4,021 research outputs found

    Multi-agent system for Knowledge-based recommendation of Learning Objects

    Get PDF
    Learning Object (LO) is a content unit being used within virtual learning environments, which -once found and retrieved- may assist students in the teaching - learning process. Such LO search and retrieval are recently supported and enhanced by data mining techniques. In this sense, clustering can be used to find groups holding similar LOs so that from obtained groups, knowledge-based recommender systems (KRS) can recommend more adapted and relevant LOs. In particular, prior knowledge come from LOs previously selected, liked and ranked by the student to whom the recommendation will be performed. In this paper, we present a KRS for LOs, which uses a conventional clustering technique, namely K-means, aimed at finding similar LOs and delivering resources adapted to a specific student. Obtained promising results show that proposed KRS is able to both retrieve relevant LO and improve the recommendation precision

    Learner course recommendation in e-learning based on swarm intelligence

    Get PDF
    Se dan unas recomendaciones en la enseñanza asistida por ordenador (e-learning) basada en la inteligencia colectiva.This paper analyses aspects about the recommendation process in distributedinformation systems. It extracts similarities and differences between recommendations in estores and the recommendations applied to an e-learning environment. It also explains the phenomena of self-organization and cooperative emergence in complex systems coupled with bio-inspired algorithms to improve knowledge discovery and association rules. Finally, the present recommendation is applied to e-learning by proposing recommendation by emergence in a multi.agent system architecture

    Bringing underused learning objects to the light: a multi-agent based approach

    Get PDF
    The digital learning transformation brings the extension of the traditional libraries to online repositories. Learning object repositories are employed to deliver several functionalities related to the learning object’s lifecycle. However, these educational resources usually are not described effectively, lacking, for example, educational metadata and learning goals. Then, metadata incompleteness limits the quality of the services, such as search and recommendation, resulting in educational objects that do not have a proper role in teaching/learning environments. This work proposes to bring an active role to all educational resources, acting on the analysis generated from the usage statistics. To achieve this goal, we created a multi-agent architecture that complements the common repository’s functionalities to improve learning and teaching experiences. We intend to use this architecture on a repository focused on ocean literacy learning objects. This paper presents some steps toward this goal by enhancing, when needed, the repository to adapt itself.info:eu-repo/semantics/publishedVersio

    Finding the right answer: an information retrieval approach supporting knowledge sharing

    Get PDF
    Knowledge Management can be defined as the effective strategies to get the right piece of knowledge to the right person in the right time. Having the main purpose of providing users with information items of their interest, recommender systems seem to be quite valuable for organizational knowledge management environments. Here we present KARe (Knowledgeable Agent for Recommendations), a multiagent recommender system that supports users sharing knowledge in a peer-to-peer environment. Central to this work is the assumption that social interaction is essential for the creation and dissemination of new knowledge. Supporting social interaction, KARe allows users to share knowledge through questions and answers. This paper describes KARe�s agent-oriented architecture and presents its recommendation algorithm

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    The Use of Multi-Agents\u27 Systems in e-Learning Platforms

    Get PDF
    corecore