2,374 research outputs found

    Optimal design of switched reluctance motors

    Get PDF
    The fundamental theory of the switched reluctance motor is presented with a number of new equations. It is used to show how the practical development of a design calculation should proceed, and this leads to a discussion of physical characteristics required to achieve satisfactory performance and to reduce acoustic noise. The paper makes a few generic observations on the characteristics of successful products that use switched reluctance motors. It is written at a basic engineering level and makes no attempt to apply sophisticated optimization theory

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    Design and implementation of a linear motor for multi-car elevators

    Get PDF
    The multi-car elevator system is a revolutionary new technology for high-rise buildings, promising outstanding economic benefits, but also requiring new technology for propulsion, safety and control. In this paper we report on experimental results with new components for linear motor driven multi-car elevators. We show that linear synchronous motors with optimized design and with our new safety and control system can be considered as core components of a new generation of elevator systems. The main new results concern the development of a safety system integrated into the propulsion system, the design methodology of a linear motor optimized for the multi-car elevator task, and the motion control system that is expected to be usable for extra high-rise buildings

    Design of Outrunner Eectric Machines for Green Energy Applications

    Get PDF
    Interests in using rare-earth free motors such as switched reluctance motors (SRMs) for electric and hybrid electric vehicles (EV/HEVs) continue to gain popularity, owing to their low cost and robustness. Optimal design of an SRM, to meet specific characteristics for an application, should involve simultaneous optimization of the motor geometry and control in order to achieve the highest performance with the lowest cost. This dissertation firstly presents a constrained multi-objective optimization framework for design and control of a SRM based on a non-dominated sorting genetic algorithm II (NSGA-II). The proposed methodology optimizes SRM operation for high volume traction applications by considering multiple criteria including efficiency, average torque, and torque ripple. Several constraints are defined by the application considered, such as the motor stack length, minimum desired efficiency, etc. The outcome of this optimization includes an optimal geometry, outlining variables such as air gap length, rotor inner diameter, stator pole arc angle, etc as well as optimal turn-on and turn-off firing angles. Then the machine is manufactured according to the obtained optimal specifications. Finite element analysis (FEA) and experimental results are provided to validate the theoretical findings. A solution for exploring optimal firing angles of nonlinear current-controlled SRMs is proposed in order to minimize the torque ripple. Motor torque ripple for a certain electrical load requirement is minimized using a surrogate-based optimization of firing angles by adjusting the motor geometry, reference current, rotor speed and dc bus voltage. Surrogate-based optimization is facilitated via Neural Networks (NN) which are regression tools capable of learning complex multi-variate functions. Flux and torque of the nonlinear SRM is learned as a function of input parameters, and consequently the computation time of design, which is crucial in any micro controller unit, is expedited by replacing the look-up tables of flux and torque with the surrogate NN model. This dissertation then proposes a framework for the design and analysis of a coreless permanent magnet (PM) machine for a 100 kWh shaft-less high strength steel flywheel energy storage system (SHFES). The PM motor/generator is designed to meet the required specs in terms of torque-speed and power-speed characteristics given by the application. The design challenges of a motor/generator for this architecture include: the poor flux paths due to a large scale solid carbon steel rotor and zero-thermal convection of the airgap due to operation of the machine in vacuum. Magnetic flux in this architecture tends to be 3-D rather than constrained due to lack of core in the stator. In order to tackle these challenges, several other parameters such as a proper number of magnets and slots combination, number of turns in each coil, magnets with high saturated flux density and magnets size are carefully considered in the proposed design framework. Magnetic levitation allows the use of a coreless stator that is placed on a supporting structure. The proposed PM motor/generator comprehensive geometry, electromagnetic and mechanical dimensioning are followed by detailed 3-D FEA. The torque, power, and speed determined by the FEA electromagnetic analysis are met by the application design requirements and constraints for both the charging and discharging modes of operation. Finally, the motor/generator static thermal analysis is discussed in order to validate the proposed cooling system functionality

    Development of methods, algorithms and software for optimal design of switched reluctance drives

    Get PDF
    The aim of this thesis is to estimate the perspectives of integrated switched reluctance drives (I-SRDs), i.e. reluctance machines integrated with converters. It is assumed that such drive series can be manufactured in the power range of 0.75...7.5 kW and speed ranges of 300...3000 rpm and 600...6000 rpm for applications like pumps, fans, conveyors, compressors, extruders and mixers. Based on the performed research and design work it is stated that the new drives have to be developed according to their applications, which determine objective functions and constraints, and that the best possible design should be found as a solution of a synthesis task. Sizing equations are not applied at all. The approach used in the thesis is based on the virtual prototyping concept, i.e. the new I-SRD series is designed in a virtual environment. Therefore, mathematical models and the ways to verify them have to be elaborated. The concepts of multidisciplinary and multilevel modeling are applied. The multidisciplinary model is a combination of interconnected electromagnetic, thermal and noise models. The multilevel concept is the approach when different elements of the drive are described using different languages, i.e. on different levels. Several original solutions are introduced, like the electromagnetic model comprising SIMULINK block-diagrams and MATLAB script, expressions for the correction of the flux linkage due to end-effects, an original equivalent circuit for thermal analysis, which allows using a very simple and fast method to solve the circuit, together with the concept of a multi-layer equivalent cylinder for modeling the motor winding. For verification of the multidisciplinary model a database of test results has been collected using both testing of several reluctance machines in the laboratory and analyzing of test results published by other researchers. After verification the model can be considered as a virtual prototype and can be used in the synthesis process. Several methods of solving the synthesis task were tested. The method, proved to be best suited for solving this task in the proposed form, is the genetic algorithm in the vector form with alphabetic encoding. The genetic algorithm should be coupled with the experimental design method or with the Monte-Carlo method

