416 research outputs found

    Coordination mechanisms with mathematical programming models for decentralized decision-making, a literature review

    Full text link
    [EN] The increase in the complexity of supply chains requires greater efforts to align the activities of all its members in order to improve the creation of value of their products or services offered to customers. In general, the information is asymmetric; each member has its own objective and limitations that may be in conflict with other members. Operations managements face the challenge of coordinating activities in such a way that the supply chain as a whole remains competitive, while each member improves by cooperating. This document aims to offer a systematic review of the collaborative planning in the last decade on the mechanisms of coordination in mathematical programming models that allow us to position existing concepts and identify areas where more research is needed.Rius-Sorolla, G.; Maheut, J.; Estelles Miguel, S.; García Sabater, JP. (2020). Coordination mechanisms with mathematical programming models for decentralized decision-making, a literature review. Central European Journal of Operations Research. 28(1):61-104. https://doi.org/10.1007/s10100-018-0594-zS61104281Acar Y, Atadeniz SN (2015) Comparison of integrated and local planning approaches for the supply network of a globally-dispersed enterprise. Int J Prod Econ 167:204–219. https://doi.org/10.1016/j.ijpe.2015.05.028Agnetis A, Hall NG, Pacciarelli D (2006) Supply chain scheduling: sequence coordination. Discrete Appl Math 154(15):2044–2063. https://doi.org/10.1016/j.dam.2005.04.019Agnetis A, Aloulou MA, Fu LL (2016) Production and interplant batch delivery scheduling: Dominance and cooperation. Int J Prod Econ 182:38–49. https://doi.org/10.1016/j.ijpe.2016.08.007Albrecht M (2010) Supply chain coordination mechanisms Lecture notes in economics and mathematical systems, vol 628. Springer, Berlin. https://doi.org/10.1007/978-3-642-02833-5Albrecht M, Stadtler H (2015) Coordinating decentralized linear programs by exchange of primal information. Eur J Oper Res 247(3):788–796. https://doi.org/10.1016/j.ejor.2015.06.045Arkan A, Hejazi SR (2012) Coordinating orders in a two echelon supply chain with controllable lead time and ordering cost using the credit period. Comput Ind Eng 62(1):56–69. https://doi.org/10.1016/j.cie.2011.08.016Arshinder, Kanda A, Deshmukh SG (2008) Supply chain coordination: perspectives, empirical studies and research directions. Int J Prod Econ 115(2):316–335. https://doi.org/10.1016/j.ijpe.2008.05.011Attanasio A, Ghiani G, Grandinetti L, Guerriero F (2006) Auction algorithms for decentralized parallel machine scheduling. Parallel Comput 32(9):701–709. https://doi.org/10.1016/j.parco.2006.03.002Badole CM, Jain R, Rathore APS, Nepal B (2012) Research and opportunities in supply chain modeling: a review. Int J Supply Chain Manag 1(3):63–86Bajgiran OS, Zanjani MK, Nourelfath M (2016) The value of integrated tactical planning optimization in the lumber supply chain. Int J Prod Econ 171:22–33. https://doi.org/10.1016/j.ijpe.2015.10.021Behnamian J (2014) Multi-cut Benders decomposition approach to collaborative scheduling. Int J Comput Integr Manuf 28(11):1–11. https://doi.org/10.1080/0951192X.2014.961963Ben-Daya M, Darwish M, Ertogral K (2008) The joint economic lot sizing problem: review and extensions. Eur J Oper Res 185(2):726–742. https://doi.org/10.1016/j.ejor.2006.12.026Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252. https://doi.org/10.1007/BF01386316Bhatnagar R, Chandra P, Goyal SK (1993) Models for multi-plant coordination. Eur J Oper Res 67(2):141–160. https://doi.org/10.1016/0377-2217(93)90058-UBuer T, Homberger JJ, Gehring H (2013) A collaborative ant colony metaheuristic for distributed multi-level uncapacitated lot-sizing. Int J Prod Res 51(17):5253–5270. https://doi.org/10.1080/00207543.2013.802822Buer T, Ziebuhr M, Kopfer H (2015) A coordination mechanism for a collaborative lot-sizing problem with rivaling agents. In: Mattfeld D, Spengler T, Brinkmann J, Grunewald M (eds) Logistics management. Springer, Cham. https://doi.org/10.1007/978-3-319-13177-1_26Buxmann P, Ahsen A Von, Díaz LM (2008) Economic evaluation of cooperation scenarios in supply chains. J Enterp Inf Manag 21(3):247–262. https://doi.org/10.1108/17410390810866628Chakraborty A, Chatterjee AK (2015) A surcharge pricing scheme for supply chain coordination under JIT environment. Eur J Oper Res 253(1):14–24. https://doi.org/10.1016/j.ejor.2016.02.001Chen IJ, Paulraj A, Lado AA (2004) Strategic purchasing, supply management, and firm performance. J Oper Manag 22(5):505–523. https://doi.org/10.1016/j.jom.2004.06.002Cheng JH (2011) Inter-organizational relationships and information sharing in supply chains. Int