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Guide them through: an automatic crowd control
framework using multi-objective genetic programming

Abstract

We propose an automatic crowd control framework based on multi-objective optimisa-

tion of strategy space using genetic programming. In particular, based on the sensed

local crowd densities at different segments, our framework is capable of generating

control strategies that guide the individuals on when and where to slow down for opti-

mal overall crowd flow in realtime, quantitatively measured by multiple objectives such

as shorter travel time and less congestion along the path. The resulting Pareto-front al-

lows selection of resilient and efficient crowd control strategies in different situations.

We first chose a benchmark scenario as used in [1] to test the proposed method. Results

show that our method is capable of finding control strategies that are not only quanti-

tatively measured better, but also well aligned with domain experts’ recommendations

on effective crowd control such as “slower is faster” and “asymmetric control”. We fur-

ther applied the proposed framework in actual event planning with approximately 400

participants navigating through a multi-story building. In comparison with the baseline

crowd models that do no employ control strategies or just use some hard-coded rules,

the proposed framework achieves a shorter travel time and a significantly lower (20%)

congestion along critical segments of the path.

Keywords: Crowd modelling and simulation, Crowd Control, Genetic Programming,

Multi-objective Optimisation

2016 MSC: 00-01, 99-00

1. Introduction

Crowd modelling and simulation has gained increasing attention from industry,

academia and government due to its wide applications [2] to understand, replicate and

Preprint submitted to Journal of LATEX Templates February 7, 2018



Page 2 of 41

Acc
ep

te
d 

M
an

us
cr

ip
t

predict crowd dynamics in various situations. As a natural extension to and an ap-

plication of crowd modelling and simulation, crowd control aims to intervene [3] the5

movement of crowds in a desired manner so that certain objectives are met, for in-

stance, to prevent turbulence or stampede in events involving massive crowds, to avoid

bottlenecks of crowd flow, or to minimize overall travelling time etc.

To apply appropriate crowd control strategies to intervene the crowd in a desired

manner, one needs to first understand the implicit (unintervened) crowd dynamics un-10

der specific scenarios, which can be studied through crowd modeling and simulation.

One promising approach is agent-based modelling (ABM), which treats individuals as

agents that can perceive, decide and act independently based on some rules [4]. From

the ABM perspective, crowd dynamics emerge from the motions of individuals, and

the motions can be generated through a simplified two-layer movement model [5].15

At the path planning layer (the higher layer), an agent plans/finds a path to navigate

through the environment. The path segments are usually formed as a list of waypoints

representing important landmarks and accessable areas. While at the collision avoid-

ance layer (the lower layer), it avoids collisions with others while moving along the

planned path. From the modeling perspective, there are some established methods to20

specify the rules for agents at both layers. For path planning, both shortest path algo-

rithms (such as A∗) [6] and accumulative segment-based algorithms that take account

of vision range [7] have been well established to guide an agent to move through a

set of static spatial obsctales in an environment. For collision-avoidance, algorithms

such as reciprocal velocity obstacle (RVO) and its variants [8], and social force model25

(SFM) [9] are proven efficient and widely adopted. With the two layers of movement

behaviours, ABM can generate various crowd dynamics given the initial configurations

of the agents (e.g., preferred speed, personal space factor etc.) and the environment

(e.g., waypoints of paths, obstacles etc.).

Due to the complex interactions among the agents, the stochastic nature of the30

crowd model and the large number of parameters involved, finding a “good” crowd

control strategy that explicitly intervenes movements of crowds in order to produce

the “desired” crowd movements often requires a large number of simulations, which

is time-consuming if performed manually. It is therefore important to automate the

2
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search process for optimal crowd control strategies. Evolutionary algorithms (EAs) are35

population-based non-deterministic search algorithms, which can be used to adaptively

evolve a simulation model through automating the calibration of model parameters as

well as model structures (such as behavioural rules of agents) [10, 11]. Although there

are scattered existing works on using EAs for automatic crowd control, they mainly

focus on the optimization of parameters, which may limit the search space by the fixed40

number of parameters. In this paper, we apply Genetic programming (GP) to enable

both parameter and structure evolving for automatic crowd control, which will be de-

picted in Section 4.1.

The need for multi-objective optimization [12] is also essential for crowd control,

as a good control strategy often needs to achieve different aspects of crowd dynamics45

simultaneously. For example, increasing the speed of an escalator may improve the

flow rate of one segment of a path, while it may cause congestion at other (e.g., the

subsequent) segments if there are spatial bottlenecks. Thus, the overall flow rate and the

congestion conditions along the path need to be considered simultaneously in searching

for a good crowd control strategy in this case. In this paper, our proposed GP-based50

framework can automatically search for the optimized parameters and rules used in an

agent-based crowd model for crowd control purposes, specifically to optimize multiple

objectives from the crowd dynamics perspective.

The rest of the paper is organized as follows: Section 2 describes the existing efforts

in applying EAs to calibrate crowd simulation models, and traditional crowd control55

approaches. The problem of automatic crowd control through optimization of an agent-

based model is formally defined in Section 3. As the proposed solution to address the

problem, the GP-based crowd control framework is discussed in Section 4. In Section

5, we test the framework with two scenarios, a well studied evacuation scenario in [1]

and a real life event planning scenario, where approximately 400 delegates are directed60

to leave a multi-story building with escalators transporting between stories. Section 6

concludes the paper and gives recommendations for future work.

3
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2. Related Work

2.1. Application of Evolutionary Algorithms in Crowd Simulation Models

Modeling and simulation has become a promising approach to study crowd dynam-65

ics in recent years. Various models [4, 5, 13, 14] have been proposed with different

focuses on particular aspects of a crowd according to the requirements of an applica-

tion. One common and critical objective of these models is to generate realistic crowd

behaviors through model calibration and validation [10, 11, 15], and variations of EAs

have been applied to achieve this goal.70

The most common idea is to use EAs to tune parameters of a crowd model so that

the microscopic individual behaviors (e.g., moving trajectories) can match those re-

trieved from image or video data. For example, Johansson et al. [16], applied an EA

to calibrate the parameters of the social force model (SFM). They tried to match the

microscopic motions of pedestrians such as the moving speed and direction. Similarly,75

Li et al. [17] used a Genetic Algorithm (GA) to find an optimal set of weighting pa-

rameters for composing virtual forces in a crowd model. On the other hand, efforts

have also been made to tune crowd model to match macroscopic crowd features such

as dominant moving directions and paths of the crowd in a specific scenario. For ex-

ample, Zhong et al. [11] proposed an EA-based framework to evolve the parameters of80

modified SFM in order to match macroscopic crowd features (i.e., the crowd densities).

Wolinski et al. [18] also suggected several macroscopic metrics for model calibration

based on EAs.

There are two major differences of our proposed approach compared to these meth-

ods. First, most existing EA-based approaches focus on tuning parameter settings of85

specific models (e.g., SFM and RVO2) based on videos [18], assuming a predefined

set of rules can capture different crowd dynamics well under different situations. How-

ever, this may not be the case as crowd behaviors are complex and stochastic in nature.

Thus, not only the parameters but also some behavioral rules need to be evolved and

applied to a specific situation to reproduce the observed crowd behaviors. Zhong et90

al. [10] has demonstrated GP-based approaches can be applied to find behavioral rules

of crowd in order to match the simulation results with the empirical data. In this paper,

4
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we use a GP-based apporach to allow both rule structure and parameter evolving in

order to search for the most fit rules to influence (control) crowd behaviors. Second,

the EA-based optimization approach has seldom been applied in crowd control, which95

explicitly intervene the crowd behaviors besides the implicit behaviors rules. In this

paper, we define and differentiate two sets of rules and parameters that implicitly and

explicitly influence crowd’s behaviors, respectively. Implicit rules mimic intrinsic rules

that agents follow to define their navigational and collision-avoidance behaviors, while

explicit rules are defined for crowd control intervention. Exisiting EA-based approach100

has been focused on the implicit set optimization in order to achieve realistic simula-

tion results; whereas we will focus on optimizing the explicit set that may represent

some crowd control strategies which can be maneuvered by planners to better manage

large crowds.

2.2. Existing Crowd Control Methods105

Automatic crowd control is an emerging research topic in crowd studies. Tradi-

tionally, two main levels of controlling measures are adopted for crowd control [3, 19].

On the aggregated level, interventional measures are applied to regulate and improve

the overal crowd flow by artificially setting up spatial and/or temporal constraints on

the crowd. For example, spatial constraints such as barriers or fences are usually used110

to separate crowd flow in front of a bottleneck entrance and to direct the crowd in S

shape queues in many crowded scenarios. Temporal intervention such as releasing a

large crowd in batches with freeze time in between is another common control measure.

