
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2000

Developments and experimental evaluation of partitioning Developments and experimental evaluation of partitioning

algorithms for adaptive computing systems algorithms for adaptive computing systems

Nabil Kerkiz

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Kerkiz, Nabil, "Developments and experimental evaluation of partitioning algorithms for adaptive
computing systems. " PhD diss., University of Tennessee, 2000.
https://trace.tennessee.edu/utk_graddiss/8320

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Nabil Kerkiz entitled "Developments and

experimental evaluation of partitioning algorithms for adaptive computing systems." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this dissertation and recommend its acceptance:

Mike Langston, Danny Newport, Dan Koch, Chandra Tan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

Iam submitting herewith a dissertation written by Nabil Kerkiz entitled "Development

and Experimental Evaluation ofPartitioning Algorithms for Adaptive Computing

Systems."Ihave examined the final copy ofthis dissertation forform and content and

recommend that it be accepted in partial fulfillment ofthe requirements for the degree of

Doctor ofPhilosophy,with a major in Electric'al Engineering.

Dr.Donald W.Bouldin,MajorProfessor

We have read this dissertation

and recommend its acceptance:

Dr.Mike Langston

Dr.Danny Newport

Dr.Dan Koch

Dr.Chandra Tan

Accepted for the Council:

Interim Viceftovost;

Dean ofThe Graduate School

Development and Experimental Evaluation of Partitioning

Algorithms for Adaptive Computing Systems

A Dissertation

Presented for the

Doctor ofPhilosophy
Degree

The University ofTennessee,Knoxville

Nabil Kerkiz

December 2000

Acknowledgement

I would like to extend my sincere gratitude to my advisor.Dr.Don Bouldin,for

his support and guidance in this project. Without him,this work could never have been

completed.Special thanks to Dr.Chandra Tan for his effort and assistance which

contributed greatly to this work.I would also like to thank Dr.Mike Langston,Dr.Danny

Newport,and Dr.Dan Koch for serving as members ofmy thesis committee.Ialso

acknowledge the Defense Advanced Research Projects Agencyfor its support ofthis

research under grant F33615-97-C-1124.

Much appreciates and love is extended to all ofmyfamily and friends.I would

like,to especially acknowledge my parents,Fouad and Ganimah,and my wife,Huda,for

their continued support and love throughout this work.

Abstract

Multi-FPGA systems offer the potential to deliver higher performance solutions than

traditional computers for some low-level computing tasks. This requires a flexible

hardware substrate and an automated mapping system. CHAMPION is an automated

mapping system for implementing image processing applications in multi-FPGA systems

under development at the University ofTennessee.CHAMPION will map applications in

the Khoros Cantata graphical programming environment to hardware.

The work described in this dissertation involves the automation ofthe CHAMPION back-

end design flow,which includes the partitioning problem,netlist to structural VHDL

conversion,synthesis and placement and routing,and host code generation.The primary

goal is to investigate the development and evaluation ofthree different k-way partitioning

approaches.In the first and the second approaches,we discuss the development and

implementation oftwo existing algorithms.The first approach is a hierarchical

partitioning method based on topological ordering(HP).The second approach is a

recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic(RP).

We extend these algorithms to handle the multiple constraints imposed by adaptive

computing systems.We also introduce a new recursive partitioning method based on

topological ordering and levelization(RPL).In addition to handling the partitioning

constraints,the new approach efficiently addresses the problem ofminimizing the

number ofFPGAs used and the amount ofcomputation,thereby overcoming some ofthe

weaknesses ofthe HP and RP algorithms.

iii

Table of Contents

1.Introduction 1

1.1 CHAMPION design flow 2

1.2 Field Programmable Gate Arrays 7

1.3 Hardware Architecture : 10

1.3.1 Wildforce-XL Board 10

1.3.2 MSP Board 13

1.3.3 SLAAC Board 13

1.4 Khoros Cantata 15

1.5 Placement and Routing 18

2.Research Motivation and Background 21

2.1 Partitioning Methodsfor Multi-PE Systerh 21

2.1.1 Bi-Partitioning Methods 21

2.1.2 Multiway Partitioning Methods 28

2.1.3 Benefit Function 31

2.3 Partitioning Constraints 32

3.Partitioning Algorithms 41

3.1 Hierarchical Partitioning Based on Topological Ordering(HP) 43

3.2 Recursive Algorithm Based on Fiduccia and Mattheyses Bipartitioning

Heuristic(RP) ^ 45

IV

3.3 A New Recursive Partitioning Method Based on Topological Ordering and

Levelization(RPL) 49

3.3.1 Level Constractioh step;...; i; 51

3.3.3 Partitioning Step ,•••••• 54

4.Experimental Resultsand Analysis59

4.1 HP Algorithm 67

4.3RP Algorithm : 76

4.1 RPL Algorithm 1 ;84

4.4 Comparison Between RPL,HP,and RP Algorithms 92

4.5Processing Timefor Three Different Applications by Targeting Different

Hardware Architectures : v—

5.Conclusion 121

References 128

VITA........... .134

List ofTables

Table 4.1 Partitioning Netlists - 61

Table 4.2 Partitioning results for Wildforce-XL using HP algorithm 69

Table 4.3 Partitioning results for Wildforce-XLl using HP algorithm 70

Table 4.4 Partitioning results for MSPl board using HP algorithm 71

Table 4.5 Partitioning results for MSP2board using HP algorithm 72

Table 4.6 Partitioning results forSLAAC-IV board using HP algorithm 73

Table 4.7 Partitioning results for SLAAC-IP board using HP algorithm 74

Table 4.8 Partitioning results for Wildforce-XL using RP algorithm 77

Table 4.9 Partitioning results for Wildforce-XLl using RP algorithm 78

Table 4.10 Partitioning results for MSPl board using RP algorithm ; 79

Table 4.11 Partitioning results for MSP2board using RP algorithm 80

Table 4.12 Partitioning results for SLAAC-IV board using RP algorithm , 81

Table 4.13 Partitioning results forSLAAC-IP board using RP algorithm 82

Table 4.14 Partitioning results for Wildforce-XL using RPL algorithm 86

Table 4.15 Partitioning results for Wildforce-XLl using RPL algorithm 87

Table 4.16 Partitioning results for MSPl board using RPL algorithm 88

Table 4.17 Partitioning results for MSP2board using RPL algorithm 89

Table 4.18 Partitioning results for SLAAC-IV board using RPL algorithm 90

Table 4.19 Partitioning results for SLAAC-IP board using RPL algorithm 91

Table 4.20RPLPartitioning results for the ATR by targeting the Wildforce-XL board. 98

Table 4.21 RP Partitioning results for the ATR by targeting the Wildforce-XL board....99

vi

Table 4.22HP Partitioning results for the ATR by targeting the Wildforce-XL 103

Table 4.23 Partitioning Results for the Wildforce-XL Board 107

Table 4.24 Partitioning Results for the Wildforce-XLl Board 108

Table 4.25 Partitioning Results for the MSPl Board 109

Table 4.26 Partitioning Results for the MSP2Board 110

Table 4.27 Partitioning Results for the SLAAC-1V Board Ill

Table 4.28 Partitioning Results for the SLAAC-IP Board 112

Table 4.29 Processing time for the ATR algorithm 114

Table 4.30Processing time for different hardware architectures 120

vn

List ofFigures

Figure 1.1 Design Flow ofCHAMPION 3

Figure 1.2 Back-End Flow ofCHAMPION 5

Figure 1.3 General structure ofFPGAS 8

Figure 1.4. Basic Wildforce-XL Block Diagram 11

Figure 1.5. Wildforce-XL Board As Used 12

Figure 1.6 MSP Board as Used 14

Figure 1.7SLAACBoards as Used 16

Figure 1.8 Hipass Filter 18

Figure 2.1 An example ofKL Heuristic 24

Figure 2.2 Illustration ofthe gain concept forFM Heuristic 26

Figure 2.3 The concept ofthe benefit function 33

Figure 2.4Two Possible cuts 36

Figure 2.5 Multiple board configuration 38

Figure 2.6 Asyclic constraint 40

Figure 3.1 Initial Phase ofHP 44

Figure 3.2 Illustration ofthe Partitioning using HP 46

Figure 3.3 Pseudo-Code for the HP Algorithm 46

Figure 3.4 Recursive algorithm based onFM algorithm 48

Figure 3.5 Pseudo-Code for the RP Algorithm 49

Figure 3.6 Reduced form after level construction 50

Figure 3.7 Pseudo-Code for the RPL Algorithm 52

viii

Figure 3.8 Illustrative example for RPL algorithm 53

Figure 3.9RAM access conflict 55

Figure 3.10 Illustration ofthe partitioning step 56

Figure 3.11 Illustration ofthe partitioning step 57

Figure 4.1 Partitioning Configuration File for Wildforce-XL 64

Figure 4.2Partitioning Configuration File for Wildforce-XL1 65

Figure 4.3 Partitioning Configuration File forSLAAC-IV 66

Figure 4.4 M29 Netlist 95

Figure 4.5 Run time during the ATR partitioning process 101

Figure 4.6 Run time ofthe HP algorithm during the ATR partitioning process 104

Figure 4.7 Partitioning results for the Wildforce-XL 106

Figure 4.8 Image processing time for the ATR application 115

IX

1.Introduction

In recent years,developments in the area ofField Programmable Gate Arrays

(FPGAs)have allowed the concept ofreconfigurable computing machines to become

reality. Advances in fabrication technology have allowed multiple FPGAs ofsufficient

capacity to be fabricated for this purpose.FPGAsowe much oftheir potential to their

reconfigurability.They can be reconfigured many times so that design faults can be

corrected simply by reconfiguration.

Due to the short testing cycle and time to implement,FPGAs have long been used for

the prototyping ofASICs.SometimesFPGAs are used to emulate other component

architectures because oftheir versatility. These are also used as hardware accelerators for

some applications that would otherwise take longer to process on a general-purpose CPU.

Atthe University ofTennessee,research is currently underway to develop an

automated system for mapping image processing applications in a graphical

programming environment called Khoros Cantata to configurable computing hardware.It

is expected that this system,called CHAMPION,will allow new applications to be

implemented in much less time than is required now,since many portions of application

mapping that must currently be done manually will be automated.It is also expected that

the system will make the power ofconfigurable hardware more accessible to users who

lack digital hardware design experience.

1.1 CHAMPION design flow

The design flow for aCHAMPION application being implemented using multiple

FPGAsis shown in Figure 1.1.The work ofthe author is a part ofthe overall research

being conducted which includes the partitioning problem,netlist to structural VHDL

conversion,synthesis and placement and routing,and host code automation.The design

flow consists ofseveral steps and a brief discussion ofeach step is provided here.

The first step is to insert the application into the Cantata workspace and convert it

into an intermediate form for use by CHAMPION.Each glyph in the Cantata workspace

mustbe replaced by its hardware equivalent. Any application in the Cantata workspace

can be modeled as a directed acyclic hypergraph.In the hypergraph,nodes represent the

hardware glyphs and the interconnections between nodes are represented by directed

edges.

The second task is to convert the directed h)q)ergraph model to a netlist. The netlist

representation includes all information about the application hypergraph such as node

size,edge width,source and destination ofeach node.

The third step is the data width matching and data synchronization.If data width

matching is needed,a pad glyph mustbe inserted between two glyphs that differ in edge

size.In data synchronization,data must be synchronized because all ofthe hardware is

synchronous and data is processed every rising clock edge.Ifa glyph has two inputs and

2

Application

Khoros Cantata

Workspace to

Netlist

Data Matching
and Data

Synchronization

Partitioning and
Giobai Routing

Netlist to

Structural VHDL

Synthesis Tools

and

Place & Route

HostProgram

Automation

Adaptive

Computing

System

Figure 1.1 Design Flow ofCHAMPION

3

data are not available to both inputs at the same time,then a delay buffer needs to be

inserted before one ofthe inputs to fix the problem.

The fourth task is the partitioning problem.At this point in the design flow,the

Cantata workspace has been converted into a directed hardware hj^ergraph.The netlist

representation ofthe directed hardware hypergraph has the necessary information to

specify the glyphs and the connections between them.The hardware graph is a set of

vertices representing the hardware resources and a set ofdirected edges representing the

connections between them.Each vertex has a number representing the size ofthe

hardware resources available in the vertex(measured in CLBsfor Xilinx FPGAs).Each

edge has a number representing the width ofthe connections.Ifthe application graph

does not fit in a single processing element(PE)orFPGA,then the hardware graph must

be partitioned into sub-graphs.In most cases,the size ofthe entire graph is larger than the

size ofa single PE.Therefore,there exists a need for a multiple partitioning algorithm.

This step will be explained in more detail since the research ofthe author involves the

development ofmultiple partitioning algorithms,which meet the constraints imposed by

the hardware architecture.

In the fifth task,each sub-netlist resulting from the partitioning step,as shown in

Figure 1.2, must be converted to a structural VHDLfile representing the hardware

resources desired for each FPGA.APERL script file written by the author is used to

generate the structural VHDLfile.The script file identifies the glyphs used in the sub-

netlist,the connections between glyphs,and the connections between glyphs and the

4

Netiistto

StructuraiPartitioner N-Sub-Netlists +
VHDL

1

Application
Entire Netiist

Pin Assignment

For each

Sub-Netiist '

Structurai

VHDL

''

Synthesis
Toois

r

input Data

Sequencer

f Configuration
v. Fiie

Merge and
Place & Route

'

ACS
Host

Sequencer +
Configuration

Bit File

Figure 1.2 Back-End Flow ofCHAMPION

Precompiied

Libraries iNF

i/O Circuitry
on PE

Precompiied
Libraries

(XNF,EDiF)

other FPGAs.Furthermore,the script file accesses precompiled VHDLfiles to extract the

port map information for each glyph.There are other VHDLfiles that specify the board

architecture,internal interface logic for each FPGA,and global signals on the board.The

script file accesses these files for pin assignment.

The sixth task deals with the physical design phase. Once the structural VHDLfor

each Sub-netlist is complete,it is necessary to create the programming files to actually

implement the desired hardware in the FPGAs on the ACS board. All ofthe behavioral

information is in the pre-synthesized files for each glyph.The synthesis tools to generate

the synthesized file for a sub-netlist, which is required to configure each PE,can access

the pre-synthesized files for each glyph.The place and route software tools are then used

to map the hardware description in the sub-netlist file to specific resources available in

each PE.This results in a programming bit file, which specifies the configuration ofall

the function generators and storage units in the CLBs,as well as the configuration ofall

ofthe programmable interconnections in the PE.The bit file can then be downloaded to

thePE to specify its behavior. One programming bit file is needed for every

configuration ofeach PE.

The final step is the host code generation.A program written in C takes care of

certain functions necessary to enable the ACS(e.g. Wildforce board)to be used.A set of

function calls to communicate with the board is provided by the manufacturer ofthe

ACS.These function calls must be used to create the host program.This host program

must initialize the ACS board and download the programming bit files for each PE.The

host program readsimage filesfrom the workstation hard drive to be used as input to the

application,and writes the application results back to the hard drive.The automated host

code uses a configuration file produced by aPERL script, which accesses the resulting

sub-netlists and extracts the configuration data.This configuration file is used by the host

code to determine the number ofconfigurations,the name and location for each

programming bit file,if a specificPE needs to access theSRAM,and where to write the

result after each configuration.If multiple configurations ofthe ACS board are needed,

then the data resulting from each board configuration is written to the hard drive and

supplied to the next configuration. After each board configuration,the user can look at

the resulting datafrom each board configuration and compare it with the expected result

to detect any error that may occur during implementation.In addition to the function calls

provided by the manufacturer,the automated host code uses a dynamic data structure that

grows or shrinks since different applications may have a different number of

configurations.

1.2 Field Programmable Gate Arrays

A field programmable gate array(FPGA)is a programmable logic device that

supports implementation ofa logic circuit containing thousands ofgates and

interconnections.FPGAs are quite differentfrom PLDs(programmable logic devices)

and CPLDs(complex programmable logic devices)because FPGAs do not contain AND

or OR planes.Instead,FPGAs provide programmable logic blocks for implementing the

required logic functions[28]- Figure 1.3 shows a general structural ofaFPGA[14].In a

FPGA,the logic blocks are arranged in a two-dimensional array,and the interconnection

7

I/O Pads

Logic Block

(a)General structure of FPGAs

(b)Two input r
look-up table

(LUT)

"1]
I

(c)Pass-transistor switch in
FPGAs

Figure 1.3 General structure ofFPGAS

wires are organized as horizontal and vertical routing channels between rows and

columns oflogic blocks.The routing channels contain wires and programmable switches

that allow the logic blocks to be connected in many ways.Each programmable logic

block in aFPGA typically has a small number ofinputs(sayfour)and one output.The

mostcommonly used logic is alookup table(LUT),which contains storage cells that are

used to implement a small logic function.The storage cell holds a single logic value,

either0or 1. Figure 1.3b shows the structure ofa smalllogic block capable of

implementing any logic function oftwo variables.In FPGAs,aswitch can be

implemented by using an NMOS transistor, with its gate controlled by anSRAM cell.

This type ofswitch is known as a pass-transistor switch.TheNMOS switch is turned off

ifa0is stored in theSRAM cell.Butifa 1 is stored in theSRAM cell,then the NMOS

switch is turned on.In this case,the NMOS switch forms the connection between the two

wires attached to its source and drain terminal.Figure 1.3c shows the structure ofthe

NMOS pass-transistor.

FPGAs are high density devices, which are commercially available atlow cost.The

programmability features and the short production times ofthese devices enable changes

to be incorporated immediately.These features makeFPGAs suitable for prototyping

applications, and implementation of applications formerly targeted to ASICs.The main

disadvantage ofFPGAsis the lower speed ofoperation.The programmable switches and

the associated programming circuitry require alarge a mountofthe chip area.The

switches have significant resistance and capacitance, which accountfor the low speed of

operation [3].

9

1.3 Hardware Architecture

In this section we will describe the hardware architectures ofthe three different

adaptive computing systems(ACS),which were chosen to implement the CHAMPION

applications.