J Inf Manag 31(4):374–384. https://doi.org/10.1016/j.ijinfomgt.2010.09.004Cheng R, Forbes JF, San Yip W, Fraser Forbes J, Yip WS (2008) Dantzig–Wolfe decomposition and plant-wide MPC coordination. Comput Chem Eng 32(7):1507–1522. https://doi.org/10.1016/j.compchemeng.2007.07.003Cooper MC, Lambert DM, Pagh JD (1997) Supply chain management: more than a new name for logistics. Int J Logist Manag 8(1):1–14. https://doi.org/10.1108/09574099710805556Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111. https://doi.org/10.1287/opre.8.1.101Dash RK, Vytelingum P, Rogers A, David E, Jennings NR (2007) Market-based task allocation mechanisms for limited-capacity suppliers. IEEE Trans Syst Man Cybern Part A Syst Hum 37(3):391–405. https://doi.org/10.1109/TSMCA.2007.893474Dudek G, Stadtler H (2005) Negotiation-based collaborative planning between supply chains partners. Eur J Operat Res 163(3):668–687. https://doi.org/10.1016/j.ejor.2004.01.014Dudek G, Stadtler H (2007) Negotiation-based collaborative planning in divergent two-tier supply chains. Int J Prod Res 45(2):465–484Ertogral K, David Wu S (2000) Auction-theoretic coordination of production planning in the supply chain. IIE Trans 32:931–940. https://doi.org/10.1080/07408170008967451Eslikizi S, Ziebuhr M, Kopfer H, Buer T (2015) Shapley-based side payments and simulated annealing for distributed lot-sizing. IFAC-PapersOnLine 48(3):1592–1597. https://doi.org/10.1016/j.ifacol.2015.06.313Fan M, Stallaert J, Whinston AB (2003) Decentralized mechanism design for supply chain organizations using an auction market. Inf Syst Res 14(1):1–22. https://doi.org/10.1287/isre.14.1.1.14763Feng Y, D’Amours S, Beauregard R (2008) The value of sales and operations planning in oriented strand board industry with make-to-order manufacturing system: cross functional integration under deterministic demand and spot market recourse. Int J Prod Econ 115(1):189–209. https://doi.org/10.1016/j.ijpe.2008.06.002Fisher ML (1985) An applications oriented guide to Lagrangian relaxation. Interfaces 15(2):10–21. https://doi.org/10.1287/inte.15.2.10Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12 Supplement):1861–1871. https://doi.org/10.1287/mnsc.1040.0263Frazzon E, Makuschewits T, Scholz-Reiter B, Novaes AGN (2010) Assessing the integrated scheduling of manufacturing and transportation systems along global supply chains. In: World conference on transport research, LisbonGaudreault J, Forget P, Frayret JMJ, Rousseau A, Lemieux S, D’Amours S (2010) Distributed operations planning in the softwood lumber supply chain: models and coordination. Int J Ind Eng Theory Appl Pract 17(3):168–189Gunnerud V, Foss B (2010) Oil production optimization—a piecewise linear model, solved with two decomposition strategies. Comput Chem Eng 34(11):1803–1812. https://doi.org/10.1016/j.compchemeng.2009.10.019Harb H, Paprott JN, Matthes P, Schütz T, Streblow R, Mueller D (2015) Decentralized scheduling strategy of heating systems for balancing the residual load. Build Environ 86:132–140. https://doi.org/10.1016/j.buildenv.2014.12.015Held M, Karp RM (1970) The traveling-salesman problem and minimum spanning trees. Oper Res 18(6):1138–1162. https://doi.org/10.1287/opre.18.6.1138Held M, Karp RM (1971) The traveling-salesman problem and minimum spanning trees: part II. Math Program 1(1):6–25. https://doi.org/10.1007/BF01584070Homberger J (2010) Decentralized multi-level uncapacitated lot-sizing by automated negotiation. 4OR 8(2):155–180. https://doi.org/10.1007/s10288-009-0104-1Homberger J (2011) A generic coordination mechanism for lot-sizing in supply chains. Electron Commer Res 11(2):123–149. https://doi.org/10.1007/s10660-010-9053-1Homberger J, Gehring H (2010) A pheromone-based negotiation mechanism for lot-sizing in supply chains. In: 2010 43rd Hawaii international conference on system sciences. IEEE, pp 1–10. https://doi.org/10.1109/hicss.2010.26Homberger J, Gehring H (2011) An ant colony optimization-based negotiation approach for lot-sizing in supply chains. Int J Inf Process Manag 2(3):86–99. https://doi.org/10.4156/ijipm.vol2.issue3.10Homberger J, Gehring H, Buer T (2015) Integrating side payments into collaborative planning for the distributed multi-level unconstrained lot sizing problem. In: Bui TX, Sprague RH (eds) 2015 48th Hawaii international conference on system sciences, vol 2015. IEEE, pp 1068–1077. https://doi.org/10.1109/hicss.2015.131Huang GQ, Lau JSK, Mak KL (2003) The impacts of sharing production information on supply chain dynamics: a review of the literature. Int J Prod Res 41(7):1483–1517. https://doi.org/10.1080/0020754031000069625Jeong I-J (2012) A centralized/decentralized design of a full return contract for a risk-free manufacturer and a risk-neutral retailer under partial information sharing. Int J Prod Econ 