
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

12-2000 

Developments and experimental evaluation of partitioning Developments and experimental evaluation of partitioning 

algorithms for adaptive computing systems algorithms for adaptive computing systems 

Nabil Kerkiz 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Kerkiz, Nabil, "Developments and experimental evaluation of partitioning algorithms for adaptive 
computing systems. " PhD diss., University of Tennessee, 2000. 
https://trace.tennessee.edu/utk_graddiss/8320 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Nabil Kerkiz entitled "Developments and 

experimental evaluation of partitioning algorithms for adaptive computing systems." I have 

examined the final electronic copy of this dissertation for form and content and recommend 

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy, with a major in Electrical Engineering. 

Donald W. Bouldin, Major Professor 

We have read this dissertation and recommend its acceptance: 

Mike Langston, Danny Newport, Dan Koch, Chandra Tan 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



To the Graduate Council: 

Iam submitting herewith a dissertation written by Nabil Kerkiz entitled "Development 

and Experimental Evaluation ofPartitioning Algorithms for Adaptive Computing 

Systems."Ihave examined the final copy ofthis dissertation forform and content and 

recommend that it be accepted in partial fulfillment ofthe requirements for the degree of 

Doctor ofPhilosophy,with a major in Electric'al Engineering. 

Dr.Donald W.Bouldin,MajorProfessor 

We have read this dissertation 

and recommend its acceptance: 

Dr.Mike Langston 

Dr.Danny Newport 

Dr.Dan Koch 

Dr.Chandra Tan 

Accepted for the Council: 

Interim Viceftovost; 

Dean ofThe Graduate School 



Development and Experimental Evaluation of Partitioning 

Algorithms for Adaptive Computing Systems 

A Dissertation 

Presented for the 

Doctor ofPhilosophy 
Degree 

The University ofTennessee,Knoxville 

Nabil Kerkiz 

December 2000 



Acknowledgement 

I would like to extend my sincere gratitude to my advisor.Dr.Don Bouldin,for 

his support and guidance in this project. Without him,this work could never have been 

completed.Special thanks to Dr.Chandra Tan for his effort and assistance which 

contributed greatly to this work.I would also like to thank Dr.Mike Langston,Dr.Danny 

Newport,and Dr.Dan Koch for serving as members ofmy thesis committee.Ialso 

acknowledge the Defense Advanced Research Projects Agencyfor its support ofthis 

research under grant F33615-97-C-1124. 

Much appreciates and love is extended to all ofmyfamily and friends.I would 

like,to especially acknowledge my parents,Fouad and Ganimah,and my wife,Huda,for 

their continued support and love throughout this work. 



Abstract 

Multi-FPGA systems offer the potential to deliver higher performance solutions than 

traditional computers for some low-level computing tasks. This requires a flexible 

hardware substrate and an automated mapping system. CHAMPION is an automated 

mapping system for implementing image processing applications in multi-FPGA systems 

under development at the University ofTennessee.CHAMPION will map applications in 

the Khoros Cantata graphical programming environment to hardware. 

The work described in this dissertation involves the automation ofthe CHAMPION back-

end design flow,which includes the partitioning problem,netlist to structural VHDL 

conversion,synthesis and placement and routing,and host code generation.The primary 

goal is to investigate the development and evaluation ofthree different k-way partitioning 

approaches.In the first and the second approaches,we discuss the development and 

implementation oftwo existing algorithms.The first approach is a hierarchical 

partitioning method based on topological ordering(HP).The second approach is a 

recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic(RP). 

We extend these algorithms to handle the multiple constraints imposed by adaptive 

computing systems.We also introduce a new recursive partitioning method based on 

topological ordering and levelization(RPL).In addition to handling the partitioning 

constraints,the new approach efficiently addresses the problem ofminimizing the 

number ofFPGAs used and the amount ofcomputation,thereby overcoming some ofthe 

weaknesses ofthe HP and RP algorithms. 
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1.Introduction 

In recent years,developments in the area ofField Programmable Gate Arrays 

(FPGAs)have allowed the concept ofreconfigurable computing machines to become 

reality. Advances in fabrication technology have allowed multiple FPGAs ofsufficient 

capacity to be fabricated for this purpose.FPGAsowe much oftheir potential to their 

reconfigurability.They can be reconfigured many times so that design faults can be 

corrected simply by reconfiguration. 

Due to the short testing cycle and time to implement,FPGAs have long been used for 

the prototyping ofASICs.SometimesFPGAs are used to emulate other component 

architectures because oftheir versatility. These are also used as hardware accelerators for 

some applications that would otherwise take longer to process on a general-purpose CPU. 

Atthe University ofTennessee,research is currently underway to develop an 

automated system for mapping image processing applications in a graphical 

programming environment called Khoros Cantata to configurable computing hardware.It 

is expected that this system,called CHAMPION,will allow new applications to be 

implemented in much less time than is required now,since many portions of application 

mapping that must currently be done manually will be automated.It is also expected that 

the system will make the power ofconfigurable hardware more accessible to users who 

lack digital hardware design experience. 



1.1 CHAMPION design flow 

The design flow for aCHAMPION application being implemented using multiple 

FPGAsis shown in Figure 1.1.The work ofthe author is a part ofthe overall research 

being conducted which includes the partitioning problem,netlist to structural VHDL 

conversion,synthesis and placement and routing,and host code automation.The design 

flow consists ofseveral steps and a brief discussion ofeach step is provided here. 

The first step is to insert the application into the Cantata workspace and convert it 

into an intermediate form for use by CHAMPION.Each glyph in the Cantata workspace 

mustbe replaced by its hardware equivalent. Any application in the Cantata workspace 

can be modeled as a directed acyclic hypergraph.In the hypergraph,nodes represent the 

hardware glyphs and the interconnections between nodes are represented by directed 

edges. 

The second task is to convert the directed h)q)ergraph model to a netlist. The netlist 

representation includes all information about the application hypergraph such as node 

size,edge width,source and destination ofeach node. 

The third step is the data width matching and data synchronization.If data width 

matching is needed,a pad glyph mustbe inserted between two glyphs that differ in edge 

size.In data synchronization,data must be synchronized because all ofthe hardware is 

synchronous and data is processed every rising clock edge.Ifa glyph has two inputs and 
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data are not available to both inputs at the same time,then a delay buffer needs to be 

inserted before one ofthe inputs to fix the problem. 

The fourth task is the partitioning problem.At this point in the design flow,the 

Cantata workspace has been converted into a directed hardware hj^ergraph.The netlist 

representation ofthe directed hardware hypergraph has the necessary information to 

specify the glyphs and the connections between them.The hardware graph is a set of 

vertices representing the hardware resources and a set ofdirected edges representing the 

connections between them.Each vertex has a number representing the size ofthe 

hardware resources available in the vertex(measured in CLBsfor Xilinx FPGAs).Each 

edge has a number representing the width ofthe connections.Ifthe application graph 

does not fit in a single processing element(PE)orFPGA,then the hardware graph must 

be partitioned into sub-graphs.In most cases,the size ofthe entire graph is larger than the 

size ofa single PE.Therefore,there exists a need for a multiple partitioning algorithm. 

This step will be explained in more detail since the research ofthe author involves the 

development ofmultiple partitioning algorithms,which meet the constraints imposed by 

the hardware architecture. 

In the fifth task,each sub-netlist resulting from the partitioning step,as shown in 

Figure 1.2, must be converted to a structural VHDLfile representing the hardware 

resources desired for each FPGA.APERL script file written by the author is used to 

generate the structural VHDLfile.The script file identifies the glyphs used in the sub-

netlist,the connections between glyphs,and the connections between glyphs and the 
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other FPGAs.Furthermore,the script file accesses precompiled VHDLfiles to extract the 

port map information for each glyph.There are other VHDLfiles that specify the board 

architecture,internal interface logic for each FPGA,and global signals on the board.The 

script file accesses these files for pin assignment. 

The sixth task deals with the physical design phase. Once the structural VHDLfor 

each Sub-netlist is complete,it is necessary to create the programming files to actually 

implement the desired hardware in the FPGAs on the ACS board. All ofthe behavioral 

information is in the pre-synthesized files for each glyph.The synthesis tools to generate 

the synthesized file for a sub-netlist, which is required to configure each PE,can access 

the pre-synthesized files for each glyph.The place and route software tools are then used 

to map the hardware description in the sub-netlist file to specific resources available in 

each PE.This results in a programming bit file, which specifies the configuration ofall 

the function generators and storage units in the CLBs,as well as the configuration ofall 

ofthe programmable interconnections in the PE.The bit file can then be downloaded to 

thePE to specify its behavior. One programming bit file is needed for every 

configuration ofeach PE. 

The final step is the host code generation.A program written in C takes care of 

certain functions necessary to enable the ACS(e.g. Wildforce board)to be used.A set of 

function calls to communicate with the board is provided by the manufacturer ofthe 

ACS.These function calls must be used to create the host program.This host program 

must initialize the ACS board and download the programming bit files for each PE.The 

host program readsimage filesfrom the workstation hard drive to be used as input to the 



application,and writes the application results back to the hard drive.The automated host 

code uses a configuration file produced by aPERL script, which accesses the resulting 

sub-netlists and extracts the configuration data.This configuration file is used by the host 

code to determine the number ofconfigurations,the name and location for each 

programming bit file,if a specificPE needs to access theSRAM,and where to write the 

result after each configuration.If multiple configurations ofthe ACS board are needed, 

then the data resulting from each board configuration is written to the hard drive and 

supplied to the next configuration. After each board configuration,the user can look at 

the resulting datafrom each board configuration and compare it with the expected result 

to detect any error that may occur during implementation.In addition to the function calls 

provided by the manufacturer,the automated host code uses a dynamic data structure that 

grows or shrinks since different applications may have a different number of 

configurations. 

1.2 Field Programmable Gate Arrays 

A field programmable gate array(FPGA)is a programmable logic device that 

supports implementation ofa logic circuit containing thousands ofgates and 

interconnections.FPGAs are quite differentfrom PLDs(programmable logic devices) 

and CPLDs(complex programmable logic devices)because FPGAs do not contain AND 

or OR planes.Instead,FPGAs provide programmable logic blocks for implementing the 

required logic functions[28]- Figure 1.3 shows a general structural ofaFPGA[14].In a 

FPGA,the logic blocks are arranged in a two-dimensional array,and the interconnection 

7 



I/O Pads 

Logic Block 

(a)General structure of FPGAs 

(b)Two input r 
look-up table 

(LUT) 

"1] 
I 

(c)Pass-transistor switch in 
FPGAs 

Figure 1.3 General structure ofFPGAS 



wires are organized as horizontal and vertical routing channels between rows and 

columns oflogic blocks.The routing channels contain wires and programmable switches 

that allow the logic blocks to be connected in many ways.Each programmable logic 

block in aFPGA typically has a small number ofinputs(sayfour)and one output.The 

mostcommonly used logic is alookup table(LUT),which contains storage cells that are 

used to implement a small logic function.The storage cell holds a single logic value, 

either0or 1. Figure 1.3b shows the structure ofa smalllogic block capable of 

implementing any logic function oftwo variables.In FPGAs,aswitch can be 

implemented by using an NMOS transistor, with its gate controlled by anSRAM cell. 

This type ofswitch is known as a pass-transistor switch.TheNMOS switch is turned off 

ifa0is stored in theSRAM cell.Butifa 1 is stored in theSRAM cell,then the NMOS 

switch is turned on.In this case,the NMOS switch forms the connection between the two 

wires attached to its source and drain terminal.Figure 1.3c shows the structure ofthe 

NMOS pass-transistor. 

FPGAs are high density devices, which are commercially available atlow cost.The 

programmability features and the short production times ofthese devices enable changes 

to be incorporated immediately.These features makeFPGAs suitable for prototyping 

applications, and implementation of applications formerly targeted to ASICs.The main 

disadvantage ofFPGAsis the lower speed ofoperation.The programmable switches and 

the associated programming circuitry require alarge a mountofthe chip area.The 

switches have significant resistance and capacitance, which accountfor the low speed of 

operation [3]. 
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1.3 Hardware Architecture 

In this section we will describe the hardware architectures ofthe three different 

adaptive computing systems(ACS),which were chosen to implement the CHAMPION 

applications. 

1.3.1 Wildforce-XL Board 

The Wildforce-XL board from Annapolis Micro Systems was chosen as the first 

architecture used in the CHAMPION project.The Wildforce-XL board uses Xilinx 

XC4000series FPGAs.It is a PCI-bus card, which uses five Xilinx XC4000XLFPGAs 

for processing elements.The specific version ofthe board used had one XC4036XL 

FPGA and four XC4013XLFPGAs available for processing.Figure 1.4 shows the basic 

Wildforce-XL block diagram. 

Annapolis Microsystems refers to the FPGAson the Wildforce board as processing 

elements(PEs).The XC4036XLFPGA is called a control processing element and given 

the designation CPEO.It differs from the other FPGAsin that it is larger,and also in that 

it has control lines available for various resources on the board,such as the external I/O 

interface and crossbar configuration register,that are not available to the other FPGAs. 

Thefour XC4013XLFPGAs are given the designations PEl,PE2, PE3, and PE4.These 

four processing elements are connected together in a linear array by a 36-bit systolic bus. 

All five FPGAscan be connected by the,36-bit crossbar, which selectively allows 

10 
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Figure 1.4. Basic Wildforce-]^ Block Diagram [4]. 

connections between any of the processing elements. CPEO can connect to the other 

processing elements only through the crossbar. 

Each FPGA on the board has a small daughter-board associated with it; which can be 

populated with memory or a Digital Signal Processing (DSP) chip. Each of the FPGAs on 

the board used in this project had 32 KB of 32-bit SRAM on its daughter-board. Each 

daughter-board has a dual-port memory controller such that both the FPGA and the host 

computer can access,the SRAM. The motherboard also contains a PCI interface for 

communicating with the host computer, and several FIFO registers to facilitate data 

transfer across the PCI bus. . " , 

Since there are many resourses available on the Wildforce board and many . . 

configurations of the crossbar and other components, it was decided to use a constrained 

configuration of the board for the autornatic implementations. This reduces the problem 

11 



complexity to a more manageable level.The constrained configuration ofthe board used 

in this project does not use any ofthe FIFOs.All communication with the host is done 

through theSRAM associated with each processing element.The crossbar is used only to 

provide a 36-bit path from CPEO toPEL The connections between processing elements 

are normally bidireetional.For the constrained implementation,however,it was decided 

that the direction ofall connections between processing elements would befixed so that 

all signals would pass in one direction only.The board topology became a linear array, 

with all signals starting in CPEO passing toPEL No signals can run from PEl back to 

CPEO.Similarly,all signalsfrom PEl run to PE2,with no signals allowed to pass back 

from PE2to PEl.A diagram showing the configuration ofthe Wildforee-XL board as 

used in this project is shown in Figure 1.5. 

PCI 

Interface 

= 36-bit Data Path 

Xilinx. Crossbar 
4036XL 

FPGA 

Local RAM Xilinx F 
'>■ PEO 4013XL 4013XL 4013XL 4013XL 

FPGA FPGA FPGA FPGA 

Local RAM Local RAM Local RAM Local RAM 

PEl PE2 PE3 PE4 

Figure 1.5. Wildforce-XL Board As Used [4]. 
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1.3.2MSPBoard 

The MSP board uses AlteraFLEXIOK series FPGAs.It is aPCI-bus card,which uses 

two FLEXIOKIOOA FPGAsfor processing elements.Since there are many resourses 

available on the MSP board and many configurations ofthe crossbar and other 

components,it was decided to use a constrained configuration ofthe board for the 

automatic implementations.A diagram showing the configuration ofthe MSP board as 

used in this project is shown in Figure 1.6.The twoFLEXIOKIOOA FPGAs are given the 

designations PEl and PE2.These two processing elements are connected together in a 

linear array by a 80-bit systolic bus.The board topology became a linear array.The 

capacity ofeach FPGA is very large, where each FPGA comes with lOOK logic gates. 

Each ofthe FPGAson the MSP board used in this project has 512KBSRAM on its 

daughter-board. The512KB RAM can be organized as one bank of512kX48 bits or two 

banks of512kX24 bits Each daughter-board has a dual-port memory controller such that 

both the FPGA and the hostcomputer can access the SRAM. 

