University of Tennessee, Knoxville

na LINIVERSITY o

TENNESSEE TRACE: Tennessee Research and Creative
KNOXVILLL Exchange
Doctoral Dissertations Graduate School

12-2000

Developments and experimental evaluation of partitioning
algorithms for adaptive computing systems

Nabil Kerkiz

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation

Kerkiz, Nabil, "Developments and experimental evaluation of partitioning algorithms for adaptive
computing systems. " PhD diss., University of Tennessee, 2000.
https://trace.tennessee.edu/utk_graddiss/8320

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.


https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F8320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

| am submitting herewith a dissertation written by Nabil Kerkiz entitled "Developments and
experimental evaluation of partitioning algorithms for adaptive computing systems." | have
examined the final electronic copy of this dissertation for form and content and recommend
that it be accepted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor
We have read this dissertation and recommend its acceptance:
Mike Langston, Danny Newport, Dan Koch, Chandra Tan
Accepted for the Council:
Carolyn R. Hodges
Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



To the Graduate Council:

I am submitting herewith a dissertatioh written by Nabil Kerkiz entitled "Develophient
and Experimental Evaluation of Partitioning Algorithms for Adaptive Computing
Systems." I have examined the final coﬁy of this dissertation for form and content and
recommend that it be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy, with a major in Electrical Engineering.

Aol d W Boldisn

Dr. Donald W. Bouldin, Major Professor

We have read this dissertation

and recommend its acceptance:

Dr. Ng:e Langston

/,«/;f\

Dr. Danny N ewport

(Q)/'///uﬂ D K@DQ~

Dr. Dan Koch

L ioon, T

Dr. Chandra Tan

Accepted for the Council:
N

AN

Interim Vice Rrovost

Dean of The Graduate School




Development and Experimental Evaluation of Partitioning»

Algorithms for Adaptive Computing Systems

A Dissertation
Presented for the
Doctor of Philosophy
Degree
The University of Tennessee, Knoxville

Nabil Kerkiz
.December 2000



Acknowledgement

I would like to extend my sincere gratitude to my advisor, Dr. Don Bouldin, for
his support and guidance in this projéct. Without him, this work could never have been
completed. Special thanks to Dr. Chandra Tan for His effort and assistance which
contributéd greatly to this work. I would also like to thank Dr. Mike Langston, Dr. Danny
Newport, and Dr. Dan Koch for serving as members of my thesis committee. I also
acknowledge the Defense Advanced Research Projects Agency for its support of this

research under grant F33615-97-C-1124.

Much appreciates and love is extended to all of my family and friends. I would
liké to especially acknowledge my parents, Fouad and Ganimah, and my wife, Huda, for

their continued support and love throughout this work.




Abstract

Multi-FPGA systems offer the potential to deliver hi ghér'performance solutions than
traditional computeré for some low-level computing tasks. This requires a flexible
hardware substrate and an automated mapping system. CHAMPION is an automated
mapping system for implementing imgge processing applications in multi-FPGA systems
under development at the University of ’i‘ennessee. CHAMPION will map applications in

the Khoros Cantata graphical programming environment to hardware.

The work described in this dissertation involves; the automation of the CHAMPION back-
end design flow, which includes the partitioning problem, netlist to structural VHDL
conversion, synthesis and placement.and routing, and host code generation. The primary
goal is to investigate the development and evaluation of three different k-way partitioning
approaches. In the first and the second approaches, we discuss the development and
irﬁplementation of two existing algorithms. The first approach is a hierarchical
partitioning method based on topological ordering (HP). The second approach is a
recursive algorithm based on the Fiduccia and Mattheyses bipartitioning heuristic (RP).
We exténd these algorithms to handle the multiple constraints imposed by adaptive
computing systems. We also introduce a new recursive partitioning method based on
topological ordering".and levélizétion (RPL). In addition to handling the partitioning
constraints, the new approach éfﬁqiehtly addresses the problem of minimizing the
number of FPGAs used and the amount of computation, thereby overéoming some of the

weaknesses of the HP and RP algorithms.

iii



-"I-‘a:ble of COlite;ltS
1. Introduction , . ; ; 1
1.1 (ﬁHA-MPIC.)N design flOW c.iecevesiririiieice s 2
1.2 Field Programmable Gate AITAYS .....cc.ccoeereucrereimsenneserenensrnanenss .......... 7
1.3 Hardware Architecture......... SRR eeerieeeeste st ete e st et a et e s e e sa s a e sa s e b e b e nane 10
1.3.1 Wildforce-XL BOArd......cccceeeuireieeniiniiiiiiniee ettt 10
1.3.2 MSP BOArd ...cvveemmreriencemesneeesenenes ettt 13
1.3.3 SLAAC Board ovcvnee e e e e 13
1.4 KNOTOS CANLALA. .....cocvevvereieeeeeeeesessesssesssesessessacessesesesenssssstsesstssssessssssssssssssnsassens 15
1.’5 Placement and ROULNE .....c.eeveveriireecieerceiiritinic ettt 18
2. Research Motivation and Background 21
2.1 Partitioning Methods for Multi-PE System ................... ettt n s s nanaes 21
2.1.1 Bi-Partitioning MEthOGS ......ceseeeresseeeeecesmsrersssrerrsnmspesssssessssssessesios S—
2.1.2 Multiway Partitioning Methods...........iceeveericnniniiiens cerereterebe et 28
2.1.3 BeNefit FUNCHOM ...cuvurnmiereesemseeerressassseseresssssssesssssssssnsenseses RT— 31
2.3 Partitioning CONSLIAINLS .....ccceevvereesrererariessiistiseeesieisssesiseesesisessessaesasessesasesssesseees 32
3. Partitioning Algorithms 41
3.1 Hierarchical Partitioning Based on Topological 'Ordering (HP) ..... 43

3.2 Recursive Algorithm Based on Fiduccia and Mattheyses Bipartitioning

15 (ST TR 0230 WO e s ereeeeeeereen 45

v




3.3 A New Recursive P.arti‘gio'ni'ng Metho_d Based on Topological Ordering and

Levelization (RPL) ..... ..... et naesasnans rreeeeens 49
3.3.1 Level Constrﬁqtithste? ............. .................... S 51

“ 3.3.3 P'artitiopiﬁg Step ..... SR S 54

| 4 Experimental Results and Analy_s‘is eeeee D9
41HP Algofiphm.I.........’..I..’.......'.»..'.v...‘.........' ................. | e e 6

" 43RP Algorithrh .................. g e e ~ _— 76
41REL Al‘gorithm....‘ ..... | SR SURTT——
4.4 Comparjson Between RPL, HP, ’and- RP Algorithms......,........'........; ....... R 92

4.5 Pré)cessing Time for Three Different Applications by Targeting Different

Hardware Architectﬁres. ' | : vessassaess 105
5. Conclusion ' _— ’ - ‘12.1
© References ‘ - ' ‘ . .‘ : ' <‘1£8
'VITA ' '  : ' } ruoses 1134