Such interventional measures usually serve as general guidelines based on past expe-

rience and are almost fixed at the pre-planning stage of a new crowd scenario. While115

on the individual level, some regulators geared with different non-lethal weapons/tools

are arranged to guide and ease hotspots within the crowd in realtime to prevent crowd

incidents. This level of crowd control is subject to the dynamic change of the current

crowd status, and thus it is a challenge for planners to optimize the deployment of such

regulators before the actual events. In summary, crowd control is a complex task with120

the combination of various factors and procedures to intervene the crowd dynamics

in a desired manner. Due to the dynamic interactions of crowds, crowd control solu-

5
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tions/strategies cannot merely reply on empirical guidelines, and on-site intervention

strategies need to be studied according to the dynamics of crowd. In this context, agent-

based models with proper calibration can be used to test individual solutions/strategies125

in realtime through simulation-based what-if analysis.

In an agent-based crowd model, crowd control solutions/strategies can be imple-

mented as a set of scenario-specific parameters and rules to affect agents’ movement.

Due to the large number of parameter/rule combinations, it is necessary to automate

the process of searching for the optimal combination to generate the desired effect on130

crowd dynamics. EA-based methods have been applied for the automatic optimization

purpose. Eldridge and Maciejewski [20] proposed to use social robots in crowded sit-

uations to improve pedestrian flow. In this method, a GA is used to find the optimal

parameters for the interaction model between the robots and the people. Schubert and

Suzic [21] proposed a GA with stochastic simulation to learn control strategies for riot135

control. A fixed set of parameters such as the number, position and strength of barriers

were optimized through the GA in this study. More recently, Hu et al. [22] proposed an

EA based method for crowd control in a military operation in urban terrain scenario.

They developed an appraisal-based emotion model and allowed the soldier agents to

intervene crowds’ movement through emotional influence. Similar to other studies140

mentioned above, only scenario-specific parameters were evolved using an Complex

Adaptive Systems Evolver (CASE) [23]. The effectiveness of a control strategy was

measured through the aggregated emotion levels such as anger and fear, instead of the

crowd dynamics emerged from the movement of the crowd.

In summary, existing works mainly focus on the optimization of certain fixed pa-145

rameter set, which may limit the search space of an EA (with the fixed number of

parameters) to find the optimal crowd control solutions/strategies. Such evolvable pa-

rameters may only re-emphasize and fine-tune the known guidelines for crowd control

(e.g., barriers deployments), which seems insufficient to address the crowd control re-

quirements in dynamic situations. In this paper, we extend the existing work and target150

for a more flexible optimization method to find innovative and feasible crowd control

solutions/strategies through both rule structure and parameter evolving.

6
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3. Problem Definition

In this paper, crowd control is defined as a multi-objective optimization problem

over an agent-based crowd simulation model. The inputs of the crowd model consist of155

agent-specific configurations and scenario-specific configurations as shown in Figure 1.

Simulation Engine:

Crowd Model

Optimisation System:

Genetic Programming

Agent Specific
(Pre-Calibrated)

constructs simulates

evaluated bygenerates

Crowd Dynamics

Model Outputs

behavioural 
rules

agent 
parameters

Scenario Specific
(Control Strategy)

control rules

scenario 
parameters

Model Inputs

Calibrates/
Validates

Figure 1: The proposed crowd control framework.

Agent-specific configurations include parameters describing an agent’s character-

istics (e.g., preferred walking speed and personal space factor etc.), as well as be-

havioural rules that determine its movement implicitly. In the two-layer motion model,

path-finding algorithms and collision avoidance algorithms can be used to define such160

behavioural rules. In this study, a list of waypoints is used to represent the path for

an agent to move through at the path planning layer. At the collision avoidance layer,

agents avoid collisions with both the static and the dynamic obstacles (i.e., other agents)

along the path. Various collision avoidance algorithms have been proposed from both

crowd modeling and robotics research communities. In this paper, both social force165

model [24] and RVO2 [8] are adopted in the two scenarios respectively due to their

effectiveness in generating realistic collision avoidance behaviors of pedestrians [18].

In both models, each agent takes into account the observed static and dynamic ob-

stacles and selects an actual velocity for the agent to avoid collisions with deviation

7
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from its current preferred velocity. In crowd simulation studies, the preferred walking170

speed of an agent is usually initialized at the beginning of the simulation according to

the known crowd profile (e.g., normal mean walking speed of 1.3 m/s is reported for

adults [25, 26], while the old and children can have different speed profiles).

While agent-specific configurations are determined by the crowd itself and are usu-

ally beyond the control of decision-makers/responders, some scenario-specific config-175

urations can be manipulated explicitly to affect the movement of a crowd.

Focusing on these controllable scenario-specific configurations, we define a control

strategy as the setting of scenario-specific parameters (denoted as M) and external rules

(denoted as R) that are used by decision makers/responders to affect the movement of a

crowd. For example, in an event planning scenario, combinations of different numbers

of marshals to be deployed and the instructions these marshals issued to the crowd

are considered as control strategies to facilitate the crowd flow in the event. In this

study, we suppose the agent-specific configurations are known in advance (e.g., they

can be calibrated independently based on empirical data in a specific scenario). Our

objective is to optimize the scenario-specific parameters and rules (i.e., M and R) so

as to minimize multiple objectives (denoted as F). Hence, the problem of automatic

crowd control optimization now is formulated as follows:

minimize F(M,R) = (F1(M,R), ..., Fm(M,R))T (1)

where Fi(M,R) is the i-th objective function and m is the total number of objective

functions. The desired crowd dynamics define the objective functions (fitness function)

for the optimization. In scenarios with dense crowds, travel time and densities are two

important measures to evaluate the effectiveness of a crowd control strategy. In general,180

travel time reflects the overall effectiveness of crowd movement, for instance, in crowd

evacuation and event planning scenarios; whereas density plays an important role in

characterizing crowd status. For instance, in dense scenarios with a crowd density

beyond the critical density, there is a fundamental reverse relationship between the

average moving speed and crowd density [27]. Thus, highly dense crowd becomes185

not only susceptible to cascading crowd failures [28], such as stampede, but also less

effective in general.

8
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4. Proposed Method

To address the crowd control optimization problem, we propose an automatic crowd

control framework as shown in Figure 1, with mainly two components: the simulation190

engine and the optimization system. The simulation engine and the optimization system

form a feedback system: the control strategies generated by the optimization system

are fed into the simulation engine to affect the crowd movement; while the output of

the simulation engine (for instance, travel time and crowd density) are used by the

optimization system as fitness functions to find better crowd control strategies. Note195

that the control strategies are not executed by the simulation engine at every simulation

frame - they are triggered by certain conditions (e.g. segment densities become higher

than thresholds).

Agent-specific configurations of the simulation model can be calibrated separately

for a specific scenario, while only control strategies (scenario specific configurations)200

that are used to influence the movement of agents are evolved as shown in Figure 1.

For example, speed reduction control for agents at specific segments along the path

will change their original preferred speeds and thus results in different simulation re-

sults. The optimisation system receives the simulation results and corresponding con-

trol strategy as inputs, evaluates the results and produces a new “generation” of control205

strategies to feedback into the model through genetic programming. The generation

of these new control strategies is driven by specific desired crowd dynamics in a given

scenario (e.g., minimizing the travel time and the the densities along the path). The

details of the genetic programming algorithm are depicted below.

