdomain and maps the boundary of the chosen fixed, nominal domain on to the random boundary. To overcome the necessity of computing such a mapping, we therefore couple the finite element method on the fixed subdomain with the boundary element method on the random boundary. We verify the required regularity of the solution with respect to the random domain mapping for the use of multilevel quadrature, derive the coupling formulation, and show by numerical results that the approach is feasible

    Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance

    Get PDF
    In this article, we propose a Milstein finite difference scheme for a stochastic partial differential equation (SPDE) describing a large particle system. We show, by means of Fourier analysis, that the discretisation on an unbounded domain is convergent of first order in the timestep and second order in the spatial grid size, and that the discretisation is stable with respect to boundary data. Numerical experiments clearly indicate that the same convergence order also holds for boundary-value problems. Multilevel path simulation, previously used for SDEs, is shown to give substantial complexity gains compared to a standard discretisation of the SPDE or direct simulation of the particle system. We derive complexity bounds and illustrate the results by an application to basket credit derivatives

    Multilevel Methods for Uncertainty Quantification of Elliptic PDEs with Random Anisotropic Diffusion

    Get PDF
    We consider elliptic diffusion problems with a random anisotropic diffusion coefficient, where, in a notable direction given by a random vector field, the diffusion strength differs from the diffusion strength perpendicular to this notable direction. The Karhunen-Lo\`eve expansion then yields a parametrisation of the random vector field and, therefore, also of the solution of the elliptic diffusion problem. We show that, given regularity of the elliptic diffusion problem, the decay of the Karhunen-Lo\`eve expansion entirely determines the regularity of the solution's dependence on the random parameter, also when considering this higher spatial regularity. This result then implies that multilevel collocation and multilevel quadrature methods may be used to lessen the computation complexity when approximating quantities of interest, like the solution's mean or its second moment, while still yielding the expected rates of convergence. Numerical examples in three spatial dimensions are provided to validate the presented theory

    Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method

    Full text link
    Computational tools for characterizing electromagnetic scattering from objects with uncertain shapes are needed in various applications ranging from remote sensing at microwave frequencies to Raman spectroscopy at optical frequencies. Often, such computational tools use the Monte Carlo (MC) method to sample a parametric space describing geometric uncertainties. For each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver computes the scattered fields. However, for an accurate statistical characterization the number of MC samples has to be large. In this work, to address this challenge, the continuation multilevel Monte Carlo (CMLMC) method is used together with a surface integral equation solver. The CMLMC method optimally balances statistical errors due to sampling of the parametric space, and numerical errors due to the discretization of the geometry using a hierarchy of discretizations, from coarse to fine. The number of realizations of finer discretizations can be kept low, with most samples computed on coarser discretizations to minimize computational cost. Consequently, the total execution time is significantly reduced, in comparison to the standard MC scheme.Comment: 25 pages, 10 Figure
    corecore