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CHAPTER 1 INTRODUCTION

With the emergence of smart speakers such as Amazon Alexa, Google Home, Google

Assistant etc., and Internet of Things (IoT), many voice-enabled technologies are becom-

ing a main part of our lives. The voice-enabled technologies are used in smart homes,

consumer electronics, automotive industry, e-commerce, etc. On the one hand, these tech-

nologies have eased consumers/customers’ lives and on the other hand they increased

the revenue for the businesses. For instance, due to ease of use through the voice-based

searching product, searches became more targeted thus, contributing to results in the form

of more profit for businesses. In the meantime, using these devices to store very private

and sensitive information has placed them under direct threat and made them an ideal

target for attackers as well. The voice-based technologies authenticate users through the

voice signatures by capturing the unique vocal profile of the users [45].

The value of the global voice biometrics market is expected to reach $3.91 billion by

2026 [45]. All voice-biometric applications such as phone banking, voice-enabled de-

vices, credit card usage, and multimedia forensics, etc. consider the automatic speaker

verification (ASV) as a mandatory component of their applications. While speaker iden-

tification systems identify the speaker’s voice amongst a dataset of other speaker voices,

automatic speaker verification systems verify the speaker’s voice by matching it to one

voice print [45]. However, these systems are in continuous threat due to various audio

spoofing attacks i.e., audio synthesis (voice cloning), voice replays, voice morphing, and

voice mimicry attacks [69].

The ASV systems need to be robust against any intentional attacks that can either
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be launched through voice cloning (logical access or LA) or replays (physical access or

PA) [86]. Attacks through text-to-speech synthesis [69] and voice conversion [9, 16] are

classified as voice cloning attacks. Whereas, voice replay is used as a common mean for

impersonation [21]. Voice cloning is the process of generating the voice of a target user

by using artificial intelligence algorithms (i.e., machine learning and deep learning mod-

els) through the pre-recorded voice samples. Afterwards, the text-to-speech conversion is

performed to synthesize the voice of the target user to read any text. Voice conversion is

to modify the acoustical signal of anyone’s voice in the form of the target person’s voice by

transforming the source signal properties. The converted voice appears as if it was spoken

by the target speaker and it can make the ASV systems vulnerable to spoofing attacks [24].

A replay attack is to use a prerecorded speech of the target speaker to deceive the ASV

systems to penetrate in the system [24,56]. As the voice samples belong to the real target

speaker, therefore, the ASV systems are unable to distinguish them as a spoofing attack.

However, the microphone characteristics and microphone artifacts can be identified to

determine the sample as a genuine or replayed voice. Thus, due to the spoofing attacks

the maximum application benefits of the ASV systems are initially far from reach.

Several solutions for combating voice spoofing attacks have been proposed in this

research. In this context, three ASVspoof community-led challenges were established :

ASVSpoof2015, ASVSpoof2017 and ASVSpoof2019 in order to encourage the develop-

ment of countermeasures to defend ASV systems against such attacks [71]. The proposed

defenses systems have been designed to integrate countermeasures with ASV in an embed-

ded manner, this can be accomplished by placing the step of the countermeasure followed

by ASV, or vise versa, or in parallel [35]. Spoofing detection was carried out in all of
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these systems using various characteristics and classifier integration, with spoofing detec-

tion being treated as a binary classification issue [85]. These methods begin by generating

audio representations using various combinations of features. The binary classifiers then

determine if the input audio is bonafide or spoofed.

1.1 Problem Statement

The spoofing detection approaches rely on classification outcome that usually comes

through two different modules i.e. voice cloning detection, and replay attack detection. In

this regard, voice cloning detection modules ignore altogether the channel artifacts that

are natural to come in real-time settings and can cause the spoofing detection a failed

task. Similarly, the voice replay detection modules can also be deceived by playing a

cloned audio before a microphone in real time. In this regard, the second-order non-

linearity will not become the part of replayed voice, thus voice replay detection will also

fail. Moreover, the heterogeneous design of spoofing detection modules is also not effective

as these modules cannot stand alone to prevent spoofing attacks. Additionally, there is no

research effort has been done so far to obtain the clues about a potential counterfeiter.

1.1.1 Research Questions

In order to overcome the above-mentioned problems, following research questions are

explored in this dissertation:

1. Can a comprehensive framework based on a single model be developed to detect

various types of spoofing attacks?

2. In case of LA attacks, is it possible to analyze the voice signal to obtain the clue about

the underlying voice cloning algorithms?
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3. If voice cloning algorithms are detectable then can this information be utilized for

the counterfeiter identification?

4. Can a single model based framework be developed in a way to perform reliably in

the real-time environments in presence of enhanced attack vectors?

1.2 Research Objectives

In this dissertation, the research work was organized to address following objectives:

• Development of a comprehensive anti-spoofing framework - A comprehensive

anti-spoofing framework based on a single model is required to address the require-

ments of a real-time ASV system. The real-time ASV system serves as a backbone of

many voice-enabled devices and critical applications. As conventional anti-spoofing

approaches ignores the dynamics of a real attack, consequently, results in form of an

unreliable anti-spoofing system, which may fail during application.

• Audio representation through novel feature extraction approach- A powerful fea-

ture extraction approach for audio representation capable of capturing speaker as

well as attack specific attributes ensures a reliable ASV system.• Attaining a more

secure and reliable ASV system requires a powerful and robust feature extraction

approach competent in seizing the distinct attributes of both authentic speaker and

spoofing attacks. Therefore, in this research a novel feature extraction approach was

emphasized that reliably discriminates between bonafide and spoofed cases.

• Enhancement of the attack vector- For a robust anti-spoofing system, the attack

vectors is further grown as per the requirements of a real-time system. In this re-
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gard, cloned replay attack detection is described in this research. The cloned replay

attack detection considers real scenarios when cloned voices are passed through a

microphone instead of transmitting them directly to the ASV system. The replay de-

tection module may consider such audios as bonafide as they will not contain the

second order non-linearity consequently comes through the harmonic distortions by

playing a recorded audio against a microphone and serves a clue of a replay attack.

Moreover, as second order non linearity traces are different than the cloning algo-

rithm artifacts, therefore, the cloning detection module may not detect them.

• Voice cloning algorithm detection- The aim of the algorithm of the voice cloning

detection is to analyze how artifacts are induced in the cloned audio signals. Later

on this information can be utilized to identify commercial solutions which serves as

a common mean for cloned audio generation. Through this discovery counterfeiter

can be identified at least in the cases where a commercial solution is used for fake

audio generation.

To fulfill these objectives in a way to overcome security breaches, vulnerabilities, and

develop a robust and secure ASV system, a novel sign-modified acoustic local ternary pat-

tern (sm-ALTP) feature extraction is developed and used along with asymmetric bagging

based on SVM classifier that ensembles with enhanced attack vector. The machine learning

algorithms were utilized to automatically secure the ASV system by only allowing identi-

fied voices and authentic speaker identities and protect the system from probable unautho-

rized intrusions. Features extracted from speaker data are conceived by these algorithms

to be used for classifier training [48].
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1.3 Research Contributions

The focus of this research work was to develop a secure ASV system that is robust

enough against the various attacks mentioned above. The intent of this study was to intro-

duce a novel feature extraction approach, i.e., sm-ALTP features for audio representation

and to also improve the existing classification approaches. This study aimed to analyze the

signal properties to identify the artifact traces and to capture them by observing the artifact

patterns and signal properties in terms of local neighborhood. Moreover, we also aimed

to analyze the vocal tract profiles of different speakers; and based on this information, the

novel sm-ALTP feature extraction approach were developed. This sm-ALTP feature extrac-

tion is a development and an extension of the ALTP feature extraction that allows seizing

the user’s speech vocal features. In addition, the sm-ALTP uses local correlation scores

to discover signal non-linearity that exists as a consequence of voice cloning or recording

artifacts.

For speaker verification, and attack detection, robust classification models were devel-

oped. The support vector machine (SVM) classifier ensemble is proposed in this study

to determine the vitality of the voice. The SVM-based classifier is a powerful technique

for solving binary classification problems. The SVM-based classifier ensemble was created

using across the feature repository, asymmetric bagging and random subspace sampling

to generate a stable classifier by integrating the outputs of a group of fragile classifiers

using the weighted normalized voting rule (wNVR). The new created model was used

for speaker verification to detect and track down attacks of voice cloning, cloning al-

gorithm employed to perform an attack, voice replays-, and cloned voice replay attacks
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(also a novel concept proposed in this study) using the ASVSpoof 2019 dataset, and voice

spoofing detection corpus (VSDC) via rigorous experimentation over standard benchmark

datasets i.e., ASVspoof-2019, and voice spoofing corpus against state-of-the-art methods,

and effectiveness of the proposed approach were justified. Additionally, this research also

aimed to improve the effectiveness and reliability of the ASV system by identifying the

scanerios and reasons that cause ASV systems to fail. Moreover, dimensionality reduction

approaches and feature optimization approaches were explored to develop a reliable ASV

system.

Behavior analysis of voice cloning algorithm was performed through algorithm detec-

tion to fortify countermeasures designed to offset and prevent the commercial +cloned

audios. Through algorithm detection, it was clearly possible to classify and recognize

the culprits based upon the severity of the attack. Furthermore, the proposed solution

detects cloned replay attacks, which is a unique idea introduced in this research. By

putting synthetic speech samples in front of the microphone, these cloned replays con-

sist of recorded voice samples. Some applications, such as voice-controlled devices, are

vulnerable to cloned replays, such application include: Google Home, Amazon Alexa, and

Apple Siri (Baumann et al., 2021). In cloned replays, the attacker uses a recorded voice

for impersonation without possessing the speaker’s prerecorded voice samples. The ASV

system proposed in this study was strengthened through model evaluation over the en-

hanced attack vector to effectively counter all possible security breaches. In summary, this

study involves:

• Creating a secure ASV system capable of counteracting a multitude of audio spoofing
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attacks.

• Reinforcing the ASV systems by broadening the attack vector through both cloning

algorithm and cloned replay attack detections.

• Developing a novel feature extraction model for audio representation competent in

seizing the distinct attributes of both authentic speaker and spoofing attacks.

• The outcome of this work has been published in one of the top IEEE journals [?].

1.4 Thesis Organization

Rest of the thesis is organized as follows:

Chapter 2—Background and Related Work: In chapter 2, we first provided the re-

quired background on ASV, which details about the ASV spoofing challenges, various fea-

ture extraction approaches, application of machine learning in speaker recognition, and

ensemble based classification. Afterwards, the relevant literature on ASV spoofing detec-

tion is provided by describing the strengths and weaknesses of the existing approaches.

The chapter is finally concluded by providing the details about the common limitations of

the existing approaches. These limitations are then addressed by the proposed method.

Chapter 3—Architecture of Secure Automatic Speaker Verification System (SASV):

In this chapter architecture of the proposed SASV system is presented. The chapter starts

by first highlighting the aims of the SASV system. Afterwards, overview of the SASV frame-

work is presented. The framework overview describes a practical scenario in which a

spoofing attack can be launched and how our method will counter that attack. After the

framework overview, operational contributions are discussed in which various novelties
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that are the attribute of the proposed SASV system are discussed. Finally the chapter

describes the processing details of the proposed SASV system.

Chapter 4—Proposed Method: This chapter starts with the discussion of the baseline

ALTP features. The ALTP features suffers from several limitations that make them unre-

liable for the countermeasure development task. These limitations are described in the

next subsection. After establishing that the ALTP features are not suitable for the ASV and

countermeasure development task, proposed sm-ALTP features are described. Moreover,

the justification about sm-ALTP as a reliable feature extraction approach is also provided

here. After feature extraction details, the proposed ensemble-based classifier committee

learning approach is described. The chapter concludes on how the proposed approach

overcomes the limitations of the existing state-of-the-art approaches.

Chapter 5—Experiments and Results: This chapter provides the experimentation de-

tails that were carried out to prove the reliability of the proposed SASV system against the

standard approaches. The chapter first provides the details of the datasets used for per-

formance evaluation purposes. Afterwards, conventional attacks as well as the advanced

attacks are analyzed. Through rigorous experimentation against standard approaches it

is proved that the proposed method outperforms most of the approaches. Furthermore,

amongst 74 teams participated in ASVspoof-2019 challenge, our method ranks amongst

top 4 teams.

Chapter 6—Conclusion and Future Work: This is the final chapter of the dissertation,

where our research findings and future directions are described.
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CHAPTER 2 BACKGROUND AND LITERATURE REVIEW

2.1 Automatic Speaker Verification Systems

The need to verify the identity of the speaker for security issues became mandatory and

eminent. Accordingly, speaker verification has been broadly utilized and implemented in

many control system applications such as smart phone fraud prevention, telephone bank-

ing, and computer login [48]. The duty of the speaker verification is to determine whether

the claimed identity of the speaker matches that of a specific speaker model - voice print -

validated by the system [85], [48]. Voice print depends mainly on the special physical and

learned characteristics of the speaker’s unique type of speech that differentiate one speaker

from another. The physical component is distinguished by the shape of the vocal tract that

include the organs responsible for creating the speech. The learning component include

the speaker’s dialect, the speed of speaking, and the prosodic features. Speaker verification

can be achieved through speech signal analysis, speaker features and pattern recognition

algorithm. For possible verification, the users are required to store their voice prints to be

used later in the speaker verification process. The automatic speaker verification system

is capable of analyzing the speech signal produced from a microphone to allow the dis-

covery of the speaker’s identity and whether to reject or accept their claim [?, ?, 15]. The

use of the ASV is broken down into two categories, text-dependent and text-independent.

