412 research outputs found

    Deep Models and Shortwave Infrared Information to Detect Face Presentation Attacks

    Full text link
    This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as input. Conducted experiments show superior performance over similar models acting on either color images or on a combination of different modalities (visible, NIR, thermal and depth), as well as on a SVM-based classifier acting on SWIR image differences. Experiments have been carried on a new public and freely available database, containing a wide variety of attacks. Video sequences have been recorded thanks to several sensors resulting in 14 different streams in the visible, NIR, SWIR and thermal spectra, as well as depth data. The best proposed approach is able to almost perfectly detect all impersonation attacks while ensuring low bonafide classification errors. On the other hand, obtained results show that obfuscation attacks are more difficult to detect. We hope that the proposed database will foster research on this challenging problem. Finally, all the code and instructions to reproduce presented experiments is made available to the research community

    Face liveness detection by rPPG features and contextual patch-based CNN

    Get PDF
    Abstract. Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information. We propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, we design multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities for the representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion of the two types of features, which allow the proposed system to be generalized for detecting not only print attack and replay attack, but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods.Tiivistelmä. Kasvojen anti-spoofingilla on keskeinen rooli turvajärjestelmissä, mukaan lukien kasvojen maksujärjestelmät ja kasvojentunnistusjärjestelmät. Aiemmat tutkimukset osoittivat, että elävillä kasvoilla ja esityshyökkäyksillä on merkittäviä eroja sekä etävalopölymografiassa (rPPG) että tekstuuri-informaatiossa, ehdotamme yleistettyä menetelmää, jossa hyödynnetään sekä rPPG: tä että tekstuuriominaisuuksia kasvojen anti-spoofing -tehtävässä. Ensinnäkin rPPG-informaation esittämiseksi on suunniteltu monivaiheisia pitkän aikavälin tilastollisia spektrisiä (MS-LTSS) ominaisuuksia, joissa on muunneltavissa olevat granulariteetit. Toiseksi, kontekstuaalista patch-pohjaista konvoluutioverkkoa (CP-CNN) käytetään globaalin paikallisen ja monitasoisen syvään tekstuuriominaisuuksiin samanaikaisesti. Lopuksi, painoarvostusstrategiaa käytetään päätöksentekotason fuusioon, joka auttaa yleistämään menetelmää paitsi hyökkäys- ja toistoiskuille, mutta myös peittää hyökkäyksen. Kattavat kokeet suoritettiin viidellä tietokannalla, nimittäin 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD ja OULU-NPU, ehdotetun menetelmän parempien tulosten osoittamiseksi verrattuna uusimpiin menetelmiin

    Análise de propriedades intrínsecas e extrínsecas de amostras biométricas para detecção de ataques de apresentação