1.3.3SLAACBoard 

In this research project we consider two versions ofthe SLAAC board,the SLAAC-

IV and the SLAAC-IP.TheSLAAC-IV board uses Virtex series FPGAs while the 

SLAAC-IP uses Xilinx XC40150FPGAs.TheSLAAC board has many resources. 

Similar to the Wildforce-XL and MSP boards,it was decided to use a constrained 

configuration ofthe SLAAC board for the automatic implementations. 

13 
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A diagram showing the configuration ofthe SLAAC board as used in this project is 

shown in Figure 1.7.TheSLAAC-IV board uses very large FPGAs where each FPGA 

has IM logic gates.TheSLAAC-IP board usesFPGAs where each FPGA has750K 

logic gates.For both SLAAC-IV and SLAAC-IP boards,the twoFPGAs are given the 

designationsPEl and PE2.These two processing elements are connected together in a 

linear array by a 72-bit systolic bus. 

Each ofthe FPGAson the SLAAC-IV board used in this project hasfour256KX36 

bits SRAM on its daughter-board.In the SLAAC-IP,each FPGA uses four256KX18 bits 

SRAM on its daughter-board.Each daughter-board has a dual-port memory controller 

such that both theFPGA and the host computer can access the SRAM. 

1.4 Khoros Cantata 

BChoros is a software system from Khoral Research Incorporated(KRI).Khoros 

has a set oftoolboxes containing over 300operators [4]. Manyfunctions can be 

implemented using these operators such as arithmetic operations,image and signal 

processing functions,and data visualization.The Khoros operators can be run as stand 

alone programsfrom the command line, or as functions called byC code. Cantata is a 

graphical programming environment used to run Kdioros functions.In Cantata,the user 

can draw a graphical representation ofan application and run it. Each function in the 

Khoros toolboxes is represented in the Cantata workspace by a small icon called a glyph. 
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Each glyph has an inputcorresponding to each ofthe possible inputs to the 

function.and output terminals for each ofthe outputs.Furthermore,each glyph has a 

pane,which is a set ofinterface objects that allow the user to set options for afunction.In 

Cantata,the user does notneed to be concerned about the type ofinput data. Cantata 

finds outifa data conversion between types is necessary and takes care ofit. 

As mentioned before,the objectives ofCHAMPION are to parse a netlist of 

Khoros glyphs and automatically map the design captured by the workspace into aform 

that can be executed on ainulti-FPiGA platform.Therefore,the development ofan 

equivalent hardware library was necessary to complete the mapping.The Cantata glyphs 

used in CHAMPION are called hardware equivalent glyphs and are written in fixed-point 

C.These glyphs,chosen to be used in CHAMPION,have to operate in Cantata in a 

manner equivalent to the way the hardware glyphs would operate.These equivalent 

hardware glyphs are collected together into a library, which characterizes the glyphs by 

size,delay,and I/O count[5].To aid the mapping procedure,an attempt was.made to 

make the equivalent hardware glyphs function as similar as possible to the traditional 

Khoros glyphs.By doing so;the mapping procedure will yield an almost one to one 

correspondence between the Khoros workspace design and the mapped hardware 

impleinentation.Figure 1;8 shows an implementation ofa Hipass Filter using the 

CHAMPION equivalent hardware glyphs.A hardware glyph had to be developed for 

every hardware-equivalent glyph used in CHAMPION.These hardware glyphs were 

developed in VHDL. 
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Figure 1.8 Hipass Filter [4]

The hardware glyphs were developed in a parameterized manner, meaning that

various characteristics of the glyphs, such as the number of bits in the input, were

specified as generic that could be changed as needed. This allows the hardware to be used

in an efficient way. Each specific version of each hardware glyph was synthesized and

stored in a specific format. Since Xilinx FPGAs were used on the Wildforce board, the

hardware glyphs were synthesized into Xilinx Netlist Format (XNF). Glyphs needed by

CHAMPION applications are pre-synthesized to speed up the mapping process.

1.5 Placement and Routing

In this section, the Placement and Routing step is given some attention. Placement

takes the logic functions formed by technology mapping and assigns them to specific

logic blocks in the FPGA. This process can have a large impact on the capacity and

performance of the FPGA. Specifically, routing between distant points in a FPGA
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requires a significant amountofrouting resources.Thus,this path will be much slower, 

and use many resources.For this reason,the primary goal ofthe placement processes to 

minimize the length ofsignal wires in the FPGA.In this case,logic blocks that 

communicate with one another must be placed together as close as possible [3]. 

Placement is a complex process since logic circuits tend to have a significant amountof 

connectivity with many differentfunctions communicating together.In this case,many 

functions may wantto be placed together to ihinimize the number and length ofsignal 

wires.Because ofthis,the placement tools mustfind out which logic blocks are most 

importantto place together,and minimize the total wiring in the system. 

There exist many software tools for performing the placement step forFPGAs. 

The mostcommon technique,used in the industry is simulated annealing.Simulated 

annealing solves the optimization pfoblein by using a costfunction.A costfunction could 

be the total wire length in the design. Once a costfunction is defined,the placement tool 

picks arandom starting point.The algdrithrn then repeatedly applies optimization steps to 

find a new solution with alower costthan the current solution. 

The routing process forFPGAsis the process offinding out exactly which routing 

resources wili be used to wire the communication signals.Since FPGAs have 

prefabricated routing channels,aFPGA router.rnust work within the framework ofthe 

architecture resources.In deciding which channels and wires to use,and how to connect 

through the switchboxes,the router mustensure that there are enough resources to carry 

the signal in the chosen routing regions;as well as leaving enough resources to route the 
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other signals in the system.The-mostcommon technique used for performing this routing 

step is presented in [9].The algorithm divides the routing process into global and detailed 

routing.In global routing,the aiigorithm decides which routing regions the signal will 

move through.Thus,it will select the routing channels used to carry a signal,as well as 

the switchboxes it will move through,the detailed router decides which specific wires to 

use to carry the signal.It finds a connected series ofwires,in the channels and 

switchboxes chosen by the global router,which connects from the source to all the 

destinations;The algorithm avoids congestion inside a channel,making sure that all 

signals can be routed Successfully,as well as minimizing wire length and capacitance on 

the path. , ^ 

For successful placement and routing,a full capacity utilization ofaFPGA is 

avoided. Therefore, a90% utilization ofonePE is a typical value to perform placement 

and routing successfully. 
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2.Research MotiYation and Background 

As mentioned in the previous chapter,there exists a need for a k-way partitioning 

algorithm to subdivide the CHAi^PION netlist into multiple sub-netlists. This is done 

when alarge application cannotfit-in a single device.Each resulting sub-netlist mustbe 

written in aform suitable for further,processing.The resulting sub-netlist is the input . 

required for structural VHDLxonv6fsion. An application,for our purposes,is equivalent 

to a graph,and rnore specifically a directed acyclic graph(DAG).A single device is 

equivalent to a single processing element(PE)or a single FPGA.Both expressions are 

used in our project.The resulting sub-netlist is considered a partition. A gate or a macro 

is the same as a node and a net is used to refer to an edge., 

2.1 P'artitioning Methodsfor Multi-PE System 

In order for a circuit to be implemented across multiple PEs,the circuit must be cut 

into pieces such that multiple constraints are met.The following sections review several 

existing algorithms developed for multi-PE partitioning. 

2.1.1 Bi-Partitioning Methods 

In bi-partitioning,the method begins with a graph G with weighted edgesE and . 

weighted nodes N.The graph is split randomly into two halves A and B.Nodes are then 

moved across A andB to find a valid partitioning result with a minimum cut set..The cut 
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set is defined to be the sum ofall weighted edges interconnecting nodes in both subsets A 

and B. The overall goal in circuit partitioning is to minimize the number ofnets that are 

cut.The bi-partitioning method can be used with multi-PE systems by repeatedly 

applying the technique until each partition meets thePE constraints.However,this 

repeated application locks in an initial.solution that may be poor in a multi-PE system. 

Also,the basic technique does not considerPE toPEinterconnect limitations even 

though it does attempt to minimize interconnect usage[10].Below,we discuss afew bi-

partitioning algorithms,which have contributed to the development ofpartitioning 

algorithms. 

A.KL Heuristic 

In 1970,Kemighan and Lin introduced an iterative improvement algorithm that 

has become known as the foundation ofpartitioning algorithms[2].The algorithm is a bi-

partitioning algorithm that begins with an initial p^ition A andB and iterates to improve 

the cut set size.The algorithm uses a pair-,swap'structure and proceeds in a series of 

passes.During each pass,„every node is moved exactly once,eitherfrom A toB orfrom 

B to A.Atthe beginning ofthe pass,each node is,uhldcked,meaning that it is free to be 

moved across A and B.A node becomeslocked after swapping.The KL algorithm 

iteratively swaps the pair ofunlocked nodes a and b with the highest gain,where the gain 

ofswapping ag A with beBis given by[3]: 

gainia,b)=D^+D^-2c^ (1) 
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D=E-I 
a 

where . , 

Ea=number ofedges incident to node a that connect to a node in subsetB 

Ea= number ofedges incident to node b that connectto a node in subset A 

Ia= number ofedges incident to node a that remain internal to subset A 

Ib= number ofedges incident to node b that remain internal to subsetB 

Cab=sum ofthe weights ofthe edges that connectthe nodes a and b 

The swapping process is iterated until all nodes become locked,and the lowest 

cost bisection observed during the pass is returned. Another pass is then executed by 

using this partition as its initial solution.The algorithm terminates when a pass fails to 

find a solution with lower cost than its starting solution.Figure 2.1 shows an example of 

the KL algorithm[6].A pass ofKLis implemented in logn).The KL algorithm 

was modified by Schweikert and Kemighan to handle multi-pin nets[7]. 

B.FM Heuristic 

In 1982,Fiduccia and Mattheyess presented a KL-inspired algorithm that takes into 

consideration multi-pin nets and reduces the running time ofa pass.The main difference 

between KL andFM is the neighborhood structure.In the FM algorithm,a single node is 

moved eitherfrom A toB orfromB to A.Therefore,theFM algorithm was designed to 

handle imbalance. 
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Similar to the KL heuristic,the gain due to the movementofa single nodefrom 

one block to another is computed instead ofthe gain due to the swapping oftwo nodes 

[3]. Moving individual nodes can result in unbalanced blocks.To avoid having all nodes 

migrate to one block,a balance criterion is rhaintained by the definition: 

HV'l-Wmax ̂  + (2), , 

where 

A +5=V 

r= 

H+I^l 

Wmax=the node with the maximum weight 

. |a|=Size ofthe partitioned block A 

|jB|=size ofthe partitioned blockB 

0<r<1 

The initials gains are computed for all free nodes.The gain,g(i),ofa node is the 

number ofnets that would resultin a decrease or increase in the cutset ifthe node were 

moved to the opposite block[8].A single node,called the best node,is selected for 

moving based on its gain as well as on the balance criterion. Figure 2.2shows the concept 

ofnode gain for theFM heuristic [3],In this example,moving node 1 from A toB would 

increase the cutset by 1,therefore,g(l)= -1- Movirig node2from A toB would decrease, 

the cutset by 1.Moving node3from A toB would increase the cutset by \.However, 
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Figure 2.2 Illustration ofthe gain conceptforFM Heuristic. 
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there will be no change in the cutset ifthe nodes(4,5)are moved to their complementary 

blocks,therefore g(4)=0and g(5)=0.Ifnode6were moved fromB to A,the cutset 

would decrease by 1,therefore g(6)= 1.A negative gain might be accepted during a pass 

to allow the algorithm to climb out.ofa local minimum.After each move,the best node is 

locked in its new block for the remainder ofthe pass and the gains ofthe affected nodes 

are updated.The algorithm considers all nodes for movement.Afterwards,the best 

partition encountered during the pass is taken as initial solution to the following pass. 

C.Simulated Annealing(SA) = 

Simulated Annealing belongs to the class ofnon-deterministic algorithms.The 

heuristic was first introduced by Kirkpatrick,Gelatt and Vecchiin 1983[12].The 

algorithm has been applied to almost all known CAD problems,including partitioning 

[3].SA begins with an initial partition A andB and iterates to minimize the cutset while 

maintaining balance between partitions. A pair ofnodes is moved across the cut and the 

hew partition after the movementis evaluated.Ifthe cutimproves,then the move is 

accepted. Otherwise,the move is accepted with a certain probability. This allows the 

algorithm to climb oufofalocalminimum. -

TheSA is analogous to the anriealirig process,in which the process starts at a high 

temperature.This corresponds to a large number ofmoves being accepted in an attempt 

to minimize the costfunction.The process continues tolower the temperature until a 

freezing point is reached.Thelower the temperature,fewer moves are accepted that do 
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notimprove upon the costfunction.Even though the SA algorithm is noted for achieving 

excellent partitioning results,the use ofitfor multi-PE partitioning is notfeasible because 

ofthe excessive computation tinie,[13]. 

2.1.2 MuItiwayPartitionirig Methods 

In the previous section,we mentioned that the bi-partitioning method can be used 

with multi-PE systems by repeatedly,applying the technique until each partition meets the 

PE constriaints. Thie bi-partitioning approach has been extended bysome researchers to a 

k-way approach because ofthe increased complexity ofVLSIdesigns as well as 

applications requiring afixed number ofpartitions.In this section,we discuss afew 

multi-way partitioning algorithms., 

A.Multiple-way Algorithm 

In 1989,Sanchis extended theFM algorithm to multi-way partitioning[16].The 

detailed expiration ofthis approach lias led to wide use ofthe algorithm in industry.The 

algorithni begins with k blocks and iterates to minimize the total number of 

interconnections between the blocks.The algorithm uses the level gain concept, 

mentioned in the previous section,to compute the gain ofa moving node.Sanchis 

extended the ith level gaih ofa node to include the gain of moving a node from the 

originating block to all other possible blocks.A pass consists ofmoving free nodes that 

have the highest gain that satisfy the balance requirement to its block. Moves continue 
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until all nodes are locked and the resulting partition becomes the initial partition for the 

next pass.The algorithm uses a specified number ofblocks k to start the partitioning 

process. 

B.MP2Algorithm 

The MP2algorithm is a k-way extension oftheFM heuristic. It is an iterative 

improvement algorithm that begins with arandom initial partition of blocks,where k is 

specified [29].The capacity constraint^d theI/O limitations ofeachPE device mustbe 

satisfied during a pass.For moving afree nodefrom the originating block to another 

block,a benefitfor the node is calculated with respect to an incident net.The algorithm 

uses alook-ahead technique by using a secondary benefitfor each free node.During a 

pass,the I/O and the.capacity constraints ofthe destination block are checked for 

violation.Ifno violations occur,the node is moved and the total number of 

interconnections between the k blocks is recorded. After each pass,the resulting partition 

is checked to make sure no block constraints are violated.Ifthe constraints are satisfied, 

the algorithm returns the current partition as the solution.The algorithm requires that the 

number ofthe total partitions!mustbe specified before starting the partitioning process. 

A. PROPAlgorithm 

ThePROP algorithm makes use ofa recursive paradigm using functional replication 

[15].For a given netlist,the algorithm applies.a bi-partitioning procedure to extract the 

first feasible partition,and then,repeats theprocess,on the remainder netlist until the 



remainder fits on onePE.The bi-partitioning strategy can be viewed as an extreme case 

ofasymmetrical recursive bi-partitioning.The main advantage ofthis strategy is the 

'immediate possibility ofevaluating at least one ofthe subsets produced in each bi-

partitioning stage. Another advantage is that the algorithm does not require the total 

number ofpartitions k to be specified before running the partitioning process.In our 

proposed methods,we will irij^e use ofthis strategy and develop the algorithm to meet 

the constraints injected by CHAMPION applications. Therefore,the details ofthis 

approach will be given in the next chapter. 

