9,593 research outputs found

    A Comparative Analysis of Ensemble Classifiers: Case Studies in Genomics

    Full text link
    The combination of multiple classifiers using ensemble methods is increasingly important for making progress in a variety of difficult prediction problems. We present a comparative analysis of several ensemble methods through two case studies in genomics, namely the prediction of genetic interactions and protein functions, to demonstrate their efficacy on real-world datasets and draw useful conclusions about their behavior. These methods include simple aggregation, meta-learning, cluster-based meta-learning, and ensemble selection using heterogeneous classifiers trained on resampled data to improve the diversity of their predictions. We present a detailed analysis of these methods across 4 genomics datasets and find the best of these methods offer statistically significant improvements over the state of the art in their respective domains. In addition, we establish a novel connection between ensemble selection and meta-learning, demonstrating how both of these disparate methods establish a balance between ensemble diversity and performance.Comment: 10 pages, 3 figures, 8 tables, to appear in Proceedings of the 2013 International Conference on Data Minin

    EC3: Combining Clustering and Classification for Ensemble Learning

    Full text link
    Classification and clustering algorithms have been proved to be successful individually in different contexts. Both of them have their own advantages and limitations. For instance, although classification algorithms are more powerful than clustering methods in predicting class labels of objects, they do not perform well when there is a lack of sufficient manually labeled reliable data. On the other hand, although clustering algorithms do not produce label information for objects, they provide supplementary constraints (e.g., if two objects are clustered together, it is more likely that the same label is assigned to both of them) that one can leverage for label prediction of a set of unknown objects. Therefore, systematic utilization of both these types of algorithms together can lead to better prediction performance. In this paper, We propose a novel algorithm, called EC3 that merges classification and clustering together in order to support both binary and multi-class classification. EC3 is based on a principled combination of multiple classification and multiple clustering methods using an optimization function. We theoretically show the convexity and optimality of the problem and solve it by block coordinate descent method. We additionally propose iEC3, a variant of EC3 that handles imbalanced training data. We perform an extensive experimental analysis by comparing EC3 and iEC3 with 14 baseline methods (7 well-known standalone classifiers, 5 ensemble classifiers, and 2 existing methods that merge classification and clustering) on 13 standard benchmark datasets. We show that our methods outperform other baselines for every single dataset, achieving at most 10% higher AUC. Moreover our methods are faster (1.21 times faster than the best baseline), more resilient to noise and class imbalance than the best baseline method.Comment: 14 pages, 7 figures, 11 table

    Large-Scale Online Semantic Indexing of Biomedical Articles via an Ensemble of Multi-Label Classification Models

    Full text link
    Background: In this paper we present the approaches and methods employed in order to deal with a large scale multi-label semantic indexing task of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge of 2014. Methods: The main contribution of this work is a multi-label ensemble method that incorporates a McNemar statistical significance test in order to validate the combination of the constituent machine learning algorithms. Some secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the BioASQ's super-set, the PubMed articles collection) and the proper adaptation of the algorithms used to deal with this challenging classification task. Results: The ensemble method we developed is compared to other approaches in experimental scenarios with subsets of the BioASQ corpus giving positive results. During the BioASQ 2014 challenge we obtained the first place during the first batch and the third in the two following batches. Our success in the BioASQ challenge proved that a fully automated machine-learning approach, which does not implement any heuristics and rule-based approaches, can be highly competitive and outperform other approaches in similar challenging contexts

    A Subband-Based SVM Front-End for Robust ASR

    Full text link
    This work proposes a novel support vector machine (SVM) based robust automatic speech recognition (ASR) front-end that operates on an ensemble of the subband components of high-dimensional acoustic waveforms. The key issues of selecting the appropriate SVM kernels for classification in frequency subbands and the combination of individual subband classifiers using ensemble methods are addressed. The proposed front-end is compared with state-of-the-art ASR front-ends in terms of robustness to additive noise and linear filtering. Experiments performed on the TIMIT phoneme classification task demonstrate the benefits of the proposed subband based SVM front-end: it outperforms the standard cepstral front-end in the presence of noise and linear filtering for signal-to-noise ratio (SNR) below 12-dB. A combination of the proposed front-end with a conventional front-end such as MFCC yields further improvements over the individual front ends across the full range of noise levels

    Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification

    Get PDF
    We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357
    • …
    corecore