136(1):110–115. https://doi.org/10.1016/j.ijpe.2011.09.019Jeong IJ, Leon VJ (2002) Decision-making and cooperative interaction via coupling agents in organizationally distributed systems. IIE Trans (Inst Ind Eng) 34(9):789–802. https://doi.org/10.1023/A:1015548705266Jeong IJ, Yim SB (2009) A job shop distributed scheduling based on Lagrangian relaxation to minimise total completion time. Int J Prod Res 47(24):6783–6805. https://doi.org/10.1080/00207540701824217Jia ZZ, Deschamps JC, Dupas R (2016) A negotiation protocol to improve planning coordination in transport-driven supply chains. J Manuf Syst 38:13–26. https://doi.org/10.1016/j.jmsy.2015.10.003Jung H, Chen FF, Jeong B (2008) Decentralized supply chain planning framework for third party logistics partnership. Comput Ind Eng 55(2):348–364. https://doi.org/10.1016/j.cie.2007.12.017Katok E, Pavlov V (2013) Fairness in supply chain contracts: a laboratory study. J Oper Manag 31(3):129–137. https://doi.org/10.1016/j.jom.2013.01.001Kelly JD, Zyngier D (2008) Hierarchical decomposition heuristic for scheduling: coordinated reasoning for decentralized and distributed decision-making problems. Comput Chem Eng 32(11):2684–2705. https://doi.org/10.1016/j.compchemeng.2007.08.007Kong J, Rönnqvist M (2014) Coordination between strategic forest management and tactical logistic and production planning in the forestry supply chain. Int Trans Oper Res 21(5):703–735. https://doi.org/10.1111/itor.12089Kovács A, Egri P, Kis T, Váncza J (2013) Inventory control in supply chains: alternative approaches to a two-stage lot-sizing problem. Int J Prod Econ 143(2):385–394. https://doi.org/10.1016/j.ijpe.2012.01.001Kumar BK, Nagaraju D, Narayanan S (2016) Supply chain coordination models: a literature review. Indian J Sci Technol. https://doi.org/10.17485/ijst/2016/v9i38/86938Kutanoglu E, David Wu S (1999) On combinatorial auction and Lagrangean relaxation for distributed resource scheduling. IIE Trans 31(9):813–826. https://doi.org/10.1080/07408179908969883Lau HC, Zhao ZJ, Ge SS, Lee TH (2011) Allocating resources in multiagent flowshops with adaptive auctions. IEEE Trans Autom Sci Eng 8(4):732–743. https://doi.org/10.1109/TASE.2011.2160536Lee DJ, Jeong IJ (2010) A distributed coordination for a single warehouse-multiple retailer problem under private information. Int J Prod Econ 125(1):190–199. https://doi.org/10.1016/j.ijpe.2010.02.001Lehoux N, D’Amours S, Frein Y, Langevin A, Penz B (2010a) Collaboration for a two-echelon supply chain in the pulp and paper industry: the use of incentives to increase profit. J Oper Res Soc 62(4):581–592. https://doi.org/10.1057/jors.2009.167Lehoux N, D’Amours S, Langevin A (2010b) A win–win collaboration approach for a two-echelon supply chain: a case study in the pulp and paper industry. Eur J Ind Eng 4(4):493. https://doi.org/10.1504/EJIE.2010.035656Lehoux N, D’Amours S, Langevin A (2014) Inter-firm collaborations and supply chain coordination: review of key elements and case study. Prod Plan Control 25(10):858–872. https://doi.org/10.1080/09537287.2013.771413Li X, Wang Q (2007) Coordination mechanisms of supply chain systems. Eur J Oper Res 179(1):1–16. https://doi.org/10.1016/j.ejor.2006.06.023Lu SYP, Lau HYK, Yiu CKF (2012) A hybrid solution to collaborative decision-making in a decentralized supply-chain. J Eng Technol Manag 29(1):95–111. https://doi.org/10.1016/j.jengtecman.2011.09.008Mahdiraji HA, Zavadskas EK, Hajiagha SHR (2015) Game theoretic approach for coordinating unlimited multi echelon supply chains. Transform Bus Econ 14(2):133–151Maheut J, Besga JM, Uribetxebarria J, Garcia-Sabater JP (2014a) A decision support system for modelling and implementing the supply network configuration and operations scheduling problem in the machine tool industry. Prod Plan Control 25(8):679–697. https://doi.org/10.1080/09537287.2013.798087Maheut J, Garcia-Sabater JP, Garcia-Sabater JJ, Marin-Garcia J (2014b) Coordination mechanism for MILP models to plan operations within an advanced planning and scheduling system in a motor company: a case study. In: Prado-Prado JC, García-Arca J (eds) Annals of industrial engineering 2012. Springer, London, pp 245–253. https://doi.org/10.1007/978-1-4471-5349-8_29Manrodt KB, Vitasek K (2004) Global process standardization: a case study. J Bus Logist 25(1):1–23. https://doi.org/10.1002/j.2158-1592.2004.tb00168.xMarin-Garcia JA, Ramirez Bayarri L, Atares Huerta L (2015) Protocol: comparing advantages and disadvantages of rating scales, behavior observation scales and paired comparison scales for behavior assessment of competencies in workers. A systematic literature review. Work Pap Oper Manag 6(2):49. https://doi.org/10.4995/wpom.v6i2.4032Mason AN, Villalobos JR (2015) Coordination of perishable crop production using auction mechanisms. Agric Syst 