4.1. Traditional Chromosome Representation of CGP210

We propose a GP-based framework for automatic crowd control in this work. Carte-

sian Genetic Programming (CGP) is a famous GP variant [29], which has been widely

used to solve many real-world complex optimization problems. In CGP, each chromo-

some represents a directed graph which can be further decoded as a computer program

(e.g., a formula or a logical rule). The directed graph contains two types of nodes:

function nodes and output nodes. Each function node represents a particular function

9
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and it contains a number of genes. The first gene represents the function type (e.g.,

“+”), and the remaining genes describe the input sources of the function. The input

sources of a function can be a previous function node or a terminal. The number of

input sources of a function type is determined by the function type. For example, “+”

has two input sources while “sin” has one input source. The output nodes describe

which function node (or terminal) should be used to generate the final output. Based

on the above descriptions, the chromosome of CGP with one output can be represented

by the following vector of integers:

[f1, t1,1, ..., t1,m, ..., fn, tn,1, ..., tn,m, o] (2)

where n is the number of function nodes in each chromosome, m is the maximum

number of input sources a function may have, fi represents the function type of the

i-th function node, ti,k represents the k-th input source of the i-th function node, and o

represents the source index of the output. A typical chromosome with 6 function nodes

and 1 output node can be expressed as:

[0, 0, 2, 1, 1, 3, 3, 2, 2, 3, 4, 1, 2, 4, 6, 0, 5, 6, 9] (3)

Figure 2 shows the directed graph represented by the chromosome. In this exam-

ple, there are four terminals, six function nodes, and one output node. To construct

the directed graph, the four terminals are used to form the first four nodes in the

graph. Then, the function nodes in the chromosome are added to the graph one-by-

one. Finally, the output is added to the graph. In the CGP, the function type is repre-215

sented by integers. In the above example, function types are represented as follows:

+→ 0,− → 1, ∗ → 2, sin→ 3. The maximum number of input sources among these

functions (i.e., m) is 2. The first function node is < 0, 0, 2 >, which means that the

function type is “+”, the two input sources are the first node and the third node of the

graph (i.e., x and z) respectively. This function node is then added to the graph as the220

fourth node. Similarly, in the second function node, the function type is “-” and the

input sources of the function are y and the fourth node of the graph respectively. In

this way, we can build a directed graph as shown in Figure 2. The final solution is then

decoded as f(x, y, z, u) = (y−u)+sin(z). Arbitrary rule structures can be embedded

10
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in the chromosome representatin of CGP, which enables flexible crowd control strategy225

composition and optimization in this study.

Function
node 1

Chromosome

node10

Function
node 2

Function
node 3

Function
node 4

Function
node 5

Function
node 6

Output
node 1

0 0 2 1 1 3 3  2 2 3  4 1 2 4 6 0 5 6 9

+

‐

sin

sin

*

+

output

node0 x

y

z

u

node1

node2

node3

node4

node5

node6

node7

node8

node9

Directed graph

Figure 2: Traditional chromosome representation in CGP.

4.2. Proposed Hybrid Chromosome Representation

In this study, a crowd control strategy consists of 1) a set of scenario-specific pa-

rameters (e.g., in the second scenario of the event planning, parameters are used to

control the different track usage of the escalators), and 2) a set of control rules to de-

termine when and where to slow down certain portions (segments) of the crowd (the

crowd is segmented and there is a control rule for each segment). In order to evolve

both control parameters and rules, the traditional chromosome representation of CGP

is extended as follows, which consists of three parts:

v = [b1, b2, ..., bo], [f1, a1,1, a1,2, ..., fn, an,1, an,2], [s1, s2, ..., sK ]. (4)

where o and K represent the number of parameters and rules to be optimized respec-

tively. The first part represents scenario-specific parameters that can be tuned to affect

crowd dyanmics. For example, bi can be used to represent the escalator operation sta-230

tus. A value of 0 indicates single escalator is to be used at the i-th escaltor lot; and

a value of 1 indicates double escalator usage with the same moving direction. In the

11
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second part, the rule’s condition with variable structure is represented in the form of a

sequential symbolic combinations. fi represents the function type of the ith function

node, ai,k represents the k-th input source of the i-th function node. A function type235

can be of logical/algorithmic function operator and is used to connect several function

nodes in an algebraic expression. In this paper, we use four commonly used logical

function operators to link the features and construct the crowd control rules. The four

logical operators are and(&), or(|), not and(¬&), and not or(¬|). A function node a

in this case can be a either a terminal (i.e., the sensed environment information ρN) or a240

function node. To limit the search space, we binarise the density values of segments ρi

to be “high” or “low” density with an integer number of 1 or 0 respectively. Since the

inputs values are all binarised in this study, we can limit the function types to be logical

operators only. The combination of different segments’ densities through the four logic

operators will form a rule condition to trigger certain control strategies. The third part245

si represents the source index of output that controls the i-th segment. For example,

the value of the i-th output indicates the instructed speed control (reduction) for the

i-th segment in this study. If the i-th output equals to 1, then the preferred moving

speed of agents in the i-th segment will be reduced (to simplify the problem, we reduce

the preferred speed by half for all agents at the segment in simulation). Otherwise, the250

preferred moving speed of agents in the i-th segment is remained unchanged.

4.3. Proposed Multi-objective Cartesian Genetic Programming Algorithm

Traditional CGP is used for single objective optimization. To address multi-objective

optimization problems, non-dominated sorting genetic algorithm II (NSGA-II) [30] is

a widely adopted EA due to its efficiency and good spread of solutions. NSGA-II op-255

timizes multiple objectives simultaneously through an approximated Pareto-front by

a non-dominated sorting strategy. Inspired by this, we extended CGP to form Multi-

Objective Cartesian Genetic Programming (MO-CGP) by utilizing the non-dominated

sorting strategy of NSGA-II. The proposed MO-CGP aims to find the best parame-

ter values and control rules to optimize both objectives simultaneously. The output260

of algorithm is essentially a Pareto-front with multiple objectives. The decision mak-

ers/responders can then evaluate candidate control strategies and choose one to apply

12
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according to the requirements of a particular application. For example, travel time (or

evacuation time) is critical in air-plane evacuation [31], thus a control strategy result-

ing in the shortest travel time will be selected. Specifically, the proposed MO-CGP265

consists of three main steps as follows:

Step 1: Initialization

This step generates N random individuals as the initial population. For each initial

individual, the values of the three parts in the chromosome are assigned to a random

values by using different methods. For elements of the fist part, each dimension is

assigned with either 0 or 1 randomly. For the second part, the ith function node (each

function node contains 3 genes) is set by:
fi = randi(0, |F| − 1)

ai,1 = randi(0, c+ b i3c − 1)

ai,2 = randi(0, c+ b i3c − 1)

(5)

where randi(a, b) returns a random integer within [a, b], |F| is the number of functions

in the function set, and c is the number of terminals. For the third part, the i-th output

is randomly set by:

si = randi(0, n+ c) (6)

where n is the number of function nodes. When all individuals have been generated,

the non-dominated sorting strategy used in NSGA-II [30] is applied subsequently to

rank all individuals. Specifically, the individuals are classified into a series of non-270

dominated fronts at first based on their objective fitness values. The individuals in

the higher order fronts are dominated by individuals in lower order fronts, while in-

dividuals in the same front are non-dominated with each other. Here individual A

dominates B if and only if A is not worse than B in any objective and A is better than

B in at least one objective. If A cannot dominate B and B cannot dominate A, then275

A and B are non-dominated with each other. After ranking all individuals in terms of

fitness values, each individual is then assigned with a crowding-distance value. The

crowding-distance measures the local density of individuals. The more neighboring

13
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individuals, the higher the crowding-distance an individual will have. Then all indi-

viduals are ranked by the following crowded-comparison operator: A is better than B280

if r(A) < r(B) or (r(A) = r(B) and d(A) > d(B)) where r(A) and d(A) return the front

order and the diversity distance of A respectively. In this way, individuals with lower

front order and larger diversity distance would come first.

Step 2: Population Reproduction

The standard CGP adopts the 1+λ evolution strategy without crossover to generate

offspring, which has been shown effective to find promising solutions. As in CGP, a

mutation is used in this step to generate N new individuals. First of all, to generate

an offspring, a random non-dominant parent individual is selected from the population

as the base individual. What we hope is that the offspring generated based on a non-

dominant individual can be a new non-dominant individual. Then, a point mutation

operation is performed on the parent individual to generate an offspring. Each dimen-

sion of the chromosome has a probability of pm to be mutated to a new value, i.e.,

x′i =

xi, if randr(0, 1) ≥ pm

ui, otherwise
(7)

where xi is the corresponding value in the parent individual, randr(a, b) returns a

random floating number within (a, b), and pm is the mutation rate. The new value of

the dimension ui is set in the same way as done in the initialization step. Specifically,

if ui belongs to the fist part of the chromosome, then it is assigned with either 0 or 1

randomly. If ui belongs to the j-th function node of the second part, then it is set by:

ui =

randi(0, |F| − 1), xirepresents the function type

randi(0, c+ b j3c − 1), otherwise
(8)

If ui belongs to the third part, then it is set by:

ui = randi(0, n+ c) (9)

Once, a new individual is created, the chromosome of the new individual will be de-285

coded to obtain a crowd control strategy. The decoded control strategy is then used in
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the simulation model to generate the simulation results. The objective values are then

evaluated based on the simulation results.