List of Tables

Table 4.1 Partitioni’n'g NEHLISES . .vv. e veeseerere e ceeesesereseeesessseaeeesssssesnssessasssnes evereeeeeeeneee 61
Table 4.2 Partitioning results for Wildforce-XL using HP algorithm.........ccceveerrnnnenene. 69
Table 4.3 Partitioning results for Wildforce-XL1 using HP algorithm........c.ccocuevrumerencnce 70
Table 4.4 Partitioning results for MSP1 board using HP algorithm. .......ccceeevvvrrnnnennen. 71
Table 4.5 Partitioning results for MSP2 board using ’HP algorithm. .....cccoevrevveeniceenicnnnee 72
Tabie 4.6 Partitioning results for SLAAC-1V board using HP algorithm...........c.cco.c..c. 73
Table 4.7 Partitioning results for SLAAC-1P board using HP algorithm..........cccceuueee. 74
Table 4.8 Partitioning results for Wildforce-XL using RP algorithrﬁ ............................... 77
Table 4.9 Partitioning results for Wildforce-XL.1 using RP algorithm......c.cceccervienenne. 78
Table 4.10 Partitioning results for MS‘Pl board using RP algorithm.......c..ccccecceiiiinnnnnnn. 7§
Table 4.11 Partitioning results for MSP2 board using RP algorithm..........cccocueennrnnncne. 80
Table 4.12 Partitioning results for ’SLAA‘C-IV board usiﬂg RP algorithm............ e 81
Table 4.13 Partitioning results for SLAAC-1P board using RP algorithm....................... 82
Table 4.14 Partitioning results fof Wildforce-XL psing RPL algorithm ......cccccevveenncen. 86
Table 4.15 Partitioning results for Wildforce-XL.1 using RPL algorithm ........ccceoeeueuee. 87
Table 4.16 Partitioning results for MSP1 board using RPL algorithm. .......cccoeinneinncins 88
- Table 4.17 Partitioning results for MSP2 board using RPL algorithm. ......c.ccccceinnnennie. 89
Table 4.18 Partitioning results for SLAAC-1V board usiﬁg RPL algorithm.........ccc.c...... 90
| Table 4.19 Partitioning results for SLAAC-1P board using RPL algorithm .................... ‘91

Table 4.20 RPL Partitioning results for the ATR by targeting the Wildforce-XL board. 98

Table 4.21 RP Partitioning results for the ATR by targeting the Wildforce-XL. board....99

vi



Table 4.22 HP Partitioning results for the ATR by targeting the Wildforce-XL............ 103

Table 4.23 Partitioning Results for the Wildforce-XL Board........cococvrvuniinennn. — 107
Table 4.24 Partitioning Results for the Wilciforce-XLl Board......cccocevenvinnnnenn. N 108
Table 4.25 Partitioning Results‘f‘or the MSP1 Board.........cccovvvinmiiniinnniiiiriiieieeeene 109
Table 4.26 Partitioning Results for the MSP2 BOAL .vvveerreeeeesscceeeveessesssssseeresessnees 110
Table 4.27 Partitioning Results for the SLAAC-1V B0ard .......ccevveveemiiiniiiiiiiiiicicninnnnns 111
' Téble 428 Partitioning Results for the SLAAC-1P Board................... aeveerenteeeeesteenneres 112
Table 4.29 Processing time for the ATR algorithim .....cccoeeeininiiiiiiiniias 114
Table 4.30 Processing time for different hardware arChiteCtUIES.......c..erverrearressreessacees 120
4

© vl




.- List of Figures

Figure 1.1 Design Flow of CHAMPION .........cooimiimimimmimsnecsssisissessssssisssssssssssse: 3
Figure 1.2 Back-End FIow of CHAMPION......o.cooeoososssesesstssesesesesesscen 5
Figure 1.3 General structure of FPGAS .......ccvewmmrrimmmmmmssssssssssssssssssssssssness SR 8
Figure 1.4. Basic Wildforce-XL Block Diagram . ... 11
Figute 1.5. Wildforce-XL Board A USed . . T, 12
Figure 1.6 MSP Board as USEd. ......cccevereininineeeniiiiiniinitiissssss s 14
Figure 1.7 SLAAC Boards as USEd. ......ccovvueurireseniniimnniniiitnissses st 16
Figure 1.8 Hipass FIer ..o, rtereretee et aees 18
Figure 2.1 An example of KL HeUristiC. ...covvereeenmiiiiiiiiccee o 24
Figure 2.2 Ulustration of the gain concept for FM HeuristiC. ..cceeevrviiimmieiciiniinerecneniene 26
Figure 2.3 The concept of the benefit function ... 33
Figure 2.4 Two POSSIDIE CULS ...cveveveiiieiiteeiececeen e 56
Figure 2.5 Multiple board cOnfiguration ............ceeeeeeinminiininmin e 38
Figure 2.6 ASYCLIC CONSIIAINL ......coveuirrereienisieesesicene ettt 40
‘ Figure 3.1 Initial Phase Of HP. ..o 44
Figure 3.2 Illustration of the Partitioning using HP ... 46
Figure 3.3 Pseudo-Code for the HP AIgOTIthIm.....ccovovevcoiiiiiiiiiiiiiicene 46
Figure 3.4 Recursive algoritﬁm based on M élgorithm .................................................. 48
Figure 3.5 Pseudo-Codé for the RP AIgOHhI e oo 49
Figure 3.6 Reduced form after 16\)61 construcfion. ............................................................ 50
Figure 3.7 Pseudo-Code for the RPL Algorithim.....c.covomniininmiimeiiiiiiiciiienneees 52

viii




Figure 3.8 Illustrative example for RPL algorithim .c....eeevinmiiniiiniiiiiiicene 53

Figure 3.9 RAM access conflict.............. rereea eerresseesseesseestesteetestetesat st ranesaeseaesaresaenentaras 55
Figure 3.10 D]ustration of th;: péﬂitionfng SLEP cvereirere e e 56
Figure 3.11 Illustratioﬁ of the Iﬁanitiéniﬁg ] (=)o OO 57

' Figure 4.1 Partitioning Configuration File for Wildforce-XL ......ccccovviivinriniiinnninnnns 64
Figure 4.2 Partitioning Conﬁguration File for Wildforce-XL1 ....ccccooiniiiiininninnninnnnns 65
Figure 4.3 Partitioning Configuration File for SLAAC-1V ..o, 66
FiGUIE 4.4 M29 NSt ..vvvvrrvvvrsrrressssesnesesssssssesssesssssssnsssss s ssssssssss s sssssssone 95 -
Figure 4.5 Run time during tﬁe ATR partitioning process......... ........................... 101
Figure 4.‘6 Run time of the HP algorithm during the ATR partitioning process............. 104
Figure 4.7 Partitioning results for the WALAFOTCE-X Lo veereereeeeiemereeeeseeoeesmeesseesssesseeseenes 106
Figure 4.8 Image processing time for the ATR application.........ccccevivieniinieiiernninnnns 115

ix



1. Introduction

In recent years, developments in vthe; area of Field Programmable Gate Arrays
(FPGAs) have allowed the concept of reconfiggrable computing machines to become
reality. Advances in fabrication techpology have allowed multiple FPGAs of sufficient
capacity to be fabricated for this purpose. FPGAs owe much of their potential to their
reconfigurability. They can be reconfigured many times so that design faults can be

corrected simply by reconfiguration.