1.3.1 Wildforce-XL Board

The Wildforce-XL board from Annapolis Micro Systems was chosen as the first

architecture used in the CHAMPION project.The Wildforce-XL board uses Xilinx

XC4000series FPGAs.It is a PCI-bus card, which uses five Xilinx XC4000XLFPGAs

for processing elements.The specific version ofthe board used had one XC4036XL

FPGA and four XC4013XLFPGAs available for processing.Figure 1.4 shows the basic

Wildforce-XL block diagram.

Annapolis Microsystems refers to the FPGAson the Wildforce board as processing

elements(PEs).The XC4036XLFPGA is called a control processing element and given

the designation CPEO.It differs from the other FPGAsin that it is larger,and also in that

it has control lines available for various resources on the board,such as the external I/O

interface and crossbar configuration register,that are not available to the other FPGAs.

Thefour XC4013XLFPGAs are given the designations PEl,PE2, PE3, and PE4.These

four processing elements are connected together in a linear array by a 36-bit systolic bus.

All five FPGAscan be connected by the,36-bit crossbar, which selectively allows

10

PCI
LocalBus

Interface

FIFOO FIFO 1 A.— =36-bit Data Path FIFO4

Xilinx Crossbar
4036XL

FPGA T
Local RAM Xilinx 3.. Xilinx c 3 Xilinx c Xilinx ct<-4—> < ► M ►

"PEO 4013XL .40I3XL 40I3XL 4013XL
FPGA FPGA FPGA FPGA

Local RAM Local RAM Local RAM Local RAM

PEl PE2 "PE3 PE4

Figure 1.4. Basic Wildforce-]^ Block Diagram [4].

connections between any of the processing elements. CPEO can connect to the other

processing elements only through the crossbar.

Each FPGA on the board has a small daughter-board associated with it; which can be

populated with memory or a Digital Signal Processing (DSP) chip. Each of the FPGAs on

the board used in this project had 32 KB of 32-bit SRAM on its daughter-board. Each

daughter-board has a dual-port memory controller such that both the FPGA and the host

computer can access,the SRAM. The motherboard also contains a PCI interface for

communicating with the host computer, and several FIFO registers to facilitate data

transfer across the PCI bus. . " ,

Since there are many resourses available on the Wildforce board and many . .

configurations of the crossbar and other components, it was decided to use a constrained

configuration of the board for the autornatic implementations. This reduces the problem

11

complexity to a more manageable level.The constrained configuration ofthe board used

in this project does not use any ofthe FIFOs.All communication with the host is done

through theSRAM associated with each processing element.The crossbar is used only to

provide a 36-bit path from CPEO toPEL The connections between processing elements

are normally bidireetional.For the constrained implementation,however,it was decided

that the direction ofall connections between processing elements would befixed so that

all signals would pass in one direction only.The board topology became a linear array,

with all signals starting in CPEO passing toPEL No signals can run from PEl back to

CPEO.Similarly,all signalsfrom PEl run to PE2,with no signals allowed to pass back

from PE2to PEl.A diagram showing the configuration ofthe Wildforee-XL board as

used in this project is shown in Figure 1.5.

PCI

Interface

= 36-bit Data Path

Xilinx. Crossbar
4036XL

FPGA

Local RAM Xilinx F
'>■ PEO 4013XL 4013XL 4013XL 4013XL

FPGA FPGA FPGA FPGA

Local RAM Local RAM Local RAM Local RAM

PEl PE2 PE3 PE4

Figure 1.5. Wildforce-XL Board As Used [4].

12

1.3.2MSPBoard

The MSP board uses AlteraFLEXIOK series FPGAs.It is aPCI-bus card,which uses

two FLEXIOKIOOA FPGAsfor processing elements.Since there are many resourses

available on the MSP board and many configurations ofthe crossbar and other

components,it was decided to use a constrained configuration ofthe board for the

automatic implementations.A diagram showing the configuration ofthe MSP board as

used in this project is shown in Figure 1.6.The twoFLEXIOKIOOA FPGAs are given the

designations PEl and PE2.These two processing elements are connected together in a

linear array by a 80-bit systolic bus.The board topology became a linear array.The

capacity ofeach FPGA is very large, where each FPGA comes with lOOK logic gates.

Each ofthe FPGAson the MSP board used in this project has 512KBSRAM on its

daughter-board. The512KB RAM can be organized as one bank of512kX48 bits or two

banks of512kX24 bits Each daughter-board has a dual-port memory controller such that

both the FPGA and the hostcomputer can access the SRAM.

1.3.3SLAACBoard

In this research project we consider two versions ofthe SLAAC board,the SLAAC-

IV and the SLAAC-IP.TheSLAAC-IV board uses Virtex series FPGAs while the

SLAAC-IP uses Xilinx XC40150FPGAs.TheSLAAC board has many resources.

Similar to the Wildforce-XL and MSP boards,it was decided to use a constrained

configuration ofthe SLAAC board for the automatic implementations.

13

I

PE2PE1

Local Bus

/80
Altera

FLEX10K100A

Altera

FLEX10K100A
/

i L

/48
/ / 00

' \r

Local RAMLocal RAM

A.RAM organized as one Bank of512kX48 bits

PE2PE1

Local Bus

80
Altera

FLEX10K100A

Altera /
FLEX10K100AT

/ 24 / / 24 24
/

B.RAM organized astwo Banks of 512kX24 bits

Figure 1.6 MSPBoard as Used.

14

A diagram showing the configuration ofthe SLAAC board as used in this project is

shown in Figure 1.7.TheSLAAC-IV board uses very large FPGAs where each FPGA

has IM logic gates.TheSLAAC-IP board usesFPGAs where each FPGA has750K

logic gates.For both SLAAC-IV and SLAAC-IP boards,the twoFPGAs are given the

designationsPEl and PE2.These two processing elements are connected together in a

linear array by a 72-bit systolic bus.

Each ofthe FPGAson the SLAAC-IV board used in this project hasfour256KX36

bits SRAM on its daughter-board.In the SLAAC-IP,each FPGA uses four256KX18 bits

SRAM on its daughter-board.Each daughter-board has a dual-port memory controller

such that both theFPGA and the host computer can access the SRAM.

1.4 Khoros Cantata

BChoros is a software system from Khoral Research Incorporated(KRI).Khoros

has a set oftoolboxes containing over 300operators [4]. Manyfunctions can be

implemented using these operators such as arithmetic operations,image and signal

processing functions,and data visualization.The Khoros operators can be run as stand

alone programsfrom the command line, or as functions called byC code. Cantata is a

graphical programming environment used to run Kdioros functions.In Cantata,the user

can draw a graphical representation ofan application and run it. Each function in the

Khoros toolboxes is represented in the Cantata workspace by a small icon called a glyph.

15

 � �

00

PE2PE1

(0
Local Bus OC

V"
72Virtex Virtex

00 /1M Logic Gates 1M Logic Gates

/

i L i L i i i I J h J L i k i L

/36 /36 /36; /36 /36
(0

/ / / / CO / / /

' }'1 r 1 1 r CO .. - 1 r 1' 1 r 1 r

0>

A.SLAAC-1V Board

PE2PE1

Local Bus

/
72Xiiinx XC40150 Xiiinx XC40150

750K Logic Gates 750K Logic Gates
r

CO

n 1 k i L iL iL i L i L iL

18 /18/■"S / /■"S .18

/ / / / / /

U 1 r 1 1 If U f r f f u

A. SLAAC-1P Board

Figure 1.7 SLAAC Boards as Used.

16

Each glyph has an inputcorresponding to each ofthe possible inputs to the

function.and output terminals for each ofthe outputs.Furthermore,each glyph has a

pane,which is a set ofinterface objects that allow the user to set options for afunction.In

Cantata,the user does notneed to be concerned about the type ofinput data. Cantata

finds outifa data conversion between types is necessary and takes care ofit.

As mentioned before,the objectives ofCHAMPION are to parse a netlist of

Khoros glyphs and automatically map the design captured by the workspace into aform

that can be executed on ainulti-FPiGA platform.Therefore,the development ofan

equivalent hardware library was necessary to complete the mapping.The Cantata glyphs

used in CHAMPION are called hardware equivalent glyphs and are written in fixed-point

C.These glyphs,chosen to be used in CHAMPION,have to operate in Cantata in a

manner equivalent to the way the hardware glyphs would operate.These equivalent

hardware glyphs are collected together into a library, which characterizes the glyphs by

size,delay,and I/O count[5].To aid the mapping procedure,an attempt was.made to

make the equivalent hardware glyphs function as similar as possible to the traditional

Khoros glyphs.By doing so;the mapping procedure will yield an almost one to one

correspondence between the Khoros workspace design and the mapped hardware

impleinentation.Figure 1;8 shows an implementation ofa Hipass Filter using the

CHAMPION equivalent hardware glyphs.A hardware glyph had to be developed for

every hardware-equivalent glyph used in CHAMPION.These hardware glyphs were

developed in VHDL.

17 ,

t» Ie-^•n
Wi

■a

i(9^1^
tv» MM

v».

1^ Pm

Figure 1.8 Hipass Filter [4]

The hardware glyphs were developed in a parameterized manner, meaning that

various characteristics of the glyphs, such as the number of bits in the input, were

specified as generic that could be changed as needed. This allows the hardware to be used

in an efficient way. Each specific version of each hardware glyph was synthesized and

stored in a specific format. Since Xilinx FPGAs were used on the Wildforce board, the

hardware glyphs were synthesized into Xilinx Netlist Format (XNF). Glyphs needed by

CHAMPION applications are pre-synthesized to speed up the mapping process.

1.5 Placement and Routing

In this section, the Placement and Routing step is given some attention. Placement

takes the logic functions formed by technology mapping and assigns them to specific

logic blocks in the FPGA. This process can have a large impact on the capacity and

performance of the FPGA. Specifically, routing between distant points in a FPGA

r '* ■ ■ ^ '>J % ■ i ^

�

requires a significant amountofrouting resources.Thus,this path will be much slower,

and use many resources.For this reason,the primary goal ofthe placement processes to

minimize the length ofsignal wires in the FPGA.In this case,logic blocks that

communicate with one another must be placed together as close as possible [3].

Placement is a complex process since logic circuits tend to have a significant amountof

connectivity with many differentfunctions communicating together.In this case,many

functions may wantto be placed together to ihinimize the number and length ofsignal

wires.Because ofthis,the placement tools mustfind out which logic blocks are most

importantto place together,and minimize the total wiring in the system.

There exist many software tools for performing the placement step forFPGAs.

The mostcommon technique,used in the industry is simulated annealing.Simulated

annealing solves the optimization pfoblein by using a costfunction.A costfunction could

be the total wire length in the design. Once a costfunction is defined,the placement tool

picks arandom starting point.The algdrithrn then repeatedly applies optimization steps to

find a new solution with alower costthan the current solution.

The routing process forFPGAsis the process offinding out exactly which routing

resources wili be used to wire the communication signals.Since FPGAs have

prefabricated routing channels,aFPGA router.rnust work within the framework ofthe

architecture resources.In deciding which channels and wires to use,and how to connect

through the switchboxes,the router mustensure that there are enough resources to carry

the signal in the chosen routing regions;as well as leaving enough resources to route the

-19

other signals in the system.The-mostcommon technique used for performing this routing

step is presented in [9].The algorithm divides the routing process into global and detailed

routing.In global routing,the aiigorithm decides which routing regions the signal will

move through.Thus,it will select the routing channels used to carry a signal,as well as

the switchboxes it will move through,the detailed router decides which specific wires to

use to carry the signal.It finds a connected series ofwires,in the channels and

switchboxes chosen by the global router,which connects from the source to all the

destinations;The algorithm avoids congestion inside a channel,making sure that all

signals can be routed Successfully,as well as minimizing wire length and capacitance on

the path. , ^

For successful placement and routing,a full capacity utilization ofaFPGA is

avoided. Therefore, a90% utilization ofonePE is a typical value to perform placement

and routing successfully.

20

�

2.Research MotiYation and Background

As mentioned in the previous chapter,there exists a need for a k-way partitioning

algorithm to subdivide the CHAi^PION netlist into multiple sub-netlists. This is done

when alarge application cannotfit-in a single device.Each resulting sub-netlist mustbe

written in aform suitable for further,processing.The resulting sub-netlist is the input .

required for structural VHDLxonv6fsion. An application,for our purposes,is equivalent

to a graph,and rnore specifically a directed acyclic graph(DAG).A single device is

equivalent to a single processing element(PE)or a single FPGA.Both expressions are

used in our project.The resulting sub-netlist is considered a partition. A gate or a macro

is the same as a node and a net is used to refer to an edge.,

2.1 P'artitioning Methodsfor Multi-PE System

In order for a circuit to be implemented across multiple PEs,the circuit must be cut

into pieces such that multiple constraints are met.The following sections review several

existing algorithms developed for multi-PE partitioning.

2.1.1 Bi-Partitioning Methods

In bi-partitioning,the method begins with a graph G with weighted edgesE and .

weighted nodes N.The graph is split randomly into two halves A and B.Nodes are then

moved across A andB to find a valid partitioning result with a minimum cut set..The cut

'' ' ^ . 21,

set is defined to be the sum ofall weighted edges interconnecting nodes in both subsets A

and B. The overall goal in circuit partitioning is to minimize the number ofnets that are

cut.The bi-partitioning method can be used with multi-PE systems by repeatedly

applying the technique until each partition meets thePE constraints.However,this

repeated application locks in an initial.solution that may be poor in a multi-PE system.

Also,the basic technique does not considerPE toPEinterconnect limitations even

though it does attempt to minimize interconnect usage[10].Below,we discuss afew bi-

partitioning algorithms,which have contributed to the development ofpartitioning

algorithms.

A.KL Heuristic

In 1970,Kemighan and Lin introduced an iterative improvement algorithm that

has become known as the foundation ofpartitioning algorithms[2].The algorithm is a bi-

partitioning algorithm that begins with an initial p^ition A andB and iterates to improve

the cut set size.The algorithm uses a pair-,swap'structure and proceeds in a series of

passes.During each pass,„every node is moved exactly once,eitherfrom A toB orfrom

B to A.Atthe beginning ofthe pass,each node is,uhldcked,meaning that it is free to be

moved across A and B.A node becomeslocked after swapping.The KL algorithm

iteratively swaps the pair ofunlocked nodes a and b with the highest gain,where the gain

ofswapping ag A with beBis given by[3]:

gainia,b)=D^+D^-2c^ (1)

. . . 22

/

�

D=E-I
a

where . ,

Ea=number ofedges incident to node a that connect to a node in subsetB

Ea= number ofedges incident to node b that connectto a node in subset A

Ia= number ofedges incident to node a that remain internal to subset A

Ib= number ofedges incident to node b that remain internal to subsetB

Cab=sum ofthe weights ofthe edges that connectthe nodes a and b

The swapping process is iterated until all nodes become locked,and the lowest

cost bisection observed during the pass is returned. Another pass is then executed by

using this partition as its initial solution.The algorithm terminates when a pass fails to

find a solution with lower cost than its starting solution.Figure 2.1 shows an example of

the KL algorithm[6].A pass ofKLis implemented in logn).The KL algorithm

was modified by Schweikert and Kemighan to handle multi-pin nets[7].

B.FM Heuristic

In 1982,Fiduccia and Mattheyess presented a KL-inspired algorithm that takes into

consideration multi-pin nets and reduces the running time ofa pass.The main difference

between KL andFM is the neighborhood structure.In the FM algorithm,a single node is

moved eitherfrom A toB orfromB to A.Therefore,theFM algorithm was designed to

handle imbalance.

" 23

 �

�

cutset size=9initial Bisection

A X-—
:::

—\ ® ®)

^ ('' j
"

cutsetsize=6Swap nodes(3,5)

A

cutsetsize=1Final Partition

A ^
V

—V ®)()

3

Figure,2.1 An example ofKL Heuristic

�

 �

Similar to the KL heuristic,the gain due to the movementofa single nodefrom

one block to another is computed instead ofthe gain due to the swapping oftwo nodes

[3]. Moving individual nodes can result in unbalanced blocks.To avoid having all nodes

migrate to one block,a balance criterion is rhaintained by the definition:

HV'l-Wmax ̂ + (2), ,

where

A +5=V

r=

H+I^l

Wmax=the node with the maximum weight

. |a|=Size ofthe partitioned block A

|jB|=size ofthe partitioned blockB

0<r<1

The initials gains are computed for all free nodes.The gain,g(i),ofa node is the

number ofnets that would resultin a decrease or increase in the cutset ifthe node were

moved to the opposite block[8].A single node,called the best node,is selected for

moving based on its gain as well as on the balance criterion. Figure 2.2shows the concept

ofnode gain for theFM heuristic [3],In this example,moving node 1 from A toB would

increase the cutset by 1,therefore,g(l)= -1- Movirig node2from A toB would decrease,

the cutset by 1.Moving node3from A toB would increase the cutset by \.However,

' 25 -

cutset size=3Initial Bisection

Initial Gains

Node Gain

1 -1

2 1

3 -i

4 0

5 0

6 1

Figure 2.2 Illustration ofthe gain conceptforFM Heuristic.

26

there will be no change in the cutset ifthe nodes(4,5)are moved to their complementary

blocks,therefore g(4)=0and g(5)=0.Ifnode6were moved fromB to A,the cutset

would decrease by 1,therefore g(6)= 1.A negative gain might be accepted during a pass

to allow the algorithm to climb out.ofa local minimum.After each move,the best node is

locked in its new block for the remainder ofthe pass and the gains ofthe affected nodes

are updated.The algorithm considers all nodes for movement.Afterwards,the best

partition encountered during the pass is taken as initial solution to the following pass.

C.Simulated Annealing(SA) =

Simulated Annealing belongs to the class ofnon-deterministic algorithms.The

heuristic was first introduced by Kirkpatrick,Gelatt and Vecchiin 1983[12].The

algorithm has been applied to almost all known CAD problems,including partitioning

[3].SA begins with an initial partition A andB and iterates to minimize the cutset while

maintaining balance between partitions. A pair ofnodes is moved across the cut and the

hew partition after the movementis evaluated.Ifthe cutimproves,then the move is

accepted. Otherwise,the move is accepted with a certain probability. This allows the

algorithm to climb oufofalocalminimum. -

TheSA is analogous to the anriealirig process,in which the process starts at a high

temperature.This corresponds to a large number ofmoves being accepted in an attempt

to minimize the costfunction.The process continues tolower the temperature until a

freezing point is reached.Thelower the temperature,fewer moves are accepted that do

. 11

�� � � � �

notimprove upon the costfunction.Even though the SA algorithm is noted for achieving

excellent partitioning results,the use ofitfor multi-PE partitioning is notfeasible because

ofthe excessive computation tinie,[13].