Step 3: Selection

In this step, some worse parent individuals are replaced with better new individuals.290

First of all, a pool of individuals U is constructed by inserting the N new individuals

into the current population. The size of U is 2 ∗ N . Then, we use the non-dominated

sorting strategy to rank all individuals in U and select the N better individuals from U

to form the new population.

There is a repetition from step 2 to step 3 until the termination condition is met.295

There are various termination conditions can be used, such as reaching the maximum

number of generations.

5. Experiment Studies

In theory, the proposed crowd control framework can be applied in any crowd con-

trol scenario, where scenario-specific parameters and the condition of control rules300

can be represented as a combination of measurable status of different components. In

this paper, such components refer to individual segments’ densities. To evaluate the

effectiveness of the proposed framework, we test it in two scenarios: first, we use

a fundamental, and well-studied evacuation scenario as reported in [1] to find optimal

control strategies using our framework and compared them with the empirically proven305

recommendations from the subject-domain experts. Next, we apply the framework to

a more complex real-life case for event planning.

In both scenarios, an agent-based crowd model is constructed to simulate the move-

ment of individuals in the environment. In the first scenario, we configure the model

parameters according to the calibrated values reported in [1]. In the second scenario,310

our model is calibrated and validated using data collected from video recordings of an

event rehearsal. In both studies, crowd control strategies are applied to improve the

crowd dynamics with two specific objectives: 1) to minimize T (the total travel time),

and 2) to minimize Td (the total dense segment-time). A smaller T value means all in-

dividuals can evacuate from the room or reach the destination faster, while a smaller Td315
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indicates less dense condition over the whole travel period along certain important (for

scenario 1) or all (for scenario 2) path segments. The two scenarios also demonstrate

the benefit of our multi-objective CGP algorithm to allow the flexible choice of control

strategies with different focus on specific objective. In the first evacuation scenario,

the control strategy favoring the first objective (T ) is preferred, while the second ob-320

jective (Td) may be emphasized in the second event planning scenario, which results in

smooth and comfortable experience for delegates with less congestion from the crowd

along the their paths.

5.1. Scenario 1: Evacuation with a Single Exit

Figure 3 shows the evacuation scenario of one exit in a 15 by 15 meters room. The325

width of the only exit is set to 1 m following the paper [1]. 200 agents are initiated

randomly at the left half of the room and set to move towards the exit at the right hand

side. In this case, the paths for all the agents are set to move from their initial position

to the exit. We apply the social force model as used in the original paper [1] for the

collision avoidance layer in our crowd simulation model. The radii of agents are set330

according to a normal distribution with mean of 0.2 m and standard deviation of 0.02

m. The preferred speeds of agents are set according to another normal distribution

with a mean of 1.3 m/s and a standard deviation of 0.3 m/s. These values are set

based on empirical data representing the same context as used in the second event

planning scenario. Other parameters for the social force model are set exactly the same335

as described in [1].

In order to test the proposed framework, we divide the room into 7 segments with

a radius of 3 m, 6 m and 9 m, symmetic with regard to the central horizontal line.

Since agents are initiated on the left side, we only consider segment 0 to segment 5 (6

segments) for density status monitoring and crowd control rule formation.340

The proposed MO-CGP algorithm is used to learn the crowd control rules only

(no scenario-specific parameters in this case) by evolving a logic expression that deter-

mines whether agents remain at the original preferred speed or slow down by half at

each segment based on densities of various segments. That is, the algorithm is supposed

to find a speed reduction rule (Ri in Equation 10) for each of the 6 segments, based on
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Figure 3: Layout of single evacuation scenario.

the combination of (potentially all the) segement densities. There are two objectives to

be optimized, namely the total travel time (T ) and the total dense segment-time (Td).

In this case, we note through pilot simulation that the total dense segment time for all

segments does not vary much due to the dense scenario configuration, and the lack of

variation for path choices (as agents all move towards the exit). Instead, we note differ-

ent control rules may result in different dense time for the hotspot areas before the exit

(i.e. segment 0 and segment 1), which need to be watched out in practise. Thus, for the

second objective function Td in this case, we calculate the over-dense period for only

segment 0 and segment 1. The optimization problem is expressed as:

minimize F(R0, ...R6)

= (F1(R0, ...R6), F2(R0, ..., R6))T

subject to Ri ∈ Γ; i = 1, 2, ..., 6

(10)

where F1 and F2 return the total travel time and total dense segment time for segment

0 and segment 1, and Γ is the solution space of control rules for speed regulation of all

6 segments.

To evaluate the results, we compare our methods with three other benchmarking

methods: 1) without any control, and 2) with a hard-coded control rule: reduce the345
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preferred speed of agents for a segment if the density of the same segment is dense (i.e.,

with equal or more than 1.5 agents per square meters), and 3) a speculative control

rule: reduce the preferred speed of agents for segment 0 or segment 1 if the density

of the same segment is dense. The threshold density value of 1.5 is chosen based on

pedestrians’ level of service as described in [25]. We will also compare the found350

optimal control rules with the empirical rules from domain experts such as “slower

is faster” and “asymmetric control leads to better flow” for dense crowd as discussed

in [24].

5.2. Scenario 2: Event Planning

We then further apply the proposed framework for crowd control during an event355

planning in a building scenario. In this scenario, around 400 VIP delegates are guided

to move from a starting location (i.e., a theatre) to another gathering point inside a

multi-story building. The delegates need to move down from story 4 to story 1 through

escalators. Along the path, the delegates will be guided by some marshals, who may

ask the delegates to slow down at certain points. Marshals are to be deployed along360

the planned path. The path can be divided into 17 segments represented by a list of

way points (i.e., A, B, ..., Q) as shown in Figure 4. There are three escalation lots

ES1, ES2 and ES3 connecting different stories. As an example, the details of ES1

are demonstrated in Figure 4(a). At each escalation lot, two escalators are installed

to transport delegates in two directions (i.e., up and down) respectively under normal365

situation. During special events, both escalators can be set to transport the crowd to-

wards the same direction simultaneously. The width of an escalator is 1.3 m, which

can accomodate two persons side by side comfortably.

In this scenario, the crowd dynamics can be complex due to the spatial constraints

of the environment: the transporting speed of escalators is fixed and slower than the

normal walking speed of delegates, while some path segments (e.g., segment BC)

have more limited space than others. With different combinations of escalator direc-

tion configurations, the crowd dynamics can vary significantly. Besides, marshals may

regulate (intervene) the crowd flow. To prevent over-intervention of the natural move-

ment of delegates, 17 marshals are deployed in the 17 segments to guide direction and
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Figure 4: Layouts of the virtual environment in a four-story building.

to possiblely slow down the delegates only in the corresponding segment. It requires

specific rules to guide the marshals on when they should slow down the delegates at

the current segments under their charge. Thus, there are three binary scenario-specific

parameters to control the escalators (i.e., b1, b2, and b3) and 17 rules to regulate the

speed of delegates in the 17 segments (i.e., R1, R2, ..., R17). There are two objectives

to be optimized, namely the total travel time and total dense segment time. Thus, the

optimization problem is expressed as:

minimize F(b1, b2, b3, R1, ..., R17)

= (F1(b1, b2, b3, R1, ..., R17), F2(b1, b2, b3, R1, ..., R17))T

subject to bi ∈ {0, 1}; i = 1, 2, 3

Ri ∈ Γ; i = 1, 2, ..., 17

(11)

where F1 and F2 return the travel time and total dense segment time of the simulation

with the given configurations respectively, and Γ is the solution space of control rules370

for speed regulation.

19



Page 20 of 41

Acc
ep

te
d 

M
an

us
cr

ip
t

5.3. Crowd Model Calibration and Validation

To calibrate the agent specific configurations of the model for the second applied

scenario, we use the empirical data such as the known delegates’ profile and pilot sim-

ulations from rehearsal events. A bounded normal distribution of preferred speed (with375

mean of 1.3 m/s, standard deviation of 0.4 m/s, minimum of 0.8 m/s and maximum

of 1.6 m/s) is assigned to initialize the agents according to pedestrian characteristics

in Singapore as reported in [32]. The average pedestrian moving speed under normal

situation [26] is used as the mean preferred speed of the agents, while the standard

deviation, the minimum and maximum speeds are set to capture the speed variances380

of the delegates with different genders and ages. The personal space factor, φ = 1.0 ×

agent radius, is assigned in the scenario. It represents the preferred distance between

two delegates. The time horizon parameter τ of the RVO2 algorithm is set to 2 to

mimic the visual perception time of 2 seconds [8]. A radius is set for each waypoint

to cover the width of the path segment. An agent is considered reaching the waypoint385

once it is within the circle. When an agent reaches a new waypoint, its preferred ve-

locity is set towards a random position inside the circle of the next waypoint along the

planned path. At the entrance of each escalator lot, there are maximum four access

points with two escalators going the same direction simultaneouly and each escaltor

can accomodate two persons at a time. Agents are assumed to stand still on the es-390

calator, where their speeds are set to 0.433 m/s based on the escalator configuration.

