
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Misale, Claudia; Drocco, Maurizio; Aldinucci, Marco; Tremblay, Guy. A
Comparison of Big Data Frameworks on a Layered Dataflow Model.
PARALLEL PROCESSING LETTERS. None pp: 1-20.
DOI: 10.1142/S0129626417400035

The publisher's version is available at:
http://www.worldscientific.com/doi/pdf/10.1142/S0129626417400035

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1626287

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302083266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

Parallel Processing Letters
c© World Scientific Publishing Company

A COMPARISON OF BIG DATA FRAMEWORKS ON A

LAYERED DATAFLOW MODEL

CLAUDIA MISALE, MAURIZIO DROCCO, MARCO ALDINUCCI∗

Dept. of Computer Science, University of Torino, Italy

GUY TREMBLAY†

Dépt. d’informatique, Université du Québec à Montréal, Canada

Received (received date)

Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

In the world of Big Data analytics, there is a series of tools aiming at simplify-

ing programming applications to be executed on clusters. Although each tool claims to
provide better programming, data and execution models—for which only informal (and

often confusing) semantics is generally provided—all share a common underlying model,
namely, the Dataflow model. The model we propose shows how various tools share the

same expressiveness at different levels of abstraction. The contribution of this work is

twofold: first, we show that the proposed model is (at least) as general as existing batch
and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to under-

stand high-level data-processing applications written in such frameworks. Second, we

provide a layered model that can represent tools and applications following the Dataflow
paradigm and we show how the analyzed tools fit in each level.

Keywords: data processing, streaming, dataflow, skeletons, functional programming, se-

mantics

1. Outline

With the increasing number of Big Data analytics tools, we witness a continuous

fight among implementors/vendors in demonstrating how their tools are better than

others in terms of performances or expressiveness. In this hype, for a user approach-

ing Big Data analytics (even an educated computer scientist), it might be difficult

to have a clear picture of the programming model underneath these tools and the

expressiveness they provide to solve some user defined problem. With this in mind,

∗{misale, drocco, aldinuc}@di.unito.it

†tremblay.guy@uqam.ca

1



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

2

we wanted to understand the features those tools provide to the user in terms of

API and how they were related to parallel computing paradigms.

To provide some order in the world of Big Data processing, in this paper we

categorize some models and tools to identify their programming model’s common

features. We identified the Dataflow model [12] as the common model that better

describes all levels of abstraction, from the user-level API to the execution model.

This model represents applications as a directed graph of actors. In its “modern”

reissue (aka. macro-data flow [2]), it naturally models independent (thus paralleliz-

able) kernels starting from a graph of true data dependencies, where a kernel’s

execution is triggered by data availability.

The Dataflow model is expressive enough to describe batch, micro-batch and

streaming models that are implemented in most tools for Big Data processing. Being

all realized under the same common idea, we show how various Big Data analytics

tools share almost the same base concepts, differing mostly in their implementa-

tion choices. We instantiate the Dataflow model into a stack of layers where each

layer represents a dataflow graph/model with a different meaning, describing a pro-

gram from what the programmer sees down to the underlying, lower-level, execution

model layer. Furthermore, we put our attention to a problem arising from the high

abstraction provided by the model that reflects into the examined tools. Especially

when considering stream processing and state management, non-determinism may

arise when processing one or more streams in one node of the graph, a well-known

problem in parallel and distributed computing. Finally, the paper also focuses on

high-level parallelism exploitation paradigms and the correlation with Big Data

tools at the level of programming and execution models.

In this paper, we examine the following tools from a Dataflow perspective:

Spark [15], Storm [13], Flink [9], and TensorFlow [1]. We focus only on those tools

since they are among the most famous and used ones nowadays. As far as we know,

no previous attempt has been made to compare different Big Data processing tools,

at multiple levels of abstraction, under a common formalism.

The paper proceeds as follows. Section 2 describes the Dataflow model and

how it can be exploited at three different abstraction levels. Section 3 focuses on

user-level API of the tools. The various levels of our layered model are discussed

in Sections 4, 5 and 6. Then, Section 7 discusses some limitations of the dataflow

model in capturing all the tools’ features. Finally, Section 8 concludes the paper

and describes some future work.

2. The Dataflow Layered Model

By analyzing some well-known tools—Spark, Storm, Flink, and TensorFlow—we

identified a common structure underlying all of them, based on the Dataflow model.

In Section 2.1 we review the Dataflow model of computation, as presented by Lee

and Parks [12]. In Section 2.2, we outline an architecture that can describe all

these models at different levels of abstraction (see Fig. 1) from the (top) user-level



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

3

API to the (bottom-level) actual network of processes. In particular, we show how

the Dataflow model is general enough to subsume many different levels only by

changing the semantics of actors and channels.

2.1. The Dataflow Model

Dataflow Process Networks are a special case of Kahn Process Networks, a model

of computation that describes a program as a set of concurrent processes communi-

cating with each other via FIFO channels, where reads are blocking and writes are

non-blocking [11]. In a Dataflow process network, a set of firing rules is associated

with each process, called actor. Processing then consists of “repeated firings of ac-

tors”, where an actor represents a functional unit of computation over tokens. For

an actor, to be functional means that firings have no side effects—thus functional

actors are stateless—and the output tokens are functions of the input tokens. The

model can also be extended to allow stateful actors.

