We present an Open Information Extraction (IE) approach that uses a
two-layered transformation stage consisting of a clausal disembedding layer and
a phrasal disembedding layer, together with rhetorical relation identification.
In that way, we convert sentences that present a complex linguistic structure
into simplified, syntactically sound sentences, from which we can extract
propositions that are represented in a two-layered hierarchy in the form of
core relational tuples and accompanying contextual information which are
semantically linked via rhetorical relations. In a comparative evaluation, we
demonstrate that our reference implementation Graphene outperforms
state-of-the-art Open IE systems in the construction of correct n-ary
predicate-argument structures. Moreover, we show that existing Open IE
approaches can benefit from the transformation process of our framework.Comment: 27th International Conference on Computational Linguistics (COLING
2018