138:18–30. https://doi.org/10.1016/j.agsy.2015.04.008McAfee RP, McMillan J (1987) Auctions and bidding. J Econ Lit 25(2):699–738Medina-Lopez C, Marin-Garcia JA, Alfalla-Luque R (2010) Una propuesta metodológica para la realización de búsquedas sistemáticas de bibliografía (A methodological proposal for the systematic literature review). Work Pap Oper Manag. https://doi.org/10.4995/wpom.v1i2.786Mouret S, Grossmann IE, Pestiaux P (2011) A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling. Comput Chem Eng 35(12):2750–2766. https://doi.org/10.1016/j.compchemeng.2011.03.026Mula J, Peidro D, Díaz-Madroñero M, Vicens E (2010) Mathematical programming models for supply chain production and transport planning. Eur J Oper Res 204(3):377–390. https://doi.org/10.1016/j.ejor.2009.09.008Nie L, Xu X, Zhan D (2008) Collaborative planning in supply chains by lagrangian relaxation and genetic algorithms. Int J Inf Technol Decis Mak 7(1):183–197. https://doi.org/10.1142/s0219622008002879Nishi T, Shinozaki R, Konishi M (2008) An augmented Lagrangian approach for distributed supply chain planning for multiple companies. IEEE Trans Autom Sci Eng 5(2):259–274. https://doi.org/10.1109/TASE.2007.894727Ouelhadj D, Petrovic S (2009) A survey of dynamic scheduling in manufacturing systems. J Sched 12(4):417–431. https://doi.org/10.1007/s10951-008-0090-8Pibernik R, Sucky E (2007) An approach to inter-domain master planning in supply chains. Int J Prod Econ 108(1–2):200–212. https://doi.org/10.1016/j.ijpe.2006.12.010Pittman SD, Bare BB, Briggs DG (2007) Hierarchical production planning in forestry using price-directed decomposition. Can J For 37(10):2010–2021. https://doi.org/10.1139/X07-026Polyak BT (1969) Minimization of unsmooth functionals. USSR Comput Math Math Phys 9(3):14–29. https://doi.org/10.1016/0041-5553(69)90061-5Pukkala T, Heinonen T, Kurttila M (2009) An application of a reduced cost approach to spatial forest planning. For Sci 55(1):13–22Qu T, Nie DX, Chen X, Chen XD, Dai QY, Huang GQ (2015) Optimal configuration of cluster supply chains with augmented Lagrange coordination. Comput Ind Eng 84(SI):43–55. https://doi.org/10.1016/j.cie.2014.12.026Reiss F, Buer T (2014) A coordination mechanism for capacitated lot-sizing in non-hierarchical n-tier supply chains. In: 2014 IEEE symposium on computational intelligence in production and logistics systems (Cipls), pp 9–15. https://doi.org/10.1109/cipls.2014.7007155Rius-Sorolla G, Maheut J, Estelles-Miguel S, Garcia-Sabater JP (2017) Protocol: systematic literature review on coordination mechanisms for the mathematical programming models in production planning with decentralized decision making. Work Pap Oper Manag 8(2):22. https://doi.org/10.4995/wpom.v8i2.7858Sahin F, Robinson EPP (2002) Flow coordination and information sharing in supply chains: review, implications, and directions for future research. Decis Sci 33(4):505–535. https://doi.org/10.1111/j.1540-5915.2002.tb01654.xSilva CA, Sousa JMC, Runkler TA, Sá da Costa J (2009) Distributed supply chain management using ant colony optimization. Eur J Oper Res 199(2):349–358. https://doi.org/10.1016/j.ejor.2008.11.021Simatupang T, Sridharan R (2006) The collaboration index: a measure for supply chain collaboration. Int J Phys Distrib Logist Manag 35:44–62. https://doi.org/10.1108/09600030510577421Singh G, Ernst A (2011) Resource constraint scheduling with a fractional shared resource. Oper Res Lett 39(5):363–368. https://doi.org/10.1016/j.orl.2011.06.003Singh G, O’Keefe CM (2016) Decentralised scheduling with confidentiality protection. Oper Res Lett 44(4):514–519. https://doi.org/10.1016/j.orl.2016.05.004Sokoler LE, Standardi L, Edlund K, Poulsen NK, Madsen H, Jørgensen JB (2014) A Dantzig–Wolfe decomposition algorithm for linear economic model predictive control of dynamically decoupled subsystems. J Process Control 24(8):1225–1236. https://doi.org/10.1016/j.jprocont.2014.05.013Sridharan R, Simatupang TM (2009) Managerial views of supply chain collaboration. Gadjah Mada Int J Bus 11(2):253–273Stadtler H (2007) A framework for collaborative planning and state-of-the-art. OR Spectr 31(1):5–30. https://doi.org/10.1007/s00291-007-0104-5Stadtler H, Kilger C (2008) Supply chain management and advanced planning. In: Stadtler H, Kilger C (eds) Supply chain management and advanced planning. Concepts, models, software, and case studies. Springer, BerlinStank TP, Goldsby TJ, Vickery SK (1999) Effect of service supplier performance on satisfaction and loyalty of store managers in the fast food industry. J Oper Manag 17(4):429–447. https://doi.org/10.1016/S0272-6963(98)00052-7Taghipour A, Frayret JM (2013) An algorithm to improve operations planning in decentralized supply chains. In: 2013 international conference on advanced logistics and transport, ICALT 2013, pp 