A Dataflow network can be executed mainly using two approaches, namely

process-based and scheduling-based—other models are flavors of these two. The

process-based model is straightforward: each actor is represented by a process

and different processes communicate via FIFO channels. In the scheduling-based

model—also known as dynamic scheduling—a scheduler tracks the availability of

tokens in input to actors and schedules enabled actors for execution; the atomic

unit being scheduled is referred as a task and represents the computation performed

by an actor over a single set of input tokens.

Actors A Dataflow actor consumes input tokens when it “fires” and then pro-

duces output tokens; thus it repeatedly fires on tokens arriving from one or more

streams. The function mapping input to output tokens is called the kernel of an ac-

tor. The Dataflow Process Network model also seamlessly comprehends the Macro

Dataflow parallel execution model, in which each process executes arbitrary code.

Conversely, an actor’s code in a classical Dataflow architecture model is typically a

single machine instruction.

A firing rule defines when an actor can fire. Each rule defines what tokens have

to be available for the actor to fire. In the basic model, one token from each input

channel must be available in order to enable one firing of the actor (i.e., from-all

input policy). Multiple rules can be combined to program arbitrarily complex firing

logics (e.g., the If node).

Input channels The kernel function takes as input one or more tokens from one

or more input channels when a firing rule is activated. The basic model can be

extended to allow for testing input channels for emptiness, to express arbitrary

stream consuming policies (e.g., gathering from any channel: cf. Section 7).

Output channels The kernel function places one or more tokens into one or more

output channels when a firing rule is activated. Each output token produced by a

firing can be replicated and placed onto each output channel (i.e., broadcasting)



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

4

or sent to specific channels, in order to model arbitrarily producing policies (e.g.,

switch, scatter).

Stateful actors Actors with state can be considered like objects (instead of func-

tions) with methods used to modify the object’s internal state. Stateful actors is

an extension that allows side effects over local (i.e., internal to each actor) states.

As shown by Lee and Sparks [12], stateful actors can be emulated in the stateless

Dataflow model by adding an extra feedback channel carrying the value of the state

to the next execution of the kernel function on the next element of the stream and

by defining appropriate firing rules.

2.2. The Dataflow Stack

Framework API User-level API

Program Semantics Dataflow
Semantics of the application in terms

of dataflow graphs

Parallel Execution Dataflow
Instantiation of semantic dataflow

that explicitly expresses parallelism

Process Network Dataflow
Runtime execution model

(e.g., Master-Workers)

Platform
Runtime language or platform

(e.g., JVM)

Fig. 1. Layered model representing the levels of abstractions provided by the frameworks that

were analyzed.

The layered model shown in Fig. 1 presents five layers, where the three inter-

mediate layers are Dataflow models with different semantics, as described in the

paragraphs below. Underneath these three layers is the Platform level, that is, the

runtime or programming language used to implement a given framework (e.g., Java

and Scala in Spark), a level which is beyond the scope of our paper. On top is the

Framework API level, that describes the user API on top of the Dataflow graph,

which will be detailed in Section 3. The three Dataflow models in between are as

follows.

• Program Semantics Dataflow : We claim the API exposed by any of the considered

frameworks can be translated into a Dataflow graph. The top level of our layered

model captures this translation: programs at this level represent the semantics

of data-processing applications in terms of Dataflow graphs. Programs at this

level do not explicitly express any form of parallelism: they only express data



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

5

dependencies (i.e., edges) among program components (i.e., actors). This aspect

is covered in Section 4.

• Parallel Execution Dataflow : This level, covered in Section 5, represents an in-

stantiation of the semantic dataflows in terms of processing elements (i.e., actors)

connected by data channels (i.e., edges). Independent units—not connected by

a channel—may execute in parallel. For example, a semantic actor can be repli-

cated to express data parallelism, the execution model in which a given function

is applied to independent input data.

• Process Network Dataflow : This level, covered in Section 6, describes how the

program is effectively deployed and executed onto the underlying platform. Actors

are concrete computing entities (e.g., processes) and edges are communication

channels. The most common approach—used by all the considered frameworks

but TensorFlow—is for the actual network to be a Master-Workers task executor.

In TensorFlow, processing elements are effectively mapped to threads and possibly

distributed over multiple nodes of a cluster.

3. The Frameworks’ User APIs

Data-processing applications are generally divided into batch vs. stream processing.

Batch programs process one or more finite datasets to produce a resulting finite

output dataset, whereas stream programs process possibly unbounded sequences of

data, called streams, doing so in an incremental manner. Operations over streams

may also have to respect a total data ordering—for instance, to represent time

ordering.

Orthogonally, we divide the frameworks’ user APIs into two categories: declar-

ative and topological. Spark, Flink, and TensorFlow belong to the first category—

they provide batch or stream processing in the form of operators over collections or

streams—whereas Storm belong to the second one—it provides an API explicitly

based on building graphs.

3.1. Declarative Data Processing

A declarative data processing model provides as building blocks data collections and

operations on those collections. The data model follows domain-specific operators,

for instance, relational algebra operators that operate on data structured with the

key-value model.

Declarative batch processing applications are expressed as methods on objects

representing collections (Spark and Flink) or as functions on values (tensors, in

TensorFlow): these are algebras on finite datasets, whose data can be ordered (as

in tensors) or not (as in Spark/Flink multisets). APIs with such operations are

exposing a functional-like style. Here are three examples of operations with their



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

6

(multiset-based) semantics:a

groupByKey(a) = {(k, {v : (k, v) ∈ a})} (1)

join(a, b) = {(k, (va, vb)) : (k, va) ∈ a ∧ (k, vb) ∈ b} (2)

map〈f〉(a) = {f(v) : v ∈ a} (3)

The groupByKey unary operation groups tuples sharing the same key (i.e., the first

field of the tuple); thus it maps multisets of type (K × V )∗ to multisets of type

(K × V ∗)∗. The binary join operation merges two multisets by coupling values

sharing the same key. Finally, the unary higher-order map operation applies the

kernel function f to each element in the input multiset.