Due to the short testing cycle and time to implement, FPGAs have long been used for
the prototyping of ASICs. Sometimes FPGAs are used to emulate other component
architectures because of their versatility. These are also used as hardware accelerators for

some applications that would otherwise take longer to process on a general-purpose CPU.

At the University of Tennessee, research is currently underway to develop an
automated system for mapping image processing applications in a graphical
programming environment called Khoros Cantata to configurable computing hardware. It
is expected that this system, calléd CHAMPION, will allow new applications to be
implemented in much less time than is required now, since many portions of application
mapping that must currently be done manually will be automated. It is also expected that
the system will make the power of configurable hardware more accessible to users who .

lack digital hardware design experience.




1.1 CHAMPION design flow

The design flow for a CHAMPION application being implemented using multiple
FPGAs is shown in Figure 1.1. The work of the author is a part of the overall research
being conducted which includes the partitioning problem, netlist to structural VHDL
conversion, synthesis and placement and routing, and host code automation. The design

flow consists of several steps and a brief discussion of each step is provided here.

The first step is to insert the application into the Cantata workspace and convert it
into an intermediate form for use by CHAMPION. Each glyph in the Cantata workspace
must be replaced by its hardware equivalent. Any application in the Cantata workspace
can be modeled as a directed acyclic hypergraph. In the hypergraph, nodes represent the
hardware glyphs and the interconnections between nédes are represented by directed -

edges.

The second task is to convért the directed hypergraph model to a netlist. The netlist
representation includes all information about the application hypergraph such as node

size, edge width, source and destination of each node.

The third step is the data width matching and data synchronization. If data width
matching is needed, a pad glyph must be inserted between two glyphs that differ in edge
size. In data synchronization, data must be synchronized because all of the hardware is
synchronous and data is processed every rising clock edge. If a glyph has two inputs and

2




Application

Khoros Cantata

A

Workspace to
Netlist

A
Data Matching
and Data
Synchronization

A

Partitioning and
Global Routing

Y

Netlist to
Structural VHDL

4
Synthesis Tools
and
Place & Route

A 4

Host Program
Automation

A
Adaptive
Computing
System

Figure 1.1 Design Flow of CHAMPION
. ,



data are not available to both inputs at the same time, then a delay buffer needs to be

inserted before one of the inputs to fix the problem.

The fourth task is the partitioning problem. At this point in thg design flow, the
Cantata workspace has been converted into a directed hardware hypergraph. The netlist
representation of the directed hardware hypergraph has the necessary informatio‘n to
specify the glyphs and the connections between them. The hardware graph is a set of
vertices representing the hardware resources and a set of directed edges representing the
conne;:tions between them. Each vertex has a number representing the size of the
hardware resources available in the vertex (measured in CLBs for Xilinx FPGAs). Each
edge has a number representing the width of the connections. If the application graph .
does not fit in a single processing element (PE) or FPGA, then the hardware graph must
be partitioned in.to sub-graphs. In most cases, the size of the entire graph is larger than the
size of a single PE. Therefore, there exists a need for a multiple partitioning algorithm.
This step will be explained in more detail since the research of the author involves the
development of multiple partitioning algorithms, which meet the constraints imposed by

the hardware architecture.

In the fifth task, each sub-netlist resulting from the partitioning step, as shown in
Figure 1.2, must be converted to a structural VHDL file representing the hardware
resources desired for each FPGA. A PERL script file written by the author is used to
generate the structural VHDL file. The script file identifies the glyphs used in the sub-
netlist, the connections between glyphs, and the connections between glyphs and the

4




Partitioner

Application
Entire Netlist

Input Data

N-Sub-Netlists . |—

Netlist to

For each
Sub-Netlist

ACS

A

Sequencer

File

Host

Configuration

- Structural
VHDL

Precompiled
Libraries INF

Pin Assighment

1/O Circuitry
on PE

Structural
VHDL

Y

Synthesis
Tools

Merge and
Place & Route

A

Contiguration

Sequencer

Bit File

Precompiled
Libraries
(XNF, EDIF)

Figure 1.2 Back-End Flow of CHAMPION




other FPGAs. Furthermore, the script file accesses precompiled VHDL files to extract the
port map information for each glyph. There are other VHDL files that specify the board
architecture, internal interface logic for each FPGA, and global signals on the board. The
script file accesses these files for pin assignment. .

The sixth task deals ;Nith the physical design phase. Once the structural VHDL for
each Sub-netlist is complete, it is necessary to create the programming files to actually
implement the desired hardware in the F?GAs'on the ACS board. All of the behavioral
information is in the pre-synthesized files for each glyph. The synthesis tools to generate
the synthesized file for a sub—netli;c,t, which is required to configure each PE, can access
the pre-synthesized files for each glyph. The place and route software tools are then used
to map the hardware description in the sub-netlist file to specific resources available in
each PE. This results in a programming bit file, whiqh specifies the configuration of all
the function generators and storage units in the CLBs, as well as the configuration of all
of the programmable interconnecti(;ns in the PE. The bit file can then be downloaded to
the PE to specify its behavior. One programming bit file is needed for every

configuration of each PE.

The final step is the host code generation. A program written in C takes care of
certain functions necessary to enable the ACS (e.g. Wildforce board) to be used. A set of
function calls to communicate with the board is provided by the manufacturer of the
ACS. These function calls must be used to create the host program. This host program
must initjalize the ACS board and download the programming bit files for each PE. The

host program reads image files from the workstation hard drive to be used as input to the



application, and writes the application results back to the hard drive. The automated host
code uses a configuration filé produced by a PERL script, which accesses the resulting
sub-netlists and extracts the configuration data. This configuration file is used by the host
code to determine the number of configurations, the name and location for each
programming bit file, if a specific PE needs to access the SRAM, and where to write the
result after each conﬁgurati;)n. If multiple configurations of the ACS board are needed,
then the data resulting from each board configuration is written to the hard drive and
supplied to the next configuration. After each board configuration, the user can look at'
the resulting data from each board configuration and compare it with the expected result
to detect any error that may occur during implementation. In addition to the function calls
provided by the manufacturer, the automated host code uses a dynamic data structure that
grows or shrinks since different applications may have a different number 6f

configurations.
1.2 Field Programmable Gate Arrays

A field programmable gate array (FPGA) is a programmable logic device that
supports implementation of a logic circuit containing thousands of gates and
interconnections. FPGAs are quite different from PLDs (programmable logic devices)
and CPLDs (complex programmable logic devices) because FPGAs do not contain AND
or OR planes. Instead, FPGAs provide programmable logic blocks for implémenting the‘
required logic functions [28]. Figure 1.3 shows a general structural] of a FPGA [14]. In a

FPGA, the logic blocks are arranged in a two-dimensional array, and the interconnection

7



VO Pads

— —— Loglec Block

(b) Two input
look-up table
(LUT)

(a) General structure of FPGAs

Tl |
sﬂ‘"

&

SRAM

(c) Pass-transistor switch in
FPGAs

Figure 1.3 General structure of FPGAS




wires are organized as horizontal and vertical routing channels between rows and
columns of logic blocks. The routing channels contain wires and programmable switches
that allow the logic blocks to be connected in many ways. Each programmable logic
block in a FPGA typically has a small number of inputs (say four) and one output. The
most commonly used logic is a lookup table (LUT), which contains storage cells that are
used to implement a small logic function. The storage cell holds a single logic value,
either O or 1. Figure 1.3b shows the structure of a small logic block capable of
implementing any logic function of two variables. In FPGAs, a switch can be
implemented by using an NMOS transistor, with its gate controlled by an SRAM cell.
This type of switch is known as a pass-transistor switch. The NMOS switch is turned off
if a 0 is stored in the SRAM cell. But if a 1 is stored in the SRAM cell, then the NMOS
switch is turned on. In this case, the NMOS switch forms the connection between the two
wires attached to its source and drain terminal. Figure 1.3c shows the structure of the

NMOS pass-transistor.

