4,995 research outputs found

    Path planning for first responders in the presence of moving obstacles

    Get PDF
    Navigation services have gained much importance for all kinds of human activities ranging from tourist navigation to support of rescue teams in disaster management. However, despite the considerable amount of route guidance research that has been performed, many issues that are related to navigation for first responders still need to be addressed. During disasters, emergencies can result in different types of moving obstacles (e.g., fires, plumes, floods), which make some parts of the road network temporarily unavailable. After such incidents occur, responders have to go to different destinations to perform their tasks in the environment affected by the disaster. Therefore they need a path planner that is capable of dealing with such moving obstacles, as well as generating and coordinating their routes quickly and efficiently. During the past decades, more and more hazard simulations, which can modify the models with incorporation of dynamic data from the field, have been developed. These hazard simulations use methods such as data assimilation, stochastic estimation, and adaptive measurement techniques, and are able to generate more reliable results of hazards. This would allow the hazard simulation models to provide valuable information regarding the state of road networks affected by hazards, which supports path planning for first responders among the moving obstacles. The objective of this research is to develop an integrated navigation system for first responders in the presence of moving obstacles. Such system should be able to navigate one or more responders to one or multiple destinations avoiding the moving obstacles, using the predicted information of the moving obstacles generated from by hazard simulations. In this dissertation, the objective we have is expressed as the following research question: How do we safely and efficiently navigate one or more first responders to one or more destinations avoiding moving obstacles? To address the above research questions, this research has been conducted using the following outline: 1). literature review; 2). conceptual design and analysis; 3). implementation of the prototype; and 4). assessment of the prototype and adaption. We investigated previous research related to navigation in disasters, and designed an integrated navigation system architecture, assisting responders in spatial data storage, processing and analysis.Within this architecture, we employ hazard models to provide the predicted information about the obstacles, and select a geo-database to store the data needed for emergency navigation. Throughout the development of the prototype navigation system, we have proposed: a taxonomy of navigation among obstacles, which categorizes navigation cases on basis of type and multiplicity of first responders, destinations, and obstacles; a multi-agent system, which supports information collection from hazard simulations, spatio-temporal data processing and analysis, connection with a geo-database, and route generation in dynamic environments affected by disasters; data models, which structure the information required for finding paths among moving obstacles, capturing both static information, such as the type of the response team, the topology of the road network, and dynamic information, such as changing availabilities of roads during disasters, the uncertainty of the moving obstacles generated from hazard simulations, and the position of the vehicle; path planning algorithms, which generate routes for one or more responders in the presence of moving obstacles. Using the speed of vehicles, departure time, and the predicted information about the state of the road network, etc., three versions (I, II, and III) of Moving Obstacle Avoiding A* (MOAAStar) algorithms are developed: 1). MOAAstar– I/Non-waiting, which supports path planning in the case of forest fires; 2). MOAAstar–II/Waiting, which introduces waiting options to avoid moving obstacles like plumes; 3). MOAAstar–III/Uncertainty, which can handle the uncertainty in predictions of moving obstacles and incorporate the profile of responders into the routing. We have applied the developed prototype navigation system to different navigation cases with moving obstacles. The main conclusions drawn from our applications are summarized as follows: In the proposed taxonomy, we have identified 16 navigation cases that could occur in disaster response and need to be investigated. In addressing these navigation problems, it would be quite useful to employ computer simulations and models, which can make reliable predicted information about responders, the targets, and obstacles, in finding safe routes for the responders. The approach we provide is general and not limited to the cases of plumes and fires. In our data model, the data about the movement of hazards is represented as moving polygons. This allows the data model to be easily adjusted to merge and organize information from models of different types of disasters. For example, the areas that are affected by floods can also be represented as moving polygons. To facilitate the route calculation, not only the data of obstacles but also the information about the state of road networks affected by obstacles need to be structured and stored in the database. In planning routes for responders, the routing algorithms should incorporate the dynamic data of obstacles to be able to avoid the hazards. Besides, other factors, such as the operation time of tasks, the required arrival time, and departure time, also need to be considered to achieve the objectives in a rescue process, e.g., to minimize the delays caused by the moving obstacles. The profile of responders is quite important for generation of feasible routes for a specific disaster situation. The responders may have different protective equipment that allows them to pass through different types of moving obstacles, and thus can have different classification of risk levels to define the state of the road network. By taking into account the profile of the responders, the navigation system can propose customized and safe routes to them, which would facilitate their disaster response processes. On the basis of our findings, we suggest the following topics for future work: As presented Wang and Zlatanova (2013c), there are still a couple of navigation cases that need to be addressed, especially the ones that involve dynamic destinations. More algorithms would be needed to solve these navigation problems. Besides, some extreme cases (e.g., the obstacle covers the target point during the course of an incident) also need to be investigated. Using standard Web services, an Android navigation application, which can provide navigation services in the environment affected by hazards, needs to be developed and tested in both the daily practice and real disasters. In this application, a user interface with various styling options should also be designed for different situations, e.g., waiting and moving, day and night, and urgent and non-urgent. Because the communication infrastructure may not be available or work properly during a disaster response, a decentralized method is needed to allow different users to negotiate with each other and to make local agreements on the distribution of tasks in case there is no support from the central planning system. Another type of multi-agent system would be needed to handle this situation. Introduce variable traveling speed into the re-routing process. The vehicle speed plays an important role in generation of routes avoiding moving obstacle, and can be influenced by many factors, such as the obstacles, the type of vehicles, traffic conditions, and the type of roads. Therefore, it would be needed to investigate how to derive the current and future speed from trajectories of vehicles. Apply the system to aid navigation in various types of natural disasters, using different hazard simulation models (e.g., flood model). More types of agents would be needed and integrated into the system to handle heterogeneous data from these models. Extensions of the data model are also required to meet a wider range of informational needs when multiple disasters occur simultaneously