Declarative stream processing programs are expressed in terms of an algebra on

eventually unbounded data (i.e., stream as a whole) where data ordering eventually

matters. Data is usually organized in tuples having a key field used, for example,

to express the position of each stream item with respect to a global order—a global

timestamp—or to partition streams into substreams. For instance, this allows ex-

pressing relational algebra operators and data grouping. In a stream processing

scenario, we also have to consider two important aspects: state and windowing;

those are discussed in Section 3.3.

Apache Spark implements batch programming with a set of operators, called

transformations, that are uniformly applied to whole datasets called Resilient Dis-

tributed Datasets (RDD) [15], which are immutable multisets. For stream processing,

Spark implements an extension through the Spark Streaming module, providing a

high-level abstraction called discretized stream or DStream [16]. Such streams rep-

resent results in continuous sequences of RDDs of the same type, called micro-batch.

Operations over DStreams are “forwarded” to each RDD in the DStream, thus the

semantics of operations over streams is defined in terms of batch processing ac-

cording to the simple translation op(a) = [op(a1), op(a2), . . .], where [·] refers to a

possibly unbounded ordered sequence, a = [a1, a2, . . .] is a DStream, and each item

ai is a micro-batch of type RDD.

Listing in Fig. 2 shows code for the simple Word Count example in Spark—the

“Hello World!” example for Big Data. A collection (RDD) of words is first created

by scanning a text file and splitting each line into its constituent words. Each word s

is then paired (Tuple2) with 1, to indicate one occurrence of that word, generating

the pairs RDD. All the 1s for a given word are then combined together, and reduced

using addition, to obtain RDD counts, whose result is then saved as a text file.

Apache Flink ’s main focus is on stream programming. The abstraction used is

the DataStream, which is a representation of a stream as a single object. Operations

are composed (i.e, pipelined) by calling operators on DataStream objects. Flink also

provides the DataSet type for batch applications, that identifies a single immutable

multiset—a stream of one element. A Flink program, either for stream or batch

aHere, {·} denotes multisets rather than sets.



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

7

1 sc.textFile("hdfs://...");
2 JavaRDD<String> words =
3 textFile.flatMap(new FlatMapFunction<String, String>() {
4 public Iterable<String> call(String s) {
5 return Arrays.asList(s.split(" "));
6 }
7 });
8 JavaPairRDD<String, Integer> pairs =
9 words.mapToPair(new PairFunction<String, String, Integer>() {

10 public Tuple2<String, Integer> call(String s) {
11 return new Tuple2<String, Integer>(s, 1);
12 }
13 });
14 JavaPairRDD<String, Integer> counts =
15 pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
16 public Integer call(Integer a, Integer b) {
17 return a + b;
18 }
19 });
20 counts.saveAsTextFile("hdfs://...");

Fig. 2. Word Count example in Spark.

1 public static void main(String[] args) throws Exception {
2 final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
3 DataSet<String> text = env.fromElements("Text...");
4 DataSet<Tuple2<String, Integer>> wordCounts =
5 text
6 .flatMap(new LineSplitter())
7 .groupBy(0)
8 .sum(1);
9

10 wordCounts.print();
11 }
12

13 public static class LineSplitter
14 implements FlatMapFunction<String, Tuple2<String, Integer>> {
15 @Override
16 public void flatMap(String line, Collector<Tuple2<String, Integer>> out) {
17 for (String word : line.split(" ")) {
18 out.collect(new Tuple2<String, Integer>(word, 1));
19 }
20 }
21 }
22 }

Fig. 3. Word Count example in Flink.

processing, is a term from an algebra of operators over DataStreams or DataSets,

respectively. Stateful stream operators and iterative batch processing are discussed

in Section 3.3.

Listing in Fig. 3 shows Flink’s code for the Word Count example. The text

DataSet is the sequence of lines from some text file. The resulting wordCounts

DataSet, again consisting of words paired with their number of occurrences

(Tuple2<String, Integer>), is obtained by splitting each line into words paired

with 1s (flatMap with LineSplitter), then grouped by word (0th component of

pair) and summed over the various 1s (1st commponent of pair).



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

8

Google TensorFlow is a framework specifically designed for machine learning

applications, where the data model consists of multidimensional arrays called ten-

sors and a program is a composition of operators processing tensors. A Ten-

sorFlow application is built as a functional-style expression, where each sub-

expression can be given an explicit name. The TensorFlow programming model

includes control flow operations and, notably, synchronization primitives (e.g., Mu-

texAquire/MutexRelease for critical sections). This latter observation implies Ten-

sorFlow exposes the underlying (parallel) execution model to the user which has to

program the eventual coordination of operators concurring over some global state.

Because of space limitation, we do not provide a TensorFlow Word Count example.

3.2. Topological Data Processing

Topological programs are expressed as graphs, built by explicitly connecting pro-

cessing nodes and specifying the code executed by nodes.