Mainly, authentication systems utilize text-dependent verification by allowing the speakers

to use a ready-made text to record their voice. However, text-independent verification is

appropriate for use in surveillance activities and it does not depend on a previously de-

fined text. The ASV is based on using various technologies such as the Gaussian Mixture
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Model (GMM), and Hidden Markov Model (HMM), the SVM and Artificial Neural Network

(ANN). In addition, the feature extraction methods used include Mel-Frequency Cepstral

Coefficients (MFCC), Linear Predictive Cepstral Coefficients (LPCC), and Perceptual Linear

Predictive (PLP) [50].

2.2 ASV Spoofing Challenge

While the ASV systems are crucial for speaker’s identity verification on many appli-

cations and should be reliable, they are vulnerable to the threat of spoofing. Spoofing

diminishes confidence and gives advantage to illegitimate intervention. Thus, it jeopar-

dizes credibility by not allowing a user to differentiate between an authentic and unau-

thentic voice. Accordingly, it became obligatory to adopt reliable countermeasures for

detecting and halting such unwarranted and unjustified access [79]. As previously men-

tioned, there are two types of intentional attacks or spoofing threats the logical access (LA)

through speech synthesis [18,69] and voice conversion [4,5,7] and the physical access (PA)

through voice replay [18,21] and impersonation [18,78]. A study was conducted to detect

the vulnerability of the ASV system to be attacked by speech synthesis through generating

synthetic speech using HMM-based synthesizer. In this study two automated speaker ver-

ification systems, Gaussian Mixture Model-Universal Background Model (GMMUBM) and

support vector machine (SVM) using Gaussian supervectors were evaluated. Both systems

have shown a very low equal error rate at the presence of synthetic speech. GMM-based

synthetic speech classifier (SSC) was also used to detect synthetic speech based on the rel-

ative phase shift features. The relative phase shift was used to eliminate the linear phase

component and allow the phase structure to be easily clarified. This method could detect
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synthetic speech up to 88% while 4.2% of the bonafide speech was incorrectly classified

as synthetic [21]. Another study addressed the threat of voice conversion to automatic

speaker verification (ASV) systems to overcome this threat and to enhance the security of

ASV. The features derived by the phase spectrum in speech perception were used in the

experiment under three different training situations. In the First situation, only GMM-

based converted speech data are available, so the natural speech data was not presented

in this phase. In the second situation, only unit-selection based converted speech data

are presented. The third situation had natural speech data to train the converted speech

model. Using the features derived from the phase spectrum showed a better performance

comparing to Mel frequency central coefficients (MFCCs) features. The equal error rate

(EER) was reduced from 20.20% of MFCCs to 2.35% in synthesis/converted speech detec-

tion [78]. To fight and go up against the spread of this threat, researchers and experts used

their expertise and effort to find reliable solutions and develop countermeasures capable of

identifying and classifying the spoofed speech of unauthorized users and distinguishing it

from genuine speech of authorized users [79]. The sequential ASVspoof challenge editions

were intended to find the best error free spoofing countermeasures. These editions intend

to provide countermeasures through the effort of gathering and disseminating standard

datasets involving a group of spoofing attacks with a multitude and multifold algorithms

and a chain of well-studied evaluations [79]. For example, the ASVspoof 2015 focused

on speech synthesis and voice conversion and the ASVspoof 2017 focused on the replay

speech. However, ASVspoof 2019 was able to deal with all these spoofing threats and

separately dealing with logical access (LA) and physical access (PA) [71].
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2.2.1 ASVspoof 2015

ASVspoof 2015 was the first spoofing countermeasure of the series of the ASVspoof

challenges that was designed to only detect spoofed speech in a way to reduce entry costs

and optimize participation. Participation was encouraged to verify this countermeasure by

developing detection algorithms and making yielding outcomes of standard dataset and

protocol freely accessable [79]. To evaluate the ASVspoof 2015 unmodified, noise free

spoofed speech and genuine speech were used from 106 participants. Voice conversion and

speech synthesis spoofing algorithms were used to create spoofed speech. The ASVspoof

2015 dataset was divided into three subdivisions that include: training, development, and

evaluation [79].

Several studies have used the development and evaluation datasets to evaluate various

systems. For example, [59] performed experiments on ASVspoof 2015 using 19 speech fea-

tures of voice conversion and speech synthesis spoofing. The performance of these features

was evaluated using two classifiers: the Gaussian mixture model (GMM) and the support

vector machine (SVM). [59]. Another study by [5] was conducted using the ASVspoof

2015 challenge evaluation and development test dataset. The spoofing attack detection

model used in this study employed a system that consisted of amplitude, phase, the linear

prediction residual, and combined amplitude - phase-based. In addition, various features

were used in this experiment that include Mel-frequency cepstral coefficients (MFCC),

product spectrum-based cepstral coefficients, modified group delay cepstral coefficients,

weighted linear prediction group delay cepstral coefficients, the linear prediction resid-

ual cepstral coefficients, cosine normalized phase-based cepstral features (CNPCC), and
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a combination of MFCC-CNPCC [5]. The Gaussian Mixture Model (GMM) classifier was

used to differentiate bonafide and spoofed speech signals. The performance of using the

different features showed that the PS-MFCC and MFCC outperformed the other models on

unseen with EER the average equal error rate (EER) of 0.041% on seen spoofing attacks,

5.347% on unseen spoofing attacks, and 2.69% on unseen and seen spoofing attacks [5].

Moreover, an experiment to evaluate the Speech Technology Center (STC) systems us-

ing ASVspoof Challenge 2015 was conducted by examining various acoustic feature spaces.

The aim was to build an effective model for detecting unknown spoofing attacks. The sys-

tems consist of three main components i.e. Acoustic feature extractor, TV i-vector extractor,

and classifiers. For feature extraction, different methods were investigated to find the most

reliable and robust countermeasures against spoofing attacks. The molar frequency cep-

stral coefficient (MFCC) features, Mel-Frequency Principal Coefficients (MFPC) features,

the cos-phase features extracted from phase spectrum obtained by Fourier Transform and

features based on applying the multiresolution wavelet transform were investigated [51].

The standard TV-JFA approach for probability modeling in spoofing detection systems was

used. The linear support vector machine (SVM) classifier with a linear kernel and nonlin-

ear Deep Belief Network (DBN) classifier with softmax output units and stochastic binary

hidden units were used and their performances were compared. The fused TV systems

with the combination of feature extractors based on SVM and DBN classifiers showed that

the SVM-based system provided a better result than the DBN-based system with EER of

0.03% on the development dataset and on the evaluation dataset was 1.965% EER for all

spoofing attacks [51].
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2.2.2 ASVspoof 2017

ASVspoof 2017 was the second spoofing countermeasure designed to detect replay

speech attacks. Detection of replay speech can be troublesome if associated with inconsis-

tent and erratic quality of the replay attack and probably deceitfully recorded and collected

speech that may be twisted with noise or other additives. The identification of these at-

tacks could be constricted to a channel or background noise obstacle. However, high-level

quality speech recordings with soft acoustic surroundings can be recognized as genuine.

In addition, any genuine digital recordings that are copied and implanted into the ASV

system can hardly be detected. While speech synthesis and voice conversion attacks are

mostly performed by an experienced person, replay attacks can be performed with the

least expertise possible by the means of a recording device. Accordingly, it was important

to develop an effective replay attack countermeasure such as the ASVspoof 2017 capable

of evaluating the drawbacks in replay threat detection and enhancing replay attack coun-

termeasure development [36]. The ASVspoof 2017 countermeasure was utilized by [9]

for constructing a replay attack detection system based on the blind estimation of the

magnitude of channel responses. The model used a Gaussian mixture model (GMM) of

RASTA filtered Mel-Frequency cepstral Coefficients (MFCCs) that trained on clean speech

to predict the log-spectrum average of the clean speech signal. The predicted log-spectrum

average of the clean signal was subtracted from the log-spectrum of the observed signal

to obtain the magnitude response of the channel to estimate variations in the spectrum

because the replay attack signal could be affected by different factors e.g. environment,

recording device, and playback device. In this experiment, the TIMIT dataset was used for
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training the log-spectrum average of the clean signal and ASVspoof 2017 challenge dataset

was used during Automatic Speaker Verification Spoofing and Countermeasures [9]. More-

over, in this study, principal component analysis (PCA) was also utilized for dimensionality

reduction which yields to the improvement of the system performance. A GMM classifier

was used to distinguish between bonafide speech and spoofed speech. This approach was

compared with two different benchmarks. These are the discrete Fourier transform power

spectral (DFTspec) and the constant Q cepstral coefficients (CQCCs). This system outper-

formed the two methods with an equal error rate (EER) of 6.87% when testing on the

development dataset and EER of 11.28% on the evaluation set [9].

2.2.3 ASVspoof 2019

The ASVspoof 2019 is the third version of the countermeasure development process to

secure and safeguard the ASV systems from spoofing attacks. This new edition deals with

logical access (LA) involving text-to-speech synthesis and voice conversion attacks as well

as physical access (PA) involving replay spoofing attacks. The ASVspoof 2019 challenge

embraces the tandem decision cost function (t-DCF) as a cost-based evaluation metric to

certify that the attained scores and ranks credit the comparative effect of the spoofing

attacks and countermeasures on ASV reliability and robustness [71]. According to [18],

it was found that some models on the physical access dataset surpass the performance

of other models, because unauthorized recorded replay speech was detected to have pro-

longed periods of silence than its authorized counterpart. Difficulty is experienced in the

duty of physical access after eliminating such models and the t-DCF of the optimal model

increases from 0.1672 to 0.5018 with an increase in the equal error rate (EER) from 5.98%

to 19.8% regarding the development dataset [18].
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A study was conducted to depict the outcomes of the ASVspoof database, protocols,

and challenge through utilizing the effect of the LA and PA scenarios on the performance

of ASV. The authors found that the detection of text-to-speech synthesis and voice conver-

sion attacks is possible if more than one classifier is used in the countermeasure. Evalu-

ating and controlling the replay speech threat and its countermeasure was possible using

simulation. The simulation reflects on some factors such as the quality of the replay audio

device, changes in echo time and room size, and the physical difference between gen-

uine speakers and suspicious recordings on one side and the speakers and the microphone

of the ASV system on the other side. ASVspoof 2019 was proven to achieve great suc-

cess [71]. Another study was conducted to address the ASVspoof 2019 challenge for both

physical and logical access scenarios for ASV. To counter the physical access (PA) attacks

i.e. voice replays, two VGG networks were fused and trained over the power spectrogram,

and constant Q-transform (CQT) features. Similarly, for logical access (LA) attacks i.e.

voice conversion, and voice synthesis, the VGG network was fused with the SincNet archi-

tecture and raw audio files were used as inputs. For PA the results were good where the

model got 86% improvement as compared to the baseline method. The primary reason for

the PA attack detection is that the replays introduce the nonlinearities and the model was

good to capture those nonlinearities. Whereas, in the case of LA, the model significantly

failed to discriminate against the synthetic audios generated through the neural Waveform

based synthetic audio generation algorithms [86].
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2.3 Machine learning and Speech recognition

Human voice is unique and no two persons sound the same. Voice variations among

speakers depend on three aspects: 1. Speaking style such as the accent of the speaker,

2. The unique vocal tract shape and vocal cords of each speaker, and 3. The method

used by the speaker to convey a certain message. The speaker uses a large number of

words, phrases, and syntactic sentence structures that are difficult to count or control

in an experiment. The automatic speaker recognition systems can only use words and

phrases to inspect the acoustic properties of a speaker’s signal [25]. The two main roles

of speech recognition are to verify and identify the speaker. This is achieved through

a task similar to the brain’s function which is the capability of the recognition system

to accept speech signals, recognize and identify the speaker and remember the speaker

for future recognition. The process of speech recognition starts after receiving a speech

by performing three tasks which are: acoustic processing, feature extraction, and them

recognizing the speaker [6]. To verify a speaker is to ascertain that the heard voice belongs

to a special enrolled speaker and in this case, the speaker has to claim an identity which is

validated by the system. To identify a speaker is to link an unspecified voice to one of the

speakers in the enrolled group and in this case a voice sample is provided by the speaker

without the need for a claimed identity. The system will then specify the speaker related

to the voice sample from an identified group of enrolled speakers [25].

Both automatic speech recognition and machine learning paradigms affect each other.