2.1.2 MuItiwayPartitionirig Methods

In the previous section,we mentioned that the bi-partitioning method can be used

with multi-PE systems by repeatedly,applying the technique until each partition meets the

PE constriaints. Thie bi-partitioning approach has been extended bysome researchers to a

k-way approach because ofthe increased complexity ofVLSIdesigns as well as

applications requiring afixed number ofpartitions.In this section,we discuss afew

multi-way partitioning algorithms.,

A.Multiple-way Algorithm

In 1989,Sanchis extended theFM algorithm to multi-way partitioning[16].The

detailed expiration ofthis approach lias led to wide use ofthe algorithm in industry.The

algorithni begins with k blocks and iterates to minimize the total number of

interconnections between the blocks.The algorithm uses the level gain concept,

mentioned in the previous section,to compute the gain ofa moving node.Sanchis

extended the ith level gaih ofa node to include the gain of moving a node from the

originating block to all other possible blocks.A pass consists ofmoving free nodes that

have the highest gain that satisfy the balance requirement to its block. Moves continue

' ' '2s. . .

until all nodes are locked and the resulting partition becomes the initial partition for the

next pass.The algorithm uses a specified number ofblocks k to start the partitioning

process.

B.MP2Algorithm

The MP2algorithm is a k-way extension oftheFM heuristic. It is an iterative

improvement algorithm that begins with arandom initial partition of blocks,where k is

specified [29].The capacity constraint^d theI/O limitations ofeachPE device mustbe

satisfied during a pass.For moving afree nodefrom the originating block to another

block,a benefitfor the node is calculated with respect to an incident net.The algorithm

uses alook-ahead technique by using a secondary benefitfor each free node.During a

pass,the I/O and the.capacity constraints ofthe destination block are checked for

violation.Ifno violations occur,the node is moved and the total number of

interconnections between the k blocks is recorded. After each pass,the resulting partition

is checked to make sure no block constraints are violated.Ifthe constraints are satisfied,

the algorithm returns the current partition as the solution.The algorithm requires that the

number ofthe total partitions!mustbe specified before starting the partitioning process.

A. PROPAlgorithm

ThePROP algorithm makes use ofa recursive paradigm using functional replication

[15].For a given netlist,the algorithm applies.a bi-partitioning procedure to extract the

first feasible partition,and then,repeats theprocess,on the remainder netlist until the

remainder fits on onePE.The bi-partitioning strategy can be viewed as an extreme case

ofasymmetrical recursive bi-partitioning.The main advantage ofthis strategy is the

'immediate possibility ofevaluating at least one ofthe subsets produced in each bi-

partitioning stage. Another advantage is that the algorithm does not require the total

number ofpartitions k to be specified before running the partitioning process.In our

proposed methods,we will irij^e use ofthis strategy and develop the algorithm to meet

the constraints injected by CHAMPION applications. Therefore,the details ofthis

approach will be given in the next chapter.

D.Hierarchical Multiway Partitioning Strategy(HPS)

In 1997,Stanley developed a new k-way partitioning algorithm to incorporate the

architecture configuration ofa hardware emulator into the partitioning process[g].The

HPS considers the interconnectlimitations ofthe hardware and the upper limit on the

number ofpartitions during the partitioning process.The algorithm was initially

developed using arandom selection pfnodes or clusters to move.All clusters of nodes

are initially moved info a virtual partition VP and all blocks are initially empty.An initial

node or cluster with an incident external I/O is randomly selected from VP and moved

into the first partition,PO.The algorithm continues to move nodes or clusters with the

highest benefit into PO until the capacity or extemalI/O constraint ofthe current partition

is violated. Once a constraint is violated,the algorithm begins ah evaluation step.Ifthe

interconnect constraint is violated,the algorithm "rolls back"or reverses the moves until

the constraint is met.Similar to the PROP algorithm,the HPS does not require the total

30

number ofpartitions k to be specified before running the partitioning process.In addition,

the HPS strategy evaluates the partition produced in each stage.In our proposed methods,

we will make use ofthis strategy and develop the algorithm to meet the CHAMPION

application constraints.More details will be explored in the next chapter.

In addition to these approaches,several other partitioning algorithms were developed

to handle multiple-PE systems[17, 18,19,20,21]- Since no general model exists to handle

different partitioning problems,most ofthe recent approaches were developed to target

specific hardware structures.To the best ofour knowledge,no approach exists to handle

the CHAMPION netlist.

2.1.3 BenefitFunction

In this section,the definition ofthe benefit function is given some attention.The

benefit ofa node or cluster is determined by its connectivity to the current partition [8].

Stanley defined the benefit function for a cluster ofnodes.In this work,we modify this

definition slightly to consider nodes instead ofclusters. It is another way to find the best

node that can be moved across a cut.A benefit is calculated for each node n based on the

following;

ben{n)=int(n)-ext{n) (3)

where

31

�

int(n)=The number ofnets incident to node n that will no longer

be incident to the current partition after the move.

ext(n)=The number ofnets incident to node n that will become

incident to the current partition after the move.

Figure 2.3shows a simple example for calculating the benefit ofnodes.Ifthe

node ii2 is moved from partition A to partition B,by using equation 3,then ben(n2)=l-

1=0. In this case,net2is removed from the cutset but an additional net is added.

Therefore,the benefit ofmoving node n2from A toB is 0. Ifthe node nSis movedfrom

partition A to partition B,then ben(n3)=l-3=-2. Moving the node n3from A toB results

in a negative benefit since two additional nets are added to the cutset. Comparing the

coiriputed benefits for n2and n3,the node with the highest benefit is n2.Therefore,we

consider the node n2to be moved from partition A to partition B.We will make use of

the benefitfunction to calculate the best node in bur proposed approaches.

2.3Partitioning Constraints

The k-way partitioning algprithm iiiust meet the constraints ofour hardware

architecture used to implerhent an application.In order to assure the results generated

meet these constraints,it is necessary f^or the algorithm to have knowledge ofthe

hardware architecture.MoSt existing partitioning algorithms for multiple FPGA systems

use the following constraints;

32

Partition A

net2

net!

Partition B

Figure 2.3 The concept ofthe benefit function[8]

33

 • Capacity per partition

• Number ofI/O pins per partition

Targeting a particular hardware architecture injects additional constraints that,

must be considered to generate a resulting partition that can be successfully placed and

routed.

The objective ofthis research is to develop three different k-way partitioning

algorithms based on the target architecture ofthe boards used in this research project.The

partitioning strategy is based on the following constraints followed by a brief discussion

ofeach constraint:

1. Capacity per partition

2. Number ofFO pins per partition

3. Each partition can only have one RAM access module

4. Input module and output module must be placed in the first partition and in

the last partition.

5. Temporal partitioning constraint: For multiple board configurations,storage

ofintermediate results between board configurations is needed.

6. Maintaining the acyclic constraint so that all edges point the same way(from

left to right).

The first two constraints are used to meet the limitations ofa singlePE device.

The number ofinterconnections between partitions becomes an issue due to the limited

34

number ofconnections available betwebri':PEs.A successful routing will not occur ifthis

constraint is violated. An implementation is not possible ifthe size ofa partition exceeds

the available capacity for a single PE,Both constraints mustbe metfor a successful

implementation.

The third constraint deals with the memory access for,each PE.The architecture

ofthe ACSimposes that a localSRAM to each FPGA is available for data writing and

date reading.A singlePEcan only access its localSRAM.This means,theSRAM

available to eachPE can be used either for writing the data to the output orfor reading

the input data.Therefore,a partition can contain only oneRAM a,ccess module.To

explain this pointin more detail,we consider a very simple example shown in Figure 2.4.

Weconsider a network with9nodes and7edges each ofequal size.We assume

that the node pair(1,9)represents twoRAM access modules.Node 1 is used to read the

input data and node9is used to write the output data.Thisimplies that at leasttwo .

partitions and only one board configuration are needed.For illustration, we further

assume that the entire application fits in two PEs.Two possible partitions are shown in

Figure 2.4a where both have equal cutset.The first possible partition showing in 2.4b

violates theRAM access constraint since the partitioner places the node pair(1,9)in the

same PE.Therefore,this partitioning cannot be implemented.The second possible

partition showing in 2.4c satisfies the capacity constraint,I/O constraint,RAM access

constraint,input arid output module constraint,and the acyclic constraint. Therefore,the

application can be implernented successfully.

• - ' . • ■' ' . 35 •

3

Asimple
application

a.A simple example

First possible
cut

Cutsetsize=2

7

b.First possible cut

Second possible
cut

Cutsetsize=2

8

c.Second possible cut

Figure 2.4TwoPossible cuts

36

The fourth constraint deals with reading and writing the data.The input data is

read first and supplied to the rest Ofthe glyphs.The resuitihig data must be written to the

hard disk via the output module.Therefore,the inputmodule must be located in the first

partition and'fhe output module'in the lastpartition:Both the input and output nodes must

useRAM access-modules.Even though entire application might fit in one PE,this ; ,

limitation imposes that atleasttwb partitions are nbeded for successful implementation.

This means that.the paititibhing process is always required in the CHAMPION design

flow.-' , . .

The fifth Constraint deals with temporal p^itioning ofthe ACS boiard.A single

configuration ofthe board is the sarne as the configuration ofall available PEs.Ifthe

entire application cannot fitin one board configuration,then multiple configurations of

the board are necessary.Figure 2.5 shows a simplified version ofthe Wildforce board..

When multiple configurations are used,storage ofintermediate results between board

configurations is heeded!In this case,one RAM-read h^dwafe glyph mustbe added at

the beginning ofeach configuration and one RAM-write hardware glyph must be added

at the end ofeach configuration.This process makes the partitioning problem more

complicated since these twoRAM hardware glyphs do not exist in the original

application.In this case,the partitioner deals with a modified version ofthe original

application hetlist. Furthermore,the capacity ofthe first and the lastPE is utilized by a

certain amountfor the RAM-read and RAM-write niodules insertion.

37

«BI

First board

connguration.
RAM-write

module must

be added to

PE4

Second board

configuration.
RAM-read

and RAM-

write modules

must be

added to PEO

and PE4.

Nth board

connguration.
RAM-read

module must

be added to

PEO.

Figure 2.5 Multiple board configuration

The sixth,and final,constraint requires maintaining the direction ofthe

hypergraph so that all edges are pointing the same way. The resulting sub-netlistsP=

{?!,P2,. ..,Pk)must maintain the acyclic constraint so that nodes in partition Pi must

appear before the nodes in partition Pj.To illustrate the acyclic constraint,we consider

the examplefrom Figure 2.4.In Figure 2.6,weshow two possible cuts for this network.

The first cut showing in 2.6a violates the acyclic constraint since node2appears in a

prior partition. Moving node2or node5across the cutcan satisfy the acyclic constraint

as shown in Figure 2.6b.

A partitioning result is a theoretical solution that could possibly be implemented

onto the given board architecture. Violation ofany constraint discussed above will result

in an unsuccessful mapping.In this case,the entire application must be repartitioned until

a practical solution is found.Thus,our partitioning approaches must guarantee that all

partitions will meet these constraints.

39

Unacceptable ciit since the
successor ofNode2(Node5)

appears in a prior partition

0
0

>-r
l
_ 9

a. First possible cut

Acyclic constraint is satisfied

by moving Node2across the
cut

b. Second possible cut

Figure 2.6 Asyclic constraint

40

3.Partitioning Algorithms

In this chapter,we consider the probleih ofp^itioning a large netlist into a collection

ofsub-netlists such that each sub-netlist will fitinto one ofthe PEs where eachPE is

characterized by its capacity,I/O count,and RAM access.In additiori to finding a

feasible partitioning solution that meets the partitioning constraints,our objective

includes the minimizing ofthe total number ofthe PEs used to implement a particular

application.

In the previous chapter,we mentioned that there exist niany algorithms dealing with ,

the partitioning problem,but no general model exists that handles an arbitr^

partitioning problem.For this reason,one algorithm might be developed or a new

approach mustbe created to target a specific hardware structure.To the best ofour

knowledge,there exists no approach that can tdke the CHAMPION netlist and produce a

valid partitioning result without deveiopnient.Therefore,it was necessary to study some

ofthe existing approaches and pick up one or two that can be adapted easily.Two main

points were considered when we surveyed the existing work.The first point is that we do

notknow in advance how many partitions orPEs are needed to implement the

CHAMPION netlist. An estimate can always be made based on the application size and

theRAM access constraint!In this case,an algorithm such as MP2cannot be easily

adapted since this algorithm requires the number ofblocks^to be specified in advance.

In the second point,the immediate evaluation ofthe produced feasible solution in each

partitioning stage is always preferred for a partitioning problem with several constraints.

In this case,..an algorkhm such as the multiple-way approach cannot be used since this

approach seeks to minimize the total number ofinterconnections between the blocks.The

rriinimization ofthe total number ofinterconnections between the PEs does not assure a

feasible solution for an individualPE.Because ofthis,the hierarchical partitioning

methods and the recursiye algorithms were the best candidates among the existing work.

They fulfill our two consideration points.'

. For solving the partitioning problem,three different approaches are investigated in

this work.In the first and the second approaches,we discuss the development and

implementation oftwo existing algorithms.The first approach is a hierarchical

partitioning method based on topological ordering(HP).The second approach is a

recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic(RP).

We extend these algorithiris to handle theRAM access constraint,the acyclic constraint,

and the temporal partitioning constraint.We shall describe the details ofthese two

algorithms,including modifications and extensions.

We also introduce a new recursive partitioning method based on topological ordering

and levelization(RPL).The details ofthis approach shall be described and explained by

an illustrative example.In addition to handling the partitioning constraints,the new

approach efficiently addresses the problem of minimizing the amountofcomputation

thereby overcoming the weaknesses ofthe HP and RP algorithms. All three algorithms

start with a topological sorting solution ofthe given application netlist. This solution will

42.

assure,that no node is processed before any node that points to it. This step is necessary to

maintain the acyclic constraint so that all the nodes point the same wayfrom left to right.

3.1 Hierarchical Partitioning Based on Topological Ordering(HP)

A topological sorting solution ofa given network is a linear orderingLofall

nodes N,such that node i appearis before nodejifthe outputofi is an input ofj.This

means,no node is processed before any node that points to it. The breadth-first search

(BPS)algorithm is used to generate a topological sorting solution L.The BPS is a natural

way to visit every node and check every edge in the graph systeniatically.This step is

necessary to maintain the acyclic constraint so that all the nodes point the same wayfrom

left to right. Given a topological sorting solutionLofall nodes,we can partition the listL

from left to right into K Sub-NetlistsP=(Pi,P2,.. Pk)such that the constraints

mentioned above are not violated. . _

Initially all nodes are in the line^orderingL and the first block Pi is empty.

Pigure 3.1 shows the initial step ofthe HP algorithm. Ateach step,we select a node i

from Land put it into Pi.The algorithm moves nodes into Pi until the capacity constraint

or the RAM access constraint ofthe partition is violated.TheRAM access constraint is

checked first. Each partition can have only one RAM access module.The capacity

constraint is checked next.Once one ofthese constraints is violated,the algorithm checks

ifthe/interconnect constraint ofthe currentPE is satisfied.Ifthis interconnect constraint

is violated,the algorithm rolls back the moves until the constraint is met.Rolling back

43

L

P

Figure 3.1 Initial Phase ofHP.

44

�

refers to moving nodes back to L,Ifthere exists morp than one candidate node for back

rolling,the algorithm starts ari optimization step.This situation arises when for example .

two nodes with different sizes will lead to the same cut set ifone ofthem is moved back

to,L.In this case^ it is intuitive to keep the node with the maximum size in the current

partition. This optimization step fiiids the best node which maximizes the capacity ofthe

current partition and meets the interconnect constraint.The optimization strategy,uses the

benefitfunction to find the node with the highest benefit and leaves it in the current

partition.

Werepeat this process by creating a hew block P2and applying the saine ,

procedure to the remainder ofL.Figure*3.2 showssome ofthe nodes moved to the first

and second partitions.The process stops when the listLbecogies empty and all nodes are

in P={Pi,P2,...,Pk).The.algorithm fails to find a solution to the partitioning problem

ifone ofthe constraints is violated.Figure 3.3 shows the pseudo code for the HP

algorithm.

3.2 Recursive Algorithm Based on Fiduccia and Mattheyses Bipartitioning

Heuristic(RP)

The second approach,to this problem is a recursive algorithm based on the

Fiduccia and Mattheyses(FM)bipartitioning heuristic.TheFM algorithm starts with

initial bipartition A and B and iterates to improve it by reducing the cutset size.Forsome

applications,arandom method is used to generate an initial bipartition.

45 • .

L

P

Figure 3.2Illustration ofthe Partitioning using HP

Input: G(N,E),D=devices;

Output:Pi,P2,P3 Pic
Create a linear ordering solution L;k=0;
Create a new partition,Pk;
While(emptyL=0) begin

while(violation=False)begin

move nodes into Pk', record size,I/O count;
check constraints of -

end while;

if(violation=True)then begin
ifthere is more than one candidate then

Optimize Pk',
Reverse niove until violation=False;

end

record final partition size,FO count;
ifLis empty then

emptyL=l;
else begin

k=k+l;Create aliew partition,
end

end while;

Figure 3.3Pseudo-Code for the HP Algorithm

. • 46

An arbitrary random bipartition can no longer be used here since it may violate the

acyclic constraint. An efficient way ofgenerating an acyclic initial bipartition is to use

the linear ordering approach mentioned above.To create an initial solution,nodes are

moved from the linear ordering arrayLinto the current partition Pi until the capacity

constraint ofPi has been met. The recursive bipartitioning strategy,as illustrated in

Figure 3.4,can be viewed as an extreme case ofunbalanced bipartitioning. This means,

the size ofthe current partition is much smaller than the remainder size ofL during the

first partitioning stages.In this process,each application ofthe bipartitioning procedure

produces one feasible sub-netlist and the remainder netlist.In the first iteration,the entire

netiist Ro is partitioned into one feasible solution.Pi,that meets the constraints ofthe first

PEon the board,and the remainder partition,Ri.In this case, all the N nodesin the

current partition Pi and a remainder,Ri are unlocked and involved in the partitioning

process.When the partitioner finds afeasible solution for the current partition PI,the

nodesin that partition become locked.In other words,the nodes in,PI are no more

involved in the subsequentiterations.The run time ofthe RP algorithm is afunction of

the total number ofnodes.During the partitioning process,the nin time decreases as the

number oflocked nodes increases!Subsequent iterations apply the same procedure to the

remainder until all resulting.partitions meetthe constraint^.Figure 3.5 shows the pseudp

code for the RP algorithm.