    Influence of design parameters in the optimization of linear switched reluctance motor under thermal constraints

    Get PDF
    The objective of this paper is to present an original study for optimizing the size of the LongitudinalFlux Double-Sided Linear Switched Reluctance Motor (LSRM) under thermal and weight constraints. The performance is evaluated taken into account duty cycle operating conditions and thermal restrictions. The proposed approach couples Finite Element Analysis for magnetic propulsion force computation and Lumped Parameter Thermal Network for thermal transient analysis. The LSRMs design parameters are characterized by the number of phases and by their size denoted by the pole stroke. The operating conditions are the current density, the duty cycle and the admissible temperature rise of the insulation system. The grid search algorithm is used for solving the optimization problem. From the results, with the help of a novel multivariable optimization chart, a set of optimal configurations regarding to miniaturizations and downsizing of LSRMs is provided.Peer ReviewedPreprin

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    New design of switched reluctance motor using finite element analysis for hybrid electric vehicle applications

    Get PDF
    Switched reluctance motors (SRMs) have been gaining increasing popularity and emerging as an attractive alternative to traditional electrical motors in hybrid vehicle applications due to their simple structure, ruggedness, ability of fault-tolerance, extremely high-speed operation, high power density, and low manufacturing cost. However, large torque ripple and acoustic noise are well-known as their major disadvantages. This thesis presents a novel five-phase 15/12 SRM which features higher power density, very low level of vibration with flexibility in controlling the torque ripple profile. This design is classified as an axial field SRM, hence it needs 3-dimensional finite-element analysis model. Nonetheless, an alternative 2-dimensional model is developed and simulated using FEA software (MagNet) in order to analyze the proposed model. The findings from the simulation is scrutinized and analyzed to realize various design features along with performance of the model. The finding in reference to the proposed axial field model is then compared with existing radial field models to validate its performance improvement. The manufacturing issues were addressed to prove its feasibility and cost effectiveness in conjunction with its assembly competences. Taking all the aspects into account superiority of new model\u27s efficiency is comprehended to justify its application in HEV application

    Multiple Objective Co-Optimization of Switched Reluctance Machine Design and Control

    Get PDF
    This dissertation includes a review of various motor types, a motivation for selecting the switched reluctance motor (SRM) as a focus of this work, a review of SRM design and control optimization methods in literature, a proposed co-optimization approach, and empirical evaluations to validate the models and proposed co-optimization methods. The switched reluctance motor (SRM) was chosen as a focus of research based on its low cost, easy manufacturability, moderate performance and efficiency, and its potential for improvement through advanced design and control optimization. After a review of SRM design and control optimization methods in the literature, it was found that co-optimization of both SRM design and controls is not common, and key areas for improvement in methods for optimizing SRM design and control were identified. Among many things, this includes the need for computationally efficient transient models with the accuracy of FEA simulations and the need for co-optimization of both machine geometry and control methods throughout the entire operation range with multiple objectives such as torque ripple, efficiency, etc. A modeling and optimization framework with multiple stages is proposed that includes robust transient simulators that use mappings from FEA in order to optimize SRM geometry, windings, and control conditions throughout the entire operation region with multiple objectives. These unique methods include the use of particle swarm optimization to determine current profiles for low to moderate speeds and other optimization methods to determine optimal control conditions throughout the entire operation range with consideration of various characteristics and boundary conditions such as voltage and current constraints. This multi-stage optimization process includes down-selections in two previous stages based on performance and operational characteristics at zero and maximum speed. Co-optimization of SRM design and control conditions is demonstrated as a final design is selected based on a fitness function evaluating various operational characteristics including torque ripple and efficiency throughout the torque-speed operation range. The final design was scaled, fabricated, and tested to demonstrate the viability of the proposed framework and co-optimization method. Accuracy of the models was confirmed by comparing simulated and empirical results. Test results from operation at various torques and speeds demonstrates the effectiveness of the optimization approach throughout the entire operating range. Furthermore, test results confirm the feasibility of the proposed torque ripple minimization and efficiency maximization control schemes. A key benefit of the overall proposed approach is that a wide range of machine design parameters and control conditions can be swept, and based on the needs of an application, the designer can select the appropriate geometry, winding, and control approach based on various performance functions that consider torque ripple, efficiency, and other metrics
    • …
    corecore