D.Hierarchical Multiway Partitioning Strategy(HPS) 

In 1997,Stanley developed a new k-way partitioning algorithm to incorporate the 

architecture configuration ofa hardware emulator into the partitioning process[g].The 

HPS considers the interconnectlimitations ofthe hardware and the upper limit on the 

number ofpartitions during the partitioning process.The algorithm was initially 

developed using arandom selection pfnodes or clusters to move.All clusters of nodes 

are initially moved info a virtual partition VP and all blocks are initially empty.An initial 

node or cluster with an incident external I/O is randomly selected from VP and moved 

into the first partition,PO.The algorithm continues to move nodes or clusters with the 

highest benefit into PO until the capacity or extemalI/O constraint ofthe current partition 

is violated. Once a constraint is violated,the algorithm begins ah evaluation step.Ifthe 

interconnect constraint is violated,the algorithm "rolls back"or reverses the moves until 

the constraint is met.Similar to the PROP algorithm,the HPS does not require the total 
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number ofpartitions k to be specified before running the partitioning process.In addition, 

the HPS strategy evaluates the partition produced in each stage.In our proposed methods, 

we will make use ofthis strategy and develop the algorithm to meet the CHAMPION 

application constraints.More details will be explored in the next chapter. 

In addition to these approaches,several other partitioning algorithms were developed 

to handle multiple-PE systems[17, 18,19,20,21]- Since no general model exists to handle 

different partitioning problems,most ofthe recent approaches were developed to target 

specific hardware structures.To the best ofour knowledge,no approach exists to handle 

the CHAMPION netlist. 

2.1.3 BenefitFunction 

In this section,the definition ofthe benefit function is given some attention.The 

benefit ofa node or cluster is determined by its connectivity to the current partition [8]. 

Stanley defined the benefit function for a cluster ofnodes.In this work,we modify this 

definition slightly to consider nodes instead ofclusters. It is another way to find the best 

node that can be moved across a cut.A benefit is calculated for each node n based on the 

following; 

ben{n)=int(n)-ext{n) (3) 

where 
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int(n)=The number ofnets incident to node n that will no longer 

be incident to the current partition after the move. 

ext(n)=The number ofnets incident to node n that will become 

incident to the current partition after the move. 

Figure 2.3shows a simple example for calculating the benefit ofnodes.Ifthe 

node ii2 is moved from partition A to partition B,by using equation 3,then ben(n2)=l-

1=0. In this case,net2is removed from the cutset but an additional net is added. 

Therefore,the benefit ofmoving node n2from A toB is 0. Ifthe node nSis movedfrom 

partition A to partition B,then ben(n3)=l-3=-2. Moving the node n3from A toB results 

in a negative benefit since two additional nets are added to the cutset. Comparing the 

coiriputed benefits for n2and n3,the node with the highest benefit is n2.Therefore,we 

consider the node n2to be moved from partition A to partition B.We will make use of 

the benefitfunction to calculate the best node in bur proposed approaches. 

2.3Partitioning Constraints 

The k-way partitioning algprithm iiiust meet the constraints ofour hardware 

architecture used to implerhent an application.In order to assure the results generated 

meet these constraints,it is necessary f^or the algorithm to have knowledge ofthe 

hardware architecture.MoSt existing partitioning algorithms for multiple FPGA systems 

use the following constraints; 
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 • Capacity per partition 

• Number ofI/O pins per partition 

Targeting a particular hardware architecture injects additional constraints that, 

must be considered to generate a resulting partition that can be successfully placed and 

routed. 

The objective ofthis research is to develop three different k-way partitioning 

algorithms based on the target architecture ofthe boards used in this research project.The 

partitioning strategy is based on the following constraints followed by a brief discussion 

ofeach constraint: 

1. Capacity per partition 

2. Number ofFO pins per partition 

3. Each partition can only have one RAM access module 

4. Input module and output module must be placed in the first partition and in 

the last partition. 

5. Temporal partitioning constraint: For multiple board configurations,storage 

ofintermediate results between board configurations is needed. 

6. Maintaining the acyclic constraint so that all edges point the same way(from 

left to right). 

The first two constraints are used to meet the limitations ofa singlePE device. 

The number ofinterconnections between partitions becomes an issue due to the limited 
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number ofconnections available betwebri':PEs.A successful routing will not occur ifthis 

constraint is violated. An implementation is not possible ifthe size ofa partition exceeds 

the available capacity for a single PE,Both constraints mustbe metfor a successful 

implementation. 

The third constraint deals with the memory access for,each PE.The architecture 

ofthe ACSimposes that a localSRAM to each FPGA is available for data writing and 

date reading.A singlePEcan only access its localSRAM.This means,theSRAM 

available to eachPE can be used either for writing the data to the output orfor reading 

the input data.Therefore,a partition can contain only oneRAM a,ccess module.To 

explain this pointin more detail,we consider a very simple example shown in Figure 2.4. 

Weconsider a network with9nodes and7edges each ofequal size.We assume 

that the node pair(1,9)represents twoRAM access modules.Node 1 is used to read the 

input data and node9is used to write the output data.Thisimplies that at leasttwo . 

partitions and only one board configuration are needed.For illustration, we further 

assume that the entire application fits in two PEs.Two possible partitions are shown in 

Figure 2.4a where both have equal cutset.The first possible partition showing in 2.4b 

violates theRAM access constraint since the partitioner places the node pair(1,9)in the 

same PE.Therefore,this partitioning cannot be implemented.The second possible 

partition showing in 2.4c satisfies the capacity constraint,I/O constraint,RAM access 

constraint,input arid output module constraint,and the acyclic constraint. Therefore,the 

application can be implernented successfully. 
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The fourth constraint deals with reading and writing the data.The input data is 

read first and supplied to the rest Ofthe glyphs.The resuitihig data must be written to the 

hard disk via the output module.Therefore,the inputmodule must be located in the first 

partition and'fhe output module'in the lastpartition:Both the input and output nodes must 

useRAM access-modules.Even though entire application might fit in one PE,this ; , 

limitation imposes that atleasttwb partitions are nbeded for successful implementation. 

This means that.the paititibhing process is always required in the CHAMPION design 

flow.-' , . . 

The fifth Constraint deals with temporal p^itioning ofthe ACS boiard.A single 

configuration ofthe board is the sarne as the configuration ofall available PEs.Ifthe 

entire application cannot fitin one board configuration,then multiple configurations of 

the board are necessary.Figure 2.5 shows a simplified version ofthe Wildforce board.. 

When multiple configurations are used,storage ofintermediate results between board 

configurations is heeded!In this case,one RAM-read h^dwafe glyph mustbe added at 

the beginning ofeach configuration and one RAM-write hardware glyph must be added 

at the end ofeach configuration.This process makes the partitioning problem more 

complicated since these twoRAM hardware glyphs do not exist in the original 

application.In this case,the partitioner deals with a modified version ofthe original 

application hetlist. Furthermore,the capacity ofthe first and the lastPE is utilized by a 

certain amountfor the RAM-read and RAM-write niodules insertion. 
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The sixth,and final,constraint requires maintaining the direction ofthe 

hypergraph so that all edges are pointing the same way. The resulting sub-netlistsP= 

{?!,P2,. ..,Pk)must maintain the acyclic constraint so that nodes in partition Pi must 

appear before the nodes in partition Pj.To illustrate the acyclic constraint,we consider 

the examplefrom Figure 2.4.In Figure 2.6,weshow two possible cuts for this network. 

The first cut showing in 2.6a violates the acyclic constraint since node2appears in a 

prior partition. Moving node2or node5across the cutcan satisfy the acyclic constraint 

as shown in Figure 2.6b. 

A partitioning result is a theoretical solution that could possibly be implemented 

onto the given board architecture. Violation ofany constraint discussed above will result 

in an unsuccessful mapping.In this case,the entire application must be repartitioned until 

a practical solution is found.Thus,our partitioning approaches must guarantee that all 

partitions will meet these constraints. 

39 



Unacceptable ciit since the 
successor ofNode2(Node5) 

appears in a prior partition 

0
0

>-r
l
_ 9
 

a. First possible cut 

Acyclic constraint is satisfied 

by moving Node2across the 
cut 

b. Second possible cut 

Figure 2.6 Asyclic constraint 

40 



3.Partitioning Algorithms 

In this chapter,we consider the probleih ofp^itioning a large netlist into a collection 

ofsub-netlists such that each sub-netlist will fitinto one ofthe PEs where eachPE is 

characterized by its capacity,I/O count,and RAM access.In additiori to finding a 

feasible partitioning solution that meets the partitioning constraints,our objective 

includes the minimizing ofthe total number ofthe PEs used to implement a particular 

application. 

In the previous chapter,we mentioned that there exist niany algorithms dealing with , 

the partitioning problem,but no general model exists that handles an arbitr^ 

partitioning problem.For this reason,one algorithm might be developed or a new 

approach mustbe created to target a specific hardware structure.To the best ofour 

knowledge,there exists no approach that can tdke the CHAMPION netlist and produce a 

valid partitioning result without deveiopnient.Therefore,it was necessary to study some 

ofthe existing approaches and pick up one or two that can be adapted easily.Two main 

points were considered when we surveyed the existing work.The first point is that we do 

notknow in advance how many partitions orPEs are needed to implement the 

CHAMPION netlist. An estimate can always be made based on the application size and 

theRAM access constraint!In this case,an algorithm such as MP2cannot be easily 

adapted since this algorithm requires the number ofblocks^to be specified in advance. 

In the second point,the immediate evaluation ofthe produced feasible solution in each 

partitioning stage is always preferred for a partitioning problem with several constraints. 



 

In this case,..an algorkhm such as the multiple-way approach cannot be used since this 

approach seeks to minimize the total number ofinterconnections between the blocks.The 

rriinimization ofthe total number ofinterconnections between the PEs does not assure a 

feasible solution for an individualPE.Because ofthis,the hierarchical partitioning 

methods and the recursiye algorithms were the best candidates among the existing work. 

They fulfill our two consideration points.' 

. For solving the partitioning problem,three different approaches are investigated in 

this work.In the first and the second approaches,we discuss the development and 

implementation oftwo existing algorithms.The first approach is a hierarchical 

partitioning method based on topological ordering(HP).The second approach is a 

recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic(RP). 

We extend these algorithiris to handle theRAM access constraint,the acyclic constraint, 

and the temporal partitioning constraint.We shall describe the details ofthese two 

algorithms,including modifications and extensions. 

We also introduce a new recursive partitioning method based on topological ordering 

and levelization(RPL).The details ofthis approach shall be described and explained by 

an illustrative example.In addition to handling the partitioning constraints,the new 

approach efficiently addresses the problem of minimizing the amountofcomputation 

thereby overcoming the weaknesses ofthe HP and RP algorithms. All three algorithms 

start with a topological sorting solution ofthe given application netlist. This solution will 
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assure,that no node is processed before any node that points to it. This step is necessary to 

maintain the acyclic constraint so that all the nodes point the same wayfrom left to right. 

3.1 Hierarchical Partitioning Based on Topological Ordering(HP) 

A topological sorting solution ofa given network is a linear orderingLofall 

nodes N,such that node i appearis before nodejifthe outputofi is an input ofj.This 

means,no node is processed before any node that points to it. The breadth-first search 

(BPS)algorithm is used to generate a topological sorting solution L.The BPS is a natural 

way to visit every node and check every edge in the graph systeniatically.This step is 

necessary to maintain the acyclic constraint so that all the nodes point the same wayfrom 

left to right. Given a topological sorting solutionLofall nodes,we can partition the listL 

from left to right into K Sub-NetlistsP=(Pi,P2,.. Pk)such that the constraints 

mentioned above are not violated. . _ 

Initially all nodes are in the line^orderingL and the first block Pi is empty. 

Pigure 3.1 shows the initial step ofthe HP algorithm. Ateach step,we select a node i 

from Land put it into Pi.The algorithm moves nodes into Pi until the capacity constraint 

or the RAM access constraint ofthe partition is violated.TheRAM access constraint is 

checked first. Each partition can have only one RAM access module.The capacity 

constraint is checked next.Once one ofthese constraints is violated,the algorithm checks 

ifthe/interconnect constraint ofthe currentPE is satisfied.Ifthis interconnect constraint 

is violated,the algorithm rolls back the moves until the constraint is met.Rolling back 
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refers to moving nodes back to L,Ifthere exists morp than one candidate node for back 

rolling,the algorithm starts ari optimization step.This situation arises when for example . 

two nodes with different sizes will lead to the same cut set ifone ofthem is moved back 

to,L.In this case^ it is intuitive to keep the node with the maximum size in the current 

partition. This optimization step fiiids the best node which maximizes the capacity ofthe 

current partition and meets the interconnect constraint.The optimization strategy,uses the 

benefitfunction to find the node with the highest benefit and leaves it in the current 

partition. 

Werepeat this process by creating a hew block P2and applying the saine , 

procedure to the remainder ofL.Figure*3.2 showssome ofthe nodes moved to the first 

and second partitions.The process stops when the listLbecogies empty and all nodes are 

in P={Pi,P2,...,Pk).The.algorithm fails to find a solution to the partitioning problem 

ifone ofthe constraints is violated.Figure 3.3 shows the pseudo code for the HP 

algorithm. 

3.2 Recursive Algorithm Based on Fiduccia and Mattheyses Bipartitioning 

Heuristic(RP) 

The second approach,to this problem is a recursive algorithm based on the 

Fiduccia and Mattheyses(FM)bipartitioning heuristic.TheFM algorithm starts with 

initial bipartition A and B and iterates to improve it by reducing the cutset size.Forsome 

applications,arandom method is used to generate an initial bipartition. 
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L 

P 

Figure 3.2Illustration ofthe Partitioning using HP 

Input: G(N,E),D=devices; 

Output:Pi,P2,P3 Pic 
Create a linear ordering solution L;k=0; 
Create a new partition,Pk; 
While( emptyL=0) begin 

while(violation=False)begin 

move nodes into Pk', record size,I/O count; 
check constraints of -

end while; 

if(violation=True)then begin 
ifthere is more than one candidate then 

Optimize Pk', 
Reverse niove until violation=False; 

end 

record final partition size,FO count; 
ifLis empty then 

emptyL=l; 
else begin 

k=k+l;Create aliew partition, 
end 

end while; 

Figure 3.3Pseudo-Code for the HP Algorithm 
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An arbitrary random bipartition can no longer be used here since it may violate the 

acyclic constraint. An efficient way ofgenerating an acyclic initial bipartition is to use 

the linear ordering approach mentioned above.To create an initial solution,nodes are 

moved from the linear ordering arrayLinto the current partition Pi until the capacity 

constraint ofPi has been met. The recursive bipartitioning strategy,as illustrated in 

Figure 3.4,can be viewed as an extreme case ofunbalanced bipartitioning. This means, 

the size ofthe current partition is much smaller than the remainder size ofL during the 

first partitioning stages.In this process,each application ofthe bipartitioning procedure 

produces one feasible sub-netlist and the remainder netlist.In the first iteration,the entire 

netiist Ro is partitioned into one feasible solution.Pi,that meets the constraints ofthe first 

PEon the board,and the remainder partition,Ri.In this case, all the N nodesin the 

current partition Pi and a remainder,Ri are unlocked and involved in the partitioning 

process.When the partitioner finds afeasible solution for the current partition PI,the 

nodesin that partition become locked.In other words,the nodes in,PI are no more 

involved in the subsequentiterations.The run time ofthe RP algorithm is afunction of 

the total number ofnodes.During the partitioning process,the nin time decreases as the 

number oflocked nodes increases!Subsequent iterations apply the same procedure to the 

remainder until all resulting.partitions meetthe constraint^.Figure 3.5 shows the pseudp 

code for the RP algorithm. 

TheRP algorithm uses theFM concept ofmoving a single node eitherfrom A toB or 

from B to A.As mentioned before,theFM algorithm was designed to handle iiribalance. 
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Initial Netlist

before partitioning

Netlist remainder

after step 1

Netlist remainder

after step 2

Figure 3.4 Recursive algorithm based on FM algorithm



Input: G(N,E)> D=devices; 
Output:Pj, P2, P3,.;Pk 
Create alinear ordering solution L; 
k=0; 

Ro=U 
Proceed=True; 

While(proceed)begin 
Create initial bipartition {Pk,Rk}', 
Optimize bipartition[Pk,Rk)withFM heuristic; 

Subject to the current device Dk; 
Record final partition size,I/O count; 
if(Rk=Dk+i) /* Rk fit into the next device Dk+1 */ 
proceed=False; 
else 

k=k+l; 

end while 

Figure 3.5 Pseudo-Code for the RP Algorithm 

To avoid having all nodes migrate to one block,the balance criterion defined in section 

2.1.2 must be maintained. 