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Human–agent collaboration for disaster response

    Get PDF
    In the aftermath of major disasters, first responders are typically overwhelmed with large numbers of, spatially distributed, search and rescue tasks, each with their own requirements. Moreover, responders have to operate in highly uncertain and dynamic environments where new tasks may appear and hazards may be spreading across the disaster space. Hence, rescue missions may need to be re-planned as new information comes in, tasks are completed, or new hazards are discovered. Finding an optimal allocation of resources to complete all the tasks is a major computational challenge. In this paper, we use decision theoretic techniques to solve the task allocation problem posed by emergency response planning and then deploy our solution as part of an agent-based planning tool in real-world field trials. By so doing, we are able to study the interactional issues that arise when humans are guided by an agent. Specifically, we develop an algorithm, based on a multi-agent Markov decision process representation of the task allocation problem and show that it outperforms standard baseline solutions. We then integrate the algorithm into a planning agent that responds to requests for tasks from participants in a mixed-reality location-based game, called AtomicOrchid, that simulates disaster response settings in the real-world. We then run a number of trials of our planning agent and compare it against a purely human driven system. Our analysis of these trials show that human commanders adapt to the planning agent by taking on a more supervisory role and that, by providing humans with the flexibility of requesting plans from the agent, allows them to perform more tasks more efficiently than using purely human interactions to allocate tasks. We also discuss how such flexibility could lead to poor performance if left unchecked

    ACCESS TIME OF EMERGENCY VEHICLES UNDER THE CONDITION OF STREET BLOCKAGES AFTER A LARGE EARTHQUAKE

    Get PDF
    The previous studies have been carried out on accessibility in daily life. However it is an important issue to improve the accessibility of emergency vehicles after a large earthquake. In this paper, we analyzed the accessibility of firefighters by using a microscopic simulation model immediately after a large earthquake. More specifically, we constructed the simulation model, which describes the property damage, such as collapsed buildings, street blockages, outbreaks of fires, and fire spreading, and the movement of firefighters from fire stations to the locations of fires in a large-scale earthquake. Using this model, we analyzed the influence of the street-blockage on the access time of firefighters. In case streets are blocked according to property damage simulation, the result showed the average access time is more than 10 minutes in the outskirts of the 23 wards of Tokyo, and there are some firefighters arrive over 20 minutes at most. Additionally, we focused on the alternative routes and proposed that volunteers collect information on street blockages to improve the accessibility of firefighters. Finally we demonstrated that access time of firefighters can be reduced to the same level as the case no streets were blocked if 0.3% of residents collected information in 10 minutes

    Guide them through: an automatic crowd control framework using multi-objective genetic programming

    Get PDF
    We propose an automatic crowd control framework based on multi-objective optimisa- tion of strategy space using genetic programming. In particular, based on the sensed local crowd densities at different segments, our framework is capable of generating control strategies that guide the individuals on when and where to slow down for opti- mal overall crowd flow in realtime, quantitatively measured by multiple objectives such as shorter travel time and less congestion along the path. The resulting Pareto-front al- lows selection of resilient and efficient crowd control strategies in different situations. We first chose a benchmark scenario as used in [1] to test the proposed method. Results show that our method is capable of finding control strategies that are not only quanti- tatively measured better, but also well aligned with domain experts’ recommendations on effective crowd control such as “slower is faster” and “asymmetric control”. We further applied the proposed framework in actual event planning with approximately 400 participants navigating through a multi-story building. In comparison with the baseline crowd models that do no employ control strategies or just use some hard-coded rules, the proposed framework achieves a shorter travel time and a significantly lower (20%) congestion along critical segments of the path

    SIMULATION OF AUTONOMOUS SYSTEMS COLLABORATING IN INDUSTRIAL PLANTS FOR MULTIPLE TASKS

    Get PDF
    The autonomous systems are continuously extending their application fields and current advances in sensors and controls are enabling the possibility to operate also inside buildings and industrial plants. These new capabilities introduce challenges to be addressed in order to carry out new tasks and missions. This paper proposes advances in Modeling, interoperable Simulation and Serious Games devoted to support researches supporting autonomous system operations within Industrial Facilities
    corecore