Obstacle lines and polygons are drawn according to the buildings layout for collision

avoidance. Some model details and the calibrated values are shown in Figure 5.

Through calibration, the crowd simulation model is supposed to generate similar

crowd dynamics as observed in the scenario. Model validation is conducted to ver-395

ify this hypothesis. For this purpose, we applied the face validity and the statistical

validity of the crowd model by comparing the simulation results with data collected

from video recordings of an rehearsal event. During the rehearsal, approximately 400

participants were asked to leave the theatre after a group meeting and walked to the des-

tination along the path as shown in Figure 4. Marshals were deployed along the path400

to guide them about the moving direction (between waypoints), but with no control

on their movement. All participants were supposed to walk naturally at their comfort-
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Figure 5: Crowd model details and calibrated parameter values for event planning scenario study.

able speeds. During the rehearsal, only one escalator for each moving direction was

used to transport participants between stories as usual. Videos were taken at most path

segments, where data is retrieved to validate the simulation results of the crowd model.405

As demonstrated in Figure 6, some of the well known crowd phenomena such as

the uneven density distribution, vortex and stop and go wave [14, 33] are observed

from the simulation results. In addition, it is observed that congestions occur at similar

path segments in the simulation and the recorded videos (e.g., segment OP before the

staircase as circiled in Figure 6(a) and the actual area in Figure 6(b)). Face validity of410

the crowd model is thus achieved through producing visually similar crowd dynamics

as observed in the recorded videos 1.

Quantitative measures on the generated crowd dynamics are also used to provide

statistical validity to the model. We focus on the comparison of the simulation results

with the recorded videos through measures of the travel time and densities at each path415

segment. We count the agents/participants at each segment along time, which is divided

by the corresponding area to get the segment density. Due to the spatial constraints, the

1The simulation results can be accessed at https://drive.google.com/open?id=

0B8t255d65nTGVS1ST1Vvem15VTg
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(a) Simulation frame (b) Video frame

Figure 6: Face validation of the crowd model through crowd phenomena and congestion similarity

videos were recorded through hand-held cameras along the path with different oblique

angles. Not all the segments were fully covered by the videos, we thus merge some

path segments (e.g., GH and HI into GHI) according to the video recordings for420

comparison purposes. We then manually count the participants with an interval of 30

seconds, although some advanced video analytics method such as [34] can be used to

automatically retrieve density information from the videos. In the simulation study, the

average count of agents at each segment along time are generated from 10 simulation

runs (the black line in Figure 7 indicates the sample mean with standard error calculated425

on 95% confidence interval (C.I)), both density and the travel time of each segment are

found consistent with video-retrieved data (the red line with circle marks in Figure 7). It

is observed that the total travel time is around 520 seconds and the most dense segments

are BC, GHI , NOP and PQ (as highlighted) excluding the escalator segments (as

grey-shaded).430

5.4. Crowd Control Strategies Generated by MO-CGP Algorithm

For both scenarios, the mutation rate of the MO-CGP algorithm is set to 0.05 across

generations. The maximum chromosome length is 200 to limit the search space.

5.4.1. Scenario 1

In this scenario, we set the termination condition as 40 generations. For each gener-435

ation, 100 individual control strategies are generated as the best non-dominant solutions
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Figure 7: The density distribution at different path segments (or grouped segments) is consistent with the

counted participant densities from recorded videos.

based on the mean results of objective values T and Td from 40 simulation runs with

random seeds. The 100 candidate solutions along different generations are plot in Fig-

ure 8. The Pareto-front can be identified (as the red line) at generation 40. Figure 8 also

shows the result generated without applying crowd control. Note that the hard-coded440

rule and speculative rule generate results that are much worse than the GP generated

candidates, thus they cannot fit in the same scale as shown in the figure.

Our method has outperformed the benchmarking methods in the two objective mea-

sures. To further examine the found “optimal” rules, we choose the control strategy

resulting in the shortest evacuation time as highlighted by the dashed circle in Figure 8.445

We generate the truth table of this rule as shown in Figure 9. In the figure, I0, ..., I5

indicate the status of local segment density for segment 0, ..., segment 5 respectively.

A value of 1 indicates the current segment is overdense, and a value of 0 indicates oth-

erwise. A combination of these variables through logic operators form the condition

of the rule. J0, ..., J5 indicate the speed reduction action. A value of 0 indicates the450

speed reduction on the preferred speeds of agents is applied to the agents currently in
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Figure 8: Candidate control strategies along different generations.

the segment, and a value of 1 indicates otherwise. From the rule’s truth table, we can

identify that a clear “asymmetric” speed reduction control (J) has been adopted by the

rule to segments on the left and right sides of the exit as highlight in the truth table.

Figure 10 further confirms such a finding through simulation (particularly during the455

earlier stage of the simulation as shown in figure 10.2), where agents whose preferred

speed are reduced are highlighted with a yellow circle.

Through analysis, we find the automatically evolved rule is well aligned with ex-

perts’ speculation on good crowd control strategies to enhance crowd flow and to re-

duce the evacuation time as described in [1]. First, Helbing et al. highlighted the460

“faster is slower” phenomenum caused by the clogging at the exit (hotspot areas corre-

sponding to segment 0 and 1 in our study). Our results (by only reducing the speed of

agents at different locations and time) has shown that a corresponding control strategy

indeed results in the “slower is faster” effect on the crowd. Secondly, they mentioned

that asymmetric crowd split by pillars could result in better crowd flow at the exit to465

break the clogs. In our case, the evolved rule reduced the preferred speeds of agents in

an asymmetric manner for segments on the left/right hand-side of the exit as shown in
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tI5,I4,…,I0 J5,J4,…,J0

0 1 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 1 1 1 1 1 1 1
0 1 0 0 1 0 1 1 1 1 1 1
0 1 0 0 1 1 1 1 1 1 1 1
0 1 0 1 0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1 0 1 1 1
0 1 0 1 1 0 1 1 0 1 1 1
0 1 0 1 1 1 1 1 0 1 1 1
0 1 1 0 0 0 1 0 0 0 1 1
0 1 1 0 0 1 1 0 0 0 1 1
0 1 1 0 1 0 1 0 0 0 1 1
0 1 1 0 1 1 1 0 0 0 1 1
0 1 1 1 0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 1 0 0 1 1
0 1 1 1 1 0 1 1 0 0 1 1
0 1 1 1 1 1 1 1 0 0 1 1

I5,I4,…,I0 J5,J4,…,J0
1 0 0 0 0 0 0 1 0 0 1 1
1 0 0 0 0 1 0 1 0 0 1 1
1 0 0 0 1 0 0 1 0 0 1 1
1 0 0 0 1 1 0 1 0 0 1 1
1 0 0 1 0 0 0 1 0 0 1 1
1 0 0 1 0 1 0 1 0 0 1 1
1 0 0 1 1 0 0 1 0 0 1 1
1 0 0 1 1 1 0 1 0 0 1 1
1 0 1 0 0 0 0 1 0 0 1 1
1 0 1 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 0 0 0 1 1
1 0 1 0 1 1 0 0 0 0 1 1
1 0 1 1 0 0 0 1 0 0 1 1
1 0 1 1 0 1 0 1 0 0 1 1
1 0 1 1 1 0 0 1 0 0 1 1
1 0 1 1 1 1 0 1 0 0 1 1

I5,I4,…,I0 J5,J4,…,J0
1 1 0 0 0 0 1 1 0 0 1 1
1 1 0 0 0 1 1 1 0 0 1 1
1 1 0 0 1 0 1 1 0 0 1 1
1 1 0 0 1 1 1 1 0 0 1 1
1 1 0 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 0 1 1
1 1 0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 1 1 1 0 0 1 1
1 1 1 0 0 0 1 0 0 0 1 1
1 1 1 0 0 1 1 0 0 0 1 1
1 1 1 0 1 0 1 0 0 0 1 1
1 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 0 0 1 1 0 0 1 1
1 1 1 1 0 1 1 1 0 0 1 1
1 1 1 1 1 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1 0 0 1 1

I5,I4,…,I0 J5,J4,…,J0
0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 1 0 0 1 1 1 1 1
0 0 0 0 1 1 0 1 1 1 1 1
0 0 0 1 0 0 0 1 0 1 1 1
0 0 0 1 0 1 0 1 0 1 1 1
0 0 0 1 1 0 0 1 0 1 1 1
0 0 0 1 1 1 0 1 0 1 1 1
0 0 1 0 0 0 0 1 0 0 1 1
0 0 1 0 0 1 0 1 0 0 1 1
0 0 1 0 1 0 0 1 0 0 1 1
0 0 1 0 1 1 0 0 0 0 1 1
0 0 1 1 0 0 0 1 0 0 1 1
0 0 1 1 0 1 0 1 0 0 1 1
0 0 1 1 1 0 0 1 0 0 1 1
0 0 1 1 1 1 0 1 0 0 1 1

Figure 9: Truth table of the learned rule for the single exit evacuation scenario.