TheRP algorithm uses theFM concept ofmoving a single node eitherfrom A toB or

from B to A.As mentioned before,theFM algorithm was designed to handle iiribalance.

,47

Initial Netlist

before partitioning

Netlist remainder

after step 1

Netlist remainder

after step 2

Figure 3.4 Recursive algorithm based on FM algorithm

Input: G(N,E)> D=devices;
Output:Pj, P2, P3,.;Pk
Create alinear ordering solution L;
k=0;

Ro=U
Proceed=True;

While(proceed)begin
Create initial bipartition {Pk,Rk}',
Optimize bipartition[Pk,Rk)withFM heuristic;

Subject to the current device Dk;
Record final partition size,I/O count;
if(Rk=Dk+i) /* Rk fit into the next device Dk+1 */
proceed=False;
else

k=k+l;

end while

Figure 3.5 Pseudo-Code for the RP Algorithm

To avoid having all nodes migrate to one block,the balance criterion defined in section

2.1.2 must be maintained.

3.3A New Recursive Partitioning Method Based on Topological Ordering and

Levelization(RPL)

In this section,we present our new approach for solving the partitioning problem for

a CHAMPION netlist. This algorithm applies existing ideas to graph partitioning;

however,they have not been used in this manner previously.The algorithm strategy is

based on two steps: the level constmction step and the partitioning step.Below,we

describe the procedure to partition the CHAMPION netlist with this approach.In the

following two sections,we demonstrate the level constmction step and the partitioning

step in more detail with an illustrative example.

49

� � �

The algorithm stshts with a linear ordering solution for all the N nodes.Given a

topological sorting:solution of^1 hodes,we can construct multi levelsL={Ll,L2,..

Ln}ofnodesN with a mociified versioh ofbreadth-first search(BPS),such that nodes in

level Li appear before nodes in level Lj and the nodes in level Lj mustbe successors of

the nodes in level Li. Afterwards,the resulting flow is reduced to a.form shown in Figure

3.6.Each level consists ofa subset ofnodes and no level can have more than oneRAM

access node.Level constmction is a onetime step and is denoted as a preprocessing step.

Since the RAM access constraint is a very challenging one,we expectthe preprocessing

step to solve any conflicts associated with this constraint before moving to the

First Level Second Level' Third Level Nth Level

Figure 3.6 Reducedform after level construction.

partitioning step. Given a levelizatiori solution L={Li,Lo,...,Ln},wecan partition L

from left to rightinto K Sub-Netlists P={Pi,P2,• • Pk).Initially all nodes are inLand

the first blockPi is empty.First,.we.st^ the process by moving n.levelsfrom Land put

them into Pi until P;has met the capacity constraint. At this moment,the last level moved

to Pi is marked as Li.Then we start an optimization step by moving nodes across the

marked level Li and its successor level Li+l until the rest ofthe constraints are satisfied.

The optimization step is based oh the benefitfunction discussed above.Since only two

levels are involved in the optimization step,the number ofnodes involved in the , ,

; 50 ' , ' . , . •

https://First,.we.st

optimization process and the computatipn amount are reduced significantly.Ifthe

algorithm fails to find a valid solution,then,we reduce the size ofPi byremoving the last

level moved to Pi and the optimization step is repeated.Werepeat this process by

creating a new blockP2and applying the same procedure to the remainder ofL.The

process stops whenLbecomesempty and all nodes are inP={Pi,P2,• • •,Pk}- Figure

3.7shows the pseudo code for the RPL algorithm.

3.3.1 Level Construction step

In this section,we demonstrate the level construction,step in more detail.The

construction step is very crucial to our proposed method and helps the RPLto reduce the

weaknesses inherentin the other two approaches.This step is best demonstrated by

considering a very simple example,shown in Figure 3.8,with two sources Si and82and

two destinations Dland D2.This process uses a modified version ofbreadth-first search

(BFS)for constructing levels. To search the nodes ofthe graph systematically,we begin

with the first source Sl as a starting point,all others nodes are unseen.The BFS

completely covers the area close to the starting point,moving farther away only when

everything close has been looked at. The source node Sl and its successors(2,5)will

construct the first level. Before visiting any successors of(2,5)we check out to see if any

ofthe nodes(2,5)has to waitfor other nodes which are notincluded in the current level.

In this particular example,we see that node5 has to wait for node 8.Weforce the

algorithm to add node 8 to the current level.

51

Input: G(N,E),D=devices;

OxxVpvX-.Pi, P2,P3 Pk
Create levelsL={ L1,L2,• - n};
k=0;j=l; . . ,
Proceed=True;

violation=True;

While(Proceed)begin

Create new partition Pk',
while(violation=False)begin

move levelLjto Pk',
check constraints;

mark the last level moved toPk asLjand its successor Lj+i;
j=j+i;

end while

OptimizePk by moving nodes across {Lj,Lj+i}
Subject to the current device Dk ;

Record final partition size,I/O count;
if(L=D^+;) /* ifthe remained ofLfit into the next device Dk+i *1
Proceed=False;

else

k=k+l;

end while

Figure 3.7Pseudo-Code for the RPL Algorithm

52

https://OxxVpvX-.Pi

SI

D1

S2 D2

g 10 11

Figure 3.8 Illustrative example for RPL algorithm

53

12

The set(1,2,5,8)now constructs the first level.We proceed with the construction step for

finding the second level by visiting the successors ofthe nodes(2,5,8).The successors of

those nodes are(3,6,9)which build up the second level.Werepeat the process until all

the N nodes have been visited.The resulting levels are shown in Figure 3.9.The next step

oflevel construction is to check ifthere is aRAM access conflict inside each level.

Figure 3.9a shows aRAM access conflict inside the first and the fourth level.To remove

this conflict, we move node S2and its successors to the second level.In the fourth level,

depending on the cut set,either DiorD2has to be moved to a new level.For this

example,we moveD2to the fifth level since the cut set created after the move is lower.

The final step is shown in Figure 3.9b.

3.3.3Partitioning Step

In this section we demonstrate the partitioning step in more detail by considering

the simple networkfrom the previous section. At this point,we assume that the

levelization step has been done and the solution L={Li,L2,...,Ln} is available to the

partitioner. Initially all nodes are inL and the first block Pi is empty.First,we start the

process by moving n levels from L and putthem into Pi until Pi has met either the

capacity constraint or the RAM access constraint.For this particular example,as shown

in Figure 3.10 and Figure 3.11,the first level is moved to Pi.ARAM access conflict

occurred when the algorithm tries to move the second level L2to Pi since and Si and S2

are RAM access nodes.Before creating a new block,the algorithm starts to optimize the

capacity utilization ofPi by moving nodes across the first and second levels.

54

82

LeveH Level2 Levels Level4

SI

D1

RAM access violation

since SI and S2are in the RAM access violation

same level since D1 and D2are In the

same level

a. RAM access conflict

LeveH Level2 Levels Level4 Levels

b. Removing the RAM access conflict

Figure 3.9RAM access conflict

55

Levels Level4 LevelsLeveH Level2

SI

1 2

S2

[

10

D1

12

P2

11

SI

1 2 3

PI

S2

8 9

RAM access violation

since SI and S2are in

thesamePE

SI

PI

S2

8

P2

T

9 10

PI

12

RAM access violation

since S2and D1 are in

thesamePE

Figure 3.10 Illustration ofthe partitioning step

56

SI

M
D1

12

P1

• S2

8

P2

9 10

D2

11

P3

RAM access violation

since D1 and D2are in

the samePE

1

SI

2

D1

12

PI

S2

P2

5
Oj

10

P3

D2

11

A
P4

Figure 3.11 Illustration ofthe partitioning step

57

The algorithm fails to move any nodefrom the second level to the current

partition since any node will violate the acyclic constraint. Therefore,the current partition

Pi consists only ofthe nodes(1,2).Ifthe total size ofthe nodes(1,2)is much smaller than

the available capacity ofPi,then the currentPE is very poorly utilized. This case shows

how the RAM access constraints can limit a full utilization ofonePE.The algorithm

proceeds by creating a new block P2.Because ofaRAM access conflict,only the second

and the third levels are moved to the current partition. Onlytwo levels remain in L where

each ofthese requires access to the local RAM.Therefore,another two new blocks are

created P3 and P4.The partitioning process stops sinceLbecame empty.

58

4.Experimental Resultsand Analysis

In this chapter,we discuss the p^itioning results for the three different

approachesin which wefocused on the development oftwo different existing partitioning

.algorithms and the development ofa new partitioning approach.The HP and the RP

algorithms were developed to consider our partitioning constraints. Our new idea,the

RPLapproach,was developed to cope with the weaknesses ofthe HP and RP algorithms.

The three partitioning approaches were implemented successfully in the C++

language arid are currently used to partition the CHAMPION netlists. These algorithms

were run on several netlists targeting different hardware architectures.Some ofthese

netlists were generated randomly,by using arandom netlist generator developed in this

research to test these algorithms. .

Partitioningfor Hardware Architectures

In the following sections,we Avill discuss the partitioning results for each

algorithm by targeting six'differeht hardware architectures.The first hardware

architecture is the Wildforce-XL bo^dfrom Annapolis Micro Systems,discussed in

section 1.2,which uses five Xilinx FPGAs.In the second hardware architecture,we

consider another version ofthe Wildforce-XL.We assurne that the board has the same

striicture as the previous one butcomes with larger size FPGAs(10times bigger),bigger

RAMsfor each FPGA(twoRAM modulesfor each FPGA),and largerI/O count(72-bit

systolic bus).We denote this version as Wildforce-XLl.In the third and fourth hardware

architectures,we consider the MSP board from,which uses two AlteraFLEX10k FPGAs.

In this board,RAM modules can lie org^ized as oneRAM bank or twoRAM banks.In

the fifth hardware architecture,,we consider the SLAAG-IV board.This board uses two

Virtex FPGAs.The sixth hardware architecture deals with the SLAAC-IP which uses

two Xilinx XC4000FPGAs.

Partitioning Netlists

Different netlists are used in this research to determine the performance ofthe

three partitioning algorithms.The partitioning algorithms axe run on identical netlists in

order to compare the algorithms against each other.The comparison is based on the

number ofPEs required forimplementing the netlist and the running time.Table 4.1

shows the different netlists used in this research.The first three netlists were

automatically mapped and implemented successfullyfrom the Cantata workspace to the

Wildforce-XL platform.The automatic target recognition(ATR)is relatively acomplex

netlist.The ATR was firstimplemented manually by Ben Levine to assist in the

development offunction libraries for use in the CHAMPION system[4].The mapping

techniques used were developed in such a way that they could serve as the basis for the

automated system.The ATR netlist was used to test our three different partitioning

approaches.This netlist consists of 101 nodes and 234 hyper nets. Among the 101 nodes,

14 nodes are used for accessing the local RAMs:The M29 netlist is a very challenge one

60

Table 4.1 Partitioning Netlists

Netlists Size .RAM Modules Nodes# Nets#

Hipass Filter 458 2 17 48

NVL 549 2 45 71

ATR 4885 .14 101 234

7 28M29 29 29

R300 7845 11 301 311

R400 10130 7 . 406 421

R500 12845 12 504 493

R600 15320 9 601 571

R700 17640 702 71410

R800 19690 12 807 809

R900 23041 18 906 881

RIOOO 24533 23 1005 1041

RllOO 29685 23 1101 1091

R1200 31420 22 1202 1231

1303 1243

1412

R1300 33120 25

R1400 36975 29 1401

1497R1500 41453 34 1502

61

�

 �

which utilizes7RAM modules.This netlist was generated manually by utilizing a

significant number ofRAM nodes to challenge the three partitioning algorithms.To the

best ofour knowledge,there exist no benchmarks that represent our partitioning ,

constraints.For this reason,af^dom netlist generator to produce benchmarks was

developed in this research to investigate the performance ofthe three partitioning

algorithms.In addition,this will enable us to investigate the running time ofeach

approach. . ; ; ,

The netlists R300-1500 were produced randomly with arandom netlist generator.

The random netlist generator uses arandom number generator seeded by the time ofthe

system to generate the nodes and to map the connection between these nodes.Initially,

nodes are placed into n blocks where each block has a certain number ofnodes.The

number ofnodes for the ith block Bi is selected randomly between 1 and 10.For

example,ifthe numberchosen Were 3,this would generate a block with 3 nodes.For

each node in the block Bi arandom number between(1 and#ofnodes in block Bi+i)is

selected to map the nodes in block Bito the nodes in block Bi+i.The nodesin block Bi+i

that mapped to nodes in block Biare selected randomly.For example,we considertwo

blocks B3 and B4 with2nodes and 5 nodesin each block respectively.,In this case,

random numbers between 1 and 5 will be selected for each node in B3.For example,if

the numberchosen were2for the,first node in block B3,this would map this node to two

nodes in block B4.In addition,the random netlist generator uses arandom number

selected between 1 and 100to assign weights to the nets and nodes.Finally,the random

netlist generator selects the RAM nodes randomly by using a random number between 1

' • 62 ' '

�

and 100.Foreach node,ifthe random number chosen lies between 45 and 55,the node is

assigned forRAM access.

Partitioning Configuration File

As mentioned before,one ofthe major goals in this research is to target different

hardware architectures.The partitioning algorithms are extended to be dynamic.In this

case,the partitioner reads the particulM,hardware structure,datafrom a partitioning

configuration file. This enables the user to change some specific information in the

configuration file instead ofworking inside the partitioner.^ This gives the user the

flexibility ofswitching from one hardware architecture to another.The hardware

architecture dataincludes the number ofPEs available in the ACS,the capacity ofeach

PE,the I/O pins between PEs^ the I/O pins between eachPE and its localRAM,and the

number ofRAMsavailable for each PE.In addition,the user can specify the data that is

required to configure the memory used by the partitioner.Thisincludes the maximum

number ofnodes,the maximum number ofnets,the maximum number oflevels,and the

maximum number ofthe produced p^itions.Figure 4.1-4.3 show the partitioning

configuration files for the Wildforce-XL,Wildforce-XLl,and SLAAC-1V boards

respectively. Using this approach,a user can adoptthe partitioner to a new ACS in only

fewminutes.This is valuable information which may be used to select an existing

hardware platform or to consider tradeoffs in the design ofa new ACS.However,thie

steps involved in connecting partition blocks toPEI/O and communicating with the host

CPU may take several days to accomplish.

63 .

/* Partitioner Configuration File For The Wildforce-XL Board */

#define NumberOfPE - 5 . .

/* Number ofPEs orFPGAs available on the ACS board */

#define MaxNodeSize 3000 ' ■/* Maximum Number of Nodes */

define MaxLevelSize 700

/* Maximum Number of Levels. This is required for the RPL Algorithm */
define MaxNetSize 4000 . /* Maximum Number of Nets */

define, MaxPaitNumber 300 /* Maximum number of partitions */
define PEO 1290 , /* Capacity of PEO */

define PEl 570 ' /* Capacity of PEl

define PE2 570 /* Capacity of PE2 */.
define PE3 570, /* Capacity of PE3 */

define PE4 570 /* Capacity, of PE4 */

define UF 0.9 /* utilization factor for each PE */

define TotalNumOfCLB 3550 /* Total CLBs available on the ACS board */

define PE2MEMCutset 32

/* Maximum I/O count between one PE and the local RAM */

define PE2PECutset 36

Maximum I/O count between one PE and another PE */

define PEMemNuni 1 /* Number of local RAMs available for each PE */

Figure 4.1 Partitioning Configuration File for Wildforce-XL

64

�

/* Partitioner Gonfiguration File For The Wildforce-XLl Board */

#define NumberOfPE. 5

/* Number ofPEs orFPGAs available on the ACS board */:

#define MaxNodeSize 3000, , /* Maximum Number ofNodes */

#define MaxLevelSize 700

/* Maximum Number ofLevels.This is required for the RPL Algorithni */.

#'define MaxNetSize 4000 /* Maximum Number ofNets */

#define MaxPartNumber 300 /* Maximum number ofpartitions */

#define PEO 1290*10 , /* Capacity ofPEO */, .

#define PEr 570*10 /* Capacity ofPEl */

#define PE2 570*10 /* Capacity ofPE2*/

#define PE3 .570*10 /* Capacity ofPE3*/

#define PE4 570*10 . /* Capacity ofPE4*/ .

#define UF 0.9 - /* utilization factor for eachPE */

#define TotalNumOfCLB 35500 /* Total CLBs available on the ACS board */ ,

#define PE2MEMCutset 32*2

/* Maximum I/O coiint between onePEand the localRAM */

#define PE2PECutset 36*2 .

/* Maximum I/O count between oriePE and anotherPE */

#define PEMemNum 2 ' /* Number oflocal RAMs available for eachPE*!