Studies demonstrate that automatic speech recognition researchers tend to use machine

learning to support theoretical results with mathematical calculation and applications
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[23]. Machine learning approaches allow controlling huge speech databases to handle

variations with high quality details and improve performance. Thus, machine learning is

vital for developing the automatic speech recognition technology and enhancing its ac-

curacy. Machine learning use automatic speech recognition as a platform for evaluating

the strength of developed techniques to solve problems associated with speech sequential

properties [4]. The development of automatic speech recognition is always associated

with advancement in machine learning methodologies that are successful in modeling

profound and dynamic structures of speech. These advanced methodologies are capa-

ble of controlling complex interference of acoustic environmental factors with speech and

handling sequential data. Accordingly, the role of machine learning is to enhance the ca-

pability of the automatic speech recognition systems to generalize through recognizing

previous perceived examples using functional dependencies between random input and

output domains. Automatic speech recognition is a basic machine learning problem uti-

lized to convert the speaker’s speech sequence data into linguistic fabric [23]. This is made

possible by using inputs of continuous acoustic sequence data such as sound waves and

outputs of categorical label sequence such as words or phrases to identify the new output

sequence from the input used. If the temporal segment boundaries of the output labels are

identified, this task is known as phonetic classification, and if not, then this task is known

as phonetic recognition. Phonetic classification contains phone boundaries in training and

testing data, however the absence of these boundaries in phonetic recognition makes it

much tougher [23,48].
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2.4 Ensemble Classifications

In the realm of machine learning and artificial intelligence, the ensemble systems

known as multiple classifier systems have received special attention over the past three

decades. These ensemble systems have demonstrated effectiveness, flexibility, and adapt-

ability in a wide array of problem areas and real-world applications. The purpose for using

an ensemble system is to maximize the accuracy of an automated system by decreasing

its variance. The ensemble system is effectively used to solve many of the machine learn-

ing problems such as that associated with a feature to be selected or one that is missing,

class-imbalanced data, or errors to be corrected [87].

Ensemble systems are meant to create a group of classifiers with comparatively fixed

or even similar bias and integrate their outputs to decrease variance as much as possible.

This is because, bias which is the extent of a classifier’s accuracy and variance which is

the classifier’s precision when trained by various training sets, are the two components

of any classification error and they have an inverse relationship. There are several types

of ensemble-based algorithms, but usually, ensemble members are used in either classi-

fier fusion or classifier selection settings. Classifier selection involves training classifiers

as local experts in some local neighborhood of the feature space, while classifier fusion

involved training all classifiers across all of the feature space and then joining them to

create a compound classifier that operates with reduced variance and consequently with

less error [87]. There are various methods for constructing ensembles using classifier

fusion, however, bagging, boosting, stacking, and random subspace are the most used

techniques [75].
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2.4.1 Bagging

The word ‘bagging’ was coined by Leo Breiman and it is the short term of Bootstrap

Aggregation [13]. Bagging is an ensemble-based method that proved to be effective for

individual high-variance classifiers [72]. Bagging trains the same algorithm several times

by sampling with replacement and allows the aggregation of the decisions of these classi-

fiers [52,75]. The variations within the bootstrapped replicas guarantee the diversity in the

ensemble [87]. Each one of the produced samples is individually trained forming a num-

ber of separate decisions, and classification is carried out by integrating these decisions

together using multiple voting to give one output prediction [37, 75]. Through bagging,

classification accuracy is developed and improved due to the reduction of classification er-

ror variance [75]. Accuracy can be remarkably enhanced through bagging if a significant

change can result in the created predictor when the learning set is perturbed [13,75].

2.4.2 Boosting

Boosting was introduced by Robert Schapire’s in his study ‘The strength of weak learn-

ability’ for the 30th annual symposium on foundations of computer science [87]. In Schapire’s

study, the boosting technique was used for converting an ensemble of weak classifiers to

an extremely strong one; thus, leading to a boost in the accuracy of the algorithm and

arbitrarily reduction in training error [65,87] . Similar to bagging, boosting uses majority

voting to integrate an ensemble of weak classifiers. However, while bagging involves us-

ing bootstrapped replicas or instances of training data to train individual classifiers; thus,

giving the opportunity to each instance to be in each training dataset, boosting is related

to the focus of training datasets for every classifier on fixing prediction error by prior gen-
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erated classifiers. Boosting is effective for high-bias classifiers that adapt to new data very

slowly and it is designed for problems of binary classification [72,87].

2.4.3 Stacking

Stacking is an ensemble technique that involves making stacks of machine learning

models or base learners by putting one on top of the other. In other means, it is a method

used to train several models together, then a meta-classifier is trained to get a final pre-

diction output learner [37, 75]. This technique can result in some errors. In stacking,

the outcome of the first individual predictions forms the first or the base layer of machine

learning models and is used as the following training data. Another layer is stacked on top

of the base layer forming a second layer that is called a meta learner and so on [37].

2.4.4 Random Subspace

The random subspace ensemble method is a parallel learning algorithm that depends

on using various feature subsets and the dimension of the subspaces is a parameter of this

method [30, 52, 87]. Random sampling resulting from the original high dimensional fea-

ture vector creates a set of low dimensional subspaces that allows discrepancy reduction.

Moreover, the multiple classifiers built in this method are integrated together in the final

decision [73]. This method is suitable for parallel implementation for fast learning and it

is based on training each member with all of the training examples, however with a subset

of the attributes. The resulted prediction of the random subspace method is the average

of all predictions involved [52].
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2.5 Machine Learning Algorithms in Python with scikit-learn

Python is one of the most popular, object-oriented, non-compiled programming lan-

guages that was created by Guido van Rossum and released in 1991. Python is the most

attractive option when it comes to algorithmic development and data analysis and the

most used by data scientists and software developers in academic as well as industry set-

tings. That is due to its extremely interactive nature and its developing and trustworthy

ecosystem of scientific libraries [54]. A large number of applications that are related to

the use of Python include the development of software, websites, games, scientific compu-

tation, and graphical user interface among others. The 2.x and 3.x are the main versions

of Python series. While the 2.x version was widely used, it was intended to end in 2020.

However, the 3.x version, which is developed from the 2.x version, is considered the future

version of Python. Because Python is not a compiled language, its interpreter converts the

script to binary in real time while the code is implemented. All numerical computation

used by Python are provided through core external packages that are broadly accepted by

the Python community such as NumPy, SciPy, Pandas, Matplotlib, and Scikit-learn. More-

over, the Jupyter Notebook is used for Python as a user-friendly interface suitable for most

data analysis. Python, its core packages, and the Jupyter Notebook can be acquired and

installed via the anaconda website that possesses installers for Linux, MacOS, and Win-

dows [28].

2.5.1 Scikit-learn

Scikit-learn, an open-sourced Python programming language for machine learning,

aims to develop up-to-date implementations of a large number of distinguished machine-
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learning algorithms and at the same time keep a user-friendly interface [54]. The many

features of scikit-learn made it highly beneficial and the mostly required software for appli-

cations related to machine learning. One of these features is that the Scikit-learn package

has an extensive coverage of machine learning methods that are mainly based on compiled

binary libraries that were programmed in C, C++, and Fortran. In addition, Scikit-learn

can enhance the machine learning algorithm for computation efficiency through its binary-

based implementations. Scikit-learn is powerfully supported by the community for issues

such as bug monitoring, documentation, quality assurance. Moreover, Scikit-learn pro-

vides a unified input/output data usage and a steady model fitting procedure allowing

easy switching from one method to another [28,54].

2.6 ASV System Operations and Feature Extraction Methods

2.6.1 The Automated Speaker Verification System (ASV) Operations

Automatic speaker verification (ASV) system has two main phases of operation. The

first phase is the speaker voice enrollment. At this phase, the speaker voice signal is ac-

quired through microphone then acoustical features are extracted from the speech input.

These features are used to create a speaker model. The speaker model is stored into

database for later use at verification phase. The second phase is the verification phase

which involves the speech signal of a speaker that is given to the system through a micro-

phone then feature extraction is done. The acoustical feature of the speech signal is then

compared with the same speaker model and score of similarity is computed. If the score is

within a chosen threshold, the access is granted, otherwise, the ASV system will reject the

access. In the first step feature extraction is performed, where the raw speaker acoustic
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signal is converted into a sequence of acoustic feature vectors carrying characteristic in-

formation of the speaker’s voice. The most commonly used feature extraction methods are

Mel Frequency Cepstral Coefficients (MFCC) [20, 31], Perceptual Linear Prediction Cep-

stral (PLPC) Coefficients [29], and Linear Prediction Cepstral Coefficients (LPCC) [44].

These methods are based on spectral information and will be discussed in more detail

later. The second step of ASV consists of the classification of the acoustic feature vectors to

make the final decision. There are different classifiers that can be used such as ANN, SVM

and Logistic Regression.

2.7 Feature Extraction

The first step in the ASV system is to acquire new acoustic vector features from the

original audio signal i.e., processing the speech signal to identify the informative features

and discard all uninformative components by removing noise. Feature extraction aims

to interpret and exhibit a speech signal using a previously established set of the signal

components. By doing so, the significant information is extracted, while the irrelevant,

ineffective, and unmanageable information can be removed for an easy identification task.

The execution of feature extraction is achieved through the front-end signal processing

that modifies the speech waveform into a type of parametric representation for later de-

velopment and analysis. This process converts the speech signal to a more compressed,

reliable, and distinguishable representation which significantly affects the quality of the

subsequent features i.e., pattern matching and speaker modeling and contribute to accept-

able classification. Feature extraction is used in the ASV systems to detect a representation

that is relatively reliable for all different forms of the speech signal. This representation can
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maintain the part that carries the characteristics of the information in the speech signal,

regardless of the changes in the environmental factors or speaker [6].

It is apparent that feature extraction represents the most significant part of speaker

recognition and it decreases the magnitude of the speech signal without affecting its power.

Through the means of feature extraction, a multidimensional feature vector can be gener-

ated for each speech signal. There is a variety of techniques that parametrically represent

the speech signal for the recognition and verification process such as mel frequency cep-

stral coefficients (MFCC) [20,31], linear prediction cepstral coefficients (LPCC) [44], and

perceptual linear prediction cepstral (PLPC) coefficients [29] and they will be discussed in

the following section. All these techniques have been extensively investigated and proven

to be reliable and accepted in various applications. A variety of modifications have been

performed in many studies on these techniques to deliver more robust, time-effective, and

noise-free outcomes. While it is not easy to rank these techniques in terms of the superior-

ity of one over the other, selecting a technique depends mainly on the area of application

used [6].

2.8 Feature Extraction Methods

The feature extraction techniques described in this section are Mel Frequency Cepstral

Coefficients (MFCC) [20], Linear Prediction Cepstral Coefficients (LPCC) [44], and Per-

ceptual Linear Prediction (PLP) [29].

2.8.1 Mel Frequency Cepstral Coefficients (MFCCs)

Mel Frequency Cepstral Coefficients (MFCCs) technique is commonly used in auto-

matic speaker verification (ASV) and automatic speech recognition (ASR) [31]. (MFCC)
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is one of the widely used feature extraction techniques that was presented by Davis and

Mermelstein in the 1980s and has been primarily recommended for spotting monosyllabic

words in continuously spoken sentences. This technique is popularity for its effective com-

putation and nature of the Mel scale that resembles the functions of the human auditory

system [6,62]. The features of this technique simulate the variation of the human auditory

system’s bandwidths with filters spaced linearly when frequencies are low and spaced log-

arithmically when frequencies are high. These filters are used to maintain the phonetically

vital properties of the speech signals which incorporate tones with different frequencies

and computed subjective pitch with the Mel scale. The Mel scale exhibit linear frequency

spacing when the frequency is 1000 Hz and logarithmic spacing when the frequency is

above 1000 Hz [6,57].

Figure 1: Procedure to compute MFCC features.

The MFCC diagram illustrated in figure 1 shows the processes associated with obtaining

the required coefficients. MFCC is capable of representing low frequency regions more

effectively than high frequency regions. Therefore, computing formants in low frequency

range can be achieved along with the vocal tract resonances [6].

The first step of MFCC is to apply a pre-emphasis filter on the audio signal using the
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first-order filter in equation 1 to amplify the high frequencies and balance the frequency

spectrum as shown in figure 3, because the magnitudes of high frequencies are usually

smaller than lower frequencies.

y(t) = x(t)− αx(t) (2.1)

Where α is the filter coefficient and its typical value is 0.95 or 0.97. Figure 3 depicts the

original audio signal in the time domain:

Figure 2: The original Signal in the Time Domain.

After pre-emphasis, the audio signal is split into short-time frames because the fre-

quencies of the signal constantly and statistically change over time and if the Fast Fourier

Transform is directly applied to the entire signal, the frequency contours of the signal over

time will be lost.

After framing the signal into short time frames, a window function such as the Ham-

ming window is applied to each frame to smooth the signal transition and minimize the
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Figure 3: The Signal in the Time Domain after Pre-Emphasis.

impacts of FFT over non-integer values. The following equation is the Hamming window

formula:

w(n) = 0.54− 0.46cos(
2πn

N
), 0 ≤ n ≤ N (2.2)

The window length is N+1. The plot (figure 4) below is the result of the plotting equation

2.2. Fast Fourier Transform is applied to every single frame to estimate the frequency

Figure 4: Hamming Window in the time domain and frequency domain.
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spectrum, and then the power spectrum or also called Periodogram estimate of the power

spectrum is computed by using equation 2.3.