FPGAs are high ciensity devices, which are commercially available at low cost. The
programmability features and the short production times of these devices enable changes
to be incorporated immediately. These features make FPGAs suitable for prototyping
ﬁpplications, and implementation of applications formerly targeted to ASICs. The main
disadvantage of FPGAs is the lower speed of operation. The programmable switches and
the associated prograrnmiﬁg circuitry requjre a largc a mount of the chip area. The
switches have significant resistance and capacitance, which account for the low speed of

operation [3].



1.3 Hardware Architelc'ture

In this section we w1ll descrlbe the hardware archltectures of the three different

adaptlve computing systems (ACS) wh1ch were chosen to 1mplement the CHAMPION

applications.

1.3.1 Wildforce-XL Board

The Wildforce-XL board from Annapolis"Micro Systems was chosen as the first
architecture used in the CHAMPION project. Tﬁe, Wildforce-XL board uses Xilinx
XC4000 series FPGAs. It is a PCI-bus card, which uses five Xilinx XC4000XL FPGAs
for processing elements. The specific version of the board used had one XC4036XL
FPGA and four XC4013XL FPGAs available for processing. Figure 1.4 shovx"s the basic

Wildforce-XL block diagram.

Annapolis Microsystems refers to the FPGAs on the Wildforce board as processing
elements (PEs). The XC4036XL FPGA is called a control processing element and given
the designation CPEO. It differs from the other FPGAs in that it is larger, and also in that
it has control lines available for various resources on the bpard, such as the external I/O
interface and crossbar configuration register, that are not available to the other FPGAs.
The four XC4013XL FPGAs are gis/en the designations PE1, PE2, PE3, and PE4. These
four processing elements are connected together in a linear array by a 36-bit systolic bus.

All five FPGAs can be connected by the 36-bit crossbar, which selectively allows

10




Local Bus

PCI
Interface

<«4—) = 36-bit Data Path
Xilinx :_—_;[ ‘ R R CI‘OSSbal' ‘ ]

| 4036XL \ : ‘ —
FPGA o ¢ ' # ¢ ¢
Local RAM N Xilinx _ |[4—pp- Xilinx  dg—Ppp Xilinx Qgepb Xilinx g

PEO - 4013XL .4013XL R 4013XL 4013XL
FPGA FPGA ' FPGA FPGA

Local RAM _Local RAM

Local RAM

LocalRAM |~

Figure 1.4. Basic Wildforce-XL Block Diagram [4].

connections between any of the processing elements. CPEO can connect to the other

processing elements only through the crossbar.

Each FPGA on the board has a small daughter-board associated with i which can be
populated with memory or a Digital Signal Processing (DSP) chip. Each of the FPGAs on
the board used in th1s proJect had 32 KB of 32-bit SRAM on its daughter-board Each
daughter-board has a dual-port memory controller such that both the FPGA and the host
computer, can 'accessthe SRAM. ‘The vmother'board also contains a PCI interface for
communicating with the host 'comr)uter,tanr'i several FIFO registers to facilttate data =

transfer across the PCI bus.

Since there aré many resourses available on the Wildforce board and many
- configurations of the crossbar and other components, it was decided to use a constrained’

" configuration of the board for the automatic implementations. This reduces:the problem

11




comple.xity to a morc; _ménageable lé§el. The constraiqed éonﬁguration of the board used.
in this project does not use any of tﬁe FIFOS. All corﬁmimication with. the host is done
through the SRAM associated witp ‘each processing‘element. The crossbar is used only to
prqvide a 36-bit path from CPEO to PE1. The connections between processing elements
are norfnally-bidirec;tional. fof the qonstrained implementafion, however, it was decided
that the direction of all connections between processing elements would be fixed so that
all signals would pass in one direction only. The board topology became a linear array,
with all signals starting in CPEO paésing to PE1. No signals can run from PE1 back to
CPEQ. Similari&, all sigﬁals frorh PE1 run to PE2, with no signals allowed to pass Back
from PE2 to PE1. A diagram showing the configuration of the Wildforce-XL board as

_used in this project is shown in Figure 1.5.

Local Bus

PCI
Interface”

~  4— =36-bit Data Path

1 - e "o
. g
.

) : N '
Xitine. f——ap - oy .. Crossbar
4036XL ST : A |
FPGA - *
- | Local RAM Xilinx fepy  XilinX Qe———Ppp Xilinx g Xilinx o

PEO . 4013XL 4013XL . 4013XL ' 4013XL
FPGA FPGA FPGA FPGA

Local RAM

Local RAM Local RAM Local RAM

Figure 1.5. Wildforce-XL Board As Used [4].

12



1.3.2 MSP Board

The MSP board uses Altera FLEX 10K series FPGAs. It is a PCI-bus card, which uses
two FLEX10K100A FPGAs for processing elements. Since there are many resourses
available on the MSP board and many configurations of the crossbar and other
components, it was decided to use a constrained configuration of the board for the
automatic implementations. A diagram showing the configuration of the MSP board as
used in this project is shown in Figure 1.6. The two FLEX10K100A FPGAs are given the
designations PE1 and PE2. These two processing elements are connected together in a
linear array by a 80-bit systoli-c bus. The board té)pology became a linear array. The

capacity of each FPGA is very large, where each FPGA comes with 100K logic gates.

Each of the FPGAs on the MSP board used in this project has 512 KB SRAM on its
daughter-board. The 512KB RAM can be organized as one bank of 512kX48 bits or two
banks of 512kX?24 bits Each daughter-board has a dual-port memory controller such that

both the FPGA and the host computer can access the SRAM.

1.3.3 SLAAC Board

In this research project we consider two versions of the SLAAC board, the SLAAC-
1V and the SLAAC-1P. The SLAAC-1V board uses Virtex series FPGAs while the
SLAAC-1P uses Xilinx XC40150 FPGAs. The SLAAC board has many resources.
Similar to the Wildforce-XL and MSP boards, it was decided to use a constrained

configuration of the SLAAC board for the automatic implementations.

13




PE1

PE2

Local Bus
80
Altera / > Altera
FLEX10K100A / FLEX10K100A
A A
48 48
/ 2
/ /]
\ 4 Y
Local RAM Local RAM
A. RAM organized as one Bank of 512kX48 bits
PE1 PE2
Local Bus
80
Altera / 3 Altera
FLEX10K100A / FLEX10K100A
3 Y y
“ V V V
A 24 A 24 24 24
Y Y Y y
Local RAM Loca! Local RAM Local RAM

M

B. RAM organized as two Banks of 512kX24 bits

Figure 1.6 MSP Board as Used.