Figure 10. Agents with yellow circle surrounded indicate that their preferred speeds are

reduced at the corresponding segments as specified by the optimal rule. By breaking the

tie in competing for exit in terms of speeds, the overall flow has been enhanced, achiev-470

ing a shorter evacuation time. Such results prove that the proposed automatic crowd

control framework and the MO-CGP algorithm is effective to find optimal crowd con-

trol rules, which are at least on par with years of experience accumulated by domain

experts.

5.4.2. Scenario 2475

In this scenario, we set the termination condition as 100 generations of evolution,

assuming it is a more complex scenario than the first one. For each generation, 30

individual control strategies are generated as the best non-dominant solutions at the

current generation. We repeat the evolution process with random seeds for 10 times

and found the best 300 solutions at generation 100 as shown in Figure 11. The Pareto-480

front can be identified as shown in the figure. Individual solutions on the edge of the
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Figure 10: Asymmetric speed reduction is observed from the automatically evolved rule through different

simulation steps.

Pareto-front trade off between the two objectives. It provides multiple options for the

users to choose crowd control strategies with preferences to a specific objective when

there is no specific objective that is obviously more important than the other as in the

case of Scenario 1.485

For illustration purpose, we choose two optimized candidate control strategies from

the Pareto-front as highlighted in Figure 11. CS1 focuses more on achieving shorter

total travel time T and CS2 results in smaller times of dense segments Td.

To further examine the inter-dependency of different segment densities on the con-

trol rules for each segment, we examine the generated control strategies CS1 and CS2490
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Figure 11: The approximate Pareto-front of the 300 individual solutions at generation 100 of the evolution.

Note that some solutions achieve the same results with regard to the two measures.

from the proposed MO-CGP and decode them in terms of scenario-specific parameters

(e.g., track usage of the three escalators b1, b2, b3) and control rules (e.g., speed reduc-

tion rules on a specific segment based on observed local densities of all segments) as

shown in Appendix A.

5.5. Crowd Control Results and Discussion495

5.5.1. Scenario 1

To emphasize on the total evacuation time T , we choose the optimal control strategy

from the Pareto-front that results in the shortest T to further analyze as highlighted by

a dashed circle in the figure. The evacuation time and the total dense segment time

in segment 0 and segment 1 of this control strategy are 85.7281 and 122.5500 seconds500

respectively. The results, together with the results of other three benchmarking methods

are listed in Table 1. It is noted that the results obtained by the GP method is better

than all the other three benchmarking methods.

As results shown in Table 1, our framework has found better rules with the strict

constraints and very limited action (speed reduction) in this scenario. We note that the505

improvement of the total evacuation time is approximately 6%, 50% and 38% for the

GP evolved rule compared to the benchmarking methods without control, with hard-
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Table 1: The simulation statistics of the proposed MO-CGP algorithm, comparing with three benchmarking

methods.

Total evacuation time, T Total dense segment time, Td

Optimal rule found by GP 85.7281s 122.5500s

Model without control 91.6631s 135.5531s

Hard-coded rule 169.2781s 229.7553s

Speculative rule 137.5725s 219.4922s

coded control rule and the speculative control rule respectively. We think the improve

of 6% as compared to the no-control case may attribute to the fact that the area is quite

dense overall, and there is no alternative path for the agents except for moving towards510

the exit. Consequently, without any control, segments 0 and segment 1 will become

overly congested as time goes by. The poor results from the two hard-coded rules

imply that naive control based on only the local density of the current segments fails to

consider the density propagation across segments caused by the movement of agents;

whereas this has been included in the GP-evolved rules.515

5.5.2. Scenario 2

To test the effectiveness of the proposed framework, we use two baseline models to

compare with the generated strategies by MO-CGP: 1) the simulation model without

any crowd control; 2) the simulation model with a hard-coded control strategy: “if a

segment is over-dense (using the threshold of 1.2 pax/sqm because the space we study520

in this scenario is much larger than scenario 1, and the threshold is identified through

calibration of the model as discussed in Section 5.3), then speed reduction control on

the current segment is applied”. For each model, 10 simulation runs with different

random seeds were conducted and the results (sample mean and standard error with

95% confidence interval) for the most dense segments are shown in Figure 12.525

Compared to the baseline model without any external control on agents’ movement,

the MO-CGP generated control strategies CS1 and CS2 have improved the overall

crowd dynamics: control strategy CS1 has resulted in a shorter travel time, while peak

density of the most dense segments (i.e., BC, GHI , and NOP ) has been reduced
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Figure 12: Simulation results and comparison of different crowd control strategies at the most dense path

segments (excluding the escalator segments).

by approximately 20% with control strategy CS2. On the contrary, the hard-coded530

strategy does not have obvious improvement from the baseline model without control

strategy. This is counter-intuitive as marshals in real life situations usually perform

crowd control based on the current segment’s density. However, the results show inef-

fectiveness of this simple strategy. We suspect the failure of such hard-coded strategies

is due to their lack of considerations on the inter-dependencies of the crowd dynamics535

across different path segments. Such inter-dependency is related to the spatial con-

straints of the environment as well as the interactions among pedestrians with different

moving speeds. For example, the inflow and outflow of an escalator will certainly af-

fect the densities of crowds at the subsequent segments that are even further away from

the escalator. Hard-coded rules can hardly exploit such inter-dependencies; whereas540

GP-based optimization methods overcome this shortage through efficient search over
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the whole solution space.

In summary, the results indicate that the proposed GP based automatic framework

is capable of improving the crowd dynamics through evolving both parameter and rule

structure despite very strict constraints (e.g., allowing only to slow down agents in545

order to make them pass through the whole path faster).

5.5.3. Application of the Proposed Framework

The proposed framework can be deployed in real applications through: 1) deploy-

ing a number of sensors to retrieve segment densities in real-time; 2) deploying a mar-

shal at each segment along the path; 3) training the GP based on either rehearsal event550

or simulation data; and 4) generating guidance to regulate the crowd flow for each

marshal according to the GP and sensed segment densities in real-time.

One general limitation of a GP-based framework is that the evolved rules can be

very complex with many levels of combinations as shown in Appendix A. Further in-

vestigation of the evolved rules can provide insights on more important segments over555

others. However, it is a very challenging task to simplify such formula even for combi-

nations of only logic operations with a large number (e.g., larger than 4) of features. In

this paper, we propose to address this challenge through a machine learning approach,

where the rule analysis is converted to a feature selection problem. Our objective is

to find the most important segments (features) out of the complex combinations that560

fire the speed reduction rule for a particular segment. To achieve this, we first gener-

ate all possible value combinations of a control rule as shown in Appendix A, and use

the logistic combination to generate the action results accordingly. That is, we gener-

ate sample pairs for each control rule as < xi, yi >
n
i=1, where xi is generated from

x1,2,...17. xi = 0 or 1 representing whether a path segment has over-densed crowd at565

the moment, and yi = 0 or 1 representing whether the current control strategy needs to

reduce the preferred speed of agents at segment i (corresponding to rulei). We then

transform all the records with yi=0 to yi=-1 to facilitate calculation in the feature se-

lection process. Then we use feature generation machine [35] as shown in Equation 12

to extract the feature importance of xi that results in speed reduction (yi=1):570
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Figure 13: Feature importance of the generated control rules 3, 8, 16 for both control strategies CS1 and

CS2. The higher positive value indicates higher importance of the feature with positive correlation to the

result (Y =1).

min
d

min
w,ρ,ξ

1

2
‖w‖2 +

C

2

n∑
i=1

ξ2i − ρ (12)

s.t. yiw
>(xi � d) ≥ ρ− ξi

where w is the feature weights and d ∈ {0, 1}d is the feature selection indicator (i.e.,

1 means select and 0 means discard) , ξi is slack error for data xi, ρ is the linear model

bias.