Pspec =
|FFT (XI)|2

N
(2.3)

The Mel-spaced filter banks (a set of 20-40 triangular filters) are applied on Mel-scale to

the periodogram power spectral estimate to extract frequency bands. Equations 4 and 5

are used to convert Hertz (f) and Mel (m):

m = 2595log10

(
1 +

f

700

)
(2.4)

f = 700

(
10

m

2595
− 1

)
(2.5)

Each filter in the filter bank is triangular which starts at the first point, reaches its peak,

and linearly decreases to zero. Equation 2.6 is used to calculate the filter bank.

Hm(k) =


0 k < f(m− 1)

k−f(m−1)
f(m)−f(m−1)

f(m− 1) ≤ k ≤ f(m)

f(m+1)−k
f(m+1)−f(m)

k > f(m+ 1)

 (2.6)

Where M is the desired number of filters, and f() is M + 2 Mel-spaced frequencies.

Discrete Cosine Transform (DCT) is applied to the filter banks to decorrelate the filter

bank coefficients because they are highly correlated, which could be a problem for some

classifiers and then result in cepstral coefficients. 2-13 cepstral coefficients are kept, and

the other coefficients are discarded because they quickly change in the filter bank coeffi-
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cients and do not contribute to Automatic speaker verification (ASV).

Dynamics features namely differential (delta) and acceleration (delta delta) coefficients

can be calculated by using equation 2.7. These features can improve ASV performance

because the mfcc feature vector consists only of the power spectral envelope of a single

frame.

dt =

∑N
n=1

(
cn+1 − ct − n

)
(
2
∑N

n=1 n2

) (2.7)

2.8.2 Linear Prediction Cepstral Coefficients (LPCC)

Linear Prediction Cepstral Coefficients (LPCC) is a widely used method that captures

speaker’s specific information by modeling vocal tract characteristics and is capable of

eliminating excitation parameters in speech [47, 67]. Thus, the appropriate data size of

LPCC allows speech compression through the digital channel. LPCC are derived from the

linear prediction coefficients (LPC) through the Fourier transformation illustration of the

logarithmic magnitude spectrum. LPC is a powerful speech analysis method known as

a formant estimation method which is found effective in encoding high-quality speech

at low bit rate [6]. In the area of speech processing and speaker verification, cepstral

analysis is usually employed for its potential to thoroughly represent speech waveforms

and characteristics with a fixed size of features [6].

Since the LPCC is used to estimate the parameters of an acoustic signal [22 26], so it

can predict a sample as linear combination of past acoustic samples. Figure 6 illustrate

the LPCC flow diagram: The acoustic signal is firstly pre-emphasized to boost up the en-

ergies in the high frequencies by equation 2.8 because the energies in low frequencies are
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Figure 5: Processing steps involved in LPCC computation.

distributed more than the energies in high frequencies.

y(n) = c(n)− αx(n− 1), 0.9 < α < 1.0 (2.8)

where α is a constant of pre-emphasis filter. The signal is then framed into a number of

frames and these frames are overlap, so no signal is lost. Each frame is windowed with

some window function such as a hamming window function to minimize discontinuity of

the signal frame from beginning to the end of each frame. Equation 2.9 gives a signal

y(n)resulted from windowing a frame and w(n) is the window function:

yi(n) = xi(n)w(n)− αx(n− 1), where 0 ≤ n ≤ N − 1 and i = 1, 2, 3, . . . , N (2.9)
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Next step is auto-correlation analysis toward each yi(n) using equation 2.10:

ri(m) =
N∑

n=1

yi(n)y(n+m), where m = 0, 1, 2, . . . , p (2.10)

P is an LPC order and has values within 8 and 16.

Next step is to convert each frame from p+1 auto-correlation into LPC parameter using

equations 2.11 and 2.12:

km =

{
r(m)−

∑m−1
j=1 am−1

j r

(
|m− j|

)}
Em−1

, 1 ≤ m ≤ p (2.11)

amj = am−1
j − kmα

(m+1)
m−1 , 1 ≤ j ≤ m− 1 (2.12)

where αm = αp
m for m = 1, 2, . . . , p, r(0) represent auto-correlation result,E(m) represents

an error amj represents the coefficient’s prediction and km is a rebound of the coefficient

[61].

Finally, the LPCC is derived from LPC parameter using the following equations:

cm = αm +

(m−1)∑
k=1

(
k

m

)
ckam−k, 1 ≤ m ≤ p (2.13)

cm =

(m−1)∑
k=1

(
k

m

)
ckam−k, m > p (2.14)

2.8.3 Perceptual Linear Prediction (PLP)

In 1990, Herman Sky has introduced the Perceptual Linear Predictive (PLP) analysis to

approximate voice features by an retrogressive all-pole mode [27]. This method is based
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on the short-term spectrum of speech and uses three different psycho-acoustic of hearing

concepts i.e., spectrum spectral resolution crucial band, equal loudness curve, and low

intensity power [8, 38]. Figure 6 shows the flow of PLP. PLP is based on the nonlinear

bark scale and is one of the techniques that have been prominently used in the tasks

of speech and speaker recognition. PLP technique provides minimal resolution at high

frequencies that represents an auditory filter bank-based application, as well as producing

orthogonal outputs comparable to the cepstral analysis. This technique also integrates

linear predictions and spectral analysis [6].

Figure 6: Processing steps involved in PLP computation.

2.9 Literature Review

As previously mentioned, reviewing the literature showed that detecting audio spoof-

ing attacks is regarded as a binary classification problem. The goal of these spoofing

attack detection methods is to use the various feature-classifier combinations in creat-
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ing countermeasures [85]. The several types of cepstral coefficient features that include

Mel-frequency cepstral coefficient (MFCC), constant-Q transform (CQT), Log-CQT, linear

frequency cepstral coefficient (LFCC), constant-Q cepstral coefficient (CQCC), extended

CQCC (eCQCC), and inverted CQCC (iCQCC) are extensively used in human voice recog-

nition and verification problems [2,14,19,71,84].

The CQT-based features, have been instrumental and beneficial in speaker verification

and anti-spoofing with the variable spectro-temporal resolution, thus seizing the signs and

evidence of manipulation artifacts to specify spoofing threats [70]. The CQT-based fea-

tures which is based on time-frequency analysis have the property of offering higher time

resolution at high frequency regions, while offering higher frequency resolutions at low-

frequency regions. Nevertheless, integrating traditional cepstral analysis with CQT-based

features is challenging since postprocessing is mandatory for reaching a linear frequency

scale. Moreover, the combination of multi-resolution analysis and extra post-processing

constitutes a heavy computational burden [22]. However, it is possible to obtain more

spectral details in low-frequency regions using the constant-Q cepstral coefficient (CQCC),

a derivative of the constant-Q transform (CQT) based features, but high-frequency regions

that give discriminative features are unaffected. Furthermore, while the LFCC utilizes dis-

crete Fourier transform (DFT) to carry out the time-frequency analysis for the whole input

signal, the spoofing data reside specifically on high and low frequency sub-bands [43].

As a consequence, it is impossible for the LFCC features to donate spectral details in the

discriminative frequency bands [43].

In addition, some other well-known cepstral features such as MFCC are very sensitive to

noise, the matter that negatively affects their performance towards detecting spoofing at-
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tacks [12]. In the same manner, various spoofing detection studies have tackled and exam-

ined phase based features that include the relative phase shift, phase difference, modified

group delay, and group delay and cosine normalized phase features [60, 80, 82]. Sound

analysis suggests that during the analysis-synthesis stage of several speech-synthesis meth-

ods, phase information is replaced or lost, which allows differentiating between spoofed

and bonafide speech. Practically, this previous knowledge is missing which does not war-

rant the effectiveness of these features to spoofing attacks with constant phase informa-

tion [88]. Deep features or deep neural networks with hidden layers are other renowned

features which results in competitive outcomes. Deep features are explored by many

studies, but because they require costly retraining, they are not widely used in resource-

constrained environments [19,26,64,86].

Some of the extensively utilized approaches for classification include deep neural net-

works (DNN) [7, 19, 66, 71], the Gaussian mixture model (GMM) and classifier ensem-

bles [2, 85, 86]. The GMM uses basic hypothesis test to reiterate spoofing detection, how-

ever, the likelihood ratio test is used to differentiate between spoofed and bonafide speech.

Usually the GMM yields encouraging outcomes, however, when high dimensional features

are employed, its achievement deteriorates [82, 89]. In comparison to the GMM, DNN

classifiers are powerful when high dimensional features are used, however, more training

data is required for these DNN classifiers. At the same time, classifier ensembles carry an

array of ineffective classifiers on the subset of the data and by uniting the classification

outputs, ensembles can create a consistent classifier [32]. When it comes to ensemble ap-

proaches, they barely overfit giving room to solutions that are difficult to attain using one

hypothesis [58].
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2.10 Details of Specific Approaches

In a study by Todisco et al. exploring methods for detecting spoofing threats, the CQCC

features were employed to train the GMM classifier. The CQCC features can secure the in-

put signal characteristics through delivering variable-resolution, time-frequency represen-

tation of the spectrum [69]. In this study, the input signal characteristics were employed,

thus, allowing the CQCC features to effectively surpass previous methods in spoofing threat

detection by a reasonable margin. Yet, a disparity between identified and unidentified

spoofing attacks was obvious. Another study by Nagarsheth et al. was conducted to create

the tandem features for detecting replay attacks employing both CQCC and HFCC features

and implementing cepstral mean and variance normalization (CMVN) [49].

Other studies have revealed that CMVN has been effectively used for automatic speech

recognition and has the ability to eliminate the effects of nuisance channels [27,77]. Elim-

inating the effects of nuisance channels allows maximizing the performance of different

types of systems that allow speaker verification and speech recognition. Feature embed-

dings were engendered through supplying the tandem features to a DNN classifier. Addi-

tionally, these features were turned over to a SVM classifier to allow specifying the type

of the replay attack. Moreover, using CMVN for the detection of replay spoofing attacks

might seem illogical and impractical, however, the aggregation of more channel effects is

similar to the recording and replaying speech in various acoustic situations and with the

use of various devices. While the main goal of using the CMVN is weakening the effects

of the nuisance channels, it can be used for the detection of replay attacks when bonafide

speech was apprehended within a stable channel [27].
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Spoofing attacks are not only common in audio signals but also in-vehicle communi-

cations where CAN protocol is used [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Studies devoted for replay

spoofing detection [27, 77]the GMM classifier is trained on different high frequency fea-

tures and also transmission line cochlea (TLC) features were employed in combination

with the GMM classifier [27]. Transmission line cochlea features successfully use am-

plitude modulation for replay attack detection and are precisely similar to the auditory

system, but their signals which are the input signal and output signal look different in

the same dynamic range. Accordingly, it is very complicated to seize the distinctive data

displayed in the low-frequency regions when there are high-frequency regions in the input

signal [27]. Another study conducted by Witkowaski et al. declared that in detecting re-

play attacks, it was found that spoofing attacks show spectral changes at high frequencies

ranging from 6 kHz to 8 kHz [77]

Moreover, many other methods were used for replay attack detection that include the

inverted-MFCC, LPCC, and LPCC residual features in conjunction with CQCC, MFCC, and

Cepstrum features side by side with the GMM features. However, these methods were

not very successful in alleviating the spoofing problem entirely, but they presented a sig-

nificant development concerning the CQCC-GMM system employed in the ASVspoof-2017

challenge [63]. Other researchers used the attributes of the recording device and playback

device to detect spoofing attacks [46,63,83].For example, in a study by Saranya et al. for

detecting replay attacks, the researchers were able to train the GMM classifier using CQCC,

MFCC, and Mel-Filterbank-Slope (MFS) features. The outcome of this study revealed that

the distinguishing information employed to classify a signal to whether it is an authentic

speech or replayed speech is precisely divided into two sub-bands: the first is 0-1 kHz and
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the second is 7-8 kHz [83].

Furthermore, a low-frequency frame-wise normalization method was used by Yang et

al. [17],and others used deep learning models for voice replay attack detection. In another

study detecting voice replay attack, CQCC and MFCC were used to train a combination of

classifiers that included GMM, DNN, and ResNet. Although this approach resulted in de-

creased equal error rate (EER), it led to more computational expenses [10]. These high

expenses were mitigated in one study for audio replay attack detection using a light-weight

CNN model that was initially recommended for face recognition [40]. However, successful

training of deep learning and CNN models involve great amounts of data. Additionally,

Baker et al. detected replay spoofing by training a DNN classifier employing both MFCC

and long-term average spectrum (LTAS) features. This study revealed that the outcomes

resulting from combining the MFCC and LTAS with DNN classifier surpass the GMM clas-

sifier with CQCC in the ASVspoof-2017 challenge [40].

Many studies used the GMM classifier in audio replay spoofing detection. A study by

Leon et al. trained the GMM classifier by employing the elicited relative phase shift char-

acteristics derived from the incoming speech signal’s harmonic phase. This approach con-

cluded sound outcomes, although the number of test samples were limited to 283 only. The

whole system was very responsive to vocoders utilized to synthesize audio signals. If these

vocoders were employed to train the system effective performance can be reached [76].

In the same manner, a study by Wester et al. detecting voice cloning attacks, the MFCC

and cosine-normalized phase features were utilized by applying the GMM-Universal Back-

ground Model (GMM-USM). The work of Wester et al. was the first of its kind to make

a comparison between 100 native English listeners and a system’s performance. The out-
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comes of this study emphasized the performance of automatic detectors that surpassed all

those English listeners except for one person. In addition, the study revealed that human

countermeasures utilize certain cues that are different from that of automatic countermea-

sures to differentiate between authentic and spoofed audios [81].

