17,757 research outputs found

    Graphene: Semantically-Linked Propositions in Open Information Extraction

    Full text link
    We present an Open Information Extraction (IE) approach that uses a two-layered transformation stage consisting of a clausal disembedding layer and a phrasal disembedding layer, together with rhetorical relation identification. In that way, we convert sentences that present a complex linguistic structure into simplified, syntactically sound sentences, from which we can extract propositions that are represented in a two-layered hierarchy in the form of core relational tuples and accompanying contextual information which are semantically linked via rhetorical relations. In a comparative evaluation, we demonstrate that our reference implementation Graphene outperforms state-of-the-art Open IE systems in the construction of correct n-ary predicate-argument structures. Moreover, we show that existing Open IE approaches can benefit from the transformation process of our framework.Comment: 27th International Conference on Computational Linguistics (COLING 2018

    Nonlinear localized modes in two-dimensional electrical lattices

    Get PDF
    We report the observation of spontaneous localization of energy in two spatial dimensions in the context of nonlinear electrical lattices. Both stationary and traveling self-localized modes were generated experimentally and theoretically in a family of two-dimensional square, as well as hon- eycomb lattices composed of 6x6 elements. Specifically, we find regions in driver voltage and frequency where stationary discrete breathers, also known as intrinsic localized modes (ILM), exist and are stable due to the interplay of damping and spatially homogeneous driving. By introduc- ing additional capacitors into the unit cell, these lattices can controllably induce traveling discrete breathers. When more than one such ILMs are experimentally generated in the lattice, the interplay of nonlinearity, discreteness and wave interactions generate a complex dynamics wherein the ILMs attempt to maintain a minimum distance between one another. Numerical simulations show good agreement with experimental results, and confirm that these phenomena qualitatively carry over to larger lattice sizes.Comment: 5 pages, 6 figure

    Reptile scale paradigm: Evo-Devo, pattern formation and regeneration

    Get PDF
    The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments

    A Comparison of Big Data Frameworks on a Layered Dataflow Model

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models, for which only informal (and often confusing) semantics is generally provided, all share a common underlying model, namely, the Dataflow model. The Dataflow model we propose shows how various tools share the same expressiveness at different levels of abstraction. The contribution of this work is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to understand high-level data-processing applications written in such frameworks. Second, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level.Comment: 19 pages, 6 figures, 2 tables, In Proc. of the 9th Intl Symposium on High-Level Parallel Programming and Applications (HLPP), July 4-5 2016, Muenster, German

    Wrinkles Riding Waves in Soft Layered Materials

    Full text link
    The formation of periodic wrinkles in soft layered materials due to mechanical instabilities is prevalent in nature and has been proposed for use in multiple applications. However, such phenomena have been explored predominantly in quasi-static settings. In this work, we measure the dynamics of soft elastomeric blocks with stiff surface films subjected to high-speed impact, and observe wrinkles forming along with, and riding upon, waves propagating through the system. We analyze our measurements with large-deformation, nonlinear visco-hyperelastic Finite Element simulations coupled to an analytical wrinkling model. The comparison between the measured and simulated dynamics shows good agreement, and suggests that inertia and viscoelasticity play an important role. This work encourages future studies of the dynamics of surface instabilities in soft materials, including large-deformation, highly nonlinear morphologies, and may have applications to areas including impact mitigation, soft electronics, and the dynamics of soft sandwich composites

    Turchin's Relation for Call-by-Name Computations: A Formal Approach

    Full text link
    Supercompilation is a program transformation technique that was first described by V. F. Turchin in the 1970s. In supercompilation, Turchin's relation as a similarity relation on call-stack configurations is used both for call-by-value and call-by-name semantics to terminate unfolding of the program being transformed. In this paper, we give a formal grammar model of call-by-name stack behaviour. We classify the model in terms of the Chomsky hierarchy and then formally prove that Turchin's relation can terminate all computations generated by the model.Comment: In Proceedings VPT 2016, arXiv:1607.0183
    corecore