Figure 4.2Partitioning Configuration File for Wildforce-XLl

65

/* Partitipner Configuration File For TheSLAAC-IV Board */

#define NumberOfPE 2

/* NumberofPEs orFPGAs available on the ACS board */

#define MaxNodeSize. 3000. /* Maximum Number ofNodes */

#define MaxLevelSize 700

/* Maximum Number ofLevels.This isrequired for the RPL Algorithm */

#define MaxNetSize 4000 , /* Maximum Number ofNets */

,# define MaxPartNumber 300 /* Maximum number ofpartitions */

#define PEO 1000000 /* Capacity ofPEO */

#define PEl 1000000 /* Capacity ofPEl */

#define UF 0.9 /* utilization factor for eachPE*/

#define TotalNumOfCLB 2000000 /* Total CLBs available on the ACS board */

#define PE2MEMCutset 36

/* Maximum I/O count between onePE and the localRAM */

#define PE2PECutset ,72 . - ,

/* MaximumI/O count between onePE and anotherPE */

#define PEMemNum 4 . /* Number oflocal RAMs available for eachPE */

Figure 4-3 Partitioning Configuration File forSLAAC-IV

66

4.1 HP Algorithm

In this section we discuss the partitioning results ofthe HP algorithm for the

netlistshown in Table 4.1.In 1997,Stanley developed this algorithm targeting a

particular hardware emulator[8].TheHP algorithm was developed and extended in this .

research to handle the CHAMPION netlists.The algorithm is relatively a simple idea

compared with the RPL and RP algorithms.As mentioned in section 3.1,the algorithm

starts with alinear orderingLofall nodes and with^einpty block Pi.Ateach step,the

algorithm selects a node ifromLand put it into Pi.The algorithm moves nodes into Pi

until the capacity constraint or theRAM access constraint ofthe partition is violated.The

RAM access constraint is checked first. Each partition can have only a certain number of

RAM access modules based on the selected hardware board.The capacity constraint is

checked next.Once one ofthese constraints is violated,the algorithm checks ifthe

interconnect constraint ofthe currentPE is satisfied.Ifthis interconnect constraint is

violated,the algorithm rolls back the moves until the constraint is met.Rolling back

refers to moving nodes back to L.Ifthere exists more than one candidate node for back

rolling,the algorithm starts an optirhization step.This situation arises when for example

two nodes with different sizes will lead to the same cut set ifone ofthem is moved back.

to L.In this case,it is intuitive to keep the node with the maximum size in the current

partition. This optimization step finds the best node which maximizes the capacity ofthe

current partition and meets the interconnect constraint.The optimization strategy uses the

benefitfunction discussed in chapter2to find the node with the highest benefit and

, 67

leaves it in the current partition.Werepeat this process by creating a new block P2and

applying the same procedure to the remainder ofL.

As mentioned above,the HP algorithm uses a linear ordering array to access the

nodes and move theme across partitions. Therefore,the running time ofthe HP algorithm

depends on the linear ordering array size,the number oftheRAM access modules,and

the selected hardware architecture. A complexity analysis for this algorithm was not

undertaken in the existing workfrom Stanley[8].In this research,for each hardware the

running time for each netlist is presented.We will show how the running time varies with

the selected hardware architectures and the netlist size.

Tables 4.2-4.7 show the partitioning results for the six hardware architectures.For

each netlist the tables show the size ofthe netlist,the RAM modules count,the nodes

size,the nets size,the partitions number,and the running time ofpartitioning process.We

assume that the RAM modules require external implementation.The reported run times

are for a300MHzPentium nCPU.

Asexpected,the partitions number produced and the running time for the

partitioning process vary with the selected hardware board and the netlist size. Referring

to Table 4.2,the HP algorithm was not able to produce valid partitioning results for the

ATR,M29,R700,and R1500 when we targeted the Wildforce-XL board.The reason for

this is the limited external I/O perPE. For the ATR netlist, a non-valid partitioning result

was produced after we relaxed the I/O countfrom 36 to 50for the same Wildforce-XL.

68

Table 4.2Partitioning results for Wildforce-XL using HP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 _ 2 <ls

Filter

NVL 549 2 45 71 2 ds

AIR 4885 14 101 234 Notfeasible 2

M29 519 7 29 28 Notfeasible <ls

R300 7845 11 301 311 25 4

R400 10130 7 406 421 23 10

R500 12845 12 504 493 33 19

R600 15320 9 601 571 29 34

R700 17640 10 702 714 Notfeasible 761

R800 19690 12 807 809 42 89

R900 23041 18 906 881 52 132

RIOOO 24533 23 1005 1041 58 184

RllOO 29685 23 1101 1091 61 257

R1200 31420 22 1202 1231 67 336

R1300 33120 25 1303 1243 72 424

R1400 36975 29 1401 1412 81 571

R1500 41453 34 1502 1497 Notfeasible 1129

69

�

� �� �
� � �

Table 4.3 Partitioning results for Wildforce-XLl using HP algorithm

Netlists Size RAM ; Nodes# Nets#' Partitions , Time(s)

Modules #

Hipass 2' ,
: 17 48 1 <ls

Filter,

NVL ' 549- • 2 45 71 1 <ls

ATR 4885 : 14 101 234 7 2 .

M29 519 7 . 29 - 28 4 <ls

R300 7.845 11 . 301 311 6 ' 3

R400 10130 7 , ; 406 ' 421 , 4 8

R500 12845 12 . 504 .493 6 . 13

R600 15320. 9 601 571 5 25

R7,00 17640 10 702 : 714 6 41

.R800 19690 12 807 809 7 71 ,

R900 0023041 18 '906 881 10 107

RIOOO 24533. ; 23' 1005 1041 13 161

RllOO 29685 23 1101 1091 13 221

R1200 31420 ■22' . 1202. 1231 13 291

R1300 33120 25 . . 1303 1243 , 15 383

R1400 36975 , 29 1401 1412 18 431

R1500 41453 34 , : . 1502 . 1497 21 521

70

Table 4.4 Partitioning results for MSPl board using HP algorithm.

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2- 1.7 48 1 <ls

Filter

NVL 549 , 2 '■ ■■ 45 ■ 71 Not feasible <ls

ATR 4885 14 101 234 14 1

M29 519 7 29 28 6 <ls

R300 7845 IT 301 311 10 .3

R400 10130 7 406 421 5 9

R500 12845 12 504 493 10 15

R600 15320 9 , 601 571 7 ' 29

R700 17640 10 702 714 9 47

R800 19690 .12 807 809 11 . 81

R900 23041 18 906 881 17 107

RIOOO 24533 23 . 1005 1041 22 172 .

RllOO 29685 23 1101 1091 21 234

R1200 31420 22- ' 1202 1231 21 313

R1300 33120 25 1303 1243 24 401

R1400 36975 29 1401 . , 1412 27 453

R1500 41453 34 , 1502 1497 34 503

71

�

Table 4.5 Partitioning results for MSP2board using HP algorithm.

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 2 <ls

Filter

NVL 549 2 45 71 2 <ls

ATR 4885 14 101 234 Notfeasible <ls

M29 519 7 29 28 Notfeasible <ls

R300 7845 11 301 311 Notfeasible <ls

R400 10130 7 406 421 Notfeasible <ls

R500 12845 12 504 493 Notfeasible <ls

R600 15320 9 601 571 Notfeasible <ls

R700 17640 10 702 714 Notfeasible <ls

R800 19690 12 807 809 Notfeasible <ls

R900 23041 18 906 881 Notfeasible <ls

RIOOO 24533 23 1005 1041 Notfeasible <ls

RllOO 29685 23 1101 1091 Notfeasible <ls

R1200 31420 22 1202 1231 Notfeasible <ls

R1300 33120 25 1303 1243 Notfeasible <ls

R1400 36975 29 1401 1412 Notfeasible <ls

R1500 41453 34 1502 1497 Notfeasible <ls

72

�

�

�

� �

Table 4.6 Partitioning results forSLAAC-IV board using HP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 : 17 48 1 <ls

Filter

NYL 549 .2 45. 71 . 1 <ls

ATR 4885 14 101 234 4, 1

M29 519 7 29 28 2 <ls

R300 7845 11 301 311 4 . 2

R400 10130 406 421 2 6
; ,

R500 12845 • , 12 504 493 4 9

R600 15320 - ; - '' 9 /- 601 -571 3 19

R700 17640 7 , 702: 714 , 4 37

R800 19690 , , ,12 ' 807.. 809 4 62

R900 23041 ,18 . ^ 906 , 881 6 89,

RIOOO 24533 . , 23 : 1005 . 1041 8 131

RllOO 29685 23 , 1101 1091 8 ' 192

R1200 31420 22 - 1202 1231 8 216

R1300 33120 25:,, 1303 1243 8 289

R1400 36975 •29 : 1401 1412 : 10 305

R1500 41453 34 1502 . 1497 11 351

73

Table 4.7 Partitioning results forSLAAC-IP board using HP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 Notfeasible <ls

ATR 4885 14 101 234 Notfeasible 2

M29 519 7 29 28 2 <ls

R300 7845 11 301 311 4 2

R400 10130 , 7 406 421 2 7

R500 12845 12 504 493 4 20

R600 15320 9 601 571 Notfeasible 14

R700 17640 10 702 714 4 41

R800 19690 12 807 809 4 66

R900 23041 18 906 881 6 98

RIOOO 24533 23 1005 1041 10 143

RllOO 29685 23 1101 1091 8 203

R1200 31420 22 1202 1231 8 227

R1300 33120 25 1303 1243 9 297

R1400 36975 29 1401 1412 Notfeasible 21

R1500 41453 34 1502 1497 Notfeasible 27

74

 � �

This partitioning result cannot be implemented by targeting the Wildforce-XL since the

I/O limitation is violated. ,

Targeting the Wildforce-XL1,the'HP algorithm was able to produce valid

partitioning results for all the netlists considered in this research.To compare the running

times and the number ofpartitions produced by targeting the Wildforce-XL and the

Wildforce-XL1,we consider the R1400 netlist. For the Wildforce-XL,77PEs are

required to implementthe R1400 netlist and the running time for the partitioner is 571

seconds. Atthe other side,only 17PEs are required to implement the R1400by targeting

the Wildforce-XLl while the running time wasreduced to431 seconds.This result is

presented in Table 4.3. Targeting the SLACC-IV board and R1400 netlist,the HP

produced 10 partitions within 305 seconds.This shows how the performance ofthe HP

algorithm depends on the selected hardware architecture.

; . Referring to Table 4.5 the partitioning results are presented for the MSP board

where the localRAM for eachPEis organized as one bank of512kX48 bits.In this case,

only oneRAM module is available for each PE.TheHPfailed to produce valid

partitioning results for all netlists, which require multiple configuration ofthe board.A

single configuration ofthe board is the same as the configuration ofall available PEs.If

the entire application cannot fit in one board configuration,then multiple configurations

ofthe board are necessary.When multiple configurations are used,storage of

intemiediate results between board configurations is needed.In this case,oneRAM read

hardware glyph mustbe added at the beginning ofeach configuration and oneRAM write

• - " . ' 75

hardware glyph must be added at the end ofeach corifiguration. Using theRAM as one

bank of512kX48 bits willlimitthe MSP board for a single board configuration only

since both RAM modules are always used to store the intermediate results. Organizing

theRAM as two banks of512kX24.bits can solve the problem.These results are shown

in Table 4.4.

4.3RP Algorithm

In this section we discuss the,partitioning results for the RP algorithm by targeting

the netlists shown in Table 4.1.TheRP algorithm was developed and extended in this

research to handle the CHAMPION netlists.The partitioning results are presented for the

six hardware architectures considered in this research.TheFM algorithm starts with a

current partition Pi and a remainder Ri and iterates to improve it by reducing the cutset

size.Subsequent iterations apply the same procedure to the remainder until all resulting

partitions meetthe constraints.The RP algorithm uses theFM concept,discussed in

chapter 2,of moving a single node cross the cut.

Tables 4.8-4.13 show the partitioning results for the six hardware architectures.

Referring to Table 4.8, the RP algorithm was not able to produce valid partitioning results

for the M29and the R700 netlists by targeting the Wildforce-XL board.The reason for

this is the limited external I/O count perPE. For the ATR netlist, a valid partitioning

result was produced with 23,FPGAs.The partitioning results show that the running time

ofthe RP algorithm depends on the netlist size,the number oftheRAM access modules,

76 .

https://4.8-4.13

Table 4.8 Partitioning results for Wildforce-XL using RP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 2 <ls

Filter

NVL 549 2 45 71 2 <ls

ATR 4885 14 101 234 23 9

M29 519 7 29 28 Not 2

feasible

R300 7845 11 301 311 23 26

R400 10130 7 406 421 21 39

R500 12845 12 504 493 32 89

R600 15320 9 601 , 571 24 138

R700 17640 10 702 714 Not 61

feasible

R800 19690 12 807 809 36 171

R900 23041 18 906 881 49 195

RIOOO 24533 23 1005 1041 58 236

RllOO 29685 23 1101 1091 57 292

R1200 31420 22 1202 1231 66 392

R1300 33120 25 1303 1243 66 501

R1400 36975 29 1401 1412 79 693

R1500 41453 34 1502 1497 91 863

77

� � �

Table 4.9 Partitioning results for Wildforce-XLl using RP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 1 <ls

ATR 4885 14 101 234 7 6

M29 519 7 29 28 4 <ls

R300 7845 11 301 311 6 17

R400 10130 7 406 421 4 31

R500 12845 12 504 493 , 7 62

R600 15320 9 601 - 571, . 5 101

R700 17640 10' 702 714 7 125

R800 19690 12 807 809 7 143

R900 23041 18 906 881 10 177

RIOOO 24533 23 1005 1041 13 211

RllOO 29685 23 1101 1091 13 276

R1200 31420 22 1202 1231 13 314

R1300 33120 25 1303 1243 15 461

R1400 36975 29 1401 1412 17 515

R1500 41453 34 1502 1497 21 594

78

Table 4.10 Partitioning results for MSPl board using RP algorithm.

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 Not <ls

feasible

ATR 4885 14 101 234 14 7

M29 519 7 29 28 6 <ls

R300 7845 11 301 , 311 10 21

R400 10130 7 406 421 5 35

R500 12845 12 504 493 10 71

R600 15320 9 601 571 .1 113

R700 17640 10 702 714 9 139

R800 19690 12 807 809 11 151

R900 23041 18 906 881 16 185

RIOOO 24533 23 1005 1041 21 222

RllOO 29685 23 1101 1091 21 281

R1200 31420 22 1202 1231 21 331

R1300 33120 25 1303 1243 24 471

R1400 36975 29 1401 1412 27 523

R1500 41453 . 34 1502 1497 33 604

79

�

� �

Table 4.11 Partitioning results for MSP2board using RP algorithm.

Netlists Size RAM Nodes# Nets# , Partitions# Time(s)

Modules

Hipass 458 2. 17 48 2 <ls

Filter

NVL 549 2 45 71 2 <ls

ATR 4885 14 101 234 Notfeasible <ls

M29 519 7 29 28 Notfeasible <ls

R300 7845 11 ' 301 311 Notfeasible <ls

R400 10130 7 406 421 Notfeasible <ls

R500 12845 12 504 493 Notfeasible <ls

R600 15320 9 601 571 Notfeasible <ls

R700 17640 10 702 714 Notfeasible <ls

R800 19690 12 807 809 Notfeasible <ls

R900 23041 18 906 881 Notfeasible <ls

RIOOO 24533 23 1005 1041 Notfeasible <ls

RllOO 29685 23 1101 1091 Notfeasible <ls

R1200 31420 22 1202 1231 Notfeasible <ls

R1300 33120 25 1303 1243 Notfeasible <ls

R1400 36975 29 1401 1412 Notfeasible <ls

R1500 41453 34 1502 1497 Notfeasible <ls

80

Table 4.12Partitioning results forSLAAC-IV board using RP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 1 <ls

ATR 4885 14 . 101 234. 5 2

M29 519 7 29 28 2 <ls

R300 7845 11 301 311 4 11

R400 10130 7 406 421 2 17

R500 12845 12 504 493 4 44

R600 15320 9 601 571 3 89

R700 17640 10 702 714 4 101

R800 19690 12 807 809 4 121

R900 23041 18 906 881 6 152

RIOOO 24533 23 1005 1041 8 174

RllOO 29685 23 1101 1091 8 205

R1200 31420 22 1202 1231 8 281

R1300 33120 25 1303 1243 8 379

R1400 36975 29 1401 1412 10 411

R1500 41453 34 1502 1497 11 434

81

Table 4.13 Partitioning results forSLAAC-IP board using RP algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 Notfeasible <ls

ATR 4885 14 101 234 Notfeasible 11

M29 519 7 29 28 2 <ls

R300 7845 11 . 301 311 4 13

R400 10130 7 406 421 2 18

R500 12845 12 504 493 4 47

R600 15320 9 601 571 Notfeasible 31

R700 17640 10 702 714 4 108

R800 19690 12 807 809 4 126

R900 23041 18 906 881 6 169

RIOOO 24533 23 1005 1041 9 178

RllOO 29685 23 1101 . 1091 9 211

R1200 31420 22 1202 1231 8 295

R1300 33120 25 1303 1243 9 386

R1400 36975 29 1401 1412 Notfeasible 76

R1500 41453 34 1502 1497 13 451

82

and the selected hardware architecture.Tocompare the running times and the number of

PEsfor the Wildforce-XL and the Wildforce-XLl,we consider the R1500 netlist.For the

Wildforce-XL,the RP algorithm produced99 partitions within 863 seconds.On the other

hand,only 21 partitions were produced by targeting the Wildforce-XLl while the running

time was reduced to 594seconds.This result is presented in Table 4.9.Targeting the

SLACC-IV board for the same R1500 netlist,the RP produced 11 partitions within 434

seconds.This shows how the performance ofthe RP algorithm depends on the selected

hardware architecture.

To compare the running times and the number ofPEsfor the Wildforce-XL and

the Wildforce-XLl,we consider the R1500 netlist. For the Wildforce-XL,the RP

algorithm produced 99 partitions within 863seconds.On the other hand,only 21

partitions were produced by targeting the Wildforce-XLl while the running time was

reduced to 594seconds.This result is presented in Table 4.9.Targeting the SLACC-IV

board for the same R1500 netlist,the RP produced 11 partitions within 434seconds.This

shows how the performance ofthe RP algorithm depends on the selected hardware

architecture.