3.3A New Recursive Partitioning Method Based on Topological Ordering and 

Levelization(RPL) 

In this section,we present our new approach for solving the partitioning problem for 

a CHAMPION netlist. This algorithm applies existing ideas to graph partitioning; 

however,they have not been used in this manner previously.The algorithm strategy is 

based on two steps: the level constmction step and the partitioning step.Below,we 

describe the procedure to partition the CHAMPION netlist with this approach.In the 

following two sections,we demonstrate the level constmction step and the partitioning 

step in more detail with an illustrative example. 
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The algorithm stshts with a linear ordering solution for all the N nodes.Given a 

topological sorting:solution of^1 hodes,we can construct multi levelsL={Ll,L2,.. 

Ln}ofnodesN with a mociified versioh ofbreadth-first search(BPS),such that nodes in 

level Li appear before nodes in level Lj and the nodes in level Lj mustbe successors of 

the nodes in level Li. Afterwards,the resulting flow is reduced to a.form shown in Figure 

3.6.Each level consists ofa subset ofnodes and no level can have more than oneRAM 

access node.Level constmction is a onetime step and is denoted as a preprocessing step. 

Since the RAM access constraint is a very challenging one,we expectthe preprocessing 

step to solve any conflicts associated with this constraint before moving to the 

First Level Second Level' Third Level Nth Level 

Figure 3.6 Reducedform after level construction. 

partitioning step. Given a levelizatiori solution L={Li,Lo,...,Ln},wecan partition L 

from left to rightinto K Sub-Netlists P={Pi,P2,• • Pk).Initially all nodes are inLand 

the first blockPi is empty.First,.we.st^ the process by moving n.levelsfrom Land put 

them into Pi until P;has met the capacity constraint. At this moment,the last level moved 

to Pi is marked as Li.Then we start an optimization step by moving nodes across the 

marked level Li and its successor level Li+l until the rest ofthe constraints are satisfied. 

The optimization step is based oh the benefitfunction discussed above.Since only two 

levels are involved in the optimization step,the number ofnodes involved in the , , 
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optimization process and the computatipn amount are reduced significantly.Ifthe 

algorithm fails to find a valid solution,then,we reduce the size ofPi byremoving the last 

level moved to Pi and the optimization step is repeated.Werepeat this process by 

creating a new blockP2and applying the same procedure to the remainder ofL.The 

process stops whenLbecomesempty and all nodes are inP={Pi,P2,• • •,Pk}- Figure 

3.7shows the pseudo code for the RPL algorithm. 

3.3.1 Level Construction step 

In this section,we demonstrate the level construction,step in more detail.The 

construction step is very crucial to our proposed method and helps the RPLto reduce the 

weaknesses inherentin the other two approaches.This step is best demonstrated by 

considering a very simple example,shown in Figure 3.8,with two sources Si and82and 

two destinations Dland D2.This process uses a modified version ofbreadth-first search 

(BFS)for constructing levels. To search the nodes ofthe graph systematically,we begin 

with the first source Sl as a starting point,all others nodes are unseen.The BFS 

completely covers the area close to the starting point,moving farther away only when 

everything close has been looked at. The source node Sl and its successors(2,5)will 

construct the first level. Before visiting any successors of(2,5)we check out to see if any 

ofthe nodes(2,5)has to waitfor other nodes which are notincluded in the current level. 

In this particular example,we see that node5 has to wait for node 8.Weforce the 

algorithm to add node 8 to the current level. 
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Input: G(N,E),D=devices; 

OxxVpvX-.Pi, P2,P3 Pk 
Create levelsL={ L1,L2,• - n}; 
k=0;j=l; . . , 
Proceed=True; 

violation=True; 

While(Proceed)begin 

Create new partition Pk', 
while(violation=False)begin 

move levelLjto Pk', 
check constraints; 

mark the last level moved toPk asLjand its successor Lj+i; 
j=j+i; 

end while 

OptimizePk by moving nodes across {Lj,Lj+i} 
Subject to the current device Dk ; 

Record final partition size,I/O count; 
if(L=D^+;) /* ifthe remained ofLfit into the next device Dk+i *1 
Proceed=False; 

else 

k=k+l; 

end while 

Figure 3.7Pseudo-Code for the RPL Algorithm 
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SI 

D1 

S2 D2 

g 10 11 

Figure 3.8 Illustrative example for RPL algorithm 
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The set(1,2,5,8)now constructs the first level.We proceed with the construction step for 

finding the second level by visiting the successors ofthe nodes(2,5,8).The successors of 

those nodes are(3,6,9)which build up the second level.Werepeat the process until all 

the N nodes have been visited.The resulting levels are shown in Figure 3.9.The next step 

oflevel construction is to check ifthere is aRAM access conflict inside each level. 

Figure 3.9a shows aRAM access conflict inside the first and the fourth level.To remove 

this conflict, we move node S2and its successors to the second level.In the fourth level, 

depending on the cut set,either DiorD2has to be moved to a new level.For this 

example,we moveD2to the fifth level since the cut set created after the move is lower. 

The final step is shown in Figure 3.9b. 

3.3.3Partitioning Step 

In this section we demonstrate the partitioning step in more detail by considering 

the simple networkfrom the previous section. At this point,we assume that the 

levelization step has been done and the solution L={Li,L2,...,Ln} is available to the 

partitioner. Initially all nodes are inL and the first block Pi is empty.First,we start the 

process by moving n levels from L and putthem into Pi until Pi has met either the 

capacity constraint or the RAM access constraint.For this particular example,as shown 

in Figure 3.10 and Figure 3.11,the first level is moved to Pi.ARAM access conflict 

occurred when the algorithm tries to move the second level L2to Pi since and Si and S2 

are RAM access nodes.Before creating a new block,the algorithm starts to optimize the 

capacity utilization ofPi by moving nodes across the first and second levels. 
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LeveH Level2 Levels Level4 

SI 

D1 

RAM access violation 

since SI and S2are in the RAM access violation 

same level since D1 and D2are In the 

same level 

a. RAM access conflict 

LeveH Level2 Levels Level4 Levels 

b. Removing the RAM access conflict 

Figure 3.9RAM access conflict 
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Levels Level4 LevelsLeveH Level2 

SI 

1 2 

S2 

[ 

10 

D1 

12 

P2 

11 

SI 

1 2 3 

PI 

S2 

8 9 

RAM access violation 

since SI and S2are in 

thesamePE 

SI 

PI 

S2 

8 

P2 

T 

9 10 

PI 

12 

RAM access violation 

since S2and D1 are in 

thesamePE 

Figure 3.10 Illustration ofthe partitioning step 
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D2 

11 

P3 

RAM access violation 

since D1 and D2are in 

the samePE 

1 

SI 

2 

D1 

12 

PI 

S2 

P2 

5 
Oj 

10 

P3 

D2 

11 

A 
P4 

Figure 3.11 Illustration ofthe partitioning step 
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The algorithm fails to move any nodefrom the second level to the current 

partition since any node will violate the acyclic constraint. Therefore,the current partition 

Pi consists only ofthe nodes(1,2).Ifthe total size ofthe nodes(1,2)is much smaller than 

the available capacity ofPi,then the currentPE is very poorly utilized. This case shows 

how the RAM access constraints can limit a full utilization ofonePE.The algorithm 

proceeds by creating a new block P2.Because ofaRAM access conflict,only the second 

and the third levels are moved to the current partition. Onlytwo levels remain in L where 

each ofthese requires access to the local RAM.Therefore,another two new blocks are 

created P3 and P4.The partitioning process stops sinceLbecame empty. 
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4.Experimental Resultsand Analysis 

In this chapter,we discuss the p^itioning results for the three different 

approachesin which wefocused on the development oftwo different existing partitioning 

.algorithms and the development ofa new partitioning approach.The HP and the RP 

algorithms were developed to consider our partitioning constraints. Our new idea,the 

RPLapproach,was developed to cope with the weaknesses ofthe HP and RP algorithms. 

The three partitioning approaches were implemented successfully in the C++ 

language arid are currently used to partition the CHAMPION netlists. These algorithms 

were run on several netlists targeting different hardware architectures.Some ofthese 

netlists were generated randomly,by using arandom netlist generator developed in this 

research to test these algorithms. . 

Partitioningfor Hardware Architectures 

In the following sections,we Avill discuss the partitioning results for each 

algorithm by targeting six'differeht hardware architectures.The first hardware 

architecture is the Wildforce-XL bo^dfrom Annapolis Micro Systems,discussed in 

section 1.2,which uses five Xilinx FPGAs.In the second hardware architecture,we 

consider another version ofthe Wildforce-XL.We assurne that the board has the same 

striicture as the previous one butcomes with larger size FPGAs(10times bigger),bigger 

RAMsfor each FPGA(twoRAM modulesfor each FPGA),and largerI/O count(72-bit 



systolic bus).We denote this version as Wildforce-XLl.In the third and fourth hardware 

architectures,we consider the MSP board from,which uses two AlteraFLEX10k FPGAs. 

In this board,RAM modules can lie org^ized as oneRAM bank or twoRAM banks.In 

the fifth hardware architecture,,we consider the SLAAG-IV board.This board uses two 

Virtex FPGAs.The sixth hardware architecture deals with the SLAAC-IP which uses 

two Xilinx XC4000FPGAs. 

Partitioning Netlists 

Different netlists are used in this research to determine the performance ofthe 

three partitioning algorithms.The partitioning algorithms axe run on identical netlists in 

order to compare the algorithms against each other.The comparison is based on the 

number ofPEs required forimplementing the netlist and the running time.Table 4.1 

shows the different netlists used in this research.The first three netlists were 

automatically mapped and implemented successfullyfrom the Cantata workspace to the 

Wildforce-XL platform.The automatic target recognition(ATR)is relatively acomplex 

netlist.The ATR was firstimplemented manually by Ben Levine to assist in the 

development offunction libraries for use in the CHAMPION system[4].The mapping 

techniques used were developed in such a way that they could serve as the basis for the 

automated system.The ATR netlist was used to test our three different partitioning 

approaches.This netlist consists of 101 nodes and 234 hyper nets. Among the 101 nodes, 

14 nodes are used for accessing the local RAMs:The M29 netlist is a very challenge one 
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Table 4.1 Partitioning Netlists 

Netlists Size .RAM Modules Nodes# Nets# 

Hipass Filter 458 2 17 48 

NVL 549 2 45 71 

ATR 4885 .14 101 234 

7 28M29 29 29 

R300 7845 11 301 311 

R400 10130 7 . 406 421 

R500 12845 12 504 493 

R600 15320 9 601 571 

R700 17640 702 71410 

R800 19690 12 807 809 

R900 23041 18 906 881 

RIOOO 24533 23 1005 1041 

RllOO 29685 23 1101 1091 

R1200 31420 22 1202 1231 

1303 1243 

1412 

R1300 33120 25 

R1400 36975 29 1401 

1497R1500 41453 34 1502 
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which utilizes7RAM modules.This netlist was generated manually by utilizing a 

significant number ofRAM nodes to challenge the three partitioning algorithms.To the 

best ofour knowledge,there exist no benchmarks that represent our partitioning , 

constraints.For this reason,af^dom netlist generator to produce benchmarks was 

developed in this research to investigate the performance ofthe three partitioning 

algorithms.In addition,this will enable us to investigate the running time ofeach 

approach. . ; ; , 

The netlists R300-1500 were produced randomly with arandom netlist generator. 

The random netlist generator uses arandom number generator seeded by the time ofthe 

system to generate the nodes and to map the connection between these nodes.Initially, 

nodes are placed into n blocks where each block has a certain number ofnodes.The 

number ofnodes for the ith block Bi is selected randomly between 1 and 10.For 

example,ifthe numberchosen Were 3,this would generate a block with 3 nodes.For 

each node in the block Bi arandom number between(1 and#ofnodes in block Bi+i)is 

selected to map the nodes in block Bito the nodes in block Bi+i.The nodesin block Bi+i 

that mapped to nodes in block Biare selected randomly.For example,we considertwo 

blocks B3 and B4 with2nodes and 5 nodesin each block respectively.,In this case, 

random numbers between 1 and 5 will be selected for each node in B3.For example,if 

the numberchosen were2for the,first node in block B3,this would map this node to two 

nodes in block B4.In addition,the random netlist generator uses arandom number 

selected between 1 and 100to assign weights to the nets and nodes.Finally,the random 

netlist generator selects the RAM nodes randomly by using a random number between 1 
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and 100.Foreach node,ifthe random number chosen lies between 45 and 55,the node is 

assigned forRAM access. 

Partitioning Configuration File 

As mentioned before,one ofthe major goals in this research is to target different 

hardware architectures.The partitioning algorithms are extended to be dynamic.In this 

case,the partitioner reads the particulM,hardware structure,datafrom a partitioning 

configuration file. This enables the user to change some specific information in the 

configuration file instead ofworking inside the partitioner.^ This gives the user the 

flexibility ofswitching from one hardware architecture to another.The hardware 

architecture dataincludes the number ofPEs available in the ACS,the capacity ofeach 

PE,the I/O pins between PEs^ the I/O pins between eachPE and its localRAM,and the 

number ofRAMsavailable for each PE.In addition,the user can specify the data that is 

required to configure the memory used by the partitioner.Thisincludes the maximum 

number ofnodes,the maximum number ofnets,the maximum number oflevels,and the 

maximum number ofthe produced p^itions.Figure 4.1-4.3 show the partitioning 

configuration files for the Wildforce-XL,Wildforce-XLl,and SLAAC-1V boards 

respectively. Using this approach,a user can adoptthe partitioner to a new ACS in only 

fewminutes.This is valuable information which may be used to select an existing 

hardware platform or to consider tradeoffs in the design ofa new ACS.However,thie 

steps involved in connecting partition blocks toPEI/O and communicating with the host 

CPU may take several days to accomplish. 
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/* Partitioner Configuration File For The Wildforce-XL Board */ 

#define NumberOfPE - 5 . . 

/* Number ofPEs orFPGAs available on the ACS board */ 

#define MaxNodeSize 3000 ' ■/* Maximum Number of Nodes */ 

# define MaxLevelSize 700 

/* Maximum Number of Levels. This is required for the RPL Algorithm */ 
# define MaxNetSize 4000 . /* Maximum Number of Nets */ 

# define, MaxPaitNumber 300 /* Maximum number of partitions */ 
# define PEO 1290 , /* Capacity of PEO */ 

# define PEl 570 ' /* Capacity of PEl 

# define PE2 570 /* Capacity of PE2 */. 
# define PE3 570, /* Capacity of PE3 */ 

# define PE4 570 /* Capacity, of PE4 */ 

# define UF 0.9 /* utilization factor for each PE */ 

# define TotalNumOfCLB 3550 /* Total CLBs available on the ACS board */ 

# define PE2MEMCutset 32 

/* Maximum I/O count between one PE and the local RAM */ 

# define PE2PECutset 36 

Maximum I/O count between one PE and another PE */ 

# define PEMemNuni 1 /* Number of local RAMs available for each PE */ 

Figure 4.1 Partitioning Configuration File for Wildforce-XL 

64 



� 

/* Partitioner Gonfiguration File For The Wildforce-XLl Board */ 

#define NumberOfPE. 5 

/* Number ofPEs orFPGAs available on the ACS board */: 

#define MaxNodeSize 3000, , /* Maximum Number ofNodes */ 

#define MaxLevelSize 700 

/* Maximum Number ofLevels.This is required for the RPL Algorithni */. 

#'define MaxNetSize 4000 /* Maximum Number ofNets */ 

#define MaxPartNumber 300 /* Maximum number ofpartitions */ 

#define PEO 1290*10 , /* Capacity ofPEO */, . 

#define PEr 570*10 /* Capacity ofPEl */ 

#define PE2 570*10 /* Capacity ofPE2*/ 

#define PE3 .570*10 /* Capacity ofPE3*/ 

#define PE4 570*10 . /* Capacity ofPE4*/ . 