Apache Storm is a framework that only targets stream processing. Storm’s pro-

gramming model is based on three key notions: Spouts, Bolts, and Topologies. A

Spout is a source of a stream, which is (typically) connected to a data source or

that can generate its own stream. A Bolt is a processing element, so it processes any

number of input streams and produces any number of new output streams. Most

of the logic of a computation goes into Bolts, such as functions, filters, streaming

joins or streaming aggregations. A Topology is the composition of Spouts and Bolts

resulting in a network. Storm uses tuples as its data model, i.e., named lists of values

of arbitrary type. Hence, Bolts are parametrized with per-tuple kernel code. Each

time a tuple is available from some input stream, the kernel code gets activated

to process that input tuple. Bolts and Spouts are locally stateful, as we discuss

in Section 3.3, while no global consistent state is supported. Yet, globally stateful

computations can be implemented since the kernel code of Spouts and Bolts is arbi-

trary. However, eventual global state management would be the sole responsibility

of the user, who has to be aware of the underlying execution model in order ensure

program coordination among Spouts and Bolts. It is also possible to define cyclic

graphs by way of feedback channels connecting Bolts.

While Storm targets single-tuple granularity in its base interface, the Trident

API is an abstraction that provides declarative stream processing on top of Storm.

Namely, Trident processes streams as a series of micro-batches belonging to a stream

considered as a single object.

Listing in Fig. 4 shows Storm’s code for the Word Count example. A key element

is the WordCount bolt execute method. Each call to execute receives a Tuple, a

word. The bolt keeps track of the number of occurrrences of each word using the

counts Map (lines 19, 28), and emits that word paired with its current count (29)—

thus generating a stream of incremental number of occurrences. The spout (random

sentences) and bolts (sentence splitter, word counting) are created and connected

in the main method.



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

9

1 public static class SplitSentence extends ShellBolt implements IRichBolt {
2 public SplitSentence() {
3 super("python", "splitsentence.py");
4 }
5

6 @Override
7 public void declareOutputFields(OutputFieldsDeclarer declarer) {
8 declarer.declare(new Fields("word"));
9 }

10

11 @Override
12 public Map<String, Object> getComponentConfiguration() {
13 return null;
14 }
15 }
16

17 public static class WordCount extends BaseBasicBolt {
18 Map<String, Integer> counts = new HashMap<String, Integer>();
19

20 @Override
21 public void execute(Tuple tuple, BasicOutputCollector collector) {
22 String word = tuple.getString(0);
23 Integer count = counts.get(word);
24 if (count == null)
25 count = 0;
26 count++;
27 counts.put(word, count);
28 collector.emit(new Values(word, count));
29 }
30

31 @Override
32 public void declareOutputFields(OutputFieldsDeclarer declarer) {
33 declarer.declare(new Fields("word", "count"));
34 }
35 }
36

37 public static void main(String[] args) throws Exception {
38 TopologyBuilder builder = new TopologyBuilder();
39 builder.setSpout("spout", new RandomSentenceSpout(), 5);
40 builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
41 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"))

;
42 Config conf = new Config();
43 conf.setDebug(true);
44 conf.setNumWorkers(3);
45 StormSubmitter.submitTopology(args[0], conf, builder.createTopology());
46 }
47 }

Fig. 4. Word Count example in Storm.

3.3. State, Windowing and Iterative Computations

Frameworks providing stateful stream processing make it possible to express mod-

ifications (i.e., side-effects) to the system state that will be visible at some future

point. If the state of the system is global, then it can be accessed by all system

components. For example, TensorFlow mutable variables are a form of global state,

since they can be attached to any processing node. On the other hand, local states

can be accessed only by a single system component. For example, the mapWithState

functional in the Spark Streaming API realizes a form of local state, in which succes-

sive executions of the functional see the modifications to the state made by previous



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

10

ones. Furthermore, state can be partitioned by shaping it as a tuple space, follow-

ing, for instance, the aforementioned key-value paradigm. With the exception of

TensorFlow, all the considered frameworks provide local key-value states.

Windowing is another concept provided by many stream processing frameworks.

A window is informally defined as an ordered subset of items extracted from the

stream. The most common form of windowing is referred as a sliding window, char-

acterized by its size (how many elements fall within the window) and sliding policy

(how items enter and exit from the window). Spark provides the simplest abstraction

for defining windows, since they are just micro-batches over the DStream abstrac-

tion, where only the window size and sliding policy can be specified. Storm and

Flink allow more arbitrary kinds of grouping, producing windows of Tuples and

WindowedStreams, respectively. Note that this does not break the declarative or

topological nature of the considered frameworks, since it only changes the type of

the processed data. Note also that windowing can be expressed in terms of stateful

processing, by considering window-typed state.

Finally, we consider another common concept in batch processing, namely iter-

ative processing. In Flink, iterations are expressed as the composition of arbitrary

DataSet values by iterative operators, resulting in a so-called IterativeDataSet. Com-

ponent DataSets represent for example step functions—executed in each iteration—

or termination condition—evaluated to decide if iteration has to be terminated.

Spark’s iteration model is radically simpler, since no specific construct is provided

to implement iterative processing. Instead, an RDD (endowed with transformations)

can be embedded into a plain sequential loop. Finally, TensorFlow allows express-

ing conditionals and loops by means of specific control flow operators such as For,

similarly to Flink.

4. Program Semantics Dataflow

The Program Semantics Dataflow level of our layered model provides a represen-

tation of the program in terms of the Dataflow model. Such a model describes the

application using operators and data dependencies among them, thus creating a

topological view common to all frameworks. This level does not explicitly express

parallelism: instead, parallelism is implicit through the data dependencies among

actors (i.e., among operators), so that operators which have no direct or indirect

dependencies can be executed concurrently.