100–103. https://doi.org/10.1109/icadlt.2013.6568442Tang SH, Rahimi I, Karimi H (2016a) Objectives, products and demand requirements in integrated supply chain network design: a review. Int J Ind Syst Eng 23(2):181. https://doi.org/10.1504/IJISE.2016.076399Tang J, Zeng C, Pan Z (2016b) Auction-based cooperation mechanism to parts scheduling for flexible job shop with inter-cells. Appl Soft Comput 49:590–602. https://doi.org/10.1016/j.asoc.2016.08.046Thomas A, Singh G, Krishnamoorthy M, Venkateswaran J (2013) Distributed optimisation method for multi-resource constrained scheduling in coal supply chains. Int J Prod Res 51(9):2740–2759. https://doi.org/10.1080/00207543.2012.737955Thomas A, Venkateswaran J, Singh G, Krishnamoorthy M (2014) A resource constrained scheduling problem with multiple independent producers and a single linking constraint: a coal supply chain example. Eur J Oper Res 236(3):946–956. https://doi.org/10.1016/j.ejor.2013.10.006Thomas A, Krishnamoorthy M, Singh G, Venkateswaran J (2015) Coordination in a multiple producers–distributor supply chain and the value of information. Int J Prod Econ 167:63–73. https://doi.org/10.1016/j.ijpe.2015.05.020VICS (2004) Collaborative planning, forecasting and replenishment. Retrieved January 21, 2017, from https://www.gs1us.org/Vitasek K (2016) Strategic sourcing business models. Strateg Outsour Int J 9(2):126–138. https://doi.org/10.1108/SO-02-2016-0003Walther G, Schmid E, Spengler TS (2008) Negotiation-based coordination in product recovery networks. Int J Prod Econ 111(2):334–350. https://doi.org/10.1016/j.ijpe.2006.12.069Wang L, Pfohl HC, Berbner U, Keck AK (2016) Supply chain collaboration or conflict? Information sharing and supply chain performance in the automotive industry. In: Clausen U, Friedrich H, Thaller C, Geiger C (eds) Commercial transport. Springer, Cham, pp 303–318. https://doi.org/10.1007/978-3-319-21266-1Wenzel S, Paulen R, Krämer S, Beisheim B, Engell S (2016a) Shared resource allocation in an integrated petrochemical site by price-based coordination using quadratic approximation. In: 2016 European control conference, ECC 2016, pp 1045–1050. https://doi.org/10.1109/ecc.2016.7810427Wenzel S, Paulen R, Stojanovski G, Kraemer S, Beisheim B, Engell S (2016b) Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. At-Automatisierungstechnik 64(6):428–442. https://doi.org/10.1515/auto-2016-0003Whang S (1995) Coordination in operat

    Fast Scheduling of Robot Teams Performing Tasks With Temporospatial Constraints

    Get PDF
    The application of robotics to traditionally manual manufacturing processes requires careful coordination between human and robotic agents in order to support safe and efficient coordinated work. Tasks must be allocated to agents and sequenced according to temporal and spatial constraints. Also, systems must be capable of responding on-the-fly to disturbances and people working in close physical proximity to robots. In this paper, we present a centralized algorithm, named 'Tercio,' that handles tightly intercoupled temporal and spatial constraints. Our key innovation is a fast, satisficing multi-agent task sequencer inspired by real-time processor scheduling techniques and adapted to leverage a hierarchical problem structure. We use this sequencer in conjunction with a mixed-integer linear program solver and empirically demonstrate the ability to generate near-optimal schedules for real-world problems an order of magnitude larger than those reported in prior art. Finally, we demonstrate the use of our algorithm in a multirobot hardware testbed

    Mathematical programming-based models for the distribution networks' decarbonization

    Get PDF
    (English) Climate change is pushing to decarbonize worldwide economies and forcing fossil fuel-based power systems to evolve into power systems based mainly on renewable energies sources (RES). Thus, increasing the energy generated from renewables in the energy supply mix involves transversal challenges at operational, market, political and social levels due to the stochasticity associated with these technologies and their capacity to generate energy at a small scale close to the consumption point. In this regard, the power generation uncertainty can be handled through battery storage systems (BSS) that have become competitive over the last few years due to a significant price reduction and are a potential alternative to mitigate the technical network problems associated with the intermittency of the renewables, providing flexibility to store/supply energy when is required. On the other hand, the capacity of low-cost generation from small-scale power systems (distributed or decentralized generation (DG)) represents an opportunity for both customers and the power system operators. i.e., customers can generate their energy, reduce