#define UF 0.9 - /* utilization factor for eachPE */ 

#define TotalNumOfCLB 35500 /* Total CLBs available on the ACS board */ , 

#define PE2MEMCutset 32*2 

/* Maximum I/O coiint between onePEand the localRAM */ 

#define PE2PECutset 36*2 . 

/* Maximum I/O count between oriePE and anotherPE */ 

#define PEMemNum 2 ' /* Number oflocal RAMs available for eachPE*! 

Figure 4.2Partitioning Configuration File for Wildforce-XLl 

65 



/* Partitipner Configuration File For TheSLAAC-IV Board */ 

#define NumberOfPE 2 

/* NumberofPEs orFPGAs available on the ACS board */ 

#define MaxNodeSize. 3000. /* Maximum Number ofNodes */ 

#define MaxLevelSize 700 

/* Maximum Number ofLevels.This isrequired for the RPL Algorithm */ 

#define MaxNetSize 4000 , /* Maximum Number ofNets */ 

,# define MaxPartNumber 300 /* Maximum number ofpartitions */ 

#define PEO 1000000 /* Capacity ofPEO */ 

#define PEl 1000000 /* Capacity ofPEl */ 

#define UF 0.9 /* utilization factor for eachPE*/ 

#define TotalNumOfCLB 2000000 /* Total CLBs available on the ACS board */ 

#define PE2MEMCutset 36 

/* Maximum I/O count between onePE and the localRAM */ 

#define PE2PECutset ,72 . - , 

/* MaximumI/O count between onePE and anotherPE */ 

#define PEMemNum 4 . /* Number oflocal RAMs available for eachPE */ 

Figure 4-3 Partitioning Configuration File forSLAAC-IV 
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4.1 HP Algorithm 

In this section we discuss the partitioning results ofthe HP algorithm for the 

netlistshown in Table 4.1.In 1997,Stanley developed this algorithm targeting a 

particular hardware emulator[8].TheHP algorithm was developed and extended in this . 

research to handle the CHAMPION netlists.The algorithm is relatively a simple idea 

compared with the RPL and RP algorithms.As mentioned in section 3.1,the algorithm 

starts with alinear orderingLofall nodes and with^einpty block Pi.Ateach step,the 

algorithm selects a node ifromLand put it into Pi.The algorithm moves nodes into Pi 

until the capacity constraint or theRAM access constraint ofthe partition is violated.The 

RAM access constraint is checked first. Each partition can have only a certain number of 

RAM access modules based on the selected hardware board.The capacity constraint is 

checked next.Once one ofthese constraints is violated,the algorithm checks ifthe 

interconnect constraint ofthe currentPE is satisfied.Ifthis interconnect constraint is 

violated,the algorithm rolls back the moves until the constraint is met.Rolling back 

refers to moving nodes back to L.Ifthere exists more than one candidate node for back 

rolling,the algorithm starts an optirhization step.This situation arises when for example 

two nodes with different sizes will lead to the same cut set ifone ofthem is moved back. 

to L.In this case,it is intuitive to keep the node with the maximum size in the current 

partition. This optimization step finds the best node which maximizes the capacity ofthe 

current partition and meets the interconnect constraint.The optimization strategy uses the 

benefitfunction discussed in chapter2to find the node with the highest benefit and 
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leaves it in the current partition.Werepeat this process by creating a new block P2and 

applying the same procedure to the remainder ofL. 

As mentioned above,the HP algorithm uses a linear ordering array to access the 

nodes and move theme across partitions. Therefore,the running time ofthe HP algorithm 

depends on the linear ordering array size,the number oftheRAM access modules,and 

the selected hardware architecture. A complexity analysis for this algorithm was not 

undertaken in the existing workfrom Stanley[8].In this research,for each hardware the 

running time for each netlist is presented.We will show how the running time varies with 

the selected hardware architectures and the netlist size. 

Tables 4.2-4.7 show the partitioning results for the six hardware architectures.For 

each netlist the tables show the size ofthe netlist,the RAM modules count,the nodes 

size,the nets size,the partitions number,and the running time ofpartitioning process.We 

assume that the RAM modules require external implementation.The reported run times 

are for a300MHzPentium nCPU. 

Asexpected,the partitions number produced and the running time for the 

partitioning process vary with the selected hardware board and the netlist size. Referring 

to Table 4.2,the HP algorithm was not able to produce valid partitioning results for the 

ATR,M29,R700,and R1500 when we targeted the Wildforce-XL board.The reason for 

this is the limited external I/O perPE. For the ATR netlist, a non-valid partitioning result 

was produced after we relaxed the I/O countfrom 36 to 50for the same Wildforce-XL. 
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Table 4.2Partitioning results for Wildforce-XL using HP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 _ 2 <ls 

Filter 

NVL 549 2 45 71 2 ds 

AIR 4885 14 101 234 Notfeasible 2 

M29 519 7 29 28 Notfeasible <ls 

R300 7845 11 301 311 25 4 

R400 10130 7 406 421 23 10 

R500 12845 12 504 493 33 19 

R600 15320 9 601 571 29 34 

R700 17640 10 702 714 Notfeasible 761 

R800 19690 12 807 809 42 89 

R900 23041 18 906 881 52 132 

RIOOO 24533 23 1005 1041 58 184 

RllOO 29685 23 1101 1091 61 257 

R1200 31420 22 1202 1231 67 336 

R1300 33120 25 1303 1243 72 424 

R1400 36975 29 1401 1412 81 571 

R1500 41453 34 1502 1497 Notfeasible 1129 
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Table 4.3 Partitioning results for Wildforce-XLl using HP algorithm 

Netlists Size RAM ; Nodes# Nets#' Partitions , Time(s) 

Modules # 

Hipass 2' , 
: 17 48 1 <ls 

Filter,

NVL ' 549- • 2 45 71 1 <ls 

ATR 4885 : 14 101 234 7 2 . 

M29 519 7 . 29 - 28 4 <ls 

R300 7.845 11 . 301 311 6 ' 3 

R400 10130 7 , ; 406 ' 421 , 4 8 

R500 12845 12 . 504 .493 6 . 13 

R600 15320. 9 601 571 5 25 

R7,00 17640 10 702 : 714 6 41 

.R800 19690 12 807 809 7 71 , 

R900 0023041 18 '906 881 10 107 

RIOOO 24533. ; 23' 1005 1041 13 161 

RllOO 29685 23 1101 1091 13 221 

R1200 31420 ■22' . 1202. 1231 13 291 

R1300 33120 25 . . 1303 1243 , 15 383 

R1400 36975 , 29 1401 1412 18 431 

R1500 41453 34 , : . 1502 . 1497 21 521 
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Table 4.4 Partitioning results for MSPl board using HP algorithm. 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2- 1.7 48 1 <ls 

Filter 

NVL 549 , 2 '■ ■■ 45 ■ 71 Not feasible <ls 

ATR 4885 14 101 234 14 1 

M29 519 7 29 28 6 <ls 

R300 7845 IT 301 311 10 .3 

R400 10130 7 406 421 5 9 

R500 12845 12 504 493 10 15 

R600 15320 9 , 601 571 7 ' 29 

R700 17640 10 702 714 9 47 

R800 19690 .12 807 809 11 . 81 

R900 23041 18 906 881 17 107 

RIOOO 24533 23 . 1005 1041 22 172 . 

RllOO 29685 23 1101 1091 21 234 

R1200 31420 22- ' 1202 1231 21 313 

R1300 33120 25 1303 1243 24 401 

R1400 36975 29 1401 . , 1412 27 453 

R1500 41453 34 , 1502 1497 34 503 

71 



� 

Table 4.5 Partitioning results for MSP2board using HP algorithm. 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 2 <ls 

Filter 

NVL 549 2 45 71 2 <ls 

ATR 4885 14 101 234 Notfeasible <ls 

M29 519 7 29 28 Notfeasible <ls 

R300 7845 11 301 311 Notfeasible <ls 

R400 10130 7 406 421 Notfeasible <ls 

R500 12845 12 504 493 Notfeasible <ls 

R600 15320 9 601 571 Notfeasible <ls 

R700 17640 10 702 714 Notfeasible <ls 

R800 19690 12 807 809 Notfeasible <ls 

R900 23041 18 906 881 Notfeasible <ls 

RIOOO 24533 23 1005 1041 Notfeasible <ls 

RllOO 29685 23 1101 1091 Notfeasible <ls 

R1200 31420 22 1202 1231 Notfeasible <ls 

R1300 33120 25 1303 1243 Notfeasible <ls 

R1400 36975 29 1401 1412 Notfeasible <ls 

R1500 41453 34 1502 1497 Notfeasible <ls 
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Table 4.6 Partitioning results forSLAAC-IV board using HP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 : 17 48 1 <ls 

Filter 

NYL 549 .2 45. 71 . 1 <ls 

ATR 4885 14 101 234 4, 1 

M29 519 7 29 28 2 <ls 

R300 7845 11 301 311 4 . 2 

R400 10130 406 421 2 6 
; , 

R500 12845 • , 12 504 493 4 9 

R600 15320 - ; - '' 9 /- 601 -571 3 19 

R700 17640 7 , 702: 714 , 4 37 

R800 19690 , , ,12 ' 807.. 809 4 62 

R900 23041 ,18 . ^ 906 , 881 6 89, 

RIOOO 24533 . , 23 : 1005 . 1041 8 131 

RllOO 29685 23 , 1101 1091 8 ' 192 

R1200 31420 22 - 1202 1231 8 216 

R1300 33120 25:,, 1303 1243 8 289 

R1400 36975 •29 : 1401 1412 : 10 305 

R1500 41453 34 1502 . 1497 11 351 
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Table 4.7 Partitioning results forSLAAC-IP board using HP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 Notfeasible <ls 

ATR 4885 14 101 234 Notfeasible 2 

M29 519 7 29 28 2 <ls 

R300 7845 11 301 311 4 2 

R400 10130 , 7 406 421 2 7 

R500 12845 12 504 493 4 20 

R600 15320 9 601 571 Notfeasible 14 

R700 17640 10 702 714 4 41 

R800 19690 12 807 809 4 66 

R900 23041 18 906 881 6 98 

RIOOO 24533 23 1005 1041 10 143 

RllOO 29685 23 1101 1091 8 203 

R1200 31420 22 1202 1231 8 227 

R1300 33120 25 1303 1243 9 297 

R1400 36975 29 1401 1412 Notfeasible 21 

R1500 41453 34 1502 1497 Notfeasible 27 
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This partitioning result cannot be implemented by targeting the Wildforce-XL since the 

I/O limitation is violated. , 

Targeting the Wildforce-XL1,the'HP algorithm was able to produce valid 

partitioning results for all the netlists considered in this research.To compare the running 

times and the number ofpartitions produced by targeting the Wildforce-XL and the 

Wildforce-XL1,we consider the R1400 netlist. For the Wildforce-XL,77PEs are 

required to implementthe R1400 netlist and the running time for the partitioner is 571 

seconds. Atthe other side,only 17PEs are required to implement the R1400by targeting 

the Wildforce-XLl while the running time wasreduced to431 seconds.This result is 

presented in Table 4.3. Targeting the SLACC-IV board and R1400 netlist,the HP 

produced 10 partitions within 305 seconds.This shows how the performance ofthe HP 

algorithm depends on the selected hardware architecture. 

; . Referring to Table 4.5 the partitioning results are presented for the MSP board 

where the localRAM for eachPEis organized as one bank of512kX48 bits.In this case, 

only oneRAM module is available for each PE.TheHPfailed to produce valid 

partitioning results for all netlists, which require multiple configuration ofthe board.A 

single configuration ofthe board is the same as the configuration ofall available PEs.If 

the entire application cannot fit in one board configuration,then multiple configurations 

ofthe board are necessary.When multiple configurations are used,storage of 

intemiediate results between board configurations is needed.In this case,oneRAM read 

hardware glyph mustbe added at the beginning ofeach configuration and oneRAM write 
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hardware glyph must be added at the end ofeach corifiguration. Using theRAM as one 

bank of512kX48 bits willlimitthe MSP board for a single board configuration only 

since both RAM modules are always used to store the intermediate results. Organizing 

theRAM as two banks of512kX24.bits can solve the problem.These results are shown 

in Table 4.4. 

4.3RP Algorithm 

In this section we discuss the,partitioning results for the RP algorithm by targeting 

the netlists shown in Table 4.1.TheRP algorithm was developed and extended in this 

research to handle the CHAMPION netlists.The partitioning results are presented for the 

six hardware architectures considered in this research.TheFM algorithm starts with a 

current partition Pi and a remainder Ri and iterates to improve it by reducing the cutset 

size.Subsequent iterations apply the same procedure to the remainder until all resulting 

partitions meetthe constraints.The RP algorithm uses theFM concept,discussed in 

chapter 2,of moving a single node cross the cut. 

Tables 4.8-4.13 show the partitioning results for the six hardware architectures. 

Referring to Table 4.8, the RP algorithm was not able to produce valid partitioning results 

for the M29and the R700 netlists by targeting the Wildforce-XL board.The reason for 

this is the limited external I/O count perPE. For the ATR netlist, a valid partitioning 

result was produced with 23,FPGAs.The partitioning results show that the running time 

ofthe RP algorithm depends on the netlist size,the number oftheRAM access modules, 
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Table 4.8 Partitioning results for Wildforce-XL using RP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 2 <ls 

Filter 

NVL 549 2 45 71 2 <ls 

ATR 4885 14 101 234 23 9 

M29 519 7 29 28 Not 2 

feasible 

R300 7845 11 301 311 23 26 

R400 10130 7 406 421 21 39 

R500 12845 12 504 493 32 89 

R600 15320 9 601 , 571 24 138 

R700 17640 10 702 714 Not 61 

feasible 

R800 19690 12 807 809 36 171 

R900 23041 18 906 881 49 195 

RIOOO 24533 23 1005 1041 58 236 

RllOO 29685 23 1101 1091 57 292 

R1200 31420 22 1202 1231 66 392 

R1300 33120 25 1303 1243 66 501 

R1400 36975 29 1401 1412 79 693 

R1500 41453 34 1502 1497 91 863 
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Table 4.9 Partitioning results for Wildforce-XLl using RP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 1 <ls 

ATR 4885 14 101 234 7 6 

M29 519 7 29 28 4 <ls 

R300 7845 11 301 311 6 17 

R400 10130 7 406 421 4 31 

R500 12845 12 504 493 , 7 62 

R600 15320 9 601 - 571, . 5 101 

R700 17640 10' 702 714 7 125 

R800 19690 12 807 809 7 143 

R900 23041 18 906 881 10 177 

RIOOO 24533 23 1005 1041 13 211 

RllOO 29685 23 1101 1091 13 276 

R1200 31420 22 1202 1231 13 314 

R1300 33120 25 1303 1243 15 461 

R1400 36975 29 1401 1412 17 515 

R1500 41453 34 1502 1497 21 594 
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Table 4.10 Partitioning results for MSPl board using RP algorithm. 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 Not <ls 

feasible 

ATR 4885 14 101 234 14 7 

M29 519 7 29 28 6 <ls 

R300 7845 11 301 , 311 10 21 

R400 10130 7 406 421 5 35 

R500 12845 12 504 493 10 71 

R600 15320 9 601 571 .1 113 

R700 17640 10 702 714 9 139 

R800 19690 12 807 809 11 151 

R900 23041 18 906 881 16 185 

RIOOO 24533 23 1005 1041 21 222 

RllOO 29685 23 1101 1091 21 281 

R1200 31420 22 1202 1231 21 331 

R1300 33120 25 1303 1243 24 471 

R1400 36975 29 1401 1412 27 523 

R1500 41453 . 34 1502 1497 33 604 
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Table 4.11 Partitioning results for MSP2board using RP algorithm. 