In a study by Patel et al. for detecting spoofing attacks, GMM was trained by employing

MFCC features along with cochlear filter cepstral coefficients and cochlear filter cepstral

coefficients-instantaneous frequency features. This study concluded that, countermeasures

are more dependent on powerful features than classifiers [53]. Another method was used

by Janicki et al. for detecting voice cloning attacks includes training SVM using long term

prediction residual signals. The prediction coefficients were employed to discriminate

authentic from spoofed signals. These coefficients included prediction gains, energy of

the prediction error, and temporal parameters among others. This approach depended

on adjusting the temporal parameters which has the ability to negatively influence the

generalization capabilities, the matter that allowed this approach to effectively perform on

acknowledged attacks than on acknowledged ones [34].

Figure 7: Original (a) and cloned (b) utterances are analyzed spectrally. Vertical lines
that only occur in copied audios can be used as a possible cloning attack hint. By using
neighborhood statistics, these lines may be recorded.
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2.11 Limitations of the Existing Approaches

Since ASV systems are susceptible to voice cloning and replay attacks, some factors

have to be examined during audio representation to gain a powerful countermeasure that

include: (1) The intermodulation distortions allow the microphone to add a layer of non-

linearity, which produce the detectable patterns. These patterns are identified through

audio-fingerprinting using an audio representation approach that can distinguish genuine

audios from replayed ones . (2) The commonly used successive recordings performed

from the same recording in audio splicing, result in higher-order nonlinear functions and

more discriminable audio signals. Accordingly, audio representation step should include

pattern analysis of audio samples. (3) when deciding on audio representation approaches

it is more likely to identify artifacts developed by voice cloning algorithms. When per-

forming special analysis for both bonafide and cloned audio signals, the very fine lines

that are observed in the spectral image shown in in (Figure 7), (3) serve as the voice

cloning algorithmic artifacts. However, the spectral image of the bonafide audio signals

does not include these fine lines. Due to the uniqueness if the artifacts belonging to the

voice cloning algorithms, it is easy to distinguish each one of the cloned audios created

by different cloning algorithms, in addition to bonafide audios. (4) For ASV systems, it

is required that audio representation approach used for speaker verification should not

be very sensitive to noise within all environments. (5) For real-time applications, a rapid

retraining of the mode to integrate new users can be guaranteed when those features and

classifier combinations are considered by the ASV systems.
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CHAPTER 3 ARCHITECTURE OF SECURE AUTOMATIC SPEAKER
VERIFICATION SYSTEM (SASV)

In this chapter basic architecture of the proposed framework is presented. The further

details will be provided in the upcoming chapters.

3.1 Aims of SASV System

In this dissertation our emphasis was to develop a single model-based approach to si-

multaneously identify who the speaker is and safeguard the underlying ASV system against

any possible spoofing attack. Our countermeasure approach is based on a comprehensive

framework that perform speaker identification as a first step and then determine the live-

liness of the input audio to determine spoofing attack. The system was designed with an

intention to be deployed in any environment accessible to multiple users. Furthermore,

through the enhanced attack vector which is introduced in the proposed framework our

system can even handle the advance spoofing attacks that may occur in practical scenarios.

The conventional countermeasures consider only the replay and voice cloning attacks. In

contrast, Our approach recognizes the methodology used for voice cloning in a LA attack,

and the replay detection module detects cloned replay attacks. The cloning algorithm de-

tection is also a novel concept that we introduced in our published work [?]. The voice

cloning algorithm detection makes our approach more flexible by even providing the ar-

tifact level analysis. Later on this phenomenon can also help in counterfeiter identifica-

tion who used a commercial solution for cloned audio generation. Furthermore, previous

methods assume that the produced audio from a voice cloning process is sent directly to

the anti-spoofing system, without the need for a physical channel. However, we have eval-

uated real-world LA attacks over PA attacks, where the LA attacks will be launched over a
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physical channel. With this consideration the need to make replay and cloning detection

module more powerful becomes apparent as this slight modification can fail both modules.

The fundamental reason is dilution of the microphone and algorithmic artifacts and non

linearity through simultaneous occurrence.

Figure 8: Block diagram of Secure ASV (SASV) system.

3.2 Overview of SASV Framework

As described in Figure 8,for each and every audible input signal, the proposed frame-

work acts to identify the speaker who is communicating to the system following feature

extraction and then sends the speaker ID to the module that creates speaker profiles. The

SASV system has the ability to detect whether the system was invaded by a cloned audio

or not and the binary decision information is then moved to the speaker profile genera-

tion module. In case of an authentic input audio, the system examines and analyzes it for

potential voice cloning attacks that might be initiated through a microphone or a smart

speaker. However, in case of a replayed audio, the system can specify the audio cloning

algorithm which was employed to produce the cloned audios. Moreover, the speaker pro-
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file generation module receives the audio cloning algorithm decisions giving access to the

system to authentic speakers where the replay and cloned audios are absent from the sys-

tem (represented by No in the figure). In support of the genuine audios, the information

of each user including user’s name, ID, account type and number etc., are presented in the

speaker profile and accessed from the main stream databases according to what is required

by the application. However, regarding the spoofed attack, the system will reveal the in-

formation of the attack such as the person who was attacked, the algorithm of solution

used to create the cloned audios, and so on.

3.3 Operational Contributions

The SASV approach presented in this dissertation represents input audios through a

novel feature extraction scheme. This novel feature extraction scheme is the sign mod-

ified acoustic local ternary pattern (sm-ALTP) features. This sign modified version is an

extension of the ALTP features that overcomes inherent limitations (details in chapter 4).

The sm-ALTP allows seizing the user’s speech vocal features [3]. In addition, the sm-ALTP

uses local correlation scores to discover signal non-linearity that exists as a consequence

of voice cloning or recording artifacts. The SVM-based classifier ensemble is utilized to

identify the vitality of a voice. In this study, this classifier ensemble uses a group of weak

classifiers and integrate their outputs to create a more stable classifier. The new created

model was used for speaker verification to detect and track down attacks of voice cloning,

cloning algorithm employed to perform an attack, voice replays-, and cloned voice replay

attacks (also a novel concept proposed in this study) against ASVSpoof 2019 and VSDC

datasets.
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Using the voice cloning algorithm detection of the generated system, it is possible to

examine and analyze some of the problematic scenarios and situations that are difficult to

handle and can impede the success of any available countermeasure. The availability of

commercial solutions made it easy even for the amateurs to create voice cloning attacks.

However, voice cloning algorithm detection can counteract the effect of these solutions

and thus, it would be easy to identify attackers based on the seriousness of each case.

The cloned voice replays are recorded audio samples played before the microphone

using fake voice samples. Applications used for cloned voice replays can be employed

in cases where the attacker uses recorded voice for impersonation, however, this attacker

does not have the speaker’s prerecorded audio samples. Therefore, the created ASV system

has the power to encounter different security breaches with the aid of the model evalua-

tion over the strengthened attack vector. In addition, the proposed system can be highly

adopted in various resource constrained environments since it has a lightweight nature.

Figure 9: Detailed architecture of SASV system.
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3.4 Operational Architecture

This study aims to create a profoundly secure ASV system capable of supporting and au-

thenticating registered bonafide speakers and counteracting audio synthesis/cloning, voice

replay, and other attacks concerning cloned voice replay. Furthermore, the developed ASV

system can spot and classify the algorithm employed to create audio cloning attacks. The

audio repository of this system is composed of the bona fide speakers’ voices in addition

to the replayed and cloned voices. Through advanced voice cloning algorithms, undis-

tinguishable cloned voices from bona fide speakers’ speeches are created. Accordingly,

for m numbers of bona fide speakers and p numbers of voice cloning algorithms; thus,

resulting in (m × p) cloned voice classes. While the proposed model might not be able

to predict the type of cloning algorithm used, it can effectively detect and counteract the

cloned audio samples used for attack and classify the audio input as cloned audio. In the

same manner, through the detection of the replay attack, the input samples are classified

as replayed/bona fide. Therefore, it is required to identify q, the number of speaker classes

where q = m+ (m× p) + 2 + 2.

The architecture used for the proposed secure ASV system is illustrated in Figure 9.

This figure shows that the feature extraction version was executed using the novel sm-ALTP

features for both the spoofed and bona fide voice samples entering the audio repository.

This step was followed by creating the SVM-based classifier ensembles using asymmetric

bagging and random subspace sampling. Both asymmetric bagging and random subspace

sampling help mitigate the effect of class imbalance associated with a small number of

bona-fide samples compared to higher numbers of spoofed samples [32]. Furthermore,
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in a way to overcome and counteract cloned voices and replay attacks, the weighted nor-

malized voting rule (wNVR) was employed to integrate the outcome of the multiple SVM

classifiers with that of the classifier ensembles. Using the speaker identification module

in the architecture of the ASV system allowed identifying the registered speaker who is

communicating with the system. The ASV system also included a module for cloning al-

gorithm detection that is capable of identify the type of voice cloning algorithm employed

to create fake audios. Due to the unique speech features of each speaker and the artifacts

of the voice cloning method, the multi-class SVM classifier with polynomial kernel is used

to perform both speaker identification and voice cloning algorithm detection. Input data

can be verified after training all used models. Moreover, the system can be given access

to the identified speaker once negative outcomes are received from the voice cloning and

replay detection modules. More details about the proposed method are introduced in the

following sections.
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CHAPTER 4 PROPOSED METHOD

This chapter provides the details of the steps described in section 3.4. As a first step

sm-ALTP features will be discussed by first establishing their difference with the baseline

ALTP feature extraction approach. Afterwards, classifier committee learning approach will

be discussed that is used to generate the ensemble-based countermeasure. Finally, the

chapter will be concluded with the discussion on how proposed approach overcomes the

limitations of the existing approaches mentioned in section 2.11.

4.1 Overview of ALTP features

N-sample input audio signal Y [n] is divided into i = {1, 2, . . . , k} non-overlapping

frames/windows F (i) with length l = 9. c represents the center sample in a frame and

has z(j) neighbors in each frame F (i), where j represents the neighbor index in the frame

F (i). The difference between c and z(j) is determined by applying the parameter th around

the sample c in order to compute the ALTP response. The parameter th has a value between

0 and 1 and it is acquired using a linear search process. The sample values in F (i) that fall

within the range of width ±th around c are quantized to zero, whereas values above and

below c ± th are quantized to 1 and −1, respectively. As a result, we have a three-valued

function as follows:

p(c, z(j), th) =


−1 z(j) − (c− th) ≤ 0

0 (c− th) < z(j) < (c+ th)

+1 z(j) − (c+ th) > 0

 (4.1)
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The function p(c, z(j), th) is then split into two patterns classes, upper pattern P up(.) and

lower pattern P lw(.) as follows:

P up(c, z(j), th) =

1 p(c, z(j), th) = +1

0 Otherwise

 (4.2)

Similarly

P lw(c, z(j), th) =

1 p(c, z(j), th) = −1

0 Otherwise

 (4.3)

Upper and lower ALTP representations are then generated using these upper and lower

patterns. eq. 4.4 is used to calculate the upper-ALTP features AU .

AU =

j=l∑
j=0

P up(c, z(j), th) ∗ 2j (4.4)

whereas, lower-ALTP features AL are computed through eq. 4.5.

AL =

j=l∑
j=0

P lw(c, z(j), th) ∗ 2j (4.5)

Then, by using the Kronecker delta function δ(.) as stated in eq. 4.6 and eq. 4.7, the

histograms of AU and AL are calculated.

Hu(b) =
a=k∑
a=1

δ(Aa
U , b) (4.6)

H l(b) =
a=k∑
a=1

δ(Aa
L, b) (4.7)
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The bin is represented by b, while the frame index is represented by a. The ALTP char-

acteristics are derived by concatenating (||) both histograms after computing Hu(b) and

H l(b).

HA = [Hu(b) ||H l(b)] (4.8)

4.2 Limitations of ALTP Features

The ALTP features were initially suggested for indoor applications, such as fall de-

tection [3, 33]; and demonstrated excellent performance as a feature descriptor versus

state-of-the-art feature extraction methods due to their noise tolerance. However, there

are several flaws with ALTP that must be addressed before it can be used in ASV systems.

As demonstrated in Figure 7, the spectrum analysis of the cloned audio indicates that the

artifacts have a non-static repeating pattern, which may be recorded more effectively using

a dynamic threshold mechanism. ALTP however, has only a static threshold, such as ±th;

hence, ALTP for ASV applications has space for improvement. (b) Signal volatility—To

effectively capture the artifacts in cloned and replayed audios, It’s crucial to understand

how rapidly the signal changes in terms of artifacts to successfully capture them in cloned

and replayed audios [1]. The ALTP features, on the other hand, lack this functionality.

As a result, the performance suffers as compared to the faked audios. (c) Brute-force

Optimizationtextemdash For threshold optimization in ALTP, a brute-force technique was

necessary; as a result, in time-critical applications, error reduction was not assured. (d)

Uniform noise ALTP was resistant to uniform noise that remained consistent in audio situ-

ations, such as indoor audios. In contrast, because noise is non-uniform in outdoor situa-

tions, static threshold-based feature extraction becomes inconsistent, necessitating a new
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method to noise suppression.