14



A diagram showing the configuration of the SLAAC board as used in this project is
shown in Figure 1.7. The SLAAC-1V Boérd uses very large FPGAs where each FPGA
has 1M logic gates. The SLAAC-1P board usés FPGAs where each FPGA has 750K
logic gates. For both SLAAC-1V and éLAAC-lP boards, the two FPGAs are given the
désignations PEl anvaEZ. These two processing elements are connected together in a

linear array by a 72-bit systolic bus.

Each of the FPGAs on the SLAAC-1V board used in this project has four 256KX36
bits SRAM on its daughter-board. In the SLAAC-1P, each FPGA uses four 256KX18 bits
SRAM on its daughter-board. Each daughter-board has a dual-port memory controller

such that both the FPGA and the host computer can access the SRAM.

1.4 Khoros Cantata

Khoros is a software system f'rom Khoral Research Incorporated (KRI). Khoros
has a set of toolboxes containing over 300 operators [4]. Many functions can be
implemented using these operators such as arithmetic operations, image and signal
processing functions, and data visualization. The Khoros operators can be run as stand
alone programs from the command line, or as functions called by C code. Cantata is a
graphical programming environment used to run Khoros functions. In Cantata, the user
can draw a graphical representation of an application and run it. Each function in the

Khoros toolboxes is represented in the Cantata workspace by a small icon called a glyph.

15



PE1 PE2

] Local Bus
Virtex ) / 72 _ Virtex
— 1M Logic Gates / P 1M Logic Gates e
%36 %/36 %36 %/36 . . /%36 %36 /%36 /}/36
RAM RAM RAM RAM RAM RAM RAM RAM

A. SLAAC-1V Board

PE1 PE2

Local Bus
Xilinx XC40150 / 72 Xilinx XC40150
— 750K Logic Gates / 750K Logic Gates amemy o
18 %18 /I/w %/18 18 18 18 18
RAM RAM RAM RAM RAM RAM RAM RAM

A. SLAAC-1P Board

Figure 1.7 SLAAC Boards as Used.

16




Each'y glyph has an input ‘cor\respon‘ding: to each of the possible inputs to the
functlon .and output termmals for each 6f the outputs Furthermore each glyph has a.
‘pane which is a set of mterface obJects that allow,the user to set options fora function. In f
: Cantata, the“user‘ does not need to be concern‘ed about the type of input data. Cantata

finds out if a data conversion between types is necessary and takes care of it.

~As mentioned befor'e., the objectives of' CHAMPIQN are to parse a netlist of :
Khoros glyphs and automatically map the design captured by the workspace into a form
that can be executed ona multi-FPGA platform Therefore, the development ofan

equ1valent hardware library was necessary to complete the mappmg "The Cantata glyphs

~ used in CHAMPION are called hardware equ1valent glyphs and are wr1tten in ﬁxed-pomt

- LC. These glyphs, chosen to be used in CHAMPION have to operate in Cantata ina

© manner equ1valent to the way the hardware glyphs would operate These equivalent
V_hardware glyphs are collected together mto a 11brary», wh1ch characterlzes the glyphs by
' size, delay, and /O count [5]. To a1d the mappmg procedure an attempt was made to
make the equ1valent hardware glyphs functlon as SlIl’lllaI‘ as possrble to the trad1tlonal
Khoros glyphs. By domg s0; the mappmg procedure will y1eld an almost one to one
correspondence between the Khoros workspace des1 gn and the mapped hardware
1mplementat1on F1gure 18 shows an lmplementauon ofa H1pass Filter using the ‘
| CHAMPION equ1valent hardware glyphs. A hardware glyph had to be developed for :
"every hardware- equlvalent glyph used in CHAMPION These hardware glyphs were

developed in '"VHDL.

17 .







requires a si gniﬁcant amount of routing re:sources. ’_Ifhus, this path will be much slower,
~and 'use many resources. For this 'reason; the prlmary goal of the placementlprocesstis to
minimize the length of signal wires in the FPGA. In this case, logic blocks that
communicate'with one another must be -placed together as close as possible [3]..

| Placement is a complex pro.ceSS ‘since logic ,clrcui'ts tend to have a significant amount of '
' connect1v1ty with many dlfferent functlons commumcatrng together. In this case, many

. functlons may want to be placed together to minimize the number and length of signal

wires. Because of this, the placement tools must find out. wh1ch loglc blocks are most

1mportant to place together and numrruze the total w1r1ng in the system

. There exist many software tools for perforrmng the placement step for FPGAs

The most common technique, used in the 1ndustry is s1mulated annealmg Slmulated

anneahng solves the optlrmzatlon problem by us1ng a cost functron A cost function could

be the total wire length in the design.xOnce‘a cost function is deﬁned, the placement tool i
picks a random starting point. The algorithm‘the_n repeatedly applies optimization steps to

find a new solution with a lower;cost‘.tha‘n ‘the current solution. °

The routmg process for FPGAs is the process of ﬁndrng out exactly wh1ch routing
resources w1ll be used to wire the communrcatron srgnals Smce FPGAs have '

prefabrlcated routmg channels a FPGA router must work w1th1n the framework of the

architecture resources. In deciding which channels and wires to use, and how to connect -

through the switchboxes, the router-must ensure 'th'a't',thE:re are enoug‘hresources to carry
the signal in the chosén.fouting region'sifas':well as leaving enough resources to route the -

19



other signals in the system.' The: m‘ost.common technique used for performing this routing
, step is presented in [9] The algorithm d1v1des the routing process into global and detalled
; routing In global routing, the algorithm decides which routing regions the signal will
-move through T hus‘ it w111 select the routing channels used to carry a signal, as well as . '
the sw1tchboxes it w111 move through 'l‘he detalled router dec1des whrch spec1ﬁc w1res to
use to carry the signal It ﬁnds a connected series of wires, in the channels and |
sw1tchboxes chosen by the: ’global router Wthh connects from the source to all the
destinatrons The algorithm av01ds congestron inside a' channel making sure that all

signals can be routed Successfully, as ﬂwell as mmimrzmg wire length and capac1tance on -

the path.
“For successful placement and routing, a full capacity utilizatron ofa FPGA is

avoided. T herefore a 90% utihzation of one PE isa typrcal value to perform placement

and routing successfully.