Netlists Size RAM Nodes# Nets# , Partitions# Time(s) 

Modules 

Hipass 458 2. 17 48 2 <ls 

Filter 

NVL 549 2 45 71 2 <ls 

ATR 4885 14 101 234 Notfeasible <ls 

M29 519 7 29 28 Notfeasible <ls 

R300 7845 11 ' 301 311 Notfeasible <ls 

R400 10130 7 406 421 Notfeasible <ls 

R500 12845 12 504 493 Notfeasible <ls 

R600 15320 9 601 571 Notfeasible <ls 

R700 17640 10 702 714 Notfeasible <ls 

R800 19690 12 807 809 Notfeasible <ls 

R900 23041 18 906 881 Notfeasible <ls 

RIOOO 24533 23 1005 1041 Notfeasible <ls 

RllOO 29685 23 1101 1091 Notfeasible <ls 

R1200 31420 22 1202 1231 Notfeasible <ls 

R1300 33120 25 1303 1243 Notfeasible <ls 

R1400 36975 29 1401 1412 Notfeasible <ls 

R1500 41453 34 1502 1497 Notfeasible <ls 
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Table 4.12Partitioning results forSLAAC-IV board using RP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 1 <ls 

ATR 4885 14 . 101 234. 5 2 

M29 519 7 29 28 2 <ls 

R300 7845 11 301 311 4 11 

R400 10130 7 406 421 2 17 

R500 12845 12 504 493 4 44 

R600 15320 9 601 571 3 89 

R700 17640 10 702 714 4 101 

R800 19690 12 807 809 4 121 

R900 23041 18 906 881 6 152 

RIOOO 24533 23 1005 1041 8 174 

RllOO 29685 23 1101 1091 8 205 

R1200 31420 22 1202 1231 8 281 

R1300 33120 25 1303 1243 8 379 

R1400 36975 29 1401 1412 10 411 

R1500 41453 34 1502 1497 11 434 
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Table 4.13 Partitioning results forSLAAC-IP board using RP algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 Notfeasible <ls 

ATR 4885 14 101 234 Notfeasible 11 

M29 519 7 29 28 2 <ls 

R300 7845 11 . 301 311 4 13 

R400 10130 7 406 421 2 18 

R500 12845 12 504 493 4 47 

R600 15320 9 601 571 Notfeasible 31 

R700 17640 10 702 714 4 108 

R800 19690 12 807 809 4 126 

R900 23041 18 906 881 6 169 

RIOOO 24533 23 1005 1041 9 178 

RllOO 29685 23 1101 . 1091 9 211 

R1200 31420 22 1202 1231 8 295 

R1300 33120 25 1303 1243 9 386 

R1400 36975 29 1401 1412 Notfeasible 76 

R1500 41453 34 1502 1497 13 451 
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and the selected hardware architecture.Tocompare the running times and the number of 

PEsfor the Wildforce-XL and the Wildforce-XLl,we consider the R1500 netlist.For the 

Wildforce-XL,the RP algorithm produced99 partitions within 863 seconds.On the other 

hand,only 21 partitions were produced by targeting the Wildforce-XLl while the running 

time was reduced to 594seconds.This result is presented in Table 4.9.Targeting the 

SLACC-IV board for the same R1500 netlist,the RP produced 11 partitions within 434 

seconds.This shows how the performance ofthe RP algorithm depends on the selected 

hardware architecture. 

To compare the running times and the number ofPEsfor the Wildforce-XL and 

the Wildforce-XLl,we consider the R1500 netlist. For the Wildforce-XL,the RP 

algorithm produced 99 partitions within 863seconds.On the other hand,only 21 

partitions were produced by targeting the Wildforce-XLl while the running time was 

reduced to 594seconds.This result is presented in Table 4.9.Targeting the SLACC-IV 

board for the same R1500 netlist,the RP produced 11 partitions within 434seconds.This 

shows how the performance ofthe RP algorithm depends on the selected hardware 

architecture. 

Referring to Table 4.11 the partitioning results are presented for the MSP board 

where the localRAM for each PE is organized as one bank of512kX48 bits. Similar to 

HP algorithm,the RP algorithm failed to produce valid partitioning results for all netlists, 

which require multiple configurations ofthe board. Using the RAM as one bank of 

512kX48 bits will limit the MSP board for a single board configuration only since both 
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RAM modules are always used to store the intermediate results. Organizing the RAM as 

two banks of512kX24 bits can solve the problem.These results are shown in Table 4.10. 

Referring to Table 4.13,the RP algorithm failed to partition the ATR,the R600, 

and the R1400 netlists when we targeted the SLAAC-IP board.The reason for that is the 

limited RAM bus size. This problem can be solved by targeting a hardware board with 

bigger theRAM bus size.Targeting the SLAAC-IV,the RP algorithm was able to 

produce feasible solutions for all netlists including the ATR,the R600,and the R1400 

netlists. Table 4.12shows the partitioning results for SLAAC-IV where the size ofthe 

localRAM bus is 36 bits. 

4.1 RPL Algorithm 

In this section we discuss the partitioning results for the RPL algorithm by using 

the netlists shown in Table 4.1. As mentioned in section 3.3,the RPL algorithm was 

developed to reduce the weaknesses ofthe HP and RP algorithms.TheRPL starts the 

partitioning process with alevelization solution Lofall nodes.Initially all nodes are in L 

and the first partition Pi is empty.First, we start the process by moving n levels from L 

and putthem into Pi until Pi has met the capacity constraint or theRAM module 

constraint. At this moment,the last level moved to Pi is marked as Li.Then the algorithm 

starts an optimization step by moving nodes across the marked level Li and its successor 

level Li+l until the rest ofthe constraints are satisfied. Ifthe algorithm fails to find a 

valid solution,then we,reduce the size ofPi by removing the last level moved to Pi and 
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the optimization step is repeated.Werepeat this process by creating a new blockP2and 

applying the same procedure to the remainder ofL. The optimization step is based on the 

benefitfunction discussed in chapter 2.For each partition, only two levels Li and its 

successor level Li+i are involved in the optimization step. Therefore,the running time of 

the RPL algorithm and computation amount ofthe partitioning process is afunction of 

the number oflevels involved in the optimization step.In the same time,the number of 

levels involved in the optimization steps is a function ofthe partitions number required to 

implement the netlist application.For this reason,a hardware architecture with biggerPE 

capacity,bigger I/O count,and biggerRAM banks will reduce the partitioner running 

time significantly.In addition,minimizing the PEs number will reduce the data 

processing time on the targeted hardware.The last statement will be supported when we 

discuss the implementation ofthe ATR algorithm,section 4.5,on different hardware 

architectures. 

Tables 4.14-4.19show the partitioning results for the six hardware architectures. 

As expected,the partitions number produced and the running time for the partitioning 

process vary with the selected hardware board and the netlist size.For example,we 

consider the R1500 netlist and compare the performance ofthe RPL algorithm for both 

Wildforce-XL and SLACC-IV hardware boards.For the Wildforce-XL,88PEs are 

required to implement the R1500 netlist and the running time for the partitioner is 371 

seconds.In the same time,the partitions number required to implement the R1500 netlist 

is reduced to 11 PEs by targeting the SLACC-IV board.The running time is reduced to 

193 seconds.This big change is very significant for the data processing time on the 
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Table 4.14Partitioning results for Wildforce-XL using RPL algorithm 

Netlists Size RAM Nodes# Nets# Partitions Time(s) 

Modules # 

Hipass 458 2 17 48 2 <ls 

Filter 

NVL 549 2 45 71 2 <ls 

ATR 4885 14 101 234 20 2 

M29 519 7 29 28 9 <ls 

R300 7845 11 301 311 21 3 

R400 10130 7 406 421 19 4 

R500 12845 12 504 493 32 11 

R600 15320 9 601 571 23 21 

R700 17640 10 702 714 26 33 

R800 19690 12 807 809 34 51 

R900 23041 18 . 906 881 47 71 

RIOOO 24533 23 1005 1041 55 101 

RllOO 29685 23 . 1101 1091 55 135 

R1200 31420 22 1202 1231 63 178 

R1300 33120 25 1303 1243 64 225 

R1400 36975 29 1401 1412 77 293 

R1500 41453 34 1502 1497 88 371 
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Table 4.15 Partitioning results for Wildforce-XLl using RPL algorithni 

Netlists Size . RAM Nodes# Nets# Partitions Time(s) 

Modules # 

Hipass 458 2 17 48 1 <ls . 

Filter 

NVL 549 2 45 71 1 <ls , 

ATR 4885 . 14, . . , 101 234 7 1 

M29 519 7 29 28 4 <ls 

R300 7845 .11 301 311 6 2 

R400 10130 7 406 421 4 5' 

R500 12845, , 12 , , 504 493 6 11 

R600 15320 9 601 571 5 15 

R700 17640\ 10 ^ = 702 714 6 26 

R800 19690 :12 ; 807., 809 7 38 

R900 23041 18 906 881 10 59 

RIOOO 24533 23 1005 1041 13 71 

RllOO 29685 23 . . , 1101 1091 13, - 98 

R1200 31420 22 1202 1231 13 127 

R1300 33120 • 25.. 1303 1243 . 15 , 165 

R1400 36975 ,29 1401 1412 17 199 

R1500 41453 34 1502 1497 20 257 
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Table 4.16 Partitioning results for MSPl board using RPL algorithm. 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 Notfeasible <ls 

ATR 4885 14 101 234 12 1 

M29 519 7 29. 28 6 <ls 

R300 7845 11 301 311 10 3 

R400 10130 7 406 421 5 6 

R500 12845 12 504 493 10 11 

R600 15320 9 601 571 7 21 

R700 17640 10 702 714 9 32 

R800 19690 12 807 809 11 48 

R900 23041 18 906 881 16 68 

RIOOO 24533 23 1005 1041 21 76 

RllOO 29685 23 1101 1091 21 107 

R1200 31420 22 1202 1231 21 133 

R1300 33120 25' 1303 1243 23 181 

R1400 36975 29 1401 1412 27 209 

R1500 41453 34 1502 1497 32 273 



 

Table 4.17 Partitioning results for MSP2board using RPL algorithm. 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 2 <ls 

Filter 

NVL 549 2 45 71 2 <ls 

ATR 4885 14 101 234 Notfeasible <ls 

M29 519 7 29 28 Notfeasible <ls 

R300 7845 11 301 311 Notfeasible <ls 

R400 10130 7 406, 421 Notfeasible <ls 

R500 12845 12 504 493 Notfeasible <ls 

R600 15320 9 601 571 Notfeasible <ls 

R700 17640 10 702 714 Notfeasible <ls 

R800 19690 12 807 809 Notfeasible <ls 

R900 23041 18 906 881 Notfeasible <ls 

RIOOO 24533 23 1005 1041 Notfeasible <ls 

RllOO 29685 23 1101 1091 Notfeasible <ls 

R1200 31420 22 .1202 1231 Notfeasible <ls 

R1300 33120 25 1303 1243 Notfeasible <ls 

R1400 36975 29 1401 1412 Notfeasible <ls 

R1500 ' 41453 34 1502 1497 Notfeasible <ls 
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Tdble 4.18 Partitioning results forSLAAC-IV board using RPL algorithm 

Netlists Size RAM 'Nodes# ,Nets# Partitions Time(s) 

Modules # 

Hipass 458 2 . 17 48 1 <ls -

, Filter 

NYL 549 ; - 45' ,71 1 <ls 

ATR 4885 14 , 101 ; 234 4 1 

M29 519 7 29 28 2 • <ls 

R300 7845 : ' 11 301 , 311 4 1 

R400 10130 1 406 421 1 3 

R500 12845 . 1.2 , 504 493 - 4 8 

R600 15320 9 , 601 571 3 11 

R700 17640 10 702 714 ,4 , 20 

R800 19690 \ 12 . 807 809 .. . '4 31 

R900 23041 18 906 881 6 52 

RIOOO 24533 23 1005 1041 . 8 63 

RllOO 29685 23 1101 , 1091 8 87 

R1200 31420 22 1202 1231 , 8 103 

R1300 33120 . . 25 1303 1243 8 127 

R1400 36975 29 1401 .1412 10 162 

R1500 41453 34 1502 1497 11 193 
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Table 4.19 Partitioning results forSLAAC-lP.board using RPL algorithm 

Netlists Size RAM Nodes# Nets# Partitions# Time(s) 

Modules 

Hipass 458 2 17 48 1 <ls 

Filter 

NVL 549 2 45 71 Notfeasible <ls 

ATR 4885 14 101 234 5 1 

M29 519 7 29 28 2 <ls 

R300 7845 11 301 311 4 1 

R400 10130 7 406 421 2 3 

R500 12845 12 504 493 4 9 

R600 15320 9 601 571 Notfeasible 6 

R700 17640 10 702 714 4 23 

R800 19690 12 807 809 4 37 

R900 23041 18 906 881 6 57 

RIOOO 24533 23 1005 1041 9 67 

RllOO 29685 23 1101 1091 8 93 

R1200 31420 22 1202 1231 8 111 

R1300 33120 25 1303 1243 9 136 

R1400 36975 29 , 1401 1412 Notfeasible 73 

R1500 41453 34 1502 1497 11 203 
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targeted hardware.Reducing the PEscount required to implement a particular netlist can 

speed up the data processing significantly.. ' 

Referring to Table 4.17 the partitioning results are presented for the MS?board 

where the localRAM for eachPE is organized as one bank of512kX48 bits. Using the 

RAM as one bank of512kX48 bits will limit the MSP board for a single board 

configuration only since bothRAM modules are always used to store the intermediate 

results. Organizing theRAM astwo banks of512kX24bits can solve the problem.These 

results are shown in Table 4.16. 

Referring to Table 4.19,the partitioning results for the SLAAC-IP board are 

illustrated. As mentioned before,fourRAM modules each ofthe size 256KX18 bits are 

available for each PE.In this case,the systolic busbetween thePE and the localRAM is 

limited to 18 bits:For this reason,the RPLfailed to find a valid partitioning result for the 

NVL,the R600,and R1400netlists since these netlists need to access the localRAMsby 

more than 18 bits.Increasing the PE toRAM systolic bus width can solve this problem. 

, Table 4.18 shows the partitioning results forSLAAC-IV where the size ofthe local 

RAM is 512KX36bits and theRAM bus width is 36 bits: 

4.4 Comparison Between RPL,HP,and RP Algorithms 

In this section,we shall compare the three different partitioning approaches 

againsteach other.We will refer to the partitioning results shown in Tables 4.2-4.19. 
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The ATR netlist is given more attention in this discussion because ofthe following 

reasons: 

1. The ATR is a very challenging netlist where a high number ofRAM nodes are 

used. 

2. There exists a manual partitioning result for the ATR netlist. 

3. The ATR wasimplemented manuallyfrom CANTATA workspace to the 

Wildforce-XL. 

4. The ATR netlist has a moderate size ofnodes and nets so that the visualization 

ofsome problems for the partitioning process is possible. 

The partitioning results shows that the HP and the RP approaches have difficulties 

in finding valid partitioning results for some ofthe netlists which utilize a high number of 

RAM access nodes.The problems arise when theseRAM access nodes are close to each 

other in the hypergraph netlist. Therefore,the partitioning result is depending on the 

number oftheRAM access nodes and on how these nodes are distributed in the netlist. 

TheRAM access constraint is equivalent to the locking ofa certain number ofnodes in a 

netlist in which these nodes are prevented from moving freely across the cuts. This 

constraint is not affecting the movement ofthe particular node only but its neighbors 

nodes too. 

Another major weakness ofthe HP and RP algorithms is the acyclic constraint.In 

addition to the original requirements of maintaining the acyclic constraint,theRAM 
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access constraint adds more difficulties to this constraint. This means,ifoneRAM node 

is locked in one partition,then the successors ofthis node are locked too because the 

movement ofthe successor nodes across a cut will violate the acyclic constraint. 

Therefore,,adding these two constraints to the partitioning problem makes it a very 

challenging one. 

To show the strength ofour RPL algorithm,we illustrate the results oftwo 

different examples.In the first example,we consider a very challenging netlist,M29, 

shown in Figure 4.4, with 29 nodes and 28 nets. Among the 29 nodes,7nodes are 

utilized for RAM accessing.The shaded nodes represent the sources and destinations for 

this netlist. This netlist was generated manually where a valid partitioning result exists. 