their network dependency, and participate actively in eventual local energy markets (LEM), while the power system operator can reduce the system losses and increase the power system quality against unexpected external failures. Nevertheless, incorporating these structures and operational frameworks into distribution networks (DN) requires developing sophisticated tools to support decision-making related to the optimal integration of the distributed energy resources (DER) and assessing the performance of new DNs with high DERs penetration under different operational scenarios. This thesis addresses the distribution networks' decarbonization challenge by developing novel algorithms and applying different optimization techniques through three subtopics. The first axis addresses the optimal sizing and allocation of DG and BSS into a DN from deterministic and stochastic approaches, considering the technical network limitation, the electric vehicle (EV) presence, the users capacity to modify their load consumption, and the DG capability to generate reactive power for voltage stability. Besides, a novel algorithm is developed to solve the deterministic and stochastic models for multiple scenarios providing an accurate DERs capacity that should be installed to decrease the external network dependency. The second subtopic assesses the DN capacity to face unlikely scenarios like primary grid failure or natural disasters preventing the energy supply through a deterministic model that modifies the unbalance DN topology into multiple virtual microgrids (VM) balanced, considering the power supplied by DG and the flexibility provided by the storage devices (SD) and demand response (DR). The third axis addresses the emerging transactive energy (TE) schemes in DNs with high DERs penetration at a residential level through two stochastic approaches to model a Peer-to-peer (P2P) energy trading. To this end, the capability of a P2P energy trading scheme to operate on different markets as day-ahead, intraday, flexibility, and ancillary services (AS) market is assessed, while an algorithm is developed to manage the users' information under a decentralized design.(Català) El cambio climático está obligando a descarbonizar las economías de todo el mundo forzando a los sistemas de energía basados en combustibles fósiles a evolucionar hacia sistemas de energía basados principalmente en fuentes de energía renovables (FER). Así, incrementar la energía generada a partir de renovables en el mix energético está implicando retos transversales a nivel operativo, de mercado, político y social debido a la estocasticidad asociada a estas tecnologías y su capacidad de generar electricidad a pequeña escala cerca al punto de consumo. En este sentido, la incertidumbre en la generación de energía eléctrica puede ser manejada a través de sistemas de almacenamiento en baterías (BSS) que se han vuelto competitivos en los últimos años debido a una importante reducción de precios y son una potencial alternativa para mitigar los problemas técnicos de red asociados a la intermitencia de las renovables, proporcionando flexibilidad para almacenar/suministrar energía cuando sea necesario. Por otro lado, la capacidad de generación a bajo costo a partir de sistemas eléctricos de pequeña escala (generación distribuida o descentralizada (GD)) representa una oportunidad tanto para los clientes como para los operadores del sistema eléctrico. Es decir, los clientes pueden generar su energía, reducir su dependencia de la red y participar activamente en eventuales mercados locales de energía (MLE), mientras que el operador del sistema eléctrico puede reducir las pérdidas del sistema y aumentar la calidad del sistema eléctrico frente a fallas externas inesperadas. Sin embargo, incorporar estas estructuras y marcos operativos en las redes de distribución (RD) requiere desarrollar herramientas sofisticadas para apoyar la toma de decisiones relacionadas con la integración óptima de los recursos energéticos distribuidos (RED) y evaluar el desempeño de las nuevas RD con alta penetración de RED bajo diferentes escenarios de operación. Esta tesis aborda el desafío de la descarbonización de las redes de distribución mediante el desarrollo de algoritmos novedosos y la aplicación de diferentes técnicas de optimización a través de tres dimensiones. El primer eje aborda el dimensionamiento y localización óptimos de GD y BSS en una RD desde enfoques determinísticos y estocásticos, considerando la limitación técnica de la red, la presencia de vehículos eléctricos (VE), la capacidad de los usuarios para modificar su consumo de carga y la capacidad de GD para generar potencia reactiva para la estabilidad del voltaje. Además, se desarrolla un algoritmo novedoso para resolver los modelos determinísticos y estocásticos para