2. Researeh ‘Motivation and Background '

Asmentioned in the prev1ous chapter, there exists a need for a k-way partitioning
algorithm to SUbdivlde the CHAMPIO:Nlnetlist into multiple sub-netlists. This is done
when a largeapplication,:eannot ‘ﬁt i a s‘ingle{dev'iee'.'Each resulting sub-netlist must be
- written in a form suitable for‘further prééessiﬂg. 'vThe.resulting sub-netlist is the input )
required for structural VHDL convérsion: An apphcatlon for our purposes is equivalent
to a graph, and more specifically a° drrected acychc graph (DAG) A s1ngle device is
equ1valent to a smgle process1ng element (PE) or a'sin gle FPGA. Both expressions are-
used in our prOJect. The resultlng sub;netllst-ls cons1dered apamtron. A gate or a macro

* is the same as a node and a net is :nsed ‘to refer to an edge..
2.1 Partitioning Methods for Multi-PE System

In order for a circuit to be implemented across multiple PEs, the circuit must be cut
into pieces such that multrple constramts are met. The followrng sectlons review several

exrstmg algorrthms developed for mult1 PE pa.rtltlonmg

2.1.1 Bi-Partitioning Methods.
* Inbi- pa.mtlomng, the method beg1ns w1th a graph G with we1ghted edges E and
werghted nodes N. The graph is spllt randomly into two halves A and B. Nodes are then

moved across A and B to find a valid pa.mtlonlng result w1th a rmnrmum cut set The cut

2L



set is defined to be the sum of all weighted edges interconnecting nodes in both subsets A

-and B.} The overall goal in circuit"oartftioning is to minimize the numher of nets that are
cut. The bi-partitioning method can be used with mufti-PE systems by 'repeatedlv
applying the technique until each nanition meets the PE constraints. However, this
repeated application locks in an initial ‘solution that may be poor' ina multi)—PE system.
Also, the basic technique does nolt'consider PE to PE interconnect limifations even
though it does attempt to minimiie interconnect usage [10]. Below, we discuss a few bi-
,partitioning algorithms, which have contributed to the development of parfitioning

algorithms.
' A. KL Heuristic

In 1970, Kemrghan and L1n 1ntroduced an 1terat1ve 1mprovement algorlthm that
has become known as the foundatron of partitioning algorrthms [2]. The algorithm is a bi-
partrtlonmg algorlthm that begins w1th an initial partition A and B and iterates to improve
the cut set size. The algorrthm uses a palr;swap structure and proceeds in a serles of
passes. Durlng each pass every node is moved exactly once, e1ther from A to B or from ‘
Bto A At the begmmng of the pass each node is, unlocked, meanlng that it is free to be
' moved across A and B. A node becomes locked after swapping. The KL algorlthm
teratlvely swaps the parr of unlocked nodes a and b with the hlghest gam where the gain )

of swapping a € A with b € B is g1ven by [3]

 gain(a,b)=D, + D, ~2¢,,- a)

22




E,= number of edges inc¢ident to node a that connect to a node in subset B

" E,= number of edges incident to node b that connect to a node in subset A '
L= number of edges incident to node a that remain intemal to subse,t' A
‘ ~Ib— number of edges 1nc1dent to node b that remain internal to subset B

‘ B cab— sum of the weights of the edges that connect the nodes a and b

B The su/appingiprocess is iterated until all nodes bécome locked, and the lowest:

: co'st bisection obse'rved during the ‘bass is retumed. Another pass is then executed by .

usmg th1s partition as its 1n1t1a1 solution The algorithm terrmnates when a pass fails to

ﬁnd a solution w1th lower cost than its stamng solution. Figure 2.1 shows an example of
the KL algorithm [6] A pass of KL is 1mplemented in O(n logn). The KL algorithm

was modiﬁed by Schweikert and Kemighan to handle multi- pm nets [7]
B. FM Heuristic

In 1982, Fiduccia and Mattheyess presented a KL-mspired algorithm that takes into

cons1derat10n multi-pin nets and reduces the running time of a pass. The main difference

ibetween KL and FM is the ne1ghborhood structure In the FM algorlthm a s1ngle node is .

moved either from A to B or from B to A. Therefore the FM al gorithm was des1gned to

3 handle imbalance.

23




Initial Bisection

cutset size=9

A

cutset size=6

|
]
/

| . cutset siz’é:1

- Figure 2.1 An eziﬁirﬁ’plé of KL Heuristic

S 24



Slmllar to the KL heur1st1c the gam due to the movement of'a srngle node from

one block to another is computed 1nstead of the garn due to the swapprng of two nodes

[3]. Moving ind1v1dua1¢nodes’cenf result in unbalanced' blocks. To avord hav1ng all nodes"‘

_ migrate to one block, a balance criterion is maintained by. the definition:

Y

r|V| |A|<r|V|+w ’ .(2-j_

Where
-~ lal+lsl=P]
A
T

4 Wma,} =Lth‘e node with the maximum weight"
- |4 =srze of the partitioned block A
. |B|/;siie:ot the partitioned block’B
'v0§r%1fh
The initials gains arevcomputed'for all .free nodes. The gain, g(i), of a node is the
n'umher of nets that vtzould result ina decre'ase or increase in the cutset if the node were

moved to the oppos1te block [8] A smgle node called the best node is selected for

moving based on.its gain as well as on the balance cr1ter10n Fxgure 2 2 shows the concept

of node gain for the FM heuristic [3] In th1s example movrng node 1 from A to B would -

1ncrease the cutset by 1; therefore g(D)= -l Moving node 2 from A to B would decrease

the‘cutset by 1. Moving node 3 from A to B would increase the :cutset by 1. However,

25




Initial Bisection - - '| cutset size=3

A

Initial Gains

Node Gain
1 -1
2 1
3 -1
4 0
5 o
6 1

Figure 2.2 Illustration of the gain concept for FM Heuristic.

26



there will be no change in the cutset if the nodes (4,5) are moved to the1r complementary
blocks, therefore g(4)— 0 and g(5)— 0. If node 6 were moved from B to A, the cutset |
would decrease by 1, therefore’ g(6)= 1.LA negative gain might be accepted during apass
»to allow the algorithm -to climb outof a local minimum. IAfter elach move, the best node is
locked in its new block for the'iremainder of the pass and the gains of the affected nodes
are npdated. The algorithm considers all nodes for movement. Afterwards, the best

partition encountered during the pass is taken as initial solution to the following pass.
* C. Simulated Annealing (SA) -

Simulated Annealing belongs to.the class of non-deterministic algoritlims. The
heuristic was first introdnced by Kirkpatrick Gelatt and Vecchi in 1983 [12]. The
algorithm has been applied to almost all known CAD problems 1nclud1ng partitioning K
[3]. SA begins with an initial pamtion A and B and iterates to mlnimize the cutset while
" maintaining balance between panitions. A pair of nodes is rnoved across the cut and the
new partition after the movementis evaluated. If the cut improves, then the move is
accepted. Otherwise, the fnove is.lac’cepted w1th ac‘e‘rtainuprobability. This allows the ; '

l-« :

algorithm to climb-out of a local minimurn. *-

The SA 1s analogous to the annealing process, in which tlie process starts at a high
. temperature. This corresponds to a large number i‘of moves being accepted in an'attempt
to minimize the cost function. The process continues to lower the temperature until a
freezing point is reached. The lovver the temp”eratnre,-fewer moves are accepted that do

2

27



not improve upon the cost function. Even though the SA algorithm is noted for achieving'
" excellent-partitioning results, the use of it for multi-PE partitioning is not feasible because
of the excessive computation time. [13].

'2;112 Multitvz’iy Partitioning Methods '

" 'In the previous section, we mentioned that the bi-partitioning method can be used

‘ with multi‘-PE systems by repeate‘dly 'applying the technique until each partition meets the '

PE constra1nts The b1-part1t10n1ng approach has been extended by some researchers toa
k—way approach because of the 1ncreased complex1ty of VLSI desrgns as well as’ ‘ -
apphcatrons requ1r1ng a ﬁxed number of partrtrons In thrs sectron we d1scuss a few

| multi-way partitioning algorrthms. P

A. ‘Multiple:way Algdrithm e

In 1989, Sanchrs extended the FM algorlthm to multr -way partrtronrng [16]. The .‘

. deta11ed explanatron of th1s approach has led to w1de use of the algorrthm in 1ndustry The ;

algortthm begrns wrth k blocks and- 1terates to m1n1mlze the total number of. .