Referring to Table 4.11 the partitioning results are presented for the MSP board

where the localRAM for each PE is organized as one bank of512kX48 bits. Similar to

HP algorithm,the RP algorithm failed to produce valid partitioning results for all netlists,

which require multiple configurations ofthe board. Using the RAM as one bank of

512kX48 bits will limit the MSP board for a single board configuration only since both

83

RAM modules are always used to store the intermediate results. Organizing the RAM as

two banks of512kX24 bits can solve the problem.These results are shown in Table 4.10.

Referring to Table 4.13,the RP algorithm failed to partition the ATR,the R600,

and the R1400 netlists when we targeted the SLAAC-IP board.The reason for that is the

limited RAM bus size. This problem can be solved by targeting a hardware board with

bigger theRAM bus size.Targeting the SLAAC-IV,the RP algorithm was able to

produce feasible solutions for all netlists including the ATR,the R600,and the R1400

netlists. Table 4.12shows the partitioning results for SLAAC-IV where the size ofthe

localRAM bus is 36 bits.

4.1 RPL Algorithm

In this section we discuss the partitioning results for the RPL algorithm by using

the netlists shown in Table 4.1. As mentioned in section 3.3,the RPL algorithm was

developed to reduce the weaknesses ofthe HP and RP algorithms.TheRPL starts the

partitioning process with alevelization solution Lofall nodes.Initially all nodes are in L

and the first partition Pi is empty.First, we start the process by moving n levels from L

and putthem into Pi until Pi has met the capacity constraint or theRAM module

constraint. At this moment,the last level moved to Pi is marked as Li.Then the algorithm

starts an optimization step by moving nodes across the marked level Li and its successor

level Li+l until the rest ofthe constraints are satisfied. Ifthe algorithm fails to find a

valid solution,then we,reduce the size ofPi by removing the last level moved to Pi and

' 84

the optimization step is repeated.Werepeat this process by creating a new blockP2and

applying the same procedure to the remainder ofL. The optimization step is based on the

benefitfunction discussed in chapter 2.For each partition, only two levels Li and its

successor level Li+i are involved in the optimization step. Therefore,the running time of

the RPL algorithm and computation amount ofthe partitioning process is afunction of

the number oflevels involved in the optimization step.In the same time,the number of

levels involved in the optimization steps is a function ofthe partitions number required to

implement the netlist application.For this reason,a hardware architecture with biggerPE

capacity,bigger I/O count,and biggerRAM banks will reduce the partitioner running

time significantly.In addition,minimizing the PEs number will reduce the data

processing time on the targeted hardware.The last statement will be supported when we

discuss the implementation ofthe ATR algorithm,section 4.5,on different hardware

architectures.

Tables 4.14-4.19show the partitioning results for the six hardware architectures.

As expected,the partitions number produced and the running time for the partitioning

process vary with the selected hardware board and the netlist size.For example,we

consider the R1500 netlist and compare the performance ofthe RPL algorithm for both

Wildforce-XL and SLACC-IV hardware boards.For the Wildforce-XL,88PEs are

required to implement the R1500 netlist and the running time for the partitioner is 371

seconds.In the same time,the partitions number required to implement the R1500 netlist

is reduced to 11 PEs by targeting the SLACC-IV board.The running time is reduced to

193 seconds.This big change is very significant for the data processing time on the

85

https://4.14-4.19

Table 4.14Partitioning results for Wildforce-XL using RPL algorithm

Netlists Size RAM Nodes# Nets# Partitions Time(s)

Modules #

Hipass 458 2 17 48 2 <ls

Filter

NVL 549 2 45 71 2 <ls

ATR 4885 14 101 234 20 2

M29 519 7 29 28 9 <ls

R300 7845 11 301 311 21 3

R400 10130 7 406 421 19 4

R500 12845 12 504 493 32 11

R600 15320 9 601 571 23 21

R700 17640 10 702 714 26 33

R800 19690 12 807 809 34 51

R900 23041 18 . 906 881 47 71

RIOOO 24533 23 1005 1041 55 101

RllOO 29685 23 . 1101 1091 55 135

R1200 31420 22 1202 1231 63 178

R1300 33120 25 1303 1243 64 225

R1400 36975 29 1401 1412 77 293

R1500 41453 34 1502 1497 88 371

86

 �

 �

�

�

Table 4.15 Partitioning results for Wildforce-XLl using RPL algorithni

Netlists Size . RAM Nodes# Nets# Partitions Time(s)

Modules #

Hipass 458 2 17 48 1 <ls .

Filter

NVL 549 2 45 71 1 <ls ,

ATR 4885 . 14, . . , 101 234 7 1

M29 519 7 29 28 4 <ls

R300 7845 .11 301 311 6 2

R400 10130 7 406 421 4 5'

R500 12845, , 12 , , 504 493 6 11

R600 15320 9 601 571 5 15

R700 17640\ 10 ^ = 702 714 6 26

R800 19690 :12 ; 807., 809 7 38

R900 23041 18 906 881 10 59

RIOOO 24533 23 1005 1041 13 71

RllOO 29685 23 . . , 1101 1091 13, - 98

R1200 31420 22 1202 1231 13 127

R1300 33120 • 25.. 1303 1243 . 15 , 165

R1400 36975 ,29 1401 1412 17 199

R1500 41453 34 1502 1497 20 257

87

�

�

Table 4.16 Partitioning results for MSPl board using RPL algorithm.

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 Notfeasible <ls

ATR 4885 14 101 234 12 1

M29 519 7 29. 28 6 <ls

R300 7845 11 301 311 10 3

R400 10130 7 406 421 5 6

R500 12845 12 504 493 10 11

R600 15320 9 601 571 7 21

R700 17640 10 702 714 9 32

R800 19690 12 807 809 11 48

R900 23041 18 906 881 16 68

RIOOO 24533 23 1005 1041 21 76

RllOO 29685 23 1101 1091 21 107

R1200 31420 22 1202 1231 21 133

R1300 33120 25' 1303 1243 23 181

R1400 36975 29 1401 1412 27 209

R1500 41453 34 1502 1497 32 273

Table 4.17 Partitioning results for MSP2board using RPL algorithm.

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 2 <ls

Filter

NVL 549 2 45 71 2 <ls

ATR 4885 14 101 234 Notfeasible <ls

M29 519 7 29 28 Notfeasible <ls

R300 7845 11 301 311 Notfeasible <ls

R400 10130 7 406, 421 Notfeasible <ls

R500 12845 12 504 493 Notfeasible <ls

R600 15320 9 601 571 Notfeasible <ls

R700 17640 10 702 714 Notfeasible <ls

R800 19690 12 807 809 Notfeasible <ls

R900 23041 18 906 881 Notfeasible <ls

RIOOO 24533 23 1005 1041 Notfeasible <ls

RllOO 29685 23 1101 1091 Notfeasible <ls

R1200 31420 22 .1202 1231 Notfeasible <ls

R1300 33120 25 1303 1243 Notfeasible <ls

R1400 36975 29 1401 1412 Notfeasible <ls

R1500 ' 41453 34 1502 1497 Notfeasible <ls

89

��

� � �

�

� ��

Tdble 4.18 Partitioning results forSLAAC-IV board using RPL algorithm

Netlists Size RAM 'Nodes# ,Nets# Partitions Time(s)

Modules #

Hipass 458 2 . 17 48 1 <ls -

, Filter

NYL 549 ; - 45' ,71 1 <ls

ATR 4885 14 , 101 ; 234 4 1

M29 519 7 29 28 2 • <ls

R300 7845 : ' 11 301 , 311 4 1

R400 10130 1 406 421 1 3

R500 12845 . 1.2 , 504 493 - 4 8

R600 15320 9 , 601 571 3 11

R700 17640 10 702 714 ,4 , 20

R800 19690 \ 12 . 807 809 .. . '4 31

R900 23041 18 906 881 6 52

RIOOO 24533 23 1005 1041 . 8 63

RllOO 29685 23 1101 , 1091 8 87

R1200 31420 22 1202 1231 , 8 103

R1300 33120 . . 25 1303 1243 8 127

R1400 36975 29 1401 .1412 10 162

R1500 41453 34 1502 1497 11 193

90

Table 4.19 Partitioning results forSLAAC-lP.board using RPL algorithm

Netlists Size RAM Nodes# Nets# Partitions# Time(s)

Modules

Hipass 458 2 17 48 1 <ls

Filter

NVL 549 2 45 71 Notfeasible <ls

ATR 4885 14 101 234 5 1

M29 519 7 29 28 2 <ls

R300 7845 11 301 311 4 1

R400 10130 7 406 421 2 3

R500 12845 12 504 493 4 9

R600 15320 9 601 571 Notfeasible 6

R700 17640 10 702 714 4 23

R800 19690 12 807 809 4 37

R900 23041 18 906 881 6 57

RIOOO 24533 23 1005 1041 9 67

RllOO 29685 23 1101 1091 8 93

R1200 31420 22 1202 1231 8 111

R1300 33120 25 1303 1243 9 136

R1400 36975 29 , 1401 1412 Notfeasible 73

R1500 41453 34 1502 1497 11 203

91

�

targeted hardware.Reducing the PEscount required to implement a particular netlist can

speed up the data processing significantly.. '

Referring to Table 4.17 the partitioning results are presented for the MS?board

where the localRAM for eachPE is organized as one bank of512kX48 bits. Using the

RAM as one bank of512kX48 bits will limit the MSP board for a single board

configuration only since bothRAM modules are always used to store the intermediate

results. Organizing theRAM astwo banks of512kX24bits can solve the problem.These

results are shown in Table 4.16.

Referring to Table 4.19,the partitioning results for the SLAAC-IP board are

illustrated. As mentioned before,fourRAM modules each ofthe size 256KX18 bits are

available for each PE.In this case,the systolic busbetween thePE and the localRAM is

limited to 18 bits:For this reason,the RPLfailed to find a valid partitioning result for the

NVL,the R600,and R1400netlists since these netlists need to access the localRAMsby

more than 18 bits.Increasing the PE toRAM systolic bus width can solve this problem.

, Table 4.18 shows the partitioning results forSLAAC-IV where the size ofthe local

RAM is 512KX36bits and theRAM bus width is 36 bits:

4.4 Comparison Between RPL,HP,and RP Algorithms

In this section,we shall compare the three different partitioning approaches

againsteach other.We will refer to the partitioning results shown in Tables 4.2-4.19.

92 ' '

https://4.2-4.19

The ATR netlist is given more attention in this discussion because ofthe following

reasons:

1. The ATR is a very challenging netlist where a high number ofRAM nodes are

used.

2. There exists a manual partitioning result for the ATR netlist.

3. The ATR wasimplemented manuallyfrom CANTATA workspace to the

Wildforce-XL.

4. The ATR netlist has a moderate size ofnodes and nets so that the visualization

ofsome problems for the partitioning process is possible.

The partitioning results shows that the HP and the RP approaches have difficulties

in finding valid partitioning results for some ofthe netlists which utilize a high number of

RAM access nodes.The problems arise when theseRAM access nodes are close to each

other in the hypergraph netlist. Therefore,the partitioning result is depending on the

number oftheRAM access nodes and on how these nodes are distributed in the netlist.

TheRAM access constraint is equivalent to the locking ofa certain number ofnodes in a

netlist in which these nodes are prevented from moving freely across the cuts. This

constraint is not affecting the movement ofthe particular node only but its neighbors

nodes too.

Another major weakness ofthe HP and RP algorithms is the acyclic constraint.In

addition to the original requirements of maintaining the acyclic constraint,theRAM

93

access constraint adds more difficulties to this constraint. This means,ifoneRAM node

is locked in one partition,then the successors ofthis node are locked too because the

movement ofthe successor nodes across a cut will violate the acyclic constraint.

Therefore,,adding these two constraints to the partitioning problem makes it a very

challenging one.

To show the strength ofour RPL algorithm,we illustrate the results oftwo

different examples.In the first example,we consider a very challenging netlist,M29,

shown in Figure 4.4, with 29 nodes and 28 nets. Among the 29 nodes,7nodes are

utilized for RAM accessing.The shaded nodes represent the sources and destinations for

this netlist. This netlist was generated manually where a valid partitioning result exists.

At least seven PEs are needed for successful implementation ofthis netlist on the

Wildforce-XL since the netlist utilizes seven RAM access modules.Referring to the

Tables4.2 and 4.8,both HP and RP algorithms failed to produce a valid partitioning

result for the M29 netlist when we targeted the Wildforce-XL board.However,the RPL

was able to produce a valid partitioning resultfor this particular netlist. The result is

shown in Table 4.14.A total number ofseven partitions were produced where nine levels

were constructed during the partitioning process.In the M29 netlist,the source nodes

(1,8,13)and the destination nodes(23,24,25,26)are used to access the RAMsfor reading

and writing the data.The source and destination nodes are placed closely to each other in

the hypergraph.Byremoving theRAM access need for the nodes(8,23)and assigning a

RAM access need for the nodes(12,27),the RP algorithm was able to produce a valid

partitioning result while the HP algorithm still failed.

94

I

In other words,the distribution ofthe RAM nodes in the hypergraph was changed to

affect the results produced by the RP and HP algorithms.The RPL was still able to

produce a valid partitioning result for this netlist. Several experiments were conducted

with theRAM nodes to investigate the performance ofthe algorithms.The small size of

the M29netlist enabled us to conduct these experiments and to observe the weaknesses of

the HP and RP algorithms.The results ofthese experiments showed that the performance

ofthe RP algorithm is determined by theRAM nodes distribution in the hypergraph.The

results showed that the HP performance depends on the number ofRAM nodes,the

distribution oftheRAM nodes in the hypergraph,and the hypergraph density.To obtain a

valid partitioning result for the HP algorithm,we had to reduce the number oftheRAM

nodes and the weights forsome ofthe hyper nets.

An application netlist similar to the M29 netlist can arise in the practice.

Sometimes the user tries to collapse the design by using macros instead ofcells. Of

course this will improve the visualization and the manageability ofthe design,but it will

reduce the granularity in the hypergraph.This means the nodes and nets numbers are

reduced.Ifthe design ends up having a stmcture similar to the M29 netlist and a high

number ofRAM nodes,then the partitioning results will be affected greatly by theRAM

distribution and the density ofthe hypergraph.Therefore,the user must be aware ofthe

size and I/O ofthe macros and the RAM distribution.

The automatic target recognition(ATR)application was automatically mapped

from the Cantata workspace to the Wildforce platform recently.The ATR was first

96

implemented manually by the CHAMPION research group to assist in the development

offunction libraries and hardware for use in the CHAMPION system.The mapping

techniques used were developed in such a way that they could serve as the basis for the

automated system [4],The ATR netlist was used to test our three different partitioning

approaches.This netlist consists of 101 nodes and 234 hyper nets. Among the 101 nodes,

14 nodes are used for accessing the local RAMs.The ATR application utilizes a high

number ofmacros where the sizes ofthese macros differ. A total number of20FPGAs

was needed to implementthe ATR netlist manually. Both RPL and RP algorithms were

able to produce two different mappable partitioning results by targeting the Wildforce-

XL,while the HP algorithm failed.TheRPLresult was identical to the manual

partitioning result in terms oftheFPGAs numbers.A total number of20partitions were

produced where5i levels were constructed during the partitioning process by using the

RPL algorithm.The run time is2seconds. In the meantime,the RP algorithm produced

23 partitions within9seconds.Tables 4.20-4.21 show the ATR partitioning resultfor the

RPL and RP algorithms respectively.Similar to the manual result,the RPL and RP

results showed a poor utilization ofthe PEs capacity.TheRAM access constraint and the

macros sizes was the main reason for this poor utilization ofthe PEscapacity.

The run time for the RP algorithm is relatively longer when compared to the run

time ofthe RPL and HP algorithms.In section 3.2,we mentioned that the run time ofthe

RP algorithm is a function ofthe unlocked nodes in the current partition P and the

remainder R.In the first phase ofthe RP algorithm,the entire netlist Rq is partitioned into

one feasible solution.Pi,that meets the constraints ofthe firstPE on the board,and the

97

https://4.20-4.21

Table 4.20RPLPartitioning results for the ATR by targeting the Wildforce-XL board.

Partition Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

CLB Usage I/O Count Nodes#

741 24 9

462 15 5

482 32 12

424 28 10

0 ' 0-

-0 0

367 28 8

345 26 8

389 25 7

0 0-

-0 0

367 29 9

367 28 8

389 25 7

0 0-

-0 0

389 19 9

32 30 1

80 11 7

52 11 1

98

�

Table 4.21 RPPartitioning results for the ATR by targeting the Wildforce-XL board.

Partition Number CLB Usage I/O Count Nodes#

1 718 33 3

2 400 35 5

3 434 29 11

4 471 9 14

5 0 0

6 0

-

0

7 362 10 9

8 367 9 8

9 367 11 8

10 0

-

0

11 0

-

0

12 367 9 8

13 371 9 7

14 367 7 8

15 0

-

0

16 0

-

0

17 421 19 10

18 56 19 1

19 32

-

30 1

20 0 0

21 . 0

-

0

22 80 11

-

7

23 52 11 1

99

remainder partition,Ri.During this phase,all the N nodes in the current partition Pi and

a remainder Ri are unlocked and involved in the partitioning process.When the

partitioner finds a feasible solution for the current partition Pi,the nodes in partition Pi

become locked.Therefore,during the partitioning process the run time decreases as the

number oflocked nodes increases.Figure 4.5a shows the RP run time during the

partitioning ofthe AIR netlist. In section 4.1,it was mentioned that the mn time ofthe

RPL algorithm is afunction ofthe number oflevels involved in the partitioning process.

For each partition,only two levels Li and its successor level Li+i are involved in the

optimization step.Therefore,the run timefor each partition is afunction ofthe nodes size

in Li and its successor level Li+i.Figure 4.5b shows the RPLrun time during the

partitioning ofthe ATR netlist.

TheHP algorithm failed to produce a valid partitioning result for the ATR when we

targeted the Wildforce-XL.TheHP algorithm depends strongly on the node order in the

linear ordering array.In general,the node order produced by a topological sort is not

unique[42].This situation arises when one node has no direct or indirect dependence on

another and therefore they can be performed in either order.TheHP algorithm made 10

attempts to partition the ATR netlist where each time the algorithm started with a

different linear ordering solution. No valid result wasfound for any ofthese attempts.