4.3 Motivation for the sm-ALTP Features

sm-ALTP characteristics are proposed to overcome the limitations of ALTP features and

to identify the liveliness of the voice more effectively. The dynamic optimizable thresh-

old used by the sm-ALTP features successfully catches signal artifacts and provides distinct

representations for spoofed and bonafide voices. As a consequence, a powerful CM ap-

proach emerges from the difference in representation for spoofed and bonafide voices.

Furthermore, utilizing the vocal tract information, which was not present in the ALTP

characteristics, can improve speaker identification and recognition.

4.4 sm-ALTP Features

By setting a dynamically optimizable threshold and recording the speaker’s vocal tract,

sm-ALTP features address the weaknesses of ALTP features. The three-valued function is

computed in sm-ALTP as follows:

p(c, z(j), σα) =


−1 z(j) − (c− σα) ≤ 0

0 (c− σα) < z(j) < (c+ σα)

+1 z(j) − (c+ σα) ≥ 0

 (4.9)

where σ is the standard deviation of F (i) and α is the scaling factor, such as (0 < α < 1).

σ can be calculated as follows:

σ =

√∑(
z(j)
)2 − (∑ z(j)

l

)2
l − 1

(4.10)

We circumvent the constraints (a), (c), and (d) of the ALTP features (section 4.2), by
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substituting th with σα, which requires the signal variance to be expressed in terms of

neighborhood statistics. Another drawback of the ALTP functionality was that the th re-

quired brute-force linear search optimization. However, we may optimize the new thresh-

old value, σα by creating the following convex function.

J(σ) = min
α

2M

q=M∑
q=1

(
g

(
θTσ

(
x(q)
))

− y(q)
)2

(4.11)

Where J(·) represents the cost function, θ represents the classification weights, q = {1, 2, . . . ,M}

represents the total number of records in the training set, g represents the classification

function used, such as relu, sigmoid, tanh etc., and y(q) represents the actual class-label of

the audio record. The probabilistic meaning of the cost function is as follows:

p(y(q)|x(q);σ) =
1√
2πσ

exp

(
− y(q) − x(q)

2σ2

)
(4.12)

The parameter σ can then be optimized by applying the gradient descent algorithm as:

σnew = σ − α ∗ ∂σ

∂z(j)

(√∑(
z(j)
)2 − (∑ z(j)

l

)2
l − 1

)
(4.13)

where

∂σ

∂z(j)
=

[
∂σ

∂z(1)
∂σ

∂z(2)
. . .

∂σ

∂z(l)

]
(4.14)

thus

∂σ

∂z(j)
=

1√
l − 1

∗ ∂

∂z(j)

[
Â+ B̂

]1/2
(4.15)

where
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Â =
(
z(1)
)2 − (∑ z(j)

l

)2

+ · · ·+
(
z(c−1)

)2 − (∑ z(j)

l

)2

(4.16)

and

B̂ =
(
z(c+l)

)2 − (∑ z(j)

l

)2

+ · · ·+
(
z(l)
)2 − (∑ z(j)

l

)2

(4.17)

or in compact form we can write it as:

∂σ

∂z(j)
=

1√
l − 1

∗ ∂

∂z(j)

(∑(
z(j)
)2 − (∑ z(j)

l

)2)1/2

(4.18)

thus, the partial derivative will return:

∂σ

∂z(j)
=

1

2
√
l − 1

∗
(∑(

z(j)
)2 − (∑ z(j)

l

)2)−1/2

∗(
2z(j) − 2

∑
z(j)

l2

) (4.19)

or

∂σ

∂z(j)
=

1

2
√
l − 1

∗ 1√(∑(
z(j)
)2 − (∑

z(j)

l

)2)∗

(
2z(j) − 2

∑
z(j)

l2

) (4.20)

By replacing the eq. 4.2-4.5 with σα we get the Hu(b) and H l(b) using eq. 4.6 and 4.7 and

generate feature representation as:

H = [Hu(b) ||H l(b)] (4.21)



54

The H representation feature captures the patterns in the input signal, but it excludes

the vocal tract information provided by the cepstral coefficients at Mel-scale [12]. For

example, due to the phoneme representation attributed to that speaker’s vocal structure,

a speaker’s cepstral coefficients always appear negative at 1000 Hz, and this frequency

occurs frequently; in the case of sm-ALTP, a large positive histogram-spike will appear,

but it will not provide any information regarding vocal behavior at this frequency. As a

consequence, we utilized eq. 4.22 to investigate the sm-ALTP representation in further

depth.

Hs = H × sgn(µt(Cγ(t)))× β (4.22)

The Cγ(t) represents the tth order MFCC of the γth frame (further details in [55]), µt is the

frame-wise mean of Cγ(t), and t = {1, 2, . . . , 20}. By calculating the frame energy E(f)

with index f as stated in eq., Cγ(t) is applied 4.23.

Cγ(t) =

g−1∑
f=0

log
[
E(f)

]
cos
[
t
(
f − 1

2

)π
q

]
(4.23)

For feature normalization in Hs, the parameter β = 0.1 in eq. 4.22 is utilized. The follow-

ing is our final depiction of sm-ALTP features:

Hsm =
[
µt(Cγ(t))||Hs

]
(4.24)

4.5 Classifier Comity Learning for Ensembles

The features of data in terms of data quality, data collecting methodology, and dataset

size impact the classification performance in ASV systems, regardless of how effective a
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feature extraction approach is. For example, if a training set has much fewer genuine

representations than spoofed representations, a classifier may tend to favor the spoofed

class.Higher classification accuracy in this example might be due to the classifier’s bias

towards the faked class; in actuality, the classifier is doing poorly for bonafide data, which

is the fundamental aim of any ASV system. As a result, even better categorization accuracy

will be irrelevant. It’s critical to pinpoint the reasons why classifiers provide incorrect

results. For cloning attack detection, we additionally identify the cloning algorithm utilized

for faked audio production in order to achieve this goal. Classification models can be

enhanced further by incorporating the connection between faked samples and the cloning

technique. Furthermore, we have guaranteed that the testing procedure does not become

so complex that the classification model becomes unsuitable for a real-time application.

4.5.1 Training-Phase—Asymmetric Bagging and Subspace Sampling

Asymmetric bagging and subspace sampling are used to create multiple classifiers [32].

Bootstrapping is performed over the faked class samples in asymmetric bagging since there

are significantly more spoofed samples than genuine samples. In this manner, each clas-

sifier is trained on a balanced set that includes both genuine and faked data, resulting in

improved unstable SVM classification performance. The SVM classifiers are stable and can

thus distinguish between spoofed and bonafide data even when they aren’t visible. How-

ever, if alternative data balancing approaches, such as up-sampling or down-sampling, are

employed instead of asymmetric bagging, the classifier becomes either over-fit or under-fit.

Following the asymmetric bagging, the weighted normalized voting rule (wNVR) is used

to aggregate several classifiers across the development set..
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Figure 10: sm-ALTP representation (eq. (4.21)) for genuine and cloned audios.

4.5.2 Weighted Normalized Voting Rule (wNVR)

Following the training of several classifiers, wNVR is used to combine the results of

all of these classifiers. The benefit of wNVR over majority voting rule (MVR) is that MVR

cannot take use of accurate classifiers and gives equal weight to all classifiers [68].

By using the weighted cross-entropy function as stated in eq (4.25), w = {1, 2, . . . , Q}

classifiers are utilized to produce the ensemble classifier:

C(x) =

Q∑
w=1

λw

M∑
b=1

K∑
k=1

[yb = k] log
eθ

T
k xb∑K

v=1 e
θTv xb

(4.25)

Where b = {1, 2, . . . ,M} is the number of instances xb in the development-set, and λ is the

weight to take use of a more accurate classifier for k = {1, 2, . . . , K} number of classes to

be categorized. The eq. (4.26) is then used to produce the final class-label C ∗ (x):

C∗(x) = sgn

[
C(x)− K − 1

2× s

]
(4.26)

The normalization factor s is used to limit the bias/variance impact.
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4.5.3 Testing Phase

The trained model can be utilized for assessment purposes after training and model

tuning. The evaluation set consists of instances with seen and unseen genuine speakers,

as well as samples created by seen and unseen algorithms in the case of a voice-cloning as-

sault. Any query audio sample may be supplied to the final model after model assessment,

and it can execute ASV tasks in real-time settings.

4.6 Overcoming the Limitations of Existing Approaches

Existing methods, as mentioned in section 2.11, neglect several essential signal prop-

erties during feature extraction, lowering their performance. For example, the first three

restrictions stress that intermodulation and algorithm artifact emerge during playback and

voice cloning, exhibiting distinct patterns. The suggested method analyzes the input sig-

nal’s pattern, successfully capturing these abnormalities and distinguishing faked signals

from genuine signals. The genuine and cloned signals, for example, peak at the same fea-

ture locations, as shown in Figure 10, but owing to the difference in peaks, these signals

are still readily identifiable. Furthermore, the spoofed and bonafide signals have opposing

peaks at several feature locations, such as feature 16 in Figure 10. The discrepancy in

feature values in Figure 10, illustrates that while the cloned audio looks to be close to the

original, the fundamental signal components, such as pitch, loudness, and so on, are not

properly duplicated. However, the suggested approach’s lower level examination of the

input signal quickly shows this discrepancy. Another drawback of the audio representation

methods was that their resilience to noise was difficult to quantify. The proposed method,

on the other hand, is noise-resistant, and we can readily test this claim. Take, for example,
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the audio frame depicted in Figure 11. We can see that additive noise, which may raise

or decrease the value of the central sample c in a frame F (i) and cause the incorrect code

to be generated against c, becomes useless. The reason for this is that the sample value

c now falls within a range of higher and lower threshold values, making it more tolerant

to additive noise values. Furthermore, because of the fewer characteristics, quick model

retraining is achievable, making our method suitable for applications that need continual

user participation.

Figure 11: Effect of the dynamic threshold over the audio frames.



59

CHAPTER 5 EXPERIMENTS AND RESULTS

5.1 Dataset

The proposed method’s performance is assessed using the ASVSpoof 2019 [74] dataset

and the VSDC dataset [11].

We used a large dataset which is called ASVSpoof 2019 (Table 1). The dataset we used

in our evaluation is divided into two parts: the first part is for the logical access (LA) to de-

tecting voice-cloning attacks and the second part physical-access (PA) to detecting replay

attacks. Their dataset contains 25,380 samples for training and 24,844 samples for de-

velopment, and 71,933 samples for assessment. Both training and development datasets

contain voice samples from 20 different speakers, whereas the spoofed dataset contains

cloned samples of the same speaker utterances generated by two voice-conversion and

four speech synthesis algorithms, totaling 120 (20times6) cloned speakers in addition to

algorithm classes. First, Neural networks and transfer-function-based methods are used in

voice conversion techniques. Second, the voice synthesis techniques, on the other hand,

are a mix of waveform concatenation and neural network based parametric speech synthe-

sis utilizing source-filter vocoders , as well as neural network parametric speech synthesis

using Wavenet. The evaluation set includes both spoofed and bonafide speech samples

from 67 speakers, with the spoofed set containing examples created using 19 different

techniques, including GAN and deep neural network approaches. Table 1 shows that the

PA dataset that contains 54,000 for training, 33,534, for development and 1,53,522 for

evaluation samples. At [74], you may learn more about the ASVspoof 2019 corpus.

The VSDC was created to detect replay and cloned replay attacks. The ASVspoof
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Table 1: Number of non-overlapping target speakers and utterances in the ASVspoof 2019
database’s training and development sets.

#Speakers #Utterances

Subset Male Female Logical Access Physical Access
Bonafide Spoof Bonafide Spoof

Training 8 12 2,580 22,800 5,400 48,600
Development 8 12 2,548 22,296 5,400 24,300

cloning samples were used to create the replay samples in the same way as the bonafide

voice recordings were done, where cloned replay attack is the recording of cloned voice

samples. The samples in the collection vary in terms of environments, speaker genre,

recording, settings, number of speakers and playback devices, and the samples in the col-

lection are different (Table 2).

These samples contain noise and interference, to be more specific. Different playback

devices were utilized to create the replays in order to counteract the influence of a certain

playback device. Voice samples from 10 males and 9 females speakers who donated their

services for data gathering are included in VSDC.

5.2 Experiment I—Performance Evaluation for Speaker Verification

The proposed method’s performance is assessed for bonafide speaker verification in this

experiment. Any ASV system’s principal duty is to verify that the speakers are bonafide.

The ASVspoof 2019 dataset was used to identify all 2580 audio samples matching to the 20

bonafide speakers for this experiment. 70% of the data which is 1806 records were used

for model training, and the remaining 30% of the data which is 774 entries was utilized

for testing.

