2 research outputs found

    SAPHIR - a multi-scale, multi-resolution modeling environment targeting blood pressure regulation and fluid homeostasis.

    Get PDF
    International audienceWe present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods. The basic core model will give succinct input-output (reduced-dimension) descriptions of all relevant organ systems and regulatory processes, and it will be modular, multi-resolution, and extensible, in the sense that detailed submodules of any process(es) can be "plugged-in" to the basic model in order to explore, eg. system-level implications of local perturbations. The goal is to keep the basic core model compact enough to insure fast execution time (in view of eventual use in the clinic) and yet to allow elaborate detailed modules of target tissues or organs in order to focus on the problem area while maintaining the system-level regulatory compensations

    Multi-formalism Modelling of Cardiac Tissue

    No full text
    Many models of the cardiovascular system (e.g. cardiac electrical activity, autonomous nervous system, ...) have been proposed for the last decades. Research is now focusing on the integration of these different models, in order to study more complicated physiopathological states in clinical applications context. To get round the practical limitations of existing models, multi-formalism modelling appears as a way to ease the integration of these different models together. This paper presents an original methodology allowing to combine different types of description formalisms. This method has been applied to define a multi-formalism model of cardiac action potential propagation on a 2D grid of endocardial cells, combining cellular automata and a set of cells defined by the Beeler-Reuter model. Results, obtained under physiologic and ischemic conditions, highlight the improvements in term of computing compared with mono-formalism systems, while keeping the necessary explanatory strength for a practical clinical use
    corecore