674 research outputs found

    Multi-dimensional sparse structured signal approximation using split bregman iterations

    Get PDF
    International audienceThe paper focuses on the sparse approximation of signals using overcomplete representations, such that it preserves the (prior) structure of multi-dimensional signals. The underlying optimization problem is tackled using a multi-dimensional extension of the split Bregman optimization approach. An extensive empirical evaluation shows how the proposed approach compares to the state of the art depending on the signal features

    Multiscale Adaptive Representation of Signals: I. The Basic Framework

    Full text link
    We introduce a framework for designing multi-scale, adaptive, shift-invariant frames and bi-frames for representing signals. The new framework, called AdaFrame, improves over dictionary learning-based techniques in terms of computational efficiency at inference time. It improves classical multi-scale basis such as wavelet frames in terms of coding efficiency. It provides an attractive alternative to dictionary learning-based techniques for low level signal processing tasks, such as compression and denoising, as well as high level tasks, such as feature extraction for object recognition. Connections with deep convolutional networks are also discussed. In particular, the proposed framework reveals a drawback in the commonly used approach for visualizing the activations of the intermediate layers in convolutional networks, and suggests a natural alternative
    corecore