The proposed approach produced on average 99 percent precision, recall, f1-score,

and accuracy values, as shown in Table 3. The evaluation rates for the majority of the
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Table 3: Performance of the proposed method for bonafide Speaker Verification

Speaker ID Precision Recall F1-score
LA_0079_bon 1.00 1.00 1.00
LA_0080_bon 0.97 0.94 0.96
LA_0081_bon 0.95 0.97 0.96
LA_0082_bon 1.00 1.00 1.00
LA_0083_bon 1.00 1.00 1.00
LA_0084_bon 1.00 1.00 1.00
LA_0085_bon 0.98 0.98 0.98
LA_0086_bon 0.95 1.00 0.97
LA_0087_bon 1.00 0.98 0.99
LA_0088_bon 1.00 0.97 0.99
LA_0089_bon 1.00 0.97 0.99
LA_0090_bon 1.00 1.00 1.00
LA_0091_bon 1.00 1.00 1.00
LA_0092_bon 1.00 0.98 0.99
LA_0093_bon 1.00 0.97 0.98
LA_0094_bon 1.00 1.00 1.00
LA_0095_bon 0.95 1.00 0.98
LA_0096_bon 1.00 1.00 1.00
LA_0097_bon 1.00 0.98 0.99
LA_0098_bon 0.95 1.00 0.97
Accuracy 0.99
Macro Avg 0.99 0.99 0.99
Weighted Avg 0.99 0.99 0.99

classes were 100%, while no class has more than one misclassified sample, and only 7 out

of 774 testing samples were misclassified. Furthermore, even if the training and testing

ratios were adjusted to 30-70 which means 774 records for training and the remaining

for testing. Our solution still produced average precision, recall, f1-score, and accuracy

values of 98 percent, indicating that our method successfully captures the unique vocal

tract information of registered speakers; hence, our method is trustworthy for in-domain

ASV tasks.
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5.3 Experiment II—Audio Synthesis Algorithm Detection

By using the ASVspoof 2019 LA training dataset, we assessed the effectiveness of our

solution for detecting synthetic audio production methods. As explained in section 5.1, the

synthetic audio production methods include both voice conversion and speech synthesis al-

gorithms. In this experiment, 70 percent of the data (15,874 samples) was used for model

training to recognize six algorithm classes, while the remaining data (6,803 examples) was

used for model testing. It can be seen from the data in Table4 that our solution performs

well in terms of all performance evaluation metrics, with a score of about 100 percent.

After comparing the confusion matrices in both Figures Figure 12 and Figure 13, we can

see that even when the testing samples are increased from 30% to 70%, and the training

samples are decreased from 70% to 30% , the proposed method’s algorithm detection per-

formance remains sustained. As a result, our findings confirm that the algorithms produce

unique properties in the generated cloned audios that are distinct from those produced by

other audio generation algorithms; and that a good audio representation combined with

an effective classification mechanism can exploit these artifacts to perform algorithm level

detection, thereby increasing the reliability of the attack detection profile. This feature

might also aid audio forensics applications by increasing credibility, which is important in

court.

5.4 Experiment III—Performance Evaluation for Compromised Speaker

Identification

The main goal of our experiment is to figure out which registered user voices have

been hacked in order to attack the app. Additional security steps might be implemented
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Table 4: Performance evaluation of the proposed method for synthetic algorithm recogni-
tion

Algo. ID Algorithm Precision Recall F1-score
A01 Neural waveform model 0.998 0.996 0.997
A02 Source filter vocoder-1 0.996 0.999 0.997
A03 Source filter vocoder-2 0.994 1.000 0.997
A04 Waveform concatenation 0.990 0.987 0.989
A05 Source filter vocoder-3 0.997 0.995 0.996
A06 Spectral filtering 0.998 0.997 0.998
Accuracy 0.996
Macro Avg 0.996 0.996 0.996
Weighted Avg 0.996 0.996 0.996

to safeguard the target users and their accounts if their user identification was stolen.

As a result, we integrated the algorithm and speaker information in this experiment and

used that knowledge to produce accurate labels for model evaluation. We labeled the

algorithms from ’A01’ through ’A06’, as stated in Table 4, and we also labeled the users’ IDs

from ’LA00xx’, with the spoof term in order to indicate that the audios are synthetic. We

created 120 audio classes using 6 audio synthesis methods and 20 registered speakers from

the ASVSpoof 2019 LA training dataset. We have given the results of 30 randomly selected

classes in Table 5; from the data, we can see that our technique provides an accuracy of 97

percent. Similarly, the average value of all performance evaluation metrics is 97%. Table

4 and Table 5 have accuracy differences of less than 3%, which is due to the possibility

of a sample’s partial association with a particular output label; for example, a sample

misclassified in terms of the real target speaker can still be associated with the correct

voice cloning algorithm. Furthermore, because there were only 6 classes in algorithm

identification (table 4), the margin of error was reduced. However, because our technique

still performs well even when the drill down operation is used, we can conclude that our

method dependably provides us with information about the compromised speakers, which
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Table 5: Speaker identification whose voices are used to attack the system with a certain
audio synthesis algorithm

Algo + Speaker ID Precision Recall F1-score
A01_LA_0079_spoof 0.99 1.00 0.99
A01_LA_0080_spoof 0.96 0.98 0.97
A01_LA_0081_spoof 0.98 0.98 0.98
A01_LA_0082_spoof 1.00 0.99 0.99
A01_LA_0083_spoof 0.98 0.98 0.98
A02_LA_0084_spoof 1.00 0.98 0.99
A02_LA_0085_spoof 1.00 1.00 1.00
A02_LA_0086_spoof 0.98 1.00 0.99
A02_LA_0087_spoof 0.97 1.00 0.98
A02_LA_0088_spoof 0.98 1.00 0.99
A03_LA_0089_spoof 1.00 0.97 0.98
A03_LA_0090_spoof 0.97 0.95 0.96
A03_LA_0091_spoof 0.98 1.00 0.99
A03_LA_0092_spoof 1.00 1.00 1.00
A03_LA_0093_spoof 0.98 1.00 0.99
A04_LA_0094_spoof 0.99 0.99 0.99
A04_LA_0095_spoof 1.00 1.00 1.00
A04_LA_0096_spoof 1.00 0.97 0.98
A04_LA_0097_spoof 1.00 0.98 0.99
A04_LA_0098_spoof 0.98 0.94 0.96
A05_LA_0079_spoof 1.00 1.00 1.00
A05_LA_0080_spoof 1.00 1.00 1.00
A05_LA_0081_spoof 1.00 1.00 1.00
A05_LA_0082_spoof 1.00 1.00 1.00
A05_LA_0083_spoof 0.98 1.00 0.99
A06_LA_0094_spoof 0.94 0.94 0.94
A06_LA_0095_spoof 0.96 0.91 0.94
A06_LA_0096_spoof 0.86 0.89 0.87
A06_LA_0097_spoof 0.98 0.90 0.94
A06_LA_0098_spoof 0.88 0.83 0.85
Accuracy for 120
classes

0.97

Macro avg 0.97 0.97 0.97
Weighted avg 0.97 0.97 0.97

is also a unique feature of our method.

5.5 Cross-Dataset Evaluation

In our test, there are 76,236 previously unseen samples that were chosen for review.

A 9,902 among them are bonafide instances and the remaining are cloned examples. The
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76,236 samples were made up of 5k instances from the ASVSpoof 2019 development set

and the rest is made up from the evaluation set, which has not been used for training. All

of these samples have unseen speakers where 20 of them made up from the development

set and the remaining made up from the evaluation set, and 19 different voice conversion

algorithms and voice cloning that include 6 algorithms from Table 4 and 13 algorithms

from Table 7) are used to generate cloned audio for these 87 speakers. Our approach

cannot anticipate algorithm labels since the algorithms used for voice cloning have not

been utilized for training. As a result, we used the training set with two labels, bonafide

and cloned, to train our model for this evaluation. The goal of this test was to see if

our solution can distinguish between bonafide and cloned audios, regardless of who the

speaker is or how the cloning is done. We can see from the presented results in Table 6,

that our technique has an overall accuracy of 88%. By doing a drill down operation on this

accuracy number, we discovered that the bonafide class’s accuracy is 86%, while the cloned

class’s average accuracy is 90%, resulting in an overall accuracy of 88%. 20 speakers only

are utilized for training, and those speakers are not taken into account for evaluating this

test. Among these 87 speakers, the average accuracy remains above 90% for 72 speakers

only, which is pretty high given that just 20 speakers are utilized for training and those

speakers are not evaluated in this test. Similarly, as shown in Table 7, if we look at the

13 algorithms that were not utilized for training, we can observe that 8 of them have

an accuracy of around 100%, while 2 of them have an accuracy of more than 90%. The

most troublesome algorithms are A17-A19, which have a substantial reduction in accuracy.

Table 7, on the other hand, shows that all of these algorithm classes have the smallest

amount of samples. A17, which has the lowest accuracy, is only about 27% of A09, which
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Table 6: By training on the LA-training set and testing on the LA-development and LA-
evaluation sets, performance evaluation for unseen speakers and seen/unseen algorithms
may be achieved.

Audio Label Precision Recall F1-Score EER min t-dcf
Bonafide 0.67 0.91 0.81

5.22 0.132Cloned 0.91 0.91 0.94
Accuracy 0.88

has the best accuracy (100%) and the greatest number of samples As a result, we can

conclude that model optimization has a positive relationship with sample size, and that,

despite the lack of external algorithm labels, our model correctly identifies the correlation

between the specific types of artifacts introduced by any synthetic algorithm and returns

the correct output for the vast majority of samples.

A greater accuracy value is one of several prerequisites for a successful algorithm, which

also includes algorithm performance in terms of recall, and f1-score and precision in class

dependent scenarios. The main reason for the class dependent analysis is that even if

a classifier overlooks the minor class in the event of unbalanced data, it will still offer

greater overall accuracy and other performance assessment metrics. However, such higher

assessment values are undesirable, because the minor class is generally the class of interest.

We can observe that our approach has a 67% precision rate for the bonafide class and a

97% precision rate for the cloned class by looking at the results in Table 6. Because the

precision measure also considers the false positive rate, the precision rate for the bonafide

class drops when the data is highly imbalanced such as in our case, where the 13:87 ratio

exists in both classes; however, because the false positives in the cloned class are lower,

they do not have a significant negative impact on the cloned class’s precision rate.

In the case of a recall, on the other hand, we only compared the properly categorized
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Table 7: Cross dataset validation using unseen algorithms of the LA-evaluation set.

Algo. ID Algorithm No of Samples Accuracy
A07 Vocoder+GAN 4823 0.98
A08 Neural waveform 4855 0.99
A09 Source filter vocoder-4 4893 1.00
A10 Neural waveform 4878 0.99
A11 Griffin lim 4882 0.99
A12 Neural waveform 4603 0.94

A13 waveform concatenation
+waveform filtering 4908 1.00

A14 Source filter vocoder-5 4904 1.00
A15 Neural waveform 4747 0.97
A16 Waveform concatenation 4442 0.90
A17 Waveform filtering 1352 0.28
A18 Source filter vocoder-6 1855 0.38
A19 Spectral filtering 2345 0.48

instances in a class to all of the relevant examples for that class; as a result, the recall

rates for the genuine class are 91%, which is around 24% greater than the accuracy rate.

Similarly, recall rates for the cloned class fall by 6% and fall to 91%. As a result, our

approach outperforms both the bonafide and cloned classes in terms of recall rate and

accuracy rate. By combining the accuracy and recall rates using the f1-score, we get 81%

and 94% for bonafide and cloned classes, respectively.

The f1-score differences suggest that our model requires a more extensive training set

in order to correctly categorize the unseen bonafide cases. In real-world scenarios, how-

ever, because we only want our proposed SASV system to correctly classify the registered

bonafide speakers over which the model has been trained as bonafide as shown in Table

3 and discussed in section 5.2), misclassifying the unregistered users, even if they are

bonafide, it is an essential thing from a security standpoint. The system’s total EER is less

than 6%, which is substantially lower when compared to the training and evaluation set

sizes.
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Table 8: The PA-evaluation set of ASVSpoof 2019, as well as the VSDC dataset, were used
to assess performance for replay- and cloned replay attack detection.

Datasets Sample Type Precision Recall F1-Score EER/
min t-dcf

VSDC
Bonafide 99 99 99 1.33 / 0.089Replay 98 98 98
Cloned Replay 98.9 98 98.4 –

ASVspoof Bonafide 98 98 98 1.1 / 0.0335Replay 98 98 98

5.6 Replay Attack Detection

Any bonafide speaker’s speech in a replay attack is pre-recorded and played again be-

fore the ASV systems. The artifacts that emerge during voice cloning are absent in the

replay samples because the voice samples belong to actual speakers; consequently, the au-

dio fingerprints match the bona fide speakers, and impersonation happens. However, a

closer examination of the replay samples indicates that a recorded speech has non-linear

components that can be utilized as a hint in the identification of replay attacks. To identify

replay assaults, we must first define what a replayed sample is made up of:

5.6.1 Replay and Cloned Replay Patterns

A first-order speech replay attack may be described as a processing chain of microphone-

speaker-microphone (MSM), which is equivalent to a cascade of three 2nd–order systems

when the speakers act non-linearly. The processing chain depicting a first order replay

assault is likely to produce higher order non-linearity due to the cascading of the MSM

processing chain. As a result, higher-order harmonic distortions can be used to tell the

difference between real and false audio. However, the voice cloning artifacts in cloned

replays (added in the VSDC) also contain non-linear components and behave similarly

to the MSM’s deeper chaining. Furthermore, cloned replays may be identified by con-
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Table 9: Comparison against other feature extraction approaches using VSDC, LA- and PA-
training sets of ASVspoof 2019.