múltiples escenarios proporcionando una capacidad precisa de RED que debe instalarse para disminuir la dependencia de la red externa. El segundo subtema evalúa la capacidad de la RD para enfrentar escenarios improbables como fallas en la red primaria o desastres naturales que impidan el suministro de energía, a través de un modelo determinista que modifica la topología de la RD desequilibrada en múltiples microrredes virtuales (MV) balanceadas, considerando la potencia suministrada por GD y la flexibilidad proporcionada por los dispositivos de almacenamiento y respuesta a la demanda (DR). El tercer eje aborda los esquemas emergentes de energía transactiva en RDs con alta penetración de RED a nivel residencial a través de dos enfoques estocásticos para modelar un comercio de energía Peer-to-peer (P2P). Para ello, se evalúa la capacidad de un esquema de comercialización de energía P2P para operar en diferentes mercados como el mercado diario, intradiario, de flexibilidad y de servicios complementarios, a la vez que se desarrolla un algoritmo para gestionar la información de los usuarios bajo un esquema descentralizado.Postprint (published version

    A new Bi– level production-routing-inventory model for a medicine supply chain under uncertainty

    Get PDF
    This research presents a new bi-level bi-objective production-routing-inventory model for a medi-cine supply chain. In this case, the production is executed by multi-separated producers in a multi-production line for different kinds of medicines which will be saved in stores for delivering to cus-tomers. The capacitated vehicle routing problem is considered in designing a distribution system from stores to customers. The goal of this model is to make a suitable trade-off between the customer satisfaction and the budget cost. This problem has been formulated in a bi-level form where the first objective function is the minimization of the budget during the scheduled time and the second one is the minimization of the shortage amount associated with the lost sale of medicine demands delivering to drug stores. Uncertainty is considered as a nature of the main parameters of the problem. Then the robust approach was used to handle the associated uncertainty of related parameters and the resulted problem is solved by Benders decomposition algorithm. The results indi-cate that the model make an improvement in medicine supply chain

    Benders' decomposition algorithm to solve bi-level bi-objective scheduling of aircrafts and gate assignment under uncertainty

    Get PDF
    Abstract Management and scheduling of flights and assignment of gates to aircraft play a significant role in improving the procedure of the airport, due to the growing number of flights, decreasing the flight times. This research addresses assigning and scheduling of runways and gates in the main airport simultaneously. Moreover, this research considers the unavailability of runway's constraint and the uncertain parameters relating to both areas of runway and gate assignment. The proposed model is formulated as a comprehensive bi-level bi-objective problem.The leader's objective function minimizes the total waiting time for runways and gates for all aircrafts based on their importance coefficient. Meanwhile, the total distance traveled by all passengers in the airport terminal is minimized by a follower's objective function. To solve the proposed model, the decomposition approach based on Benders' decomposition method is applied. Empirical data are used to show the validation and application of our model. A comparison shows the effectiveness of the proposed model and its significant impact on cost decreasing

    Solving crew scheduling problem in offshore supply vessels, heuristics and decomposition methods

    Get PDF
    For the efficient utilisation of resources in various transportation settings, scheduling is a significant area of research. Having crew as the main resource for operation maintenance, scheduling crew have been a powerful decision making tool for optimisation studies. This research provides a detailed real case study analysis regarding the difficulties in planning crew in maritime industry. As a special case study, this thesis researches crew scheduling in offshore supply vessels which are used for specific operations of a global scaled company in oil and gas industry deeply with modified formulations, heuristics and decomposition methods.An extended version of computational study for a simple formulation approach (Task Based Model) is applied as deeper analysis to Leggate (2016). Afterwards, more realistic approach to the same problem is revised. Following the revision, a customized and thorough computational study on the heuristic method with various settings is designed and implemented in C++. After elaborated