4.1. Semantic Dataflow Graphs

A semantic Dataflow graph is a pair G = 〈V, E 〉 where actors V represent opera-

tors, channels E represent data dependencies among operators and tokens represent

data to be processed. For instance, consider a map function m followed by a reduce

function r on a collection A and its result b, represented as the functional compo-

sition b = r(m(A)). This is represented by the graph in Fig. 5, which represents

the semantic dataflow of a simple map-reduce program. Note that the user program



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

11

m r
A m(A) b

Fig. 5. Functional Map and Reduce dataflow expressing data dependencies.

translation into the semantic dataflow can be subject to further optimization. For

instance, two or more non-intensive kernels can be mapped onto the same actor to

reduce resource usage.

(a) Spark DAG (b) Flink JobGraph (c) TensorFlow graph

Fig. 6. Spark DAG of the WordCount application (a). A Flink JobGraph (b). A TensorFlow
application graph, adapted from [1] (c).

Notably, the Dataflow representation we propose is adopted by the considered

frameworks as a pictorial representation of applications. Fig. 6(a) shows the seman-

tic dataflow—called application DAG in Spark—related to the WordCount applica-

tion, having as operations (in order): 1. read from text file; 2. a flatMap operator

splitting the file into words; 3. a map operator that maps each word into a key-

value pair (w, 1); 4. a reduceByKey operator that counts occurrences of each word

in the input file. The DAG is grouped into stages (namely, Stages 0 and 1), which

divide map and reduce phases. This distinction is related to the underlying parallel

execution model and will be covered in Section 5. Flink also provides a semantic

representation—called JobGraph or condensed view— of the application, consisting

of operators (JobVertex) and intermediate results (IntermediateDataSet, represent-

ing data dependencies among operators). Fig. 6(b) presents a small example of a

JobGraph. Finally, Fig. 6(c) is a TensorFlow example (adapted from [1]). A node

represents a tensor operation, which can be also a data generation node (e.g., W ,

b, x). Each node has firing rules that depend on the kind of incoming tokens. For

example, control dependencies edges can carry synchronization tokens: the target



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

12

node of such edges cannot execute until all appropriate synchronization signals have

been received.

4.2. Tokens and Actors Semantics

Although the frameworks provide a similar semantic expressiveness, some differences

are visible regarding the meaning of tokens flowing across channels and how many

times actors are activated.

When mapping a Spark program, tokens represent RDDs and DStreams for

batch and stream processing respectively. Actors are operators—either transfor-

mations or actions in Spark nomenclature—that transform data or return values

(in-memory collection or files). Actors are activated only once in both batch and

stream processing, since each collection (either RDD or DStreams) is represented by

a single token. For Flink, the approach is similar: actors are activated only once in

all scenarios except in iterative algorithms—see Sect. 4.3. Tokens represent DataSets

and DataStreams that identify whole datasets and streams respectively. For Tensor-

Flow, the same mapping holds: operators are mapped to actors that take as input

single tokens representing Tensors (multi-dimensional arrays). Actors are activated

once except for iterative computations, as in Flink. Storm is different since a token

represents a single stream item (Tuple). Consequently, actors, representing (macro)

dataflow operators, are activated each time a new token is available.

From the discussion above, we can note that Storm’s actors follow a from-any

policy for consuming input tokens, while the other frameworks follow a from-all

policy as in the basic Dataflow model. In all the considered frameworks, output

tokens are broadcast onto all channels going out of a node.

4.3. Semantics of State, Windowing and Iterations

In Section 3.3, we introduced stateful, windowing and iterative processing as con-

venient tools provided by the considered frameworks.

From a Dataflow perspective, stateful actors represent an extension to the ba-

sic model—as sketched in Section 2.1—only in case of global state. In particu-

lar, globally-stateful processing breaks the functional nature of the basic Dataflow

model, inhibiting for instance to reason in pure functional terms about program

semantics (cf. Section 7). Conversely, locally-stateful processing can be emulated in

terms of the pure Dataflow model. We remark that at the semantic level, captur-

ing stateful processing within declarative models requires no modifications to the

proposed Dataflow model, since this aspect is embedded into the semantics of each

operation.

For instance, consider the semantics of a generic mapWithState functional. This

functional is parametrized by the binary kernel f : T × S → U × S, that takes as

input an item to be processed (ai ∈ T ) in addition to the state (si ∈ S), and then

produces an output item in addition to a new state. Let s0 be the initial state and

ai be the ith item from an arbitrary ordering of collection a. The semantics of the



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

13

generic invocation of the kernel, with value si for the state, can then be defined as

follows, for i ≥ 1:

yi = f(ai−1, si−1)

si = π2(yi)

The semantics of the stateful functional, where Π1 is the left projection over a whole

collection, is then the following:

mapWithState〈f〉(a) = Π1

(⋃
yi

)
The above semantics is clearly non-deterministic since it depends on the ordering

choice. A similar formulation also holds for partitioned states, but in that case the

binary kernel takes as input a subset of the state (i.e., the portion bound with the

respective key); equivalently, it produces an update for the same subset of the state.

Moreover, windowing is not a proper extension since windows can be stored

within each actor’s local state [8]. However, the considered frameworks treat win-

dowing as a primitive concept. This can be easily mapped to the Dataflow domain

by just considering tokens of proper types.