At least seven PEs are needed for successful implementation ofthis netlist on the 

Wildforce-XL since the netlist utilizes seven RAM access modules.Referring to the 

Tables4.2 and 4.8,both HP and RP algorithms failed to produce a valid partitioning 

result for the M29 netlist when we targeted the Wildforce-XL board.However,the RPL 

was able to produce a valid partitioning resultfor this particular netlist. The result is 

shown in Table 4.14.A total number ofseven partitions were produced where nine levels 

were constructed during the partitioning process.In the M29 netlist,the source nodes 

(1,8,13)and the destination nodes(23,24,25,26)are used to access the RAMsfor reading 

and writing the data.The source and destination nodes are placed closely to each other in 

the hypergraph.Byremoving theRAM access need for the nodes(8,23)and assigning a 

RAM access need for the nodes(12,27),the RP algorithm was able to produce a valid 

partitioning result while the HP algorithm still failed. 
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In other words,the distribution ofthe RAM nodes in the hypergraph was changed to 

affect the results produced by the RP and HP algorithms.The RPL was still able to 

produce a valid partitioning result for this netlist. Several experiments were conducted 

with theRAM nodes to investigate the performance ofthe algorithms.The small size of 

the M29netlist enabled us to conduct these experiments and to observe the weaknesses of 

the HP and RP algorithms.The results ofthese experiments showed that the performance 

ofthe RP algorithm is determined by theRAM nodes distribution in the hypergraph.The 

results showed that the HP performance depends on the number ofRAM nodes,the 

distribution oftheRAM nodes in the hypergraph,and the hypergraph density.To obtain a 

valid partitioning result for the HP algorithm,we had to reduce the number oftheRAM 

nodes and the weights forsome ofthe hyper nets. 

An application netlist similar to the M29 netlist can arise in the practice. 

Sometimes the user tries to collapse the design by using macros instead ofcells. Of 

course this will improve the visualization and the manageability ofthe design,but it will 

reduce the granularity in the hypergraph.This means the nodes and nets numbers are 

reduced.Ifthe design ends up having a stmcture similar to the M29 netlist and a high 

number ofRAM nodes,then the partitioning results will be affected greatly by theRAM 

distribution and the density ofthe hypergraph.Therefore,the user must be aware ofthe 

size and I/O ofthe macros and the RAM distribution. 

The automatic target recognition(ATR)application was automatically mapped 

from the Cantata workspace to the Wildforce platform recently.The ATR was first 
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implemented manually by the CHAMPION research group to assist in the development 

offunction libraries and hardware for use in the CHAMPION system.The mapping 

techniques used were developed in such a way that they could serve as the basis for the 

automated system [4],The ATR netlist was used to test our three different partitioning 

approaches.This netlist consists of 101 nodes and 234 hyper nets. Among the 101 nodes, 

14 nodes are used for accessing the local RAMs.The ATR application utilizes a high 

number ofmacros where the sizes ofthese macros differ. A total number of20FPGAs 

was needed to implementthe ATR netlist manually. Both RPL and RP algorithms were 

able to produce two different mappable partitioning results by targeting the Wildforce-

XL,while the HP algorithm failed.TheRPLresult was identical to the manual 

partitioning result in terms oftheFPGAs numbers.A total number of20partitions were 

produced where5i levels were constructed during the partitioning process by using the 

RPL algorithm.The run time is2seconds. In the meantime,the RP algorithm produced 

23 partitions within9seconds.Tables 4.20-4.21 show the ATR partitioning resultfor the 

RPL and RP algorithms respectively.Similar to the manual result,the RPL and RP 

results showed a poor utilization ofthe PEs capacity.TheRAM access constraint and the 

macros sizes was the main reason for this poor utilization ofthe PEscapacity. 

The run time for the RP algorithm is relatively longer when compared to the run 

time ofthe RPL and HP algorithms.In section 3.2,we mentioned that the run time ofthe 

RP algorithm is a function ofthe unlocked nodes in the current partition P and the 

remainder R.In the first phase ofthe RP algorithm,the entire netlist Rq is partitioned into 

one feasible solution.Pi,that meets the constraints ofthe firstPE on the board,and the 
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Table 4.20RPLPartitioning results for the ATR by targeting the Wildforce-XL board. 

Partition Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

CLB Usage I/O Count Nodes# 

741 24 9 

462 15 5 

482 32 12 

424 28 10 

0 ' 0-

-0 0 

367 28 8 

345 26 8 

389 25 7 

0 0-

-0 0 

367 29 9 

367 28 8 

389 25 7 

0 0-

-0 0 

389 19 9 

32 30 1 

80 11 7 

52 11 1 
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Table 4.21 RPPartitioning results for the ATR by targeting the Wildforce-XL board. 

Partition Number CLB Usage I/O Count Nodes# 

1 718 33 3 

2 400 35 5 

3 434 29 11 

4 471 9 14 

5 0 0 

6 0 

-

0 

7 362 10 9 

8 367 9 8 

9 367 11 8 

10 0 

-

0 

11 0 

-

0 

12 367 9 8 

13 371 9 7 

14 367 7 8 

15 0 

-

0 

16 0 

-

0 

17 421 19 10 

18 56 19 1 

19 32 

-

30 1 

20 0 0 

21 . 0 

-

0 

22 80 11 

-

7 

23 52 11 1 
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remainder partition,Ri.During this phase,all the N nodes in the current partition Pi and 

a remainder Ri are unlocked and involved in the partitioning process.When the 

partitioner finds a feasible solution for the current partition Pi,the nodes in partition Pi 

become locked.Therefore,during the partitioning process the run time decreases as the 

number oflocked nodes increases.Figure 4.5a shows the RP run time during the 

partitioning ofthe AIR netlist. In section 4.1,it was mentioned that the mn time ofthe 

RPL algorithm is afunction ofthe number oflevels involved in the partitioning process. 

For each partition,only two levels Li and its successor level Li+i are involved in the 

optimization step.Therefore,the run timefor each partition is afunction ofthe nodes size 

in Li and its successor level Li+i.Figure 4.5b shows the RPLrun time during the 

partitioning ofthe ATR netlist. 

TheHP algorithm failed to produce a valid partitioning result for the ATR when we 

targeted the Wildforce-XL.TheHP algorithm depends strongly on the node order in the 

linear ordering array.In general,the node order produced by a topological sort is not 

unique[42].This situation arises when one node has no direct or indirect dependence on 

another and therefore they can be performed in either order.TheHP algorithm made 10 

attempts to partition the ATR netlist where each time the algorithm started with a 

different linear ordering solution. No valid result wasfound for any ofthese attempts. 

The HP result was affected greatly by the firstfew nodes in the netlist where three big 

size macros are used.The port countfor these macros is relatively high when compared 

to other cells. 
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Figure 4.5 Run time during the ATR partitioning process 
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The HP algorithm produced a non-feasible solution,shown in Table 4.22,after we 

relaxed the I/O count between the PEsfrom 36 to 50for the Wildforce-XL.This result 

shows that only the first partition violates the I/O limitation. This partitioning result 

cannot be implemented on the Wildforce-XL since the I/O limitation is violated.The run 

time for the HP algorithni depends on the linear ordering array size,the number ofthe 

RAM access modules,how many times the algorithm rolls back,and the selected 

hardware architecture.Figure 4.6 shows the HP run time during the partitioning ofthe 

ATR netlist for the relaxed I/O count. 

In several examples,the HP and RP algorithms used morePEs to implement one 

netlist when they are compared to RPL algorithm.For example,the RP algorithm uses 23 

FPGAs to implement the ATR algorithm by targeting the Wildforce-XL while the RP 

algorithm uses only20FPGAs.The increased number ofthe PEs is related to the nature 

ofthe RP algorithm.The drawback inherent in the RP partitioning scheme,pointed out in 

[15],its effect ofincreasing the connectivity inside the remainder partition.R.This effect 

makes the I/O constraint harder to meet during the final partitioning stages and causes 

more PEs to be used.In other words,the RP algorithm aims to minimize the'cutset for the 

current partition.In addition,many previous works reported that the performance of 

partitioning schemes using theFM heuristic degrades as the number ofnodes increase 

[43][44].TheRPL algorithm reduces these weaknesses by performing a preprocessing 
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Table 4.22 HP Partitioning results for the ATR by targeting the Wildforce-XL

Partition Number CLB Usage I/O Count Nodes Count

1 1118 r 45 9

2 434 33 11

3 471 9 13

8 326 9 8

9 367 9 9
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Figure 4.6 Run time ofthe HP algorithm during the ATR partitioning process 

step (levelization)before starting the partitioning process.The preprocessing step reduces 

the number of nodes used during the partitioning stages significantly. This will increase 

the performance of the RPL algorithm and decrease the run time. In addition, the RPL 

algorithm strategy aims to maximize the capacity ofthe current partition while satisfying 

the I/O constraint. 

In the HP algorithm,nodes are moved to the current partition according to their order 

in the linear ordering array. This means,a node is moved to the current partition whether 

or not it is a good choice.The algorithm stops the movements when a feasible solution is 

found for the current partition.In other words,no more than one feasible solution for the 

current partition is recorded during the partitioning process.This is the drawback inherent 
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in the HP partitioning scheme that degrades the performance ofthe algorithm and tends 

to increase the number ofthe PEs used. 

Figures 4.7a-4.7b compare the produced partitions and the run time on the netlists, 

shown in Table 4.1,for the Wildforce-XL.A similar behavior was obtained for the other 

hardware architectures. These experimental results demonstrate that the proposed 

approach,the RPL algorithm,achieves superior performance when compared to the RP 

and HP algorithms.Tables 4.23-28 show the combined results for the three partitioning 

algorithms. 

4.5 Processing Timefor Three Different Applications by Targeting Different 

Hardware Architectures. 

This section discusses the hardware implementation ofthe automatic target 

recognition(ATR),the Hipass filter, and the NVLapplications by targeting different 

hardware architectures.First we will give experimental results for the Wildforce-XL 

implementation.Second we will give an estimate for the processing times by targeting 

the Wildforce-XLl,the SLACC,and the MSP boards. The ATR application was 

automatically mapped from the Cantata workspace to the Wildforce-XL platform by 

using two different partitioning results. Early in this research project,the ATR was 

implemented manually by the CHAMPION research group to assist in the development 

offunction libraries and hardware for use in the CHAMPION system. 
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Figure 4.7 Partitioning results for the Wildforce-XL 

106 



Table 4.23 Partitioning Results for the Wildforce-XL Board 

HP Algorithm RP Algorithm RPL Algorithm 
Netlists 

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s) 

Hipass 2 <ls 2 <ls 2 <ls 

Filter 

NVL 2 <ls 2 <ls 2 <ls 

ATR Notfeasible 2 23 9 20 2 

M29 Notfeasible <ls Notfeasible 2 9 <ls 

R300 25 4 23 26 21 3 

R400 23 10 21 39 19 4 

R500 33 19 32 89 32 11 

R600 29 34 24 138 23 21 

R700 Notfeasible 761 Notfeasible 61 26 33 

R800 42 89 36 171 34 51 

R900 52 132 49 195 47 71 

RIOOO 58 184 58 236 55 101 

RllOO 61 257 57 292 55 135 

R1200 67 336 66 392 63 178 

R1300 72 424 66 501 64 225 

R1400 81 571 79 693 77 293 

R1500 Notfeasible 1129 91 863 88 371 
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Table 4.24 Partitioning Results for the Wildforce-XLl Board 

HP Algorithm RP Algorithm RPL Algorithm
Netlists 

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s) 

Hipass 1 <ls 1 <ls 1 <ls 

Filter 

NVL 1 <ls 1 <ls 1 <ls 

ATR 7 2 7 6 7 1 

M29 4 <ls 4 <ls 4 <ls 

R300 6 3 6 17 6 2 

R400 4 8 4 31 4 5 

R500 6 13 7 62 6 11 

R600 5 25 5 101 5 15 

R700 6 41 7 125 6 26 

R800 7 71 7 143 7 38 

R900 10 107 10 177 10 59 

RIOOO 13 161 13 211 13 71 

RllOO 13 221 13 276 13 98 

R1200 13 291 13 314 13 127 

R1300 15 383 15 461 15 165 

R1400 18 431 17 515 17 199 

R1500 21 521 21 594 20 257 
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Table 4.25 Partitioning Results for the MSPl Board 

HP Algorithm RP Algorithm RPL Algorithm 
Netlists 

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s) 

Hipass 1 <ls 1 <ls 1 <ls 

Filter 

NVL Notfeasible <ls Notfeasible <ls Notfeasible <ls 

ATR 14 1 14 7 12 1 

M29 6 <ls 6 <ls 6 <ls 

R300 10 3 10 21 10 3 

R400 5 9 5 35 5 6 

R500 10 15 10 71 10 11 

R600 7 29 7 113 7 21 

R700 9 47 9 139 9 32 

R800 11 81 11 151 11 48 

R900 17 107 16 185 16 68 

RIOOO 22 172 21 222 21 76 

RllOO 21 234 21 281 21 . 107 

R1200 21 313 21 331 21 133 

R1300 24 401 24 471 23 181 

R1400 27 453 27 523 27 209 

R1500 34 503 33 604 32 273 

109 



�  

Table 4.26 Partitioning Results for the MSP2Board 

Netlists 
HP Algorithm RP Algorithm RPL Algorithm 

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s) 

Hipass 2 <ls 2 <ls 2 <ls 

Filter 

NVL 2 <ls 2 <ls 2 <ls 

ATR Notfeasible <ls Notfeasible <ls Notfeasible <ls 

M29 Notfeasible <ls Notfeasible <ls Notfeasible '<ls 

R300 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R400 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R500 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R600 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R700 Notfeasible <is Notfeasible <ls Notfeasible <ls 

R800 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R900 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

RIOOO Notfeasible <ls Notfeasible <ls Notfeasible <ls 

RllOO Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R1200 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R1300 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R1400 Notfeasible <ls Notfeasible <ls Notfeasible <ls 

R1500 Notfeasible <ls Notfeasible <ls Notfeasible <ls 
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Table 4.27 Partitioning Results for the SLAAC-1V Board 

HP Algorithm RP Algorithm RPL Algorithm 
Netlists 

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s) 

Hipass 1 <ls 1 <ls 1 <ls 

Filter 

<ls 1 <ls 1 <lsNVL 1 

1 2 1ATR 4 5 4 

<ls <ls 2 <lsM29 2 2 

4 11 4 1 

3 

R300 4 2 

R400 2 6 2 17 2 

8R500 4 9 4 44 4 

R600 3 19 3 89 3 11 

R700 4 37 4 101 4 20 

62 121 4 31R800 4 4 

R900 6 89 6 152 6 52 

63RIOOO 8 131 8 174 8 

RllOO 8 192 8 205 8 87 

R1200 8 216 8, 281 8 103 

127R1300 8 289 8 379 8 

R1400 10 305 10 411 10 162 

193R1500 11 351 11 434 11 
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Table 4.28 Partitioning Results for the SLAAC-IP Board 

HP Algorithm RP Algorithm RPL Algorithm 
Netlists 

Partitions# Time(s) Partitions# Time(s) Partitions# Time(s) 

Hipass 1 <ls 1 <ls 1 <ls 

Filter 

NVL Notfeasible <ls Notfeasible <ls Notfeasible <ls 

ATR Notfeasible 11 5 1 5 1 

<ls <lsM29 2 2 2 <ls 

R300 4 13 4 1 4 1 

318 3 

4 9 

R400 2 2 2 

R500 4 47 4 9 

R600 Notfeasible 31 Notfeasible 6 Notfeasible 6 

23108 23 

4 37 

R700 4 4 4 

R800 4 126 4 37 

R900 6 169 6 57 6 57 

67178 67 

RllOO 9 211 8 

RIOOO 9 9 9 

93 8 93 

111R1200 8 295 8 111 8 

R1300 9 386 9 136 9 136 

R1400 Notfeasible 76 Notfeasible 73 Notfeasible 73 

203R1500 13 451 11 203 11 
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For the manualimplementation,the ATR application was partitioned in such a 

wayso that an image ofthe size 256x256 can be processed and recorded in the local 

RAM.In this case,the total memoryrequired to store an image is 65kx8 bits. The local 

RAM on the Wildforce-XL is limited to 32kx32 bits so.that a data amountof65k bytes 

cannot be stored without memory managenient.'To overcome this problem,each four 

words(4x8 bits) were packed together and stpred in one address.The ATR was 

partitioned for multiple board configurations first where the cutset size was limited to 8. 

Then each board configuration was partitioned further to fit into five FPGAs. 