analysis completed on the suggested models firstly, a modification on Time Windows model is presented to increase the efficacy. This modification provides a sharp decrease in upper bounds within a short time compared to the previously suggested models. Through this suggestion, more economic schedules within a short period of time are generated.Achieving high performances from the modified model, an application of a decomposition algorithm is provided. We implemented a hybrid solution of Benders Decomposition with a customized heuristic for the modified model. Although this hybrid solution does not provide high quality solutions, it evaluates the performance of possible decomposed models with potential improvements for future research. An introduction to robust crew scheduling in maritime context is also given with a description of resources of uncertainty in this concept and initial robust formulations are suggested.For the efficient utilisation of resources in various transportation settings, scheduling is a significant area of research. Having crew as the main resource for operation maintenance, scheduling crew have been a powerful decision making tool for optimisation studies. This research provides a detailed real case study analysis regarding the difficulties in planning crew in maritime industry. As a special case study, this thesis researches crew scheduling in offshore supply vessels which are used for specific operations of a global scaled company in oil and gas industry deeply with modified formulations, heuristics and decomposition methods.An extended version of computational study for a simple formulation approach (Task Based Model) is applied as deeper analysis to Leggate (2016). Afterwards, more realistic approach to the same problem is revised. Following the revision, a customized and thorough computational study on the heuristic method with various settings is designed and implemented in C++. After elaborated analysis completed on the suggested models firstly, a modification on Time Windows model is presented to increase the efficacy. This modification provides a sharp decrease in upper bounds within a short time compared to the previously suggested models. Through this suggestion, more economic schedules within a short period of time are generated.Achieving high performances from the modified model, an application of a decomposition algorithm is provided. We implemented a hybrid solution of Benders Decomposition with a customized heuristic for the modified model. Although this hybrid solution does not provide high quality solutions, it evaluates the performance of possible decomposed models with potential improvements for future research. An introduction to robust crew scheduling in maritime context is also given with a description of resources of uncertainty in this concept and initial robust formulations are suggested

    Dissertation - Preemptive Rerouting of Airline Passengers Under Uncertain Delays

    Get PDF
    An airline\u27s operational disruptions can lead to flight delays that in turn impact passengers, not only through the delay itself but also through possible missed connections. Much research has been done on crew recovery (rescheduling crews after a flight delay or cancellation), but little research has been done on passenger reaccommodation. Our goal is to design ways that passenger reaccommodation can be improved so that passengers can spend less time delayed and miss fewer connections. Since the length of a delay is often not known in advance, we consider preemptive rerouting of airline passengers before the length of the delay is known. Our goal is to reaccommodate passengers proactively as soon as it is known that a flight will be delayed instead of waiting until passengers have missed connections and to use known probabilities for the length of delay. In addition, we consider all of the affected passengers together so that we can effectively handle passengers\u27 competition for available seats. We can give certain seats to people with short connections or those connecting to international flights. When there is one delayed flight, we model the problem as a two-stage stochastic programming problem, with first-stage decisions that assign passengers initial itineraries and second-stage decisions that re-assign any passengers who are subsequently disrupted by the delay. We present a Benders decomposition approach to solving this problem. Computational results for this model are given, showing its effectiveness for reducing the length of passenger delays. When there is more than one delayed flight, we define a portfolio model which assigns passengers to portfolios that define their itineraries under all possible disruption outcomes. We focus on computational methods for solving this model
    • …
    corecore