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Hélio PedriniTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os recentes avanços nas áreas de pesquisa em biometria, forense e segurança da informação trouxeram importantes melhorias na eficácia dos sistemas de reconhecimento biométricos. No entanto, um desafio ainda em aberto é a vulnerabilidade de tais sistemas contra ataques de apresentação, nos quais os usuários impostores criam amostras sintéticas, a partir das informações biométricas originais de um usuário legítimo, e as apresentam ao sensor de aquisição procurando se autenticar como um usuário válido. Dependendo da modalidade biométrica, os tipos de ataque variam de acordo com o tipo de material usado para construir as amostras sintéticas. Por exemplo, em biometria facial, uma tentativa de ataque é caracterizada quando um usuário impostor apresenta ao sensor de aquisição uma fotografia, um vídeo digital ou uma máscara 3D com as informações faciais de um usuário-alvo. Em sistemas de biometria baseados em íris, os ataques de apresentação podem ser realizados com fotografias impressas ou com lentes de contato contendo os padrões de íris de um usuário-alvo ou mesmo padrões de textura sintéticas. Nos sistemas biométricos de impressão digital, os usuários impostores podem enganar o sensor biométrico usando réplicas dos padrões de impressão digital construídas com materiais sintéticos, como látex, massa de modelar, silicone, entre outros. Esta pesquisa teve como objetivo o desenvolvimento de soluções para detecção de ataques de apresentação considerando os sistemas biométricos faciais, de íris e de impressão digital. As linhas de investigação apresentadas nesta tese incluem o desenvolvimento de representações baseadas nas informações espaciais, temporais e espectrais da assinatura de ruído; em propriedades intrínsecas das amostras biométricas (e.g., mapas de albedo, de reflectância e de profundidade) e em técnicas de aprendizagem supervisionada de características. Os principais resultados e contribuições apresentadas nesta tese incluem: a criação de um grande conjunto de dados publicamente disponível contendo aproximadamente 17K videos de simulações de ataques de apresentações e de acessos genuínos em um sistema biométrico facial, os quais foram coletados com a autorização do Comitê de Ética em Pesquisa da Unicamp; o desenvolvimento de novas abordagens para modelagem e análise de propriedades extrínsecas das amostras biométricas relacionadas aos artefatos que são adicionados durante a fabricação das amostras sintéticas e sua captura pelo sensor de aquisição, cujos resultados de desempenho foram superiores a diversos métodos propostos na literature que se utilizam de métodos tradicionais de análise de images (e.g., análise de textura); a investigação de uma abordagem baseada na análise de propriedades intrínsecas das faces, estimadas a partir da informação de sombras presentes em sua superfície; e, por fim, a investigação de diferentes abordagens baseadas em redes neurais convolucionais para o aprendizado automático de características relacionadas ao nosso problema, cujos resultados foram superiores ou competitivos aos métodos considerados estado da arte para as diferentes modalidades biométricas consideradas nesta tese. A pesquisa também considerou o projeto de eficientes redes neurais com arquiteturas rasas capazes de aprender características relacionadas ao nosso problema a partir de pequenos conjuntos de dados disponíveis para o desenvolvimento e a avaliação de soluções para a detecção de ataques de apresentaçãoAbstract: Recent advances in biometrics, information forensics, and security have improved the recognition effectiveness of biometric systems. However, an ever-growing challenge is the vulnerability of such systems against presentation attacks, in which impostor users create synthetic samples from the original biometric information of a legitimate user and show them to the acquisition sensor seeking to authenticate themselves as legitimate users. Depending on the trait used by the biometric authentication, the attack types vary with the type of material used to build the synthetic samples. For instance, in facial biometric systems, an attempted attack is characterized by the type of material the impostor uses such as a photograph, a digital video, or a 3D mask with the facial information of a target user. In iris-based biometrics, presentation attacks can be accomplished with printout photographs or with contact lenses containing the iris patterns of a target user or even synthetic texture patterns. In fingerprint biometric systems, impostor users can deceive the authentication process using replicas of the fingerprint patterns built with synthetic materials such as latex, play-doh, silicone, among others. This research aimed at developing presentation attack detection (PAD) solutions whose objective is to detect attempted attacks considering different attack types, in each modality. The lines of investigation presented in this thesis aimed at devising and developing representations based on spatial, temporal and spectral information from noise signature, intrinsic properties of the biometric data (e.g., albedo, reflectance, and depth maps), and supervised feature learning techniques, taking into account different testing scenarios including cross-sensor, intra-, and inter-dataset scenarios. The main findings and contributions presented in this thesis include: the creation of a large and publicly available benchmark containing 17K videos of presentation attacks and bona-fide presentations simulations in a facial biometric system, whose collect were formally authorized by the Research Ethics Committee at Unicamp; the development of novel approaches to modeling and analysis of extrinsic properties of biometric samples related to artifacts added during the manufacturing of the synthetic samples and their capture by the acquisition sensor, whose results were superior to several approaches published in the literature that use traditional methods for image analysis (e.g., texture-based analysis); the investigation of an approach based on the analysis of intrinsic properties of faces, estimated from the information of shadows present on their surface; and the investigation of different approaches to automatically learning representations related to our problem, whose results were superior or competitive to state-of-the-art methods for the biometric modalities considered in this thesis. We also considered in this research the design of efficient neural networks with shallow architectures capable of learning characteristics related to our problem from small sets of data available to develop and evaluate PAD solutionsDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140069/2016-0 CNPq, 142110/2017-5CAPESCNP

    Bridging the Spoof Gap: A Unified Parallel Aggregation Network for Voice Presentation Attacks

    Full text link
    Automatic Speaker Verification (ASV) systems are increasingly used in voice bio-metrics for user authentication but are susceptible to logical and physical spoofing attacks, posing security risks. Existing research mainly tackles logical or physical attacks separately, leading to a gap in unified spoofing detection. Moreover, when existing systems attempt to handle both types of attacks, they often exhibit significant disparities in the Equal Error Rate (EER). To bridge this gap, we present a Parallel Stacked Aggregation Network that processes raw audio. Our approach employs a split-transform-aggregation technique, dividing utterances into convolved representations, applying transformations, and aggregating the results to identify logical (LA) and physical (PA) spoofing attacks. Evaluation of the ASVspoof-2019 and VSDC datasets shows the effectiveness of the proposed system. It outperforms state-of-the-art solutions, displaying reduced EER disparities and superior performance in detecting spoofing attacks. This highlights the proposed method's generalizability and superiority. In a world increasingly reliant on voice-based security, our unified spoofing detection system provides a robust defense against a spectrum of voice spoofing attacks, safeguarding ASVs and user data effectively