. interconnections between the lblocks The ﬂgorlthm uses the level gam concept
“mentroned in the prevrous section, to- compute the garn of a mov1ng node. Sanchrs

e A.extended the- 1th level garn of a node to 1nclude the gain of movmg a node from the .
"orrgrnatrng block to all other possrble blocks A pass consists of mov1ng free nodes that _ :

have the hlghest garnthat satrsfy the balance _requlrement to 1ts block. Moves continue

' "'28;



- ‘until all-nodes are locked and the res‘ulting partition becomes the initial partition for the
next pdss. The algorithm uses 4 specified number of blocks k to start the partitioning

process.

B. MP2 Algorithm

“The ‘MP2 algorithm is a k—;vay extension of the FM heuristie. It is an iterative .
improvement algorithm that begins wrth arandom ihitial partitioh of k blocks, where kis
specified [29]. The capacity constraint and the /O lirnitations of each PE device must be
satisfied durihg a pass. For moving a free node from the origin\ating h_lock to another
block, a benefit for the node is calculated with respect to an incident net. The algorithm
uses a look-ahead technique by usingv a seeondary heneﬁt‘for each free node. During a
pass, therI/(A) and the,capaerty‘corrstraints of the destination block are checked for

- violation. If no violations occur, the node is moved and the total number of
interconnections between the kbiOcks is recorded. After each pass, the resulting partit.ion‘
is checked to make sure no bioek constraints are violated. If the constraints are satisfied,,
the algorithm returns the current partrtlon as the solution. The algorlthrh requlres that the

number of the total partltlons k must be spec1ﬁed before startrng the part1t10n1ng process

A. PROP Algorithm

The PROP al gorlthm makes use of a recursive paradlgm usmg funct10na1 rephcatlon
[15]. For a g1ven nethst the a1gor1thm apphes a b1 “partitioning procedure to extract the

first fea51ble partition, and then repeats the ‘process.on the remamder netlist unt11 the
N 29




, rema1nder ﬁts on one PE The bi- partitloning strategy can be v1ewed as an-extreme case -
of asymmetrlcal recursive b1 partitlonlng The main advantage of th1s strategy is the
‘ 1mmed1ate poss1b111ty of evaluatlng at, 1east one of the subsets produced in each b1-

partitioning stage Another advantage is that the algorithm does not require the total

1 -
: lr.'-u e R

number of partltlons k to be speclﬁed before runn1ng the partitloning process In our
proposed methods we w1ll make use of thrs strategy and develop the algorlthm to meet |
| the constrarnts 1n_|ected by CHAMPION applications Therefore the details of this

approach will be given in the next chapter
D. Hierarchical Multiway Partitioning Strategy (HPS)

In '1997, Stanley developed ‘a new k-way_fpartitioning algorithm to incorporate the

" architecture conﬁguration of ’aﬂ hardware emulator into the partitioning process [8]. The
HPS considers the interconnect limitations of the hardware and the upper limit on the
number of partrtrons during the partrtroning process. The algorrthm was initially -

: developed usrng a random selection of nodes or clusters to move. All clusters or nodes

are initially’ moved into a vrrtual partition VP and all blocks are initially empty An 1n1t1al
node or cluster- w1th an 1n01dent external I/Ois randomly selected from VP and moved
into the first partition, PO. The algorithrn con’trnues to move nodes or clusters wrth the

4 highest benefit into PO until the capacity or external l/O constraint of the current partition »
is violated. Once a constraint‘is violated, the algorithm begins an .evaluation step. If the

_ interconnect constraint is violated, the algorithm “rolls back” or reverses the moves until -

the constraint is met. Similar to the PROP algorithm, the HPS does not require the total

30



number of partitions k to be specified before running the partitioning process. In addition,
the HPS strategy evaluates the partition produced in each stage. In our proposed methods,
we will make use of this strategy and develop the algorithm to meet the CHAMPION

application constraints. More details will be explored in the next chapter.

In addition to these approaches, several other partitioning algorithms were developed
to handle multiple-PE systems [17, 18,19,20,21]. Since no general model exists to handle
different partitioning problems, most of the recent approaches were developed to target
specific hardware structures. To the best of our knowledge, no approach exisfs to handle

the CHAMPION netlist.

2.1.3 Benefit Function

In this section, the definition of the benefit function is given some attention. The
benefit of a node or cluster is determined by its connectivity to the current partition [8].
Stanley defined the benefit function for a cluster of nodes. In this work, we modify this

“definition slightly to consider nodes instead of clusters. It is another way to find the best
node that can be moved across a cut. A benefit is calculated for each node n based on the

following:

ben(n) = int(n) —ext(n) 3

where

31




int(n) = The number of nets incident to node n that will no longer

be-incident to the current partition after the move.
ext(n) = The number of nets incident to node n that will become

incident to the current partition after the move.

Figure 23 showhs a §im§19 ;;célr;lple for cﬂculating the benefit of nodes. If the
ﬁocie ri2 is movedff_rom partitj(‘)n'A Vto pai‘titi&n B, By using equation 3, then ben(n2)=1-
1='O.' ‘In(this‘ case, net2 is'removed:ffom-the cutset but an 'additio‘nal net is added..-‘
T-herefo_r‘e,, the beﬁeﬁt of movihg node n2 from A to B is 0. If thel node n3 is moveld from
: partitién Ato _ba&ition B, then ben’(n3);1-3=-2. Moving the node n3 from A to B results
: in a negative Beneﬁf since thb adgiitioﬁ,al nets are added to the cutset. Comparing the.
com‘puted blenéﬁts»fo‘r n2 and n3, ~t-h.el 'n:ogle With‘the highest beﬁeﬁt is n2. Therefore, we ;
cqnsider thé node n2 to be moyéd from ‘paftition A to partition B We will make use of

the benefit function to calculate the best node in our proposed approaches.
2.3 Partitioning Constraints

| The k-wgy pzir;itéoﬁipg algorlthm must ;meet the cqn'strai;xts of our hardware »
é‘:chitécture used'to' impl;;;iitent’ an applicaFioth. In’o;der‘to assurelthe résplts generatéd
méet these constraints, it is necessary fbr thc; algorithm to have knowlédge of the
hardvi'{a;e a:éhifec;ure. Most exiSfing partitioning algorithms for multiple FPGA systems

use the following constraints:

32




Partition A

Partition B

Figure 2.3 The concept of the benefit function [8]

33



o (Capacity per partition

¢ Number of I/O pins per partition

Targeting a particular hardware architecture injects additional constraints that.
must be considered to generate a resulting partition that can be successfully placed and

routed.

The objective of this research is to develop three different k-way partitioning
algorithms based on the target architecture of the boards used in this research projecf. The
partitioning strategy is based on the following constraints followed by a brief discussion

of each constraint:

1. Capacity per partition

2. Number of I/O pins per partition

3. Each partition can only have one RAM access module

4. Input module and output module must be placed in the first partition and in
the last partition.

5. Temporal partitioning constraint: For multiple board configurations, storage
of intermediate results between board configurations is needed.