Dataset Features EER/min t-dcf
Replay Cloning Cloned Replay

VSDC

MFCC-GTCC-Spectral 2.33/0.149 - 0.4/0.04
ALTP-Spectral 2.5/0.164 - 1/0.061
ALTP 2.9/0.194 - 1.2/0.072
GTCC 7.5/0.497 - 4.1/0.29
sm-ALTP 1.33/0.089 - 0.35/0.031

ASVspoof

MFCC-GTCC-Spectral 6.75/0.41 0.6/0.04 -
ALTP-Spectral 1.5/0.091 0.8/0.053 -
ALTP 3.4/0.24 0.9/0.06 -
GTCC 8.4/0.561 6.1/0.42 -
sm-ALTP 0.69/0.0169 0.5/0.037 -

currently collecting non-linear components and cloning artifacts using an efficient audio

representation technique.

5.6.2 Replay and Cloned Replay Attack Detection

We evaluated the performance of the proposed technique for replay and cloned replay

attack detection using the ASVSpoof 2019 VSDC and PA-evaluation set. We can see from

the findings in Table 8, that our technique performs admirably on both datasets when it

comes to detecting audio replay attacks. On the VSDC and ASVSpoof datasets, We got

an F1-score of 98.4% and 99% , an EER of 1.33 and 1.1, and a min t-dcf score of 0.089

and 0.0335, respectively, with an average precision of 98.3% and 99%, a recall of 98.5%

and 99%, and an F1-score of 98.4% and 99%, an EER of 1.33 and 1.1, and a min t-dcf

score The results demonstrate that the suggested approach works somewhat better on the

ASVspoof dataset than on the VSDC dataset, owing to the fact that VSDC samples are

generated in more demanding and varied environments than the ASVspoof dataset. Our

method beats the first-order replay attack in identifying cloned replay assaults in VSDC,

confirming our findings that cloned signals become more distorted after replay than normal
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Table 10: Comparison against state-of-the-art method on LA and PA evaluation sets of
ASVspoof 2019.

Paper Method LA-Eval PA-Eval
EER min-tDCF EER min-tDCF

Baseline [74] LFCC-GMM 11.96 0.212 13.54 0.3017
CQCC-GMM 9.87 0.236 11.04 0.2454

ASSERT [39] logSpec-SENet 11.75 0.216 1.29 0.036
logspec-CQCC-SENet34-
Mean-std-ResNet-
SENet50-Dialated ResNet

6.70 0.155 0.59 0.016

STC [41] LFCC-CMVN-LCNN 7.86 0.183 4.6 0.105
FFT-LCNN 4.53 0.103 2.06 0.56

BUT-Omilia [86]

logSpec-VGG-SincNet 1
-SincNet 2 8.01 0.208 1.51 0.0372

SincNet with standard
dropout 8.01 0.356 2.11 0.0527

VGG 1-VGG 2 10.52 0.279 1.49 0.04
SincNet with high dropout 22.99 0.381 2.31 0.0591

MFMT [42] MFCC-CQCC-FBank-
multi task learning 7.63 0.213 0.96 0.0266

DKU [14] GD gram-ResNet - - 1.08 0.0282

Proposed sm-ALTP-
Asymmetric Bagging 5.22 0.132 1.1 0.0335

samples, making them more recognizable.

5.7 Comparison Against Other Feature Extraction Approaches

We evaluated our proposed sm-ALTP features to numerous acoustic characteristics for

spoofing attack detection to better elucidate their efficacy. The chosen characteristics in-

cluded a variety of MFCC, GTCC, ALTP, and spectral properties in various combinations.

On the VSDC and ASVspoof 2019 LA and PA training datasets, the performance of various

feature combinations was then assessed. According to the data in Table 9, , the proposed

features beat all comparable features in terms of EER and min t-dcf scores for all types of

spoofing assaults. As a consequence, the results of the comparison confirm the robustness

of the suggested sm-ALTP characteristics.
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Table 11: ASVspoof 2019 top 10 teams in LA and PA scenarios are compared to the sug-
gested approach.

Position Team LA tdcf LA Ranking PA tdcf PA Ranking Average Ranking Score
1 T45 0.051 2 0.0122 2 2
2 T24 0.0953 4 0.0215 5 4.5
3 T05 0.0069 1 0.0672 12 6.5
3 T50 0.1118 5 0.035 8 6.5
4 Proposed 0.132 9 0.0335 9 9
4 T44 0.1554 15 0.0161 3 9
5 T60 0.0755 3 0.1492 21 12
6 T10 0.1829 23 0.0168 4 13.5
7 T02 0.1552 14 0.0614 12 13
8 T17 0.2129 30 0.0266 7 18.5
9 T53 0.2252 32 0.0219 6 19
9 T42 0.208 28 0.0372 10 19
10 T01 0.1409 12 0.2129 29 20.5
11 T58 0.1333 10 0.2767 40 25
12 T32 0.1239 8 0.281 43 25.5
13 T28 – 51 0.0096 1 26
14 T41 0.1131 6 0.5452 49 27.5
15 T39 0.1203 7 – 51 29
16 T04 0.1404 11 – 51 31
16 T07 – 51 0.057 11 31
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5.8 Comparison Against State-of-the-art Methods

To see how successful the proposed method is in detecting spoofing attacks, we com-

pared it to single-model alternatives such as [86], [74], [39], [41], [42] over LA and PA

the ASVSpoof 2019 evaluation-set scenarios. It can be seen from the methodological de-

tails and results provided in Table 10, that the comparing techniques used a wide range

of acoustic characteristics, as well as GMM and deep learning models. For purpose of

comparison, our model is significantly simpler and more accurate, with a minimum t-dcf

score of 0.1321; and only FFT-LCNN in [41] outperforms our technique in LA attack de-

tection, while our method outperforms in PA attack detection. Similarly, DKU [14] beats

our approach in PA attack detection, but their findings for LA attack detection are missing.

Despite obtaining the minimal value of the t-dcf measure is the desired aim, the total

cost of the system should not grow to the point that the spoofing detection system’s in-

clusion in real-time applications becomes problematic. In the case of FFT-LCNN [41], the

model may suffer from sluggish training, which may take anywhere from hours to days,

according to deep learning studies. Due to the linear time operation, our suggested feature

extraction methodology is highly efficient, since the feature extraction time of our method

is Theta(N).

To compare our technique to that of top challenge participants, we chose the top 10

teams from the top 50 teams in the LA and PA [71] (Table 11). Then, in terms of min

t-dcf score, we compared their performance to our suggested technique and came up with

a rating for the proposed system. In both situations, such as the LA and PA cases, our

approach was placed ninth. However, in the LA situation, most of the systems that were
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scored higher than our technique were ranked lower in the PA scenario, and vice versa.

Furthermore, for the PA scenario, we assigned a ranking score of 51 to systems that were

among the top 10 in the LA scenario but not among the top 50 in the PA scenario; similarly,

for the LA scenario, we assigned a score of 51 to systems that were among the top 10 in

the PA scenario but not among the top 50 in the LA scenario. By adding the LA and PA

ranking values and dividing by two, the average ranking score of the comparison systems

was determined. The average ranking score shows the overall performance of similar

systems in both scenarios. For both the LA and PA situations, our approach was placed

fourth in terms of cumulative performance based on the sorted ranking score. The ranking

score clearly indicates the efficacy of the proposed technique, as well as its additional

advantages, such as its small weight.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

ASV (automated speaker verification) is an important feature of speech biometric ap-

plications. These apps verify speakers based on their distinct voice features and safe-

guard user accounts against identity theft. However, security breaches occur as a result

of synthetic audio creation algorithms and counterfeited audios created via digital manip-

ulation, causing ASV systems to fail and making voice biometric applications unreliable.

In similar fashion, smart speakers such as Google Home, Amazon Alexa, Siri, and other

voice-activated devices that rely on the ASV system’s robustness are vulnerable to audio

spoofing attacks. A reliable countermeasure embedded in any ASV system ensures that

these systems will remain protected against the unauthorized access.

The state-of-the-art countermeasure development research lacks in following aspects:

a) ignores capturing of higher-order non linearity caused by the microphones against a

pre-recorded voice to detect replay attacks. b) Overlooks voice cloning algorithm artifacts

to detect voice cloning attack. c) Provides no clue about a possible counterfeiter, d) ignores

different scenarios in which a spoofing attack can be launched that may fail countermea-

sures. e) Less sensitive against noise that make them incompatible for the real-world

scenarios. f) Usually suffers class-imbalance problems if not specifically emphasized. In

this dissertation, through a comprehensive secure automatic speaker verification (SASV)

system all these problems are addressed.

The SASV system we propose identifies registered ASV users and defends against voice

cloning/synthesis, voice replays, and cloned voice replay assaults. The audio synthesis
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detection module distinguishes between authentic voices and algorithmically created syn-

thetic/cloned audios, as well as providing information on the algorithm used to generate

cloned audios. Voice replays and cloned-voice replay assaults are thwarted by the replay

detection module.

The proposed system is based on unique sm-ALTP features and asymmetric bagging en-

semble learning. By solving the class imbalance problem and recognizing various speaker

and spoofing classes, our classifier ensemble technique takes a succession of poor classi-

fiers and creates a stable classifier. According to our findings, the artifacts that arise as

a result of microphone characteristics (in the case of replay) or synthetic audio creation

techniques may be represented by using neighborhood statistics. However, in this case,

the audio representation technique must also capture the speaker’s distinct voice qualities,

which are unique to each speaker.

The assessment of our technique on the ASVspoof-2019 and VSDC datasets shows that

it efficiently captures spoofing patterns even when they are created by unknown algo-

rithms, resulting in a comprehensive security solution for ASV applications.

6.2 Future Work

In the future research work, we aim to perform further analysis of the proposed sm-

ALTP features through deep learning models. The fundamental reason is that this study

is slightly limited in terms of classification approaches, as there are several classification

approaches available including the deep learning approaches but they are not very pro-

foundly explored in this research. However, we want to analyze how various classifiers

and particularly deep learning performs with the proposed features as it is one of the
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hottest topics in the countermeasure development research.

Another potential area for our future research work is the analysis of spoofing attacks

through light-based commands over mems-based microphones. We want to analyze that

how our model will react on such commands, and will it be able to reliably counter the

spoofing attacks without model optimization or specific optimizations will be required in

this regard.

In this research work, we have explored cloned-replay attacks but there are other spe-

cific scenarios as well such as 2nd order, and 3rd order replay attacks particularly applicable

to smart speakers which are chained together. The higher order represents the level of

chaining in smart environments. Due to the deeper chaining, smart speakers trusts on

the input audios coming through a neighboring speaker and ignores the possible failure

of the countermeasure. Therefore, due to the trust issue, one countermeasure may allow

the fake audios to penetrate in the system without even noticing the unauthorized access.

However, this is the focus of our future research work.
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The growing number of voice-enabled devices and applications consider automatic

speaker verification (ASV) a fundamental component. However, maximum outreach for

ASV in critical domains e.g., financial services and health care, is not possible unless

we overcome security breaches caused by voice cloning, and replayed audios collectively

known as the spoofing attacks. The audio spoofing attacks over ASV systems on one hand

strictly limit the usability of voice-enabled applications; and on the other hand the coun-

terfeiter also remains untraceable. Therefore, to overcome these vulnerabilities, a secure

ASV (SASV) system is presented in this dissertation.

The proposed SASV system is based on the concept of novel sign modified acoustic lo-

cal ternary pattern (sm-ALTP) features and asymmetric bagging-based classifier-ensemble.

The proposed audio representation approach clusters the high and low frequency compo-

nents in audio frames by normally distributing frequency components against a convex

function. Then, the neighborhood statistics are applied to capture the user specific vocal

tract information. This information is then utilized by the classifier ensemble that is based

on the concept of weighted normalized voting rule to detect various spoofing attacks.
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Contrary to the existing ASV systems, the proposed SASV system not only detects the

conventional spoofing attacks (i.e. voice cloning, and replays), but also the new attacks

that are still unexplored by the research community and a requirement of a the future. In

this regard, a concept of cloned-replays is presented in this dissertation, where, replayed

audios contains the microphone characteristics as well as the voice cloning artifacts. This

depicts the scenario when voice cloning is applied in real-time. The voice cloning artifacts

suppresses the microphone characteristics thus fails replay detection modules and simi-

larly with amalgamation of microphone characteristics the voice cloning detection gets

deceived. Furthermore, the proposed scheme can be utilized to obtain a possible clue

against the counterfeiter through voice cloning algorithm detection module that is also a

novel concept proposed in this dissertation. The voice cloning algorithm detection module

determines the voice cloning algorithm used to generate the fake audios.

Overall the proposed SASV system simultaneously verifies the bonafide speakers and

detects the voice cloning attack, cloning algorithm used to synthesize cloned audio (in the

defined settings), and voice-replay attacks over the ASVspoof 2019 dataset. In addition,

the proposed method detects the voice replay and cloned voice replay attacks over the

VSDC dataset. Rigorous experimentation against state-of-the-art approaches also confirms

the robustness of the proposed research.
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