Finally, iterations can be modeled by inserting loops in semantic dataflows. In

this case, each actor involved in an iteration is activated each time a new token is

available and the termination condition is not met. This implementation of iterative

computations is similar to the hierarchical actors of Lee & Parks [12], used to

encapsulate subgraphs modeling iterative algorithms.

5. Parallel Execution Dataflow

The Parallel Execution Dataflow level represents parallel implementations of se-

mantic dataflows. As in the previous section, we start by introducing the approach

and then we describe how the various frameworks instantiate it and what are the

consequences this brings to the runtime.

The most straightforward source of parallelism comes directly from the Dataflow

model, namely, independent actors can run in parallel. Furthermore, some actors can

be replicated to increase parallelism by making replicas work over a partition of the

input data—that is, by exploiting full data parallelism. This is the case, for instance,

of the map operator described in Section 3.1. Both the above schemas are referred as

embarrassingly parallel processing, since there are no dependencies among actors.

Note that introducing data parallelism requires partitioning input tokens into sub-

tokens, distributing those to the various worker replicas, and then aggregating the

resulting sub-tokens into an appropriate result token—much like scatter/gather

operations in message passing programs. Finally, in case of dependent actors that

are activated multiple times, parallelism can still be exploited by letting tokens

“flow” as soon as each activation is completed. This well-known schema is referred

as stream/pipeline parallelism.



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

14

r

r

r

m m

r

m m

r

r

m m

r

m m

Fig. 7. MapReduce execution dataflow with maximum level of parallelism reached by eight map

instances.

Figure 7 shows a parallel execution dataflow for the MapReduce semantic

dataflow from Fig. 5. In this example, the dataset A is divided in 8 independent

partitions and the map function m is executed by 8 actor replicas; the reduce phase

is then executed in parallel by actors enabled by the incoming tokens (namely, the

results) from their “producer” actors.

(a) Spark Execution DAG (b) Flink Execution Graph

Fig. 8. Parallel execution dataflow of a simple Map/Reduce application in Spark and Flink.

Spark identifies its parallel execution dataflow by a DAG such as the one shown

in Fig. 8(a), which is the input of the DAG Scheduler entity. This graph illustrates

two main aspects: first, the fact that many parallel instances of actors are created

for each function and, second, the actors are grouped into Stages that are exe-

cuted in parallel if and only if there is no dependency among them. Stages can

be considered as the hierarchical actors in [12]. Grouping actors in stages brings

another consequence, derived from the Spark runtime implementation: each stage

that depends on some previous stages has to wait for their completion before ex-

ecution. The depicted behavior is analogous to the one encountered in the Bulk



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

15

Synchronous Parallelism paradigm (BSP) [14]. In a BSP algorithm, as well as in a

Spark application, a computation proceeds in a series of global supersteps consisting

in: 1) Concurrent computation, in which each actor executes its business code on

its own partition of data; 2) Communication, where actors exchange data between

themselves if necessary (the shuffle phase); 3) Barrier synchronization, where actors

wait until all other actors have reached the same barrier.

Flink transforms a JobGraph (e.g., Fig. 6(b)) into an ExecutionGraph [6] (e.g.,

Fig. 8(b)), in which the JobVertex (a hierarchical actor) is an abstract vertex con-

taining ExecutionVertexes (actors), one per parallel sub-task. A key difference com-

pared to the Spark execution graph is that a dependency does not represent a barrier

among actors or hierarchical actors: instead, there is effective tokens pipelining, and

thus actors can be fired concurrently. This is a natural implementation for stream

processing, but in this case, since the runtime is the same, it applies to batch process-

ing applications as well. Conversely, iterative processing is implemented according

to the BSP approach: one evaluation of the step function on all parallel instances

forms a superstep (again a hierarchical actor), which is also the granularity of syn-

chronization; all parallel tasks of an iteration need to complete the superstep before

the next one is initiated, thus behaving like a barrier between iterations.

TensorFlow replicates actors implementing certain operators (e.g., tensor mul-

tiplication) on tensors (input tokens). Hence, each actor is a data-parallel actor

operating on intra-task independent input elements—here, multi-dimensional ar-

rays (tensors). Moreover, iterative actors/hierarchical actors (in case of cycles on a

subgraph) are implemented with tags similar to the MIT Tagged-Token dataflow

machine [4], where the iteration state is identified by a tag and independent itera-

tions are executed in parallel. It is interesting to note that TensorFlow differs from

Flink in the execution of iterative actors: in TensorFlow an input can enter a loop

iteration whenever it becomes available, while Flink imposes a barrier after each

iteration.

Storm creates an environment for the execution dataflow similar to the other

frameworks. Each actor is replicated to increase the inter-actor parallelism and

each group of replicas is identified by the name of the Bolt/Spout of the semantics

dataflow they originally belong to, thus instantiating a hierarchical actor. Each of

these actors (actors group) represents data parallel tasks without dependencies.

Since Storm is a stream processing framework, pipeline parallelism is exploited.

Hence, while an actor is processing a token (tuple), an upstream actor can process

the next token concurrently, increasing both data parallelism within each actors

group and task parallelism among groups.

Summarizing, in Sections 4 and 5, we showed how the considered frameworks

can be compared through the lens of the very same model from both a semantic and

a parallel implementation perspective. The comparison is summarized in Table 1

and Table 2 for batch and streaming processing, respectively.



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

16

Table 1. Batch processing.