For illustration purpose, we plot the feature importance for rule3, rule8 and rule16

corresponding to the control rules over the most dense segments BC, GH and OP as575

found from the previous simulation. In general, local densities at segmentBC and JK

are more important indicators that lead to the speed reduction control at the most dense

segments as shown in Figure 13, which can be used to improve the cost-efficiency of

the actual system by reducing the number of necessary sensors. For example, there

are 11 features in the original rule construction of the generated rule3. Sensors should580

be allocated at all these 11 segments to retrieve density information. Through the fea-
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ture importance analysis, we have identified that densities at segment BC and JK are

significantly more important that others. Thus, sensors can be allocated mainly to the

limited but important segments in practise. We also note that segments (e.g., JK) that

are further away can be important to determine when to fire a speed reduction rule585

for a specific segment (e.g., BC). The feature importance analysis has affirmed our

hypothesis that the inter-relation of different features can be complex to form an opti-

mal control rule. The analysis suggests that the proposed GP-based automatic control

system is much more feasible to achieve better crowd control than hard-coded rule

systems, which are generally based on past experience.590

6. Conclusions and Future Work

In this paper, we have proposed an automatic crowd control framework based on ge-

netic programming techniques. The framework consists of a simulation engine to gen-

erate crowd dynamics and an optimization system based on genetic programming. The

framework aims to provide the “optimal” crowd control strategies in order to generate595

crowd dynamics with multiple objectives through simultaneous evolution of scenario-

specific parameters and control rules that affect the agent’s movement explicitly in the

simulation model.

From the base scenaio of crowd control in a room evacuation case, the proposed

framework has found rules that result in shorter evacuation time with less density at600

the hotspot areas in front of the exit (to avoid pushing). Although the improvement is

limited due to the strict constraints and very limited action choice to construct the rule,

we demonstrated that the proposed framework can automatically identify crowd con-

trol strategies that are well aligned with the speculative recommendation from experts

based on years of experience.605

The scenario study of an event planning shows that this framework is promising to

provide a set of better control strategies to influence crowd dynamics more effectively

in a more complex and practical scenario. We further provide a method to analyze

and identify the most important components in the optimized rules based on the fea-

ture selection machine, which overcomes the simplification challenge of the usually610
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over-complex rules found by genetic programming. With proper sensor resources, the

proposed framework can be applied in different practical crowd control applications.

Some limitations of the proposed framework and the MO-CGP algorithm have also

been identified in this study. First, we feel the proposed framework may be more

suitable to handle crowd control in a scenario with flexible intervention on both path615

planning and moving speeds. We will further verify this assumption using more sce-

nario studies. Secondly, there are trade-off between optimization convergency and the

population size. In a more complex scenario for practical applications, a larger popu-

lation size may be needed, which will request for much more computational resources.

To conquer this challenge, we will explore hierarchical approaches for modeling, and620

thus simplify some model components to improve the efficiency.
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Appendix A. Decoded control strategies CS1 and CS2 through MO-CGP in Scenario 2.

Control Strategy CS1 CS2

b1, b2, b3 1, 1, 1 0, 1, 0

rule1(Y1) (x12) ∨ (¬((x2) ∨ (x7)) ∧ (¬(x13) ∧ (x1))) ((¬(x13)∧(¬(x5)∨(x5)))∨(¬(x1)∧((x2)∨(x7))))∧((x15)∨(x14))

rule2(Y2)

¬((((¬(x13)∧(x1))∨(x14))∧(¬(x15)∨(x17)))∨(¬(x7)∨(¬(x6)∨

(¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∧ (x1))))) ∨ (((x9) ∨ ((x2) ∨

(x7))) ∧ (x9))

(¬(((¬(x7)∨(¬(x6)∨(¬((¬(x13)∧(x1))∨(¬(x5)∨(x5)))∧(x1))))∨

(¬(x6)∧ ((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))))∧ ((¬(x10)∧ ((¬(x6)∨

(¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∧ (x1))) ∧ ((x9) ∨ ((x2) ∨

(x7)))))∨ (¬(x13)∧ (¬(x5)∨ (x5)))))∨ ((x6)∧ (x15)))∧ (((((x9)∨

((x2) ∨ (x7))) ∧ (¬(x7) ∨ (¬(x6) ∨ (¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨

(x5)))∧(x1)))))∧(¬(x8)∧(¬(x11)∨(x3))))∨(¬(((¬(x7)∨(¬(x6)∨

(¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1))))∨ (¬(x6)∧ ((¬(x13)∧

(x1))∨(¬(x5)∨(x5)))))∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧(x1))∨

(¬(x5)∨(x5)))∧(x1)))∧((x9)∨((x2)∨(x7)))))∨(¬(x13)∧(¬(x5)∨

(x5)))))∨((¬(x16)∨(¬(x10)∨(¬(¬(x2)∨(x12))∧(x17))))∧((x12)∨

(¬((x2) ∨ (x7)) ∧ (x6))))))

rule3(Y3)

((¬(¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1))∧ ((x14)∧ (¬(x13)∧

(x1)))) ∧ ((((x14) ∧ (¬(x13) ∧ (x1))) ∧ (x6)) ∨ (¬((x2) ∨ (x7)) ∧

(¬(x13)∧ (x1)))))∨ (¬((¬(x15)∨ (x17))∨ (¬(x11)∨ (x3)))∧ (x15))

¬((¬(((x14)∧ (¬(x13)∧ (x1)))∧ (((x9)∨ ((x2)∨ (x7)))∧ (x9)))∧

((x14) ∧ (¬(x13) ∧ (x1)))) ∧ ((((x14) ∧ (¬(x13) ∧ (x1))) ∧ (((x9) ∨

((x2) ∨ (x7))) ∧ (x9))) ∨ (¬((x2) ∨ (x7)) ∧ (x6)))) ∧ (¬((¬(x15) ∨

(x17)) ∨ (¬(x11) ∨ (x3))) ∧ (x15))

rule4(Y4) x8

(((x9) ∨ ((x2) ∨ (x7))) ∧ (¬(x7) ∨ (¬(x6) ∨ (¬((¬(x13) ∧ (x1)) ∨

(¬(x5) ∨ (x5))) ∧ (x1))))) ∧ (¬(x8) ∧ (¬(x11) ∨ (x3)))

rule5(Y5)
(¬(¬(x2) ∨ ((x9) ∨ ((x2) ∨ (x7)))) ∧ (¬(x5) ∨ (x5))) ∨ ((¬(x6) ∧

((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5)))) ∧ (¬(x13) ∧ (x1)))

¬(¬(¬(((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∧ (¬(¬((x2) ∨ (x7)) ∧

(x6))∨ ((¬(¬(x13)∧ (x1))∨ (x14))∧ ((x2)∨ (x7)))))∨ (¬(((x14)∧

(¬(x13)∧(x1)))∧(((x9)∨((x2)∨(x7)))∧(x9)))∧((x14)∧(¬(x13)∧

(x1)))))∧((¬(x1)∧((x2)∨(x7)))∧((¬(x7)∨(¬(x6)∨(¬((¬(x13)∧

(x1))∨(¬(x5)∨(x5)))∧(x1))))∨(¬(x6)∧((¬(x13)∧(x1))∨(¬(x5)∨

(x5))))))) ∨ ((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5)))
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rule6(Y6)

lnot(¬(x14)∨ (x9))∧ (¬((((x9)∨ ((x2)∨ (x7)))∧ (x9))∨ (¬(x14)∨

(x9)))∨((¬(x1)∧((x2)∨(x7)))∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧

(x1))∨(¬(x5)∨(x5)))∧(x1)))∧((x9)∨((x2)∨(x7)))))∨(¬(¬(x2)∨

((x9) ∨ ((x2) ∨ (x7)))) ∧ (¬(x5) ∨ (x5))))))

¬(¬(¬(x1) ∧ ((x2) ∨ (x7))) ∧ (x7)) ∧ (¬((((x9) ∨ ((x2) ∨ (x7))) ∧

(x9))∨ (¬(x14)∨ (x9)))∨ (((¬(x7)∨ (¬(x6)∨ (¬((¬(x13)∧ (x1))∨

(¬(x5) ∨ (x5))) ∧ (x1)))) ∨ (¬(x6) ∧ ((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨

(x5)))))∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧(x1))∨(¬(x5)∨(x5)))∧