The HP result was affected greatly by the firstfew nodes in the netlist where three big

size macros are used.The port countfor these macros is relatively high when compared

to other cells.

100

RP Algorithm

1200

1000

800 +
"u)

o" 600

" 400

200 +

0 I I I I I 1 1 1 "" I ri"*-i—I—r

C\I C0 '^L0C0r^000)OT-C\i 00 '^l0CDh«- C005Oir- C\J
T— 'r- '^T— ■r- "r- 'r-T— T— C\J C\J C\i

C0
C\l

Partitions#

a. Run time of the RP algorithm

RPL ALgbrithm

300

250

200

■| 150
E

100

50 H

II
i-c\i co'5r iocDh-oocnoT-cvj co '^iocDr~>a3a50

■>— 1— TT— 1— 1— 1— T-T—T— 7— CM

Partitions#

b. Run time of the RPL algorithm

Figure 4.5 Run time during the ATR partitioning process

101

The HP algorithm produced a non-feasible solution,shown in Table 4.22,after we

relaxed the I/O count between the PEsfrom 36 to 50for the Wildforce-XL.This result

shows that only the first partition violates the I/O limitation. This partitioning result

cannot be implemented on the Wildforce-XL since the I/O limitation is violated.The run

time for the HP algorithni depends on the linear ordering array size,the number ofthe

RAM access modules,how many times the algorithm rolls back,and the selected

hardware architecture.Figure 4.6 shows the HP run time during the partitioning ofthe

ATR netlist for the relaxed I/O count.

In several examples,the HP and RP algorithms used morePEs to implement one

netlist when they are compared to RPL algorithm.For example,the RP algorithm uses 23

FPGAs to implement the ATR algorithm by targeting the Wildforce-XL while the RP

algorithm uses only20FPGAs.The increased number ofthe PEs is related to the nature

ofthe RP algorithm.The drawback inherent in the RP partitioning scheme,pointed out in

[15],its effect ofincreasing the connectivity inside the remainder partition.R.This effect

makes the I/O constraint harder to meet during the final partitioning stages and causes

more PEs to be used.In other words,the RP algorithm aims to minimize the'cutset for the

current partition.In addition,many previous works reported that the performance of

partitioning schemes using theFM heuristic degrades as the number ofnodes increase

[43][44].TheRPL algorithm reduces these weaknesses by performing a preprocessing

102

Table 4.22 HP Partitioning results for the ATR by targeting the Wildforce-XL

Partition Number CLB Usage I/O Count Nodes Count

1 1118 r 45 9

2 434 33 11

3 471 9 13

8 326 9 8

9 367 9 9

HP Algorithm

300

250

^200
'w

150

E

100

50

JU
1—I—I I I I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Iff 19 20

Partitions#

Figure 4.6 Run time ofthe HP algorithm during the ATR partitioning process

step (levelization)before starting the partitioning process.The preprocessing step reduces

the number of nodes used during the partitioning stages significantly. This will increase

the performance of the RPL algorithm and decrease the run time. In addition, the RPL

algorithm strategy aims to maximize the capacity ofthe current partition while satisfying

the I/O constraint.

In the HP algorithm,nodes are moved to the current partition according to their order

in the linear ordering array. This means,a node is moved to the current partition whether

or not it is a good choice.The algorithm stops the movements when a feasible solution is

found for the current partition.In other words,no more than one feasible solution for the

current partition is recorded during the partitioning process.This is the drawback inherent
104

in the HP partitioning scheme that degrades the performance ofthe algorithm and tends

to increase the number ofthe PEs used.

Figures 4.7a-4.7b compare the produced partitions and the run time on the netlists,

shown in Table 4.1,for the Wildforce-XL.A similar behavior was obtained for the other

hardware architectures. These experimental results demonstrate that the proposed

approach,the RPL algorithm,achieves superior performance when compared to the RP

and HP algorithms.Tables 4.23-28 show the combined results for the three partitioning

algorithms.

4.5 Processing Timefor Three Different Applications by Targeting Different

Hardware Architectures.

This section discusses the hardware implementation ofthe automatic target

recognition(ATR),the Hipass filter, and the NVLapplications by targeting different

hardware architectures.First we will give experimental results for the Wildforce-XL

implementation.Second we will give an estimate for the processing times by targeting

the Wildforce-XLl,the SLACC,and the MSP boards. The ATR application was

automatically mapped from the Cantata workspace to the Wildforce-XL platform by

using two different partitioning results. Early in this research project,the ATR was

implemented manually by the CHAMPION research group to assist in the development

offunction libraries and hardware for use in the CHAMPION system.

105

https://4.7a-4.7b

100

90

80

70

w 60 --HP c
o

50 RP
■c
n 40 RPL

30

20

10

500 1000 1500 2000

Nodes#

a. Produced partitions by targeting the Wildforce-XL

1000

900

800

700

600 HP

500 RP

RPL400

300

200

100

500 1000 1500 2000

Nodes#

b. Run time of the HP, RP, RPL algorithms by targeting the Wildforce-XL

Figure 4.7 Partitioning results for the Wildforce-XL

106

Table 4.23 Partitioning Results for the Wildforce-XL Board

HP Algorithm RP Algorithm RPL Algorithm
Netlists

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s)

Hipass 2 <ls 2 <ls 2 <ls

Filter

NVL 2 <ls 2 <ls 2 <ls

ATR Notfeasible 2 23 9 20 2

M29 Notfeasible <ls Notfeasible 2 9 <ls

R300 25 4 23 26 21 3

R400 23 10 21 39 19 4

R500 33 19 32 89 32 11

R600 29 34 24 138 23 21

R700 Notfeasible 761 Notfeasible 61 26 33

R800 42 89 36 171 34 51

R900 52 132 49 195 47 71

RIOOO 58 184 58 236 55 101

RllOO 61 257 57 292 55 135

R1200 67 336 66 392 63 178

R1300 72 424 66 501 64 225

R1400 81 571 79 693 77 293

R1500 Notfeasible 1129 91 863 88 371

107

Table 4.24 Partitioning Results for the Wildforce-XLl Board

HP Algorithm RP Algorithm RPL Algorithm
Netlists

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s)

Hipass 1 <ls 1 <ls 1 <ls

Filter

NVL 1 <ls 1 <ls 1 <ls

ATR 7 2 7 6 7 1

M29 4 <ls 4 <ls 4 <ls

R300 6 3 6 17 6 2

R400 4 8 4 31 4 5

R500 6 13 7 62 6 11

R600 5 25 5 101 5 15

R700 6 41 7 125 6 26

R800 7 71 7 143 7 38

R900 10 107 10 177 10 59

RIOOO 13 161 13 211 13 71

RllOO 13 221 13 276 13 98

R1200 13 291 13 314 13 127

R1300 15 383 15 461 15 165

R1400 18 431 17 515 17 199

R1500 21 521 21 594 20 257

108

Table 4.25 Partitioning Results for the MSPl Board

HP Algorithm RP Algorithm RPL Algorithm
Netlists

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s)

Hipass 1 <ls 1 <ls 1 <ls

Filter

NVL Notfeasible <ls Notfeasible <ls Notfeasible <ls

ATR 14 1 14 7 12 1

M29 6 <ls 6 <ls 6 <ls

R300 10 3 10 21 10 3

R400 5 9 5 35 5 6

R500 10 15 10 71 10 11

R600 7 29 7 113 7 21

R700 9 47 9 139 9 32

R800 11 81 11 151 11 48

R900 17 107 16 185 16 68

RIOOO 22 172 21 222 21 76

RllOO 21 234 21 281 21 . 107

R1200 21 313 21 331 21 133

R1300 24 401 24 471 23 181

R1400 27 453 27 523 27 209

R1500 34 503 33 604 32 273

109

�

Table 4.26 Partitioning Results for the MSP2Board

Netlists
HP Algorithm RP Algorithm RPL Algorithm

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s)

Hipass 2 <ls 2 <ls 2 <ls

Filter

NVL 2 <ls 2 <ls 2 <ls

ATR Notfeasible <ls Notfeasible <ls Notfeasible <ls

M29 Notfeasible <ls Notfeasible <ls Notfeasible '<ls

R300 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R400 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R500 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R600 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R700 Notfeasible <is Notfeasible <ls Notfeasible <ls

R800 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R900 Notfeasible <ls Notfeasible <ls Notfeasible <ls

RIOOO Notfeasible <ls Notfeasible <ls Notfeasible <ls

RllOO Notfeasible <ls Notfeasible <ls Notfeasible <ls

R1200 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R1300 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R1400 Notfeasible <ls Notfeasible <ls Notfeasible <ls

R1500 Notfeasible <ls Notfeasible <ls Notfeasible <ls

110

Table 4.27 Partitioning Results for the SLAAC-1V Board

HP Algorithm RP Algorithm RPL Algorithm
Netlists

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s)

Hipass 1 <ls 1 <ls 1 <ls

Filter

<ls 1 <ls 1 <lsNVL 1

1 2 1ATR 4 5 4

<ls <ls 2 <lsM29 2 2

4 11 4 1

3

R300 4 2

R400 2 6 2 17 2

8R500 4 9 4 44 4

R600 3 19 3 89 3 11

R700 4 37 4 101 4 20

62 121 4 31R800 4 4

R900 6 89 6 152 6 52

63RIOOO 8 131 8 174 8

RllOO 8 192 8 205 8 87

R1200 8 216 8, 281 8 103

127R1300 8 289 8 379 8

R1400 10 305 10 411 10 162

193R1500 11 351 11 434 11

ill

Table 4.28 Partitioning Results for the SLAAC-IP Board

HP Algorithm RP Algorithm RPL Algorithm
Netlists

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s)

Hipass 1 <ls 1 <ls 1 <ls

Filter

NVL Notfeasible <ls Notfeasible <ls Notfeasible <ls

ATR Notfeasible 11 5 1 5 1

<ls <lsM29 2 2 2 <ls

R300 4 13 4 1 4 1

318 3

4 9

R400 2 2 2

R500 4 47 4 9

R600 Notfeasible 31 Notfeasible 6 Notfeasible 6

23108 23

4 37

R700 4 4 4

R800 4 126 4 37

R900 6 169 6 57 6 57

67178 67

RllOO 9 211 8

RIOOO 9 9 9

93 8 93

111R1200 8 295 8 111 8

R1300 9 386 9 136 9 136

R1400 Notfeasible 76 Notfeasible 73 Notfeasible 73

203R1500 13 451 11 203 11

112

For the manualimplementation,the ATR application was partitioned in such a

wayso that an image ofthe size 256x256 can be processed and recorded in the local

RAM.In this case,the total memoryrequired to store an image is 65kx8 bits. The local

RAM on the Wildforce-XL is limited to 32kx32 bits so.that a data amountof65k bytes

cannot be stored without memory managenient.'To overcome this problem,each four

words(4x8 bits) were packed together and stpred in one address.The ATR was

partitioned for multiple board configurations first where the cutset size was limited to 8.

Then each board configuration was partitioned further to fit into five FPGAs.

In our partitioning strategy, we attempted to partition for multiple board

configurations first.By adding this constraint to the partitioning strategy,the partitioning

problem became very complicated. None ofthe partitioning algorithms could handle this

constraint. Therefore,this constraint was relaxed to ease the partitioning problem and to

allow a cutset size of32between multiple board configurations.In this Case,each address

in the localRAM is used to store one word of0to 32bits only.By doing this, an image

ofthe size 256x256can no longer fit in the RAM.To overcome this problem,the image

size wasreduced to 128x128 so that the memory needed to store an image is 16kx8 bits.

To compare the automated mapping against the manual mapping,we had to rerun

the manualimplementation for reduced image size(128x128).The average of 10runs

gave the following values,shown in Table 4.29,for the automated and manual mapping:

113

Table 4.29 Processing time for the ATR algorithm

Manual Automated Automated

Processing time Implementation Implementation Implementation

20FPGAs 20FPGAs 23FPGAs

Board configuration
9147 ms 11010 ms5125 ms

time

Hostcode run time+
695 715573 ms ms ms

Wildforce setup time

41 msData transfer time 10 ms 40ms

Hardware execution .
10 1110 ms ms ms

time

Total time to process
11777ms5718 ms 9890 ms

one image

These results are also shown graphically in Figure 4.8.For both manual and

automated implementation the process time ofone image is dominated greatly by the

board configuration time.In the manual implementation,some ofthe FPGAsended up

with the same glyphs.This means that not everyFPGA needed to be reprogrammed

every time[4]. Only 11 FPGAs needed to be reprogrammed.Because ofthis,the total

processing time for the manualimplementation was reduced significantly,nearly to the

half, when compared with the automated mapping.

The partitioning process cannot handle the situation where some ofthe FPGAs

might have the same glyphs.This is a very challenging problem that will have to be

addressed in future research.In section 4.1 it was mentioned that minimizing the number

114

Manual implementation□ 0.2% H0.2°/i

□ 6%
□ Reconfiguration
□ Host Code

□ Data Transfer

■ Data Processing

□ 89.6%

□ 0.4%

□ 92.5%

Automated implementation
20 FPGAs

□ Reconfiguration
□ Host Code

□ Data T ransfer

■ Data Processing

□ 0.35%-, rBO.1% Automated implementation
23 FPGAs

1
□ Reconfiguration

^ \ □ Host Code

\1 V □Data Transfer

\

093^
f

Figure 4.8 Image processing time for the ATR application
115

ofFPGAs used will reduce the total processing time for one application. Referring to the

processing time results for the two different automated implementations shown above,it

is obvious that the 20FPGA implementation has a better performance when compared to

the 23FPGA implementation.The 20FPGA implementation needed four board

configurations. Atthe other side,five board configurations were needed for the 23

FPGAsimplementation. .

The total processing time ofoneimage can be further improved by targeting

larger hardware architecture.A hardware board with morePE capacity and bigger RAMs,

which requires only a single board configuration for a particular application, will reduce

the processing time significantly be removing the board reconfiguration time and by

reducing the hostcode and the data transfer times.The ATR application has unusual

high number ofoperations requiringRAM access.Some ofthe delay glyphs in the ATR

algorithm required external implementation by accessing the local RAMs.The ATR

algorithm needs only threeRAM modules to transfer the input and output data.The rest

ofthe RAM modules were needed to transfer data between multiple configurations and to

implement delay glyphs.These delay glyphs could not beimplemented internally because

ofthelimited PEs resources on the Wildforce-XL.

Targeting the SLAAC-IV board,the ATR algorithm can beimplemented by

using a single board configuration only.TheSLAAC-IV board has enough resources,

one million logic gates and4local RAMsfor each FPGA,to implement the ATR

application by using twoFP'GAs only.In this case,a total number of8 local RAMs will

116

be available to implementsome ofthe delay glyphs and the threeRAM modules needed

to transfer the input and output data.Some ofthe delay glyphs can be implemented

internally since we have enough resources on the SLAAC-IV board and these delay

glyphs require small delay values.The remaining5RAMscan still be utilized for delay

glyphs that require a big delay value.In the ATR application,four delay glyphs mustbe

implemented externally since the required delay value for these glyphs is 65550 cycles.

Referring to the manualimplementation results above,ifthe reconfiguration time could

be eliminated,the time to process one image would be dominated by the time needed to

run the host code plus the time to setup the Wildforce-XL. The average time for running,

the host code plus the Wildforce setup 661ms.The data transfer time is 10ms.The

SLAAC-IV board would need to transfer the processed data three times only,as

compared to 11 times for the Wildforce-XL.This would reduce the data transfer time for

the SLAAC-IV board to a negligible amount.Ifwe assume that the SLAAC-IV board

would need 661ms to setup the board and to run the host code and 10ms for hardware

execution,the SLACC-IV board implementation would be9times faster than the manual

Wildforce-XL implementation,15 times faster than the 20FPGA automated

implementation,and 18 times faster than the 23FPGA automated implementation.The

same discussion is valid for the SLACC-IP board.

Targeting the MSP board,the ATR algorithm can be implemented by using three

board configurations ifthe localRAM for each FPGA is organized as two banks of

512kX24 bits. In this case,a total number of6FPGAs and 12local RAMs will be

available to implementsome ofthe delay glyphs and the seven RAM modules needed to

117

transfer the input and output data and data between multiple board configurations.The

reconfiguration time cannot be eliminated since there is a need ofthree board

configurations.The time to process one image would be dominated by the time needed to

reconfigure the MSP board.This means the MSP board will notreduce the processing

time to a significant amount when comjpared to SLAAC-IV board.The MSP board can

still improve the performance ifit is compared to the Wildforce-XL implementation.

Referring to the above Wildforce-XL results,the average total time to process one image

for each board configuration ofthe manual Wildforce implementation is 1430ms.Ifwe

assume that the MSPimplementation would need this time for each board configuration,

the MSPimplementation would be1.4 times faster than the manualimplementation and

2.7 times faster than the 23FPGAsimplementation on the Wildforce-XL.

The Hipass filter application was automatically implemented on the Wildforce-

XL.The application utilizes twoRAM glyphs.The average of10runs gave a total

processing time of521 ms where the hardware execution time for one image is only 3ms.

The total processing time ofone image is dominated greatly by the time needed to setup

the Wildforce-XL and to run the host code.The total processing time can be reduced by a

small amount AT by targeting bigger hardware architecture,such as the SLAAC-IV

board,where only onePE would be needed to implement the Hipass filter. In this case,

AT would include the delay time between two PEs,the delay time between the core and

thePE interface circuit for two PEs,and the reduced time for the board setup and the host

code run time since only onePE would be used.

118

Based on the above discussion the total processing time for the NVL algorithm

can be estimated by targeting different hardware architectures.The NVL algorithm

utilizes twoRAM access nodes so that two PEs is needed by targeting the Wildforce-XL

and only onePE is needed for the SLAAC,the MSP,the Wildforce-XLl boards.The

hardware execution time can be estimated by counting the number ofcycles needed to

process oneimage.For one image ofthe size 640x480 and a running frequency of

25MHzthe hardware execution time is 368ms.Targeting the Wildforce-XL and adopting

the time needed to setup the board and the host code run timefrom the Hipass filter, the

NVLtotal processing time for one image is 885ms. The total processing time can be

reduced by a small amount AT by targeting the other hardware architectures.

