187,533 research outputs found

    OPTIMIZING LARGE COMBINATIONAL NETWORKS FOR K-LUT BASED FPGA MAPPING

    Get PDF
    Optimizing by partitioning is a central problem in VLSI design automation, addressing circuit’s manufacturability. Circuit partitioning has multiple applications in VLSI design. One of the most common is that of dividing combinational circuits (usually large ones) that will not fit on a single package among a number of packages. Partitioning is of practical importance for k-LUT based FPGA circuit implementation. In this work is presented multilevel a multi-resource partitioning algorithm for partitioning large combinational circuits in order to efficiently use existing and commercially available FPGAs packagestwo-way partitioning, multi-way partitioning, recursive partitioning, flat partitioning, critical path, cutting cones, bottom-up clusters, top-down min-cut

    On the usage of the probability integral transform to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems

    Full text link
    We present a new distributed fuzzy partitioning method to reduce the complexity of multi-way fuzzy decision trees in Big Data classification problems. The proposed algorithm builds a fixed number of fuzzy sets for all variables and adjusts their shape and position to the real distribution of training data. A two-step process is applied : 1) transformation of the original distribution into a standard uniform distribution by means of the probability integral transform. Since the original distribution is generally unknown, the cumulative distribution function is approximated by computing the q-quantiles of the training set; 2) construction of a Ruspini strong fuzzy partition in the transformed attribute space using a fixed number of equally distributed triangular membership functions. Despite the aforementioned transformation, the definition of every fuzzy set in the original space can be recovered by applying the inverse cumulative distribution function (also known as quantile function). The experimental results reveal that the proposed methodology allows the state-of-the-art multi-way fuzzy decision tree (FMDT) induction algorithm to maintain classification accuracy with up to 6 million fewer leaves.Comment: Appeared in 2018 IEEE International Congress on Big Data (BigData Congress). arXiv admin note: text overlap with arXiv:1902.0935

    A parallel algorithm to calculate the costrank of a network

    No full text
    We developed analogous parallel algorithms to implement CostRank for distributed memory parallel computers using multi processors. Our intent is to make CostRank calculations for the growing number of hosts in a fast and a scalable way. In the same way we intent to secure large scale networks that require fast and reliable computing to calculate the ranking of enormous graphs with thousands of vertices (states) and millions or arcs (links). In our proposed approach we focus on a parallel CostRank computational architecture on a cluster of PCs networked via Gigabit Ethernet LAN to evaluate the performance and scalability of our implementation. In particular, a partitioning of input data, graph files, and ranking vectors with load balancing technique can improve the runtime and scalability of large-scale parallel computations. An application case study of analogous Cost Rank computation is presented. Applying parallel environment models for one-dimensional sparse matrix partitioning on a modified research page, results in a significant reduction in communication overhead and in per-iteration runtime. We provide an analytical discussion of analogous algorithms performance in terms of I/O and synchronization cost, as well as of memory usage

    High-Quality Hypergraph Partitioning

    Get PDF
    This dissertation focuses on computing high-quality solutions for the NP-hard balanced hypergraph partitioning problem: Given a hypergraph and an integer kk, partition its vertex set into kk disjoint blocks of bounded size, while minimizing an objective function over the hyperedges. Here, we consider the two most commonly used objectives: the cut-net metric and the connectivity metric. Since the problem is computationally intractable, heuristics are used in practice - the most prominent being the three-phase multi-level paradigm: During coarsening, the hypergraph is successively contracted to obtain a hierarchy of smaller instances. After applying an initial partitioning algorithm to the smallest hypergraph, contraction is undone and, at each level, refinement algorithms try to improve the current solution. With this work, we give a brief overview of the field and present several algorithmic improvements to the multi-level paradigm. Instead of using a logarithmic number of levels like traditional algorithms, we present two coarsening algorithms that create a hierarchy of (nearly) nn levels, where nn is the number of vertices. This makes consecutive levels as similar as possible and provides many opportunities for refinement algorithms to improve the partition. This approach is made feasible in practice by tailoring all algorithms and data structures to the nn-level paradigm, and developing lazy-evaluation techniques, caching mechanisms and early stopping criteria to speed up the partitioning process. Furthermore, we propose a sparsification algorithm based on locality-sensitive hashing that improves the running time for hypergraphs with large hyperedges, and show that incorporating global information about the community structure into the coarsening process improves quality. Moreover, we present a portfolio-based initial partitioning approach, and propose three refinement algorithms. Two are based on the Fiduccia-Mattheyses (FM) heuristic, but perform a highly localized search at each level. While one is designed for two-way partitioning, the other is the first FM-style algorithm that can be efficiently employed in the multi-level setting to directly improve kk-way partitions. The third algorithm uses max-flow computations on pairs of blocks to refine kk-way partitions. Finally, we present the first memetic multi-level hypergraph partitioning algorithm for an extensive exploration of the global solution space. All contributions are made available through our open-source framework KaHyPar. In a comprehensive experimental study, we compare KaHyPar with hMETIS, PaToH, Mondriaan, Zoltan-AlgD, and HYPE on a wide range of hypergraphs from several application areas. Our results indicate that KaHyPar, already without the memetic component, computes better solutions than all competing algorithms for both the cut-net and the connectivity metric, while being faster than Zoltan-AlgD and equally fast as hMETIS. Moreover, KaHyPar compares favorably with the current best graph partitioning system KaFFPa - both in terms of solution quality and running time

    Developments and experimental evaluation of partitioning algorithms for adaptive computing systems

    Get PDF
    Multi-FPGA systems offer the potential to deliver higher performance solutions than traditional computers for some low-level computing tasks. This requires a flexible hardware substrate and an automated mapping system. CHAMPION is an automated mapping system for implementing image processing applications in multi-FPGA systems under development at the University of Tennessee. CHAMPION will map applications in the Khoros Cantata graphical programming environment to hardware. The work described in this dissertation involves the automation of the CHAMPION backend design flow, which includes the partitioning problem, netlist to structural VHDL conversion, synthesis and placement and routing, and host code generation. The primary goal is to investigate the development and evaluation of three different k-way partitioning approaches. In the first and the second approaches, we discuss the development and implementation of two existing algorithms. The first approach is a hierarchical partitioning method based on topological ordering (HP). The second approach is a recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic (RP). We extend these algorithms to handle the multiple constraints imposed by adaptive computing systems. We also introduce a new recursive partitioning method based on topological ordering and levelization (RPL). In addition to handling the partitioning constraints, the new approach efficiently addresses the problem of minimizing the number of FPGAs used and the amount of computation, thereby overcoming some of the weaknesses of the HP and RP algorithms

    A context-based approach for partitioning big data

    Get PDF
    In recent years, the amount of available data keeps growing at fast rate, and it is therefore crucial to be able to process them in an efficient way. The level of parallelism in tools such as Hadoop or Spark is determined, among other things, by the partitioning applied to the dataset. A common method is to split the data into chunks considering the number of bytes. While this approach may work well for text-based batch processing, there are a number of cases where the dataset contains structured information, such as the time or the spatial coordinates, and one may be interested in exploiting such a structure to improve the partitioning. This could have an impact on the processing time and increase the overall resource usage efficiency. This paper explores an approach based on the notion of context, such as temporal or spatial information, for partitioning the data. We design a context-based multi-dimensional partitioning technique that divides an n 12dimensional space into splits by considering the distribution of the each contextual dimension in the dataset. We tested our approach on a dataset from a touristic scenario, and our experiments show that we are able to improve the efficiency of the resource usage
    • …
    corecore