(x1))) ∧ ((x9) ∨ ((x2) ∨ (x7))))) ∨ (¬(x13) ∧ (¬(x5) ∨ (x5))))))

rule7(Y7)

(((¬(x5)∨(x5))∨(¬(x12)∨(x12)))∨(¬(¬(¬(x14)∨(x9))∧(¬((x9)∨

(x11)) ∧ (x5))) ∧ (¬(((x15) ∨ (x14)) ∨ (¬((x15) ∨ (x14)) ∨ (x8))) ∨

((¬(¬(x13)∧ (x1))∧ (x17))∧ ((x15)∨ (x14))))))∧ (¬(x2)∨ ((x9)∨

((x2) ∨ (x7))))

¬(x12)∧ ((x3)∨ (¬(¬(¬(x6)∧ ((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5))))∧

(¬(x13) ∧ (x1))) ∨ ((x9) ∨ (x11))))

rule8(Y8)

(¬(¬(¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∨ (¬(¬((x2) ∨ (x7)) ∧

(¬(x13)∧ (x1)))∨ (((¬(x13)∧ (x1))∨ (x14))∧ (¬(x15)∨ (x17)))))∨

(¬(¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1))∧ ((x14)∧ (¬(x13)∧

(x1)))))∧(¬(x2)∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧(x1))∨(¬(x5)∨

(x5)))∧(x1)))∧((x9)∨((x2)∨(x7)))))∨(¬(¬(x2)∨((x9)∨((x2)∨

(x7))))∧(¬(x5)∨(x5))))))∨((((¬(x13)∧(x1))∨(x14))∧(¬(x15)∨

(x17)))∨ (¬(x7)∨ (¬(x6)∨ (¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧

(x1)))))

((¬(((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (¬(¬((x2)∨ (x7))∧ (x6))∨

((¬(¬(x13)∧(x1))∨(x14))∧((x2)∨(x7)))))∨(¬(((x14)∧(¬(x13)∧

(x1)))∧(((x9)∨((x2)∨(x7)))∧(x9)))∧((x14)∧(¬(x13)∧(x1)))))∧

(¬(x2)∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧(x1))∨(¬(x5)∨(x5)))∧

(x1))) ∧ ((x9) ∨ ((x2) ∨ (x7))))) ∨ (¬(x13) ∧ (¬(x5) ∨ (x5)))))) ∨

(((¬(¬(x13) ∧ (x1)) ∨ (x14)) ∧ ((x2) ∨ (x7))) ∨ (¬(x7) ∨ (¬(x6) ∨

(¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∧ (x1)))))

rule9(Y9) ¬(x7) ∨ (¬(x6) ∨ (¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∧ (x1))) (¬(x5) ∨ (x5)) ∧ (x16)

rule10(Y10)

(¬(¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1))∧ ((x14)∧ (¬(x13)∧

(x1)))) ∧ ((((x14) ∧ (¬(x13) ∧ (x1))) ∧ (x6)) ∨ (¬((x2) ∨ (x7)) ∧

(¬(x13) ∧ (x1))))

((¬(x2)∨ (x12))∧ (¬(¬(x11)∨ (x3))∨ (¬((x16)∧ (((x9)∨ ((x2)∨

(x7))) ∧ (x9))) ∨ ((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5)))))) ∧ ((x10) ∧

(¬(x4) ∨ (((x9) ∨ ((x2) ∨ (x7))) ∧ (x9))))

rule11(Y11)
¬(¬(x13) ∧ (x1)) ∧ ((¬((x2) ∨ (x7)) ∧ (¬(x13) ∧ (x1))) ∧ ((x16) ∧

(((x9) ∨ ((x2) ∨ (x7))) ∧ (x9))))

¬(¬(x13)∧(x1))∧((¬((x2)∨(x7))∧(x6))∧((x16)∧(((x9)∨((x2)∨

(x7))) ∧ (x9))))

rule12(Y12) (¬(x5) ∨ (x5)) ∨ (¬(x12) ∨ (x12)) (¬(x5) ∨ (x5)) ∨ (¬(x2) ∨ (x12))
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rule13(Y13)

¬((x10)∧(¬((((¬(x13)∧(x1))∨(x14))∧(¬(x15)∨(x17)))∨(¬(x7)∨

(¬(x6)∨ (¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1)))))∨ (((x9)∨

((x2)∨(x7)))∧(x9))))∧(¬(¬(¬((¬(x13)∧(x1))∨(¬(x5)∨(x5)))∧

(x1)) ∧ ((x14) ∧ (¬(x13) ∧ (x1)))) ∧ (x14))

¬((¬(¬(x6)∧((¬(x13)∧(x1))∨(¬(x5)∨(x5))))∧(¬(x13)∧(x1)))∧

((x2)∨ (x7)))∧ (((x14)∧ (¬(x13)∧ (x1)))∧ (((x9)∨ ((x2)∨ (x7)))∧

(x9)))

rule14(Y14)

(¬(¬(¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∨ (¬(¬((x2) ∨ (x7)) ∧

(¬(x13)∧ (x1)))∨ (((¬(x13)∧ (x1))∨ (x14))∧ (¬(x15)∨ (x17)))))∨

(¬(¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1))∧ ((x14)∧ (¬(x13)∧

(x1)))))∧(¬(x2)∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧(x1))∨(¬(x5)∨

(x5)))∧(x1)))∧((x9)∨((x2)∨(x7)))))∨(¬(¬(x2)∨((x9)∨((x2)∨

(x7))))∧(¬(x5)∨(x5))))))∨((((¬(x13)∧(x1))∨(x14))∧(¬(x15)∨

(x17)))∨ (¬(x7)∨ (¬(x6)∨ (¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧

(x1)))))

((¬(((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (¬(¬((x2)∨ (x7))∧ (x6))∨

((¬(¬(x13)∧(x1))∨(x14))∧((x2)∨(x7)))))∨(¬(((x14)∧(¬(x13)∧

(x1)))∧(((x9)∨((x2)∨(x7)))∧(x9)))∧((x14)∧(¬(x13)∧(x1)))))∧

(¬(x2)∧((¬(x10)∧((¬(x6)∨(¬((¬(x13)∧(x1))∨(¬(x5)∨(x5)))∧

(x1))) ∧ ((x9) ∨ ((x2) ∨ (x7))))) ∨ (¬(x13) ∧ (¬(x5) ∨ (x5)))))) ∨

(((¬(¬(x13) ∧ (x1)) ∨ (x14)) ∧ ((x2) ∨ (x7))) ∨ (¬(x7) ∨ (¬(x6) ∨

(¬((¬(x13) ∧ (x1)) ∨ (¬(x5) ∨ (x5))) ∧ (x1)))))

rule15(Y15) (((x9) ∨ ((x2) ∨ (x7))) ∧ (x9)) ∨ (¬(x14) ∨ (x9)) (((x9) ∨ ((x2) ∨ (x7))) ∧ (x9)) ∨ (¬(x14) ∨ (x9))

rule16(Y16) (¬(x15) ∨ (x17)) ∨ (¬(x11) ∨ (x3)) (¬(x15) ∨ (x17)) ∨ (¬(x11) ∨ (x3))

rule17(Y17)

(¬(¬((¬(x13)∧ (x1))∨ (¬(x5)∨ (x5)))∧ (x1))∧ ((x14)∧ (¬(x13)∧

(x1)))) ∧ ((((x14) ∧ (¬(x13) ∧ (x1))) ∧ (x6)) ∨ (¬((x2) ∨ (x7)) ∧

(¬(x13) ∧ (x1))))

(¬(((x14) ∧ (¬(x13) ∧ (x1))) ∧ (((x9) ∨ ((x2) ∨ (x7))) ∧ (x9))) ∧

((x14) ∧ (¬(x13) ∧ (x1)))) ∧ ((((x14) ∧ (¬(x13) ∧ (x1))) ∧ (((x9) ∨

((x2) ∨ (x7))) ∧ (x9))) ∨ (¬((x2) ∨ (x7)) ∧ (x6)))
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1. We propose an automatic framework based on genetic programming to generate crowd control strategies.  2. We propose a Multi-Objective Cartesian Genetic Programming (MO-CGP) algorithm capable of evolving not only parameters but also rule structures so as to find optimal control strategies for multi-objective optimization.  3. We demonstrate the effectiveness of the framework in a real life crowd control scenario to guide approximately 400 participants to pass through a multi-story building with shorter travel time and reduced congestion at hotspot segments, comparing to several common baseline crowd models.  4. We propose a rule analysis method through feature selection machine to identify a limited number of most important features in the evolved rules from GP algorithm effectively. 
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