    DoubleEcho: Mitigating Context-Manipulation Attacks in Copresence Verification

    Full text link
    Copresence verification based on context can improve usability and strengthen security of many authentication and access control systems. By sensing and comparing their surroundings, two or more devices can tell whether they are copresent and use this information to make access control decisions. To the best of our knowledge, all context-based copresence verification mechanisms to date are susceptible to context-manipulation attacks. In such attacks, a distributed adversary replicates the same context at the (different) locations of the victim devices, and induces them to believe that they are copresent. In this paper we propose DoubleEcho, a context-based copresence verification technique that leverages acoustic Room Impulse Response (RIR) to mitigate context-manipulation attacks. In DoubleEcho, one device emits a wide-band audible chirp and all participating devices record reflections of the chirp from the surrounding environment. Since RIR is, by its very nature, dependent on the physical surroundings, it constitutes a unique location signature that is hard for an adversary to replicate. We evaluate DoubleEcho by collecting RIR data with various mobile devices and in a range of different locations. We show that DoubleEcho mitigates context-manipulation attacks whereas all other approaches to date are entirely vulnerable to such attacks. DoubleEcho detects copresence (or lack thereof) in roughly 2 seconds and works on commodity devices

    Authentication of Satellite Navigation Signals by Wiretap Coding and Artificial Noise

    Full text link
    In order to combat the spoofing of global navigation satellite system (GNSS) signals we propose a novel approach for satellite signal authentication based on information-theoretic security. In particular we superimpose to the navigation signal an authentication signal containing a secret message corrupted by artificial noise (AN), still transmitted by the satellite. We impose the following properties: a) the authentication signal is synchronous with the navigation signal, b) the authentication signal is orthogonal to the navigation signal and c) the secret message is undecodable by the attacker due to the presence of the AN. The legitimate receiver synchronizes with the navigation signal and stores the samples of the authentication signal with the same synchronization. After the transmission of the authentication signal, through a separate public asynchronous authenticated channel (e.g., a secure Internet connection) additional information is made public allowing the receiver to a) decode the secret message, thus overcoming the effects of AN, and b) verify the secret message. We assess the performance of the proposed scheme by the analysis of both the secrecy capacity of the authentication message and the attack success probability, under various attack scenarios. A comparison with existing approaches shows the effectiveness of the proposed scheme

    Secure Automatic Speaker Verification Systems

    Get PDF
    The growing number of voice-enabled devices and applications consider automatic speaker verification (ASV) a fundamental component. However, maximum outreach for ASV in critical domains e.g., financial services and health care, is not possible unless we overcome security breaches caused by voice cloning, and replayed audios collectively known as the spoofing attacks. The audio spoofing attacks over ASV systems on one hand strictly limit the usability of voice-enabled applications; and on the other hand, the counterfeiter also remains untraceable. Therefore, to overcome these vulnerabilities, a secure ASV (SASV) system is presented in this dissertation. The proposed SASV system is based on the concept of novel sign modified acoustic local ternary pattern (sm-ALTP) features and asymmetric bagging-based classifier-ensemble. The proposed audio representation approach clusters the high and low-frequency components in audio frames by normally distributing frequency components against a convex function. Then, the neighborhood statistics are applied to capture the user specific vocal tract information. This information is then utilized by the classifier ensemble that is based on the concept of weighted normalized voting rule to detect various spoofing attacks. Contrary to the existing ASV systems, the proposed SASV system not only detects the conventional spoofing attacks (i.e. voice cloning, and replays), but also the new attacks that are still unexplored by the research community and a requirement of the future. In this regard, a concept of cloned replays is presented in this dissertation, where, replayed audios contains the microphone characteristics as well as the voice cloning artifacts. This depicts the scenario when voice cloning is applied in real-time. The voice cloning artifacts suppresses the microphone characteristics thus fails replay detection modules and similarly with the amalgamation of microphone characteristics the voice cloning detection gets deceived. Furthermore, the proposed scheme can be utilized to obtain a possible clue against the counterfeiter through voice cloning algorithm detection module that is also a novel concept proposed in this dissertation. The voice cloning algorithm detection module determines the voice cloning algorithm used to generate the fake audios. Overall, the proposed SASV system simultaneously verifies the bonafide speakers and detects the voice cloning attack, cloning algorithm used to synthesize cloned audio (in the defined settings), and voice-replay attacks over the ASVspoof 2019 dataset. In addition, the proposed method detects the voice replay and cloned voice replay attacks over the VSDC dataset. Rigorous experimentation against state-of-the-art approaches also confirms the robustness of the proposed research
    corecore