In our partitioning strategy, we attempted to partition for multiple board 

configurations first.By adding this constraint to the partitioning strategy,the partitioning 

problem became very complicated. None ofthe partitioning algorithms could handle this 

constraint. Therefore,this constraint was relaxed to ease the partitioning problem and to 

allow a cutset size of32between multiple board configurations.In this Case,each address 

in the localRAM is used to store one word of0to 32bits only.By doing this, an image 

ofthe size 256x256can no longer fit in the RAM.To overcome this problem,the image 

size wasreduced to 128x128 so that the memory needed to store an image is 16kx8 bits. 

To compare the automated mapping against the manual mapping,we had to rerun 

the manualimplementation for reduced image size(128x128).The average of 10runs 

gave the following values,shown in Table 4.29,for the automated and manual mapping: 
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Table 4.29 Processing time for the ATR algorithm 

Manual Automated Automated 

Processing time Implementation Implementation Implementation 

20FPGAs 20FPGAs 23FPGAs 

Board configuration 
9147 ms 11010 ms5125 ms 

time 

Hostcode run time+ 
695 715573 ms ms ms 

Wildforce setup time 

41 msData transfer time 10 ms 40ms 

Hardware execution . 
10 1110 ms ms ms 

time 

Total time to process 
11777ms5718 ms 9890 ms 

one image 

These results are also shown graphically in Figure 4.8.For both manual and 

automated implementation the process time ofone image is dominated greatly by the 

board configuration time.In the manual implementation,some ofthe FPGAsended up 

with the same glyphs.This means that not everyFPGA needed to be reprogrammed 

every time[4]. Only 11 FPGAs needed to be reprogrammed.Because ofthis,the total 

processing time for the manualimplementation was reduced significantly,nearly to the 

half, when compared with the automated mapping. 

The partitioning process cannot handle the situation where some ofthe FPGAs 

might have the same glyphs.This is a very challenging problem that will have to be 

addressed in future research.In section 4.1 it was mentioned that minimizing the number 
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Figure 4.8 Image processing time for the ATR application
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ofFPGAs used will reduce the total processing time for one application. Referring to the 

processing time results for the two different automated implementations shown above,it 

is obvious that the 20FPGA implementation has a better performance when compared to 

the 23FPGA implementation.The 20FPGA implementation needed four board 

configurations. Atthe other side,five board configurations were needed for the 23 

FPGAsimplementation. . 

The total processing time ofoneimage can be further improved by targeting 

larger hardware architecture.A hardware board with morePE capacity and bigger RAMs, 

which requires only a single board configuration for a particular application, will reduce 

the processing time significantly be removing the board reconfiguration time and by 

reducing the hostcode and the data transfer times.The ATR application has unusual 

high number ofoperations requiringRAM access.Some ofthe delay glyphs in the ATR 

algorithm required external implementation by accessing the local RAMs.The ATR 

algorithm needs only threeRAM modules to transfer the input and output data.The rest 

ofthe RAM modules were needed to transfer data between multiple configurations and to 

implement delay glyphs.These delay glyphs could not beimplemented internally because 

ofthelimited PEs resources on the Wildforce-XL. 

Targeting the SLAAC-IV board,the ATR algorithm can beimplemented by 

using a single board configuration only.TheSLAAC-IV board has enough resources, 

one million logic gates and4local RAMsfor each FPGA,to implement the ATR 

application by using twoFP'GAs only.In this case,a total number of8 local RAMs will 

116 



be available to implementsome ofthe delay glyphs and the threeRAM modules needed 

to transfer the input and output data.Some ofthe delay glyphs can be implemented 

internally since we have enough resources on the SLAAC-IV board and these delay 

glyphs require small delay values.The remaining5RAMscan still be utilized for delay 

glyphs that require a big delay value.In the ATR application,four delay glyphs mustbe 

implemented externally since the required delay value for these glyphs is 65550 cycles. 

Referring to the manualimplementation results above,ifthe reconfiguration time could 

be eliminated,the time to process one image would be dominated by the time needed to 

run the host code plus the time to setup the Wildforce-XL. The average time for running, 

the host code plus the Wildforce setup 661ms.The data transfer time is 10ms.The 

SLAAC-IV board would need to transfer the processed data three times only,as 

compared to 11 times for the Wildforce-XL.This would reduce the data transfer time for 

the SLAAC-IV board to a negligible amount.Ifwe assume that the SLAAC-IV board 

would need 661ms to setup the board and to run the host code and 10ms for hardware 

execution,the SLACC-IV board implementation would be9times faster than the manual 

Wildforce-XL implementation,15 times faster than the 20FPGA automated 

implementation,and 18 times faster than the 23FPGA automated implementation.The 

same discussion is valid for the SLACC-IP board. 

Targeting the MSP board,the ATR algorithm can be implemented by using three 

board configurations ifthe localRAM for each FPGA is organized as two banks of 

512kX24 bits. In this case,a total number of6FPGAs and 12local RAMs will be 

available to implementsome ofthe delay glyphs and the seven RAM modules needed to 
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transfer the input and output data and data between multiple board configurations.The 

reconfiguration time cannot be eliminated since there is a need ofthree board 

configurations.The time to process one image would be dominated by the time needed to 

reconfigure the MSP board.This means the MSP board will notreduce the processing 

time to a significant amount when comjpared to SLAAC-IV board.The MSP board can 

still improve the performance ifit is compared to the Wildforce-XL implementation. 

Referring to the above Wildforce-XL results,the average total time to process one image 

for each board configuration ofthe manual Wildforce implementation is 1430ms.Ifwe 

assume that the MSPimplementation would need this time for each board configuration, 

the MSPimplementation would be1.4 times faster than the manualimplementation and 

2.7 times faster than the 23FPGAsimplementation on the Wildforce-XL. 

The Hipass filter application was automatically implemented on the Wildforce-

XL.The application utilizes twoRAM glyphs.The average of10runs gave a total 

processing time of521 ms where the hardware execution time for one image is only 3ms. 

The total processing time ofone image is dominated greatly by the time needed to setup 

the Wildforce-XL and to run the host code.The total processing time can be reduced by a 

small amount AT by targeting bigger hardware architecture,such as the SLAAC-IV 

board,where only onePE would be needed to implement the Hipass filter. In this case, 

AT would include the delay time between two PEs,the delay time between the core and 

thePE interface circuit for two PEs,and the reduced time for the board setup and the host 

code run time since only onePE would be used. 
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Based on the above discussion the total processing time for the NVL algorithm 

can be estimated by targeting different hardware architectures.The NVL algorithm 

utilizes twoRAM access nodes so that two PEs is needed by targeting the Wildforce-XL 

and only onePE is needed for the SLAAC,the MSP,the Wildforce-XLl boards.The 

hardware execution time can be estimated by counting the number ofcycles needed to 

process oneimage.For one image ofthe size 640x480 and a running frequency of 

25MHzthe hardware execution time is 368ms.Targeting the Wildforce-XL and adopting 

the time needed to setup the board and the host code run timefrom the Hipass filter, the 

NVLtotal processing time for one image is 885ms. The total processing time can be 

reduced by a small amount AT by targeting the other hardware architectures. 

The above discussion shows that selecting the proper hardware architecture will 

improve the performance for a particular application greatly.Targeting a hardware 

structure with moreRAMsfor each FPGA is preferred for an application utilizing a high 

number ofoperations requiring RAM access.These results show that both the 

partitioning process and the hardware architecture determine the performance rate for a 

particular application.Table 4.30summarizes the total processing time,given in ms,for 

three different applications by targeting different hardware architectures. 

119 



Table4.30Processing time for different hardware architectures 

Applications Wildforce Wildforce MS? MS? SLAAC- SLAAC-

-XL -XLl 2RAM 1 RAM 1? IV 

Blocks Block 

5718/9890ATR 
-671 4290 671 671 

Manual/20PEs/23PEs 711777 

Hipass Filter 521 521-AT 521-AF 521-Ar 521-Ar 521-Ar 

- -NVL 885 885-AT 885 885-Ar 
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5;Conclusion 

The goal ofthis research was to develop and investigate three different 

partitioning algorithms and determine the one that has a higher performance rate.The 

research presented in this thesis accomplished these goals.In the first and the second 

approaches,we discussed the developmentand implementation oftwo existing 

algorithms.The first approach is a hierarchical partitioning method based on topological 

ordering(HP).The second approach is a recursive algorithm based on the Fiduccia and 

Mattheyses bipartitioning heuristic(RP). Weextended these algorithms to handle the 

CHAMPION partitioning constraints by targeting different hardware architectures.We 

also introduced a new recursive partitioning method based on topological ordering and 

levelization(RPL).In addition to handling the partitioning constraints,the new approach 

efficiently addresses the problem ofminimizing the number ofPEs used to implement a 

particular application and overcoming the weaknesses ofthe HP and RP algorithms.The 

hardware architectures considered in this research includes the Wildforce-XL,the 

SLAAC-IV,the SLAAC-IP,and the MSP boards. 

The partitioning strategy is based on the following constraints; 

1. Capacity per partition 

2. Number of1/0 pins per partition 

3. Each partition can only have oneRAM access module 
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4. Input module and output module mustbe placed in the first partition and in 

the last partition. 

5. Temporal partitioning constraint. For multiple board configurations,storage of 

intermediate results between board configurations is needed. 

6. Maintaining the acyclic constraint so that all edges point the same way(from 

left to right). 

One ofthe major goals in this research is to target different hardware 

architectures.The partitioning algorithms were extended to be dynamic so that the 

partitioner will read the particular hardware structure datafrom a partitioning 

configuration file.This will enable the user to change some specific information in the 

configuration file instead of working inside the partitioner and gives the user the 

flexibility to switch from one hardware architecture to another one. 

The performances ofthe three different partitioning approaches were compared 

against each other. Comparisons between these algorithms were made on a variety of 

netlists.The comparison was based on the number ofPErequired to implement the netlist 

on the targeted hardware board and the running time for the partitioner. Practical netlists 

and random generated netlists were used to investigate the three partitioning algorithms. 

In this research we considered a subset ofnetlists for CHAMPION applications, 

which were implemented automaticallyfrom the Cantata workspace to the Wildforce-XL 

platform.This subset of netlists includes the Hipass Filter, the NVLRoundO,and the 
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ATR applications.The automatic target recognition(ATR)was given a special attention 

in this research because this netlist is a very challenging one.The ATR was first 

implemented manually by the CHAMPION research group to assist in the development 

offunction libraries and hardware for use in the CHAMPION system.The ATR 

application has an unusual high number ofoperations requiring RAM access.This 

number ofRAMs made the ATR netlist a very challenging one. 

To the best ofour knowledge,there exist no benchmarks that represent our 

partitioning constraints.For this reason,a random netlist generator to produce 

benchmarks was developed in this research.By considering large netlists, we were able 

to investigate the performance ofthe HP,the RP,and the RPL algorithms.The netlists 

R300-R1500 were produced randomly.In addition,a very challenging netlist M29,which 

utilizes7RAM modules,was generated manually to challenge the three partitioning 

algorithms. 

We started the evaluation process ofthe partitioning algorithms with netlists that 

were known to have a partitioning solution.The RP and HP algorithms had difficulties in 

producing valid partitioning results for netlists which utilized a high percentage ofRAM 

access modules.For example,the ATR and M29 utilize a high number ofRAM modules. 

The RPL algorithm produced 20 partitions for the ATR netlist within 2seconds,while 

the RP algorithm produced 23 partitions within9seconds by targeting the Wildforce-XL. 

TheHP algorithm failed to partition the ATR netlist. Both RP and HP algorithms failed 
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to partition the M29netlist by targeting the Wildforce-XL board.However,the RPL was 

able to partition the M29netlist. 

In several examples,the number ofpartitions produced by RPL algorithm was 

less than the number produced by the other algorithms.TheRPL algorithm uses a level 

construction step,denoted as a preprocessing step,to reduce the weaknesses ofthe HP 

and RP algorithms and to minimize the number ofPEs used.Since the RAM access 

constraint is a very challenging one,the preprocessing step was able to solve any 

conflicts associated with this constraint before moving to the partitioning step.TheRPL 

algorithm creates partitions by moving levels instead ofnodes to the current partition. 

Because ofthis,the run time for the RPL wasfaster when compared to the HP and RP 

algorithms. 

In this research we considered several hardware architectures which includes the 

Wildforce-XL,the MSP,and the SLAAC boards.The partitioning results for the run time 

and the number ofPEs used varied with the selected hardware architecture. For the three 

partitioning algorithms,the run time and the number ofpartitions were reduced 

significantly by targeting hardware boards with bigger I/O,biggerPE capacity,and 

biggerRAMs.For example,the RPL algorithm produced 63 partitions for the R1200 

netlist within 178 seconds by targeting the Wildforce-XL board.However,the algorithm 

produced 8 partitions within 103 seconds for the same netlist when we targeted the 

SLAAC-IV board.In general,this big change reduces the computation time for the 

commercial tools and the data processing time for a particular application. 
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Minimizing the number ofthe PEs used was one ofthe primary goals in this 

research.To show the importance ofthis point,the ATR application was implemented 

automatically from the CANATA workspace to the Wildforce-XL board for the two 

different partitioning results produced by the RPLand the RP algorithms.The first 

partitioning result used 20FPGAs.The second partitioning result used 23FPGAs.The 

resulted total time to process one image for the 20FPGAs and the 23FPGAs 

implementations is 9890ms and 11777ms respectively.The total time to process one 

image for the manualimplementation was5718ms.The manualimplementation used 20 

FPGAs where only 11 FPGAs needed to be reconfigured.Because ofthis,the manual 

implementation was faster than the automated implementation.In this research,we also 

discussed the implementation ofthe ATR application by targeting the SLAAC and the 

MSP boards. The estimated total time to process oneimage on theSLAAC board would 

be 37times faster than the manualimplementation and77times faster than the 23FPGAs 

implementation on the Wildforce-XL.Atthe other side,the MSP board would be 1.4 

times faster than the manualimplementation and 2.7 times faster than the 23FPGAs 

implementation on the Wildforce-XL.These results showed that both the partitioning 

process and the hardware architecture determine the performance rate for a particular 

application. 

In the CHAMPION design flow each sub-netlist resulting from the partitioning 

step must be converted to a structural VHDLfile representing the hardware resources 

desired for each FPGA.APERL script file was written to generate the structural VHDL 
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file and to assign the communication signals between the PEs.The script file identifies 

the glyphs used in the sub-netlist,the connections between glyphs,and the connections 

between glyphs and the otherFPGAs. 

The host code,which is used to communicate with the board,was automated to a 

certain level.The hostcode uses a set offunction calls provided by the manufacture of 

the ACS.In addition,the automated host code uses a configuration file produced by a 

PERLscript, which accesses the resulting sub-netlists and extracts the configuration data. 

This configuration file is used by the hostcode to determine the number of 

configurations,the name and location for each programming bit file,ifa specificPE 

needs to access the SRAM,and where to write the result after each configuration. 

There are several improvements that can be investigated in the future to enhance 

the solution quality produced by the partitioning process.The effect ofusing look-ahead 

schemes in the partitioning process can be explored.Thelook-ahead method was used in 

many previous works where enhancements were reported.In this case,the partitioning 

process can be improved by defining a gain vector for each node.Using the gain vector 

allows to swap nodes that reduces the mean cuts in the resulting partitions. 

The partitioning process investigated in this research could not handle the 

situation where some ofthe FPGAs might have the same glyphs.This is a very 

challenging problem that will have to be addressed in a future research.This will improve 
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the data processing time by reducing the number ofthe reconfigure PEs.It is not clear to 

the'author ivhatform the solution to this problem may take. 

TheRAM access constraint was the most challenging one for the partitioning 

process and the performance ofapplications on the hardware boards.This constraint can 

be relaxed to a certain level by implementing some ofthe used RAM modules internally. 

This will require hardware architectures with big resources.Some oftheRAM modules, 

which are used to transfer the input and output data and between multiple board 

configurations,need to be implemented externally.In several examples,the I/O 

constraint between multiple board configurations could not be met during the partitioning 

process. One way to overcome this problem is to use hardware architectures with bigger 

RAM resources. Another way is to multiplex data between aPE and the localRAM 

whenever the I/O constraints cannot be met.This will require extra implementation of 

multiplexing glyphs. 
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