Spark Flink TensorFlow

Graph

specifica-

tion

Implicit,

OO-style chaining of

transformations

Implicit,

OO-style chaining of

transformations

Implicit, Prefix operator

with arguments

DAG Join operation Join operation N-ary operators and/or re-

sults

Tokens RDD DataSet Tensor

Nodes Transformations

from RDD to RDD

Transformations

from DataSet to

DataSet

Transformations from Ten-

sor to Tensor

Parallelism Data parallelism in

transformations +

Inter-actor, task par-
allelism, limited by

per-stage BSP

Data parallelism in

transformations +

Inter-actor task par-
allelism

Data parallelism in trans-

formations + Inter-actor

task parallelism +
Loop parallelism

Iteration Using repetitive se-
quential executions of

the graph

Using iterate &

iterateDelta

Using control flow con-
structs

Table 2. Stream processing.

Spark Flink Storm

Graph

specifica-
tion

Implicit,

OO-style chaining of
transformations

Implicit,

OO-style chaining of
transformations

Explicit, Connections be-

tween bolts

DAG Join operation Join operation Multiple incoming/outgo-

ing connections

Tokens DStream DataStream Tuple (fine-grain)

Nodes Transformations

from DStream to
DStream

Transformations

from DataStream to
DataStream

Stateful with “arbitrary”

emission of output tuples

Parallelism Analogous to Spark
Batch parallelism

Analogous to Flink
Batch parallelism +

Stream parallelism

between stream items

Data parallelism between

different bolt instances +
Stream parallelism between

stream items by bolts

6. Dataflow Process Network

Th Process Network layer shows how the program is effectively executed, following

the process and scheduling-based categorization described earlier (Sect. 2.1).

6.1. Scheduling-based Execution

In Spark, Flink and Storm, the resulting process network dataflow follows the

Master-Workers pattern, where actors from previous layers are transformed into



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

17

tasks. Fig. 9(a) shows a representation of the Spark Master-Workers runtime. We

will use this structure also to examine Storm and Flink, since the pattern is similar

for them: they differ only in how tasks are distributed among workers and how the

inter/intra-communication between actors is managed.

(a) Master-Workers (b) Worker hierarchy

Fig. 9. Master-Workers structure of the Spark runtime (a) and Worker hierarchy example in

Storm (b).

The Master has total control over program execution, job scheduling, communi-

cations, failure management, resource allocations, etc. The master is the entity that

knows the semantic dataflow representing the current application, while workers are

completely agnostic about the whole dataflow: they only obtain tasks to execute,

that represent actors of the execution dataflow the master is running. It is only

when the execution is effectively launched that the semantic dataflow is built and

eventually optimized to obtain the best execution plan (Flink). With this postponed

evaluation, the master creates what we called the parallel execution dataflow to be

executed. In Storm and Flink, the data distribution is managed in a decentralized

manner, i.e., it is delegated to each executor, since they use pipelined data transfers

and forward tokens as soon as they are produced. In Spark streaming, the master is

responsible for data distribution: it discretizes the stream into micro-batches that

are buffered into workers’ memory. The master generally keeps track of distributed

tasks, decides when to schedule the next tasks, reacts to finished vs. failed tasks,

keeps track of the semantic dataflow progress, and orchestrates collective communi-

cations and data exchange among workers. This last aspect is crucial when executing

shuffle operations, which entail data exchanges among executors. Whereas workers

do not have any information about others, to exchange data they have to request

information to the master and, moreover, specify they are ready to send/receive

data.

Workers are nodes executing the actor logic, namely, a worker node is a process in

the cluster. Within a worker, a certain number of parallel executors is instantiated,

that execute tasks related to the given application. Workers have no information



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

18

about the dataflow at any level since they are scheduled by the master. Despite

this, the different frameworks use different nomenclatures: in Spark, Storm and

Flink cluster nodes are decomposed into Workers, Executors and Tasks. A Worker

is a process in a node of the cluster, e.g., a Spark worker instance. A node may host

multiple Worker instances. An Executor is a thread that is spawned in a Worker

process and it executes Tasks, which are the actual kernel of an actor of the dataflow.

Fig. 9(b) illustrates this structure in Storm, an example that would also be valid

for Spark and Flink.

6.2. Process-based Execution

In TensorFlow, actors are effectively mapped to threads and possibly distributed on

different nodes. The cardinality of the semantic dataflow is preserved, as each actor

node is instantiated into one node, and the allocation is decided using a placement

algorithm based on a cost model. The dataflow is distributed on cluster nodes and

each node/Worker may host one or more dataflow actors/Tasks, that internally

implement data parallelism with a pool of threads/Executors working on Tensors.

Communication among actors is done using the send/receive paradigm, allowing

workers to manage their own data movement or to receive data without involving

the master node, thus decentralizing the logic and the execution of the application.

7. Limitations of the Dataflow Model

Reasoning about programs using the Dataflow model is attractive since it makes the

program semantics independent from the underlying execution model. In particular,

it abstracts away any form of parallelism due to its pure functional nature. The most

relevant consequence, as discussed in many theoretical works about Kahn Process

Network and similar models—such as Dataflow—is the fact that all computations

are deterministic.

Conversely, many parallel runtime systems exploit nondeterministic behaviors

to provide efficient implementations. For example, consider the Master-Workers

pattern discussed in Section 6. A naive implementation of the Master node dis-

tributes tasks to N Workers according to a round-robin policy—task i goes to

worker i (mod N)—which leads to a deterministic process. An alternative policy,

generally referred as on-demand, distributes tasks by considering the load level of

each worker, for example, to implement a form of load balancing. The resulting

processes are clearly nondeterministic, since the mapping from tasks to workers

depends on the relative service times.