The above discussion shows that selecting the proper hardware architecture will

improve the performance for a particular application greatly.Targeting a hardware

structure with moreRAMsfor each FPGA is preferred for an application utilizing a high

number ofoperations requiring RAM access.These results show that both the

partitioning process and the hardware architecture determine the performance rate for a

particular application.Table 4.30summarizes the total processing time,given in ms,for

three different applications by targeting different hardware architectures.

119

Table4.30Processing time for different hardware architectures

Applications Wildforce Wildforce MS? MS? SLAAC- SLAAC-

-XL -XLl 2RAM 1 RAM 1? IV

Blocks Block

5718/9890ATR
-671 4290 671 671

Manual/20PEs/23PEs 711777

Hipass Filter 521 521-AT 521-AF 521-Ar 521-Ar 521-Ar

- -NVL 885 885-AT 885 885-Ar

120

5;Conclusion

The goal ofthis research was to develop and investigate three different

partitioning algorithms and determine the one that has a higher performance rate.The

research presented in this thesis accomplished these goals.In the first and the second

approaches,we discussed the developmentand implementation oftwo existing

algorithms.The first approach is a hierarchical partitioning method based on topological

ordering(HP).The second approach is a recursive algorithm based on the Fiduccia and

Mattheyses bipartitioning heuristic(RP). Weextended these algorithms to handle the

CHAMPION partitioning constraints by targeting different hardware architectures.We

also introduced a new recursive partitioning method based on topological ordering and

levelization(RPL).In addition to handling the partitioning constraints,the new approach

efficiently addresses the problem ofminimizing the number ofPEs used to implement a

particular application and overcoming the weaknesses ofthe HP and RP algorithms.The

hardware architectures considered in this research includes the Wildforce-XL,the

SLAAC-IV,the SLAAC-IP,and the MSP boards.

The partitioning strategy is based on the following constraints;

1. Capacity per partition

2. Number of1/0 pins per partition

3. Each partition can only have oneRAM access module

121

4. Input module and output module mustbe placed in the first partition and in

the last partition.

5. Temporal partitioning constraint. For multiple board configurations,storage of

intermediate results between board configurations is needed.

6. Maintaining the acyclic constraint so that all edges point the same way(from

left to right).

One ofthe major goals in this research is to target different hardware

architectures.The partitioning algorithms were extended to be dynamic so that the

partitioner will read the particular hardware structure datafrom a partitioning

configuration file.This will enable the user to change some specific information in the

configuration file instead of working inside the partitioner and gives the user the

flexibility to switch from one hardware architecture to another one.

The performances ofthe three different partitioning approaches were compared

against each other. Comparisons between these algorithms were made on a variety of

netlists.The comparison was based on the number ofPErequired to implement the netlist

on the targeted hardware board and the running time for the partitioner. Practical netlists

and random generated netlists were used to investigate the three partitioning algorithms.

In this research we considered a subset ofnetlists for CHAMPION applications,

which were implemented automaticallyfrom the Cantata workspace to the Wildforce-XL

platform.This subset of netlists includes the Hipass Filter, the NVLRoundO,and the

122

ATR applications.The automatic target recognition(ATR)was given a special attention

in this research because this netlist is a very challenging one.The ATR was first

implemented manually by the CHAMPION research group to assist in the development

offunction libraries and hardware for use in the CHAMPION system.The ATR

application has an unusual high number ofoperations requiring RAM access.This

number ofRAMs made the ATR netlist a very challenging one.

To the best ofour knowledge,there exist no benchmarks that represent our

partitioning constraints.For this reason,a random netlist generator to produce

benchmarks was developed in this research.By considering large netlists, we were able

to investigate the performance ofthe HP,the RP,and the RPL algorithms.The netlists

R300-R1500 were produced randomly.In addition,a very challenging netlist M29,which

utilizes7RAM modules,was generated manually to challenge the three partitioning

algorithms.

We started the evaluation process ofthe partitioning algorithms with netlists that

were known to have a partitioning solution.The RP and HP algorithms had difficulties in

producing valid partitioning results for netlists which utilized a high percentage ofRAM

access modules.For example,the ATR and M29 utilize a high number ofRAM modules.

The RPL algorithm produced 20 partitions for the ATR netlist within 2seconds,while

the RP algorithm produced 23 partitions within9seconds by targeting the Wildforce-XL.

TheHP algorithm failed to partition the ATR netlist. Both RP and HP algorithms failed

123

to partition the M29netlist by targeting the Wildforce-XL board.However,the RPL was

able to partition the M29netlist.

In several examples,the number ofpartitions produced by RPL algorithm was

less than the number produced by the other algorithms.TheRPL algorithm uses a level

construction step,denoted as a preprocessing step,to reduce the weaknesses ofthe HP

and RP algorithms and to minimize the number ofPEs used.Since the RAM access

constraint is a very challenging one,the preprocessing step was able to solve any

conflicts associated with this constraint before moving to the partitioning step.TheRPL

algorithm creates partitions by moving levels instead ofnodes to the current partition.

Because ofthis,the run time for the RPL wasfaster when compared to the HP and RP

algorithms.

In this research we considered several hardware architectures which includes the

Wildforce-XL,the MSP,and the SLAAC boards.The partitioning results for the run time

and the number ofPEs used varied with the selected hardware architecture. For the three

partitioning algorithms,the run time and the number ofpartitions were reduced

significantly by targeting hardware boards with bigger I/O,biggerPE capacity,and

biggerRAMs.For example,the RPL algorithm produced 63 partitions for the R1200

netlist within 178 seconds by targeting the Wildforce-XL board.However,the algorithm

produced 8 partitions within 103 seconds for the same netlist when we targeted the

SLAAC-IV board.In general,this big change reduces the computation time for the

commercial tools and the data processing time for a particular application.

124

Minimizing the number ofthe PEs used was one ofthe primary goals in this

research.To show the importance ofthis point,the ATR application was implemented

automatically from the CANATA workspace to the Wildforce-XL board for the two

different partitioning results produced by the RPLand the RP algorithms.The first

partitioning result used 20FPGAs.The second partitioning result used 23FPGAs.The

resulted total time to process one image for the 20FPGAs and the 23FPGAs

implementations is 9890ms and 11777ms respectively.The total time to process one

image for the manualimplementation was5718ms.The manualimplementation used 20

FPGAs where only 11 FPGAs needed to be reconfigured.Because ofthis,the manual

implementation was faster than the automated implementation.In this research,we also

discussed the implementation ofthe ATR application by targeting the SLAAC and the

MSP boards. The estimated total time to process oneimage on theSLAAC board would

be 37times faster than the manualimplementation and77times faster than the 23FPGAs

implementation on the Wildforce-XL.Atthe other side,the MSP board would be 1.4

times faster than the manualimplementation and 2.7 times faster than the 23FPGAs

implementation on the Wildforce-XL.These results showed that both the partitioning

process and the hardware architecture determine the performance rate for a particular

application.

In the CHAMPION design flow each sub-netlist resulting from the partitioning

step must be converted to a structural VHDLfile representing the hardware resources

desired for each FPGA.APERL script file was written to generate the structural VHDL

125

file and to assign the communication signals between the PEs.The script file identifies

the glyphs used in the sub-netlist,the connections between glyphs,and the connections

between glyphs and the otherFPGAs.

The host code,which is used to communicate with the board,was automated to a

certain level.The hostcode uses a set offunction calls provided by the manufacture of

the ACS.In addition,the automated host code uses a configuration file produced by a

PERLscript, which accesses the resulting sub-netlists and extracts the configuration data.

This configuration file is used by the hostcode to determine the number of

configurations,the name and location for each programming bit file,ifa specificPE

needs to access the SRAM,and where to write the result after each configuration.

There are several improvements that can be investigated in the future to enhance

the solution quality produced by the partitioning process.The effect ofusing look-ahead

schemes in the partitioning process can be explored.Thelook-ahead method was used in

many previous works where enhancements were reported.In this case,the partitioning

process can be improved by defining a gain vector for each node.Using the gain vector

allows to swap nodes that reduces the mean cuts in the resulting partitions.

The partitioning process investigated in this research could not handle the

situation where some ofthe FPGAs might have the same glyphs.This is a very

challenging problem that will have to be addressed in a future research.This will improve

126

the data processing time by reducing the number ofthe reconfigure PEs.It is not clear to

the'author ivhatform the solution to this problem may take.

TheRAM access constraint was the most challenging one for the partitioning

process and the performance ofapplications on the hardware boards.This constraint can

be relaxed to a certain level by implementing some ofthe used RAM modules internally.

This will require hardware architectures with big resources.Some oftheRAM modules,

which are used to transfer the input and output data and between multiple board

configurations,need to be implemented externally.In several examples,the I/O

constraint between multiple board configurations could not be met during the partitioning

process. One way to overcome this problem is to use hardware architectures with bigger

RAM resources. Another way is to multiplex data between aPE and the localRAM

whenever the I/O constraints cannot be met.This will require extra implementation of

multiplexing glyphs.

127

References

128

[1]C.Fiduccia and R.Mattheyses,"A Linear Time HeuristicforImproving Network

Partitions",Proc.Ofthe 19th Design Automation Conference,pp. 175-181, 1982.

[2] B.Kemighan and S.Lin,"An Efficient HeuristicProcedureforPartitioning

Graphs",Bell System Technical Journal,v.49,n.2,pp.291-307,February 1970.

[3]S.M.Salt and H.Youssef,VLSIPhysical Design Automation.McGraw-Hill,

pp.43-53,1995.

[4]B.Levine,A Systemfor the Iniplementation ofImage Processing Algorithms on

Configurable Computing Hardware,University ofTennessee,Master Thesis, 1999.

[5]S.Natarajan,Developmentand Verification ofLibrary Cellsfor Reconfigurable

Logic,University ofTennessee,Master Thesis, 1999.

[6]N.A.Sherwani,Algorithms for VLSIPhvsical Design Automation,Kduwer

Academic Publishers,pp. 168-190, 1999.

[7]D.Schweikert and B.Kemighan,"A ProperModelfor the Partitioning ofElectrical

Circuits",Proc.Of9"^ Design Automation Conference,pp.57-62,1972.

[8]B.Stanley,Hierarchical Multiway Partitioning Strategy with Hardware Emulator

Architecture Intelligence, Georgia Institute ofTechnology.Ph.D.Dissertation, 1997.

[9]S.Brown,J. Rose,and Z.G.Vranesic,"A Detailed Routerfor Field-Programmable

Gate Arrays",IEEE tansaction on computer-Aided Design,Vol. 11,No.5,pp.629-628,

May 1992.

[10] J. Spillane and H.Owen,"TemporalPartitioningfor Partially Reconfigurable

Field-Programmable Gate Arrays",Reconfigurable Architectures Workshop,1998 in

IPPS/SPDP'98.

129

[11]B.Krisnamurthy,"An Improved Min-CutAlgorithmforPartitioning VLSI

Networks",EEE Transactions on Computer,v.C-33,n.5,pp.438-446,May 1984.

[12]S.Kirkpatrick,C.Gellat, Jr., M.Veechi,"Optimization by Simulated Annealing",

Science,v.220,pp.671-680,May 1983.

[13].R.Kuznar,F.Berglez,and K.Kozminski,"Partitioning Digital Circuitsfor

Implementation in Multiple FPGAICs",Technical Report TR93-03,MCNC,Research

Triangle Park,NC,March 1993.

[14]S.Brown and Z.Vranesic,Fundamentals ofDigital Logic With VHDLDesign.

McGraw-Hill,pp.81-100,2000.

[15]R.Kuznar,"PROP:A Recursive ParadigmforArea-EfficientandPerformance

Oriented Partitioning ofLargeFPGA Netlists",Intemational Conference on Computer

Aided Design,San Jose,CA,November5-9, 1995.

[16]L.Sanchis,"Multiple-Way Network Partitioning"IEEE Transaction on Computers,

Vol.38,No. l,pp.62-81, 1989.

[17]Zycad,"K-Way Algorithm", Concept Silicon Reference Manual-Paradigm RP,pp.

116-119,November 1994.

[18] S. Hauck and G. Borriello, "Logic Partition Orderingfor Multi-FPGA Systems",

Intemational Symposium on Field Programmable Gate Arrays,pp. 1-7, 1995.

[19] R. Burra and D. Bhatia, "Timing Driven Multi-FPGA Board Partitioning",

Proceedings ofIEEE Intemational Conference on VLSI Design, Chennai,India, January

1998.

130

[20] M.Karthikeya and G.Puma and D.Bhatia,"Partitioning in Time:A Paradigmfor

Reconfigurable Computing", Proceedings of Intemational Conference on Computer

Design(ICCD 98),pp.340-347,Austin,October 1998.

[21]K.M.Gajjalapuma and D.Bhatia,"TemporalPartitioning andSchedulingfor

Reconfigurable Computers",IEEE Intemational Conference on FPGAsin Custom

Computing Machines(FCCM 98),pp.329-330,Napa Valley,April 1998.

[22]G.Tumbush and D.Bhatia,''K-way Partitioning under Timing,Pins,and Area

Constraints",Proceedings ofIntemational Conference on Computer Design,October

1997.

[23]C.Lee and T.Yang and Y.F.Wang,''Partitioning andSchedulingforParallel

Image Processing Operations",Proc.lEEE/ACM Intemational Conference on Computer-

Aided Design,pp.497-504,1998.

[24]C.Lee and T.Yang and Y.F.Wang,"Global OptimizationforMapping Parallel

ImageProcessing Tasks on Distributed Memory Machines",Joumal ofParallel and

Distributed Computing,45(1):29-45,1997.

[26]C.Shelters,Scheduling Task Chains on an Array ofReconfigurable FPGAs,

University ofTennessee,Master Thesis, 1999.

[27]S.Hauck,Multi-FPGA Systems,University ofWashington,Ph.D.Dissertation,

1995.

[28]M.J.S.Smith,Application-Specific Integrated Circuits. Addison Wesley, 1997.

[29]N.Woo and J. Kim,"An Efficient Method ofPartitioning Circuitsfor Multiple-

FPGA Implementation",Proc.Of30""Design Automation Conference,pp.202-207,

1993.

131

[30]C.H.Gebotys,"An Optimal methodology ofSynthesis ofDSP Multichip

Architectures",Journal ofVLSISignal Processing,vll,p9-19 1995.

[31]A.Athanas and A.Abbot,"Real-TimeImage Processing on a Custom Computing

Platform,"IEEE Computer,vol.28,pp.16-24,Feb. 1995.

[32]H.Liu and D.F.Wong,"NetworkFlow Based CircuitPartitioningfor Time-

Multiplexed FPGAs,"Proc.lEEE/ACM International Conference on Computer-Aided

Design,pp.497-504,1998.

[33]D.Gajski,N.Dutt,A.Wu,and S.Lin,Hish-Level Synthesis:Introduction to Chip

and System Design:Kluwer Academic Publishers, 1992.

[34]C.T.Hwang,J.H.Lee,and H.Yu-Chin,"A FormalApproach to the Scheduling

Problem in High LevelSynthesis,"IEEE Transactions on Computer Aided Design,vol.

10,pp.464-475,1991.

[35]D.Chang and M.Marek-Sadowska,"Buffer Minimization and Time-MultiplexedI/O

on Dynamically Reconfigurable FPGAs,"Proc.ACM International Symposium on

FPGAs,pp. 142-148,1997.

[36] F.Yahid and D.D.Gajski,''ClusteringforImproved System-LevelFunctional

Partitioning,"International Symposium on.System,Synthesis,pp.28-33,September

1995.

[37] F.Yahid and T.D.M.Le,"Extending the Kemighan/Lin HeuristicforHardware and

Software FunctionalPartitioning," Kluwer Journal on Design Automation ofEmbedded

Systems,Vol.2,No.2,pp.237-261,March 1997.

[38]F.Yahid,"Techniquesfor Minimizing and Balancing I/O during Functional

Partitioning,"IEEE Transactions on CAD,Vol. 18,No. 1,pp.69-75 January 1999.

132

[39]D.Gajski,"Specification PartitioningforSystem Design," Design Automation

Conference,pp.219-224,June 1992.

[40]S.Narayan,F.Vahid and D.D.Gajski,"System LevelSpecification and Synthesis-,"

International Conference on VLSIDesign,January 1992.

[41] T.D.M.Le and Y.C.Hsu,"A Comparison ofFunctionaland Structural

Partitioning,"International Symposium on System Synthesis,pp. 121-126,November

1996.

[42]R.Sedgewick,Algorithms in C-I-+. Addison Wesley Publishing Company,pp.479-

481,1992.

[43]L.Hagen,CircuitPartitioning,PhD thesis,UCLA,1994.

[44]L.Hagen and A.B.Kahng,"Combining Problem Reduction and adaptive Multh

Start:A New TechniqueforSuperiorIterative Partitioning,"IEEE Trans.Computer-

Aided Design,1996.

133

VITA

Nabil Kerkiz was bom in Jabalia,Gaza Strip on May 24"^, 1965.He lived in Gaza Strip

until 1985,when he moved to Germany.Hefinished his high school education at El-'

Faluja High School in Gaza Strip and entered the University des Saarlandes for his

undergraduate studies in Electrical Engineering.Upon completion ofhis Diploma ofEE

in 1994,he retumed to Gaza Strip. While there,he worked for Hejazy Company as a

Hardware Design Engineer.In 1996,he moved to the USA to attend the Southem

Illinois University at Carbondale.He received his Master ofScience in electrical

engineering in December of 1997. In January of 1998,he moved to Tennessee to attend

the University ofTennessee in Knoxville.He entered the graduate program in electrical

engineering atUTin January of1998 and worked as a teaching assistantfor two

semesters before beginning work as a research assistant for Dr.Don Bouldin.He has

completed all ofthe requirements for the Ph.D in electrical engineering and that degree

will be awarded by UTin December of2000.
\

Nabil Kerkiz and his family will move to San Jose in Califomia,in January of2001,

where he will work as a Hardware Design Engineer for Intel Inc.

134

	Developments and experimental evaluation of partitioning algorithms for adaptive computing systems
	Recommended Citation

	Thesis2000b.K47_2.pdf
	Thesis2000b.K47.pdf