Non-determinism can be encountered at all levels of our layered model in Fig. 1.

For example, actors in Storm’s topologies consume tokens from incoming streams ac-

cording to a from-any policy—process a token from any non-empty input channel—

thus no assumption can be made about the order in which stream tokens are pro-

cessed. More generally, the semantics of stateful streaming programs depends on the

order in which stream items are processed, which is not specified by the semantics of



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

19

the semantic dataflow actors in Section 4. As a consequence, this prevents from rea-

soning in purely Dataflow—i.e., functional—terms about programs in which actor

nodes include arbitrary code in some imperative language (e.g., shared variables).

8. Conclusion

In this paper, we showed how the Dataflow model can be used to describe Big

Data analytics tools, from the lowest level—process execution model—to the high-

est one—semantic Dataflow. The Dataflow model is expressive enough to represent

computations in terms of batch, micro-batch and stream processing. With this ab-

straction, we showed that Big Data analytics tools have similar expressiveness at

all levels and we proceeded with the description of a layered model capturing dif-

ferent levels of Big Data applications, from the program semantics to the execution

model. We also provided an overview of some well-known tools—Spark, Flink, Storm

and TensorFlow—by analyzing their semantics and mapping them to the proposed

Dataflow-based layered model. With this work, we aim at giving users a general

model to understand the levels underlying all the analyzed tools.

The need to exploit parallel computing at a high enough level of abstraction

certainly predates the advent (or the “hype”) of Big Data processing. In the parallel

computing and software engineering communities, this need has been advocated

years before by way of algorithmic skeletons [7] and design patterns [10], which

share many of the principles underlying the high-level frameworks considered in

previous sections. Conceptually, the tools we discussed through the paper exploit

Data Parallelism, Stream Parallelism, or both.

Data Parallel patterns express computations in which the same kernel function

is applied to all items of a data collection, which include for instance Map and

Reduce. They can be viewed as higher-order functions and can be placed at the

very top of our layered model from Fig. 1, since they expose a declarative data

processing model (Section 3.1).

Stream Parallel patterns express computations in which data streams flow

through a network of processing units. It is another key parallelism exploitation

pattern, from the first high-level approaches to parallel computing, such as the P3L

language [5], to more recent frameworks, such as FastFlow [3]. This model, enriched

with Control-Parallel patterns such as If and While, allows to express programs

through arbitrary graphs, where vertexes are processing units and edges are network

links. In this setting, Stream Parallel patterns represent pre-built, nestable graphs,

therefore they expose a topological data processing model (Section 3.2).

As future work, we plan to implement a model of Big Data analytics tools based

on algorithmic skeletons, on top of the FastFlow library [3], exploiting both forms

of parallelism.

Acknowledgements This work was partly supported by the EU-funded project

TOREADOR (contract no. H2020-688797), the EU-funded project Rephrase (con-

tract no. H2020-644235), and the 2015–2016 IBM Ph.D. Scholarship program. We



March 14, 2017 10:2 WSPC/INSTRUCTION FILE main

20

gratefully acknowledge Prof. Domenico Talia for his comments on the early version

of the manuscript.

References

[1] M. Abadi, A. Agarwal, P. Barham, et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. CoRR, abs/1603.04467, 2016.

[2] M. Aldinucci, M. Danelutto, L. Anardu, M. Torquati, and P. Kilpatrick. Parallel
patterns + macro data flow for multi-core programming. In Proc. of Intl. Euromicro
PDP 2012, pages 27–36, Garching, Germany, Feb. 2012. IEEE.

[3] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and M. Torquati. Accel-
erating code on multi-cores with FastFlow. In Proc. of 17th Intl. Euro-Par 2011
Parallel Processing, volume 6853 of LNCS, pages 170–181, Bordeaux, France, Aug.
2011. Springer.

[4] K. Arvind and R. S. Nikhil. Executing a program on the MIT tagged-token dataflow
architecture. IEEE Trans. Comput., 39(3):300–318, Mar. 1990.

[5] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: a structured
high level programming language and its structured support. Concurrency: Practice
and Experience, 7(3):225–255, May 1995.

[6] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. CoRR, abs/1506.08603, 2015.

[7] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, 1991.

[8] T. De Matteis and G. Mencagli. Parallel patterns for window-based stateful operators
on data streams: an algorithmic skeleton approach. International Journal of Parallel
Programming, pages 1–20, 2016.

[9] Apache Flink website. https://flink.apache.org/, 2016 (last accessed).
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,

1995.
[11] G. Kahn. The semantics of a simple language for parallel programming. In Informa-

tion Processing 74, pages 471–475, 1974.
[12] E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5):773–

801, 1995.
[13] M. A. U. Nasir, G. D. F. Morales, D. Garćıa-Soriano, N. Kourtellis, and M. Serafini.

The power of both choices: Practical load balancing for distributed stream processing
engines. CoRR, abs/1504.00788, 2015.

[14] L. G. Valiant. A bridging model for parallel computation. CACM, 33(8):103–111,
Aug. 1990.

[15] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-tolerant Abstrac-
tion for In-memory Cluster Computing. In Proc. of the 9th USENIX Conference on
Networked Systems Design and Implementation, NSDI’12, Berkeley, CA, USA, 2012.
USENIX.

[16] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams:
Fault-tolerant streaming computation at scale. In Proc. of the 24th ACM Symposium
on Operating Systems Principles, SOSP, pages 423–438, New York, NY, USA, 2013.
ACM.