6. Maintaining the acyclic constraint so that all edges point the same way (from
left to right).

The first two constraints are used to meet the limitations of a single PE device.

The number of interconnections between partitions becomes an issue due to the limited

34




number of connections aV'aiﬂlable‘:het:weeniPEs;. A sticcessful routing will not occur if this ‘

constraint is violated. An implementation is not possible if the size of a partition exceeds

the available capacity for a single PE..Both constraints must be met for a successful

implementation. -

The third constraint deals with the memory access for each PE. The architecture
of the ACS imposes that a local SRAM to each FPGA is avallable for data wr1t1ng and

date readlng A single PE can only access its local SRAM This means, the SRAM

available to each PE can be used either for wr1t1ng the data to the output or for reading

the input data. Therefore, a partition can contain only one RAM access module. To

explain this point in more detail, we consider a very simple example shown in Figure 2.4.

We consider a network with 9 nod_es and 7 edges each of equal size. We assume

* that the node pair (1 9) represents two RAM access modules. Node 1 is used to read the
input data and node 9 is used to write the output data. This implies that at least two .
~ partitions and only one board conﬁguration are needed. For illustration, we further

assume that the entire application fits in two PEs. Two possible partitions are shown in

Figure 2.4a where both have eqdal cutset. The first possible partition showing in 2.4b -

~violates ‘the RAM access constraint since the partitioner places the node pair (1,9) in the

same PE. Therefore this partltlonlng cannot be 1rnp1emented The second possible -

. partition showing in 2. 4c satisfies the capacity constramt I/O constraint, RAM access

constraint, i‘nput and output rnodule constraint, and the acychc constral_nt. Therefore, the

- application can be rmplemented successfully. '

35




2 - ) . ' A simple
. : application

3 2 [ 8,

1, 7
>

—> 4 » 6

a. A simplé example

o " First possible
. cut
> 2 . o Cutset size =2
- 3 —— 2 [—> s
1 - ; > 71,
L i <
—» 4 » 6

b. First possible cut

Second possible

_>2 cut

Cutset size =2

c. Second possible cut

Figure 2.4 Two Possible cuts




| The fourth constrarnt deals 1w1th read1ng and wr1t1ng the data. The 1nput data is
n read ﬁrst and supphed to the rest of the glyphs The resultlng data must be wr1tten to the
P hard-disk Via the output module Therefore the 1nput module must be located in the ﬁrst :
: partltlon and the output module Alnsthe last partltron Both the mput ‘and output nodes 'must
“use RAM access modules Even though an- entlre apphcatlon m1ght fit | in- one PE th1s A
' lmutatlonnlmposes that at least two partrtlons are needed for successful 1mplementatlon., 7
:ThlS means that the partrtlonmg process is always requlred in the CHAMPION desrgn : ) '
'ﬂow.lr‘ . | . o -
The ﬁfth constramt deals w1th ltemporal partltlomng of the ACS board A smgle |
".'conﬁguratlon of the board is’ the same as, the conﬁguratlon of all ayallable PEs Ifthe |
| entlre apphcatlon cann.ot‘ﬁt in, one board’conﬁguratlon ‘then multlple conﬁguratrons of
. t the board are necessary lFlgure 2 5 shows a srmphﬁed versron of the Wlldforce board
' When multrple conﬁguratrons are used storage of 1ntermed1ate‘results between board
. conﬁguratlons is needed In thls case, one RAM-read hardware glyph must be added at
| ) | the begmmng of each conﬁguratlon and one} RAM-wrlte hardware glyph miust be added ‘ ‘
~ at the end of- each conﬁguratlon ThlS process makes the partltlonmg problem more
- complrcated since these two RAM hardware glyphs do not exrst in the orrgrnal :
| happhcatron In thls\ case the partltloner deals w1th a modrﬁed version of the orlgmal :

apphcatron nethst Furthermore the capacrty of the first and the: last PE is utilized by a

Icertam amount for the RAM read and RAM wr1te modules msertlon

-1







The sixth, and ﬁnal; censtraint requires maintaining the direction of the
hypergraph so that all edges are pointing the same way. The resulting sub-netlists P =
{Py, Py, . . ., Py} must maintain the acyclic constraint so that nodes in partitien Pj must
appear before the nodes in partition Pj. To illustrate the acyclic constraint, we consider
the example from Figure 2.4. In Figure 2.6, we show two possible cuts for this network.
The first cut showing in 2.6a violates the acyclic constraint since node 2 appears in a
prior partition. Moving node 2 or pode 5 across the cut can satisfy Fhe acyclic constraint

as shown in Figure 2.6b.

A partitioning result is zi_theoret‘ical solution that could possibly be implemented
onto the given board architecture. Violation of any constraint discussed above Will result
in an unsuccessful mapping.v In this case, the entire application must be repartitioned until
a practical solution is found. Thus, our partitioning _approaches must guarantee tﬁat all

partitions will meet these constraints.

39



Unacceptable cit since the
successor of Node2 (Node5)
appears in a prior partition

T

|
|
|
[
1
. !
3 t
| L i
|
5 : 8 L) 9
| -y
|
|
|
» o4 > 7
|
a
6 }
|
|
|
l
a. First possible cut
Acyclic constraint is satisfied
| by moving Node2 across the
| cut
|
2 | 4__—_//
|
|
> 3 |
L |
I
5 —'-l—bl 8 I R 9
|
}
|
:
4 I 7
|
|
P> 6 |
|
|
|
}

b. Second possible cut

Figure 2.6 Asyclic constraint

40




3 Paftitioning Algorithms

', ‘In ihis ghaptér, we consicier the;jplréblerﬁ of paﬁitioning a large ‘netlist int§ a collect.ion
(;f sub-ﬁetlists such that each sJub—nétlist‘ Qiii‘:ﬁt into one (;f the PEs where each PE is '
cha‘ract_erized\by its‘ capacity,. 7o} équﬁt; andRAM access:‘ln additién to finding a
fé:asibie partitioning solutiqﬁ that rfleets_ :the pértitioning const_raints,' our objective '

i‘n'élude's the miﬂinﬁiing of the:tptal numberof F_he PEs used to implement a pafticulaf

application.

‘In the previous chapter, we mentiémé:d t‘lhat. there exis't‘ many al gorithms, dealing with |
- tﬁe partitioning problem, but no general model exists that handles an arbitrary
p‘artitioni»ng problem. For this_rc‘asdn, one algor‘ithm might be developed of anew
: aﬁproach must be cr'eated‘to targe;t a spéciﬁc hardware .strﬁéture. TQ the best of oﬁr
kn(;\;vledge, there exists n;> approach thét‘één take the CHAMPION ﬁetlist ahd prodgce a
vvalid partitioning result without devélopméﬁt. Therefore, it was necessary to stﬁdy somel
of the existing approaches an.d pick ﬁp olr.le o)r two that can be adapted easily. Two main )
pointé ‘'were considered whenr‘we‘surve}}e’c\li th;i existing work. The first point is tﬁat we do
‘not know in advance how many ‘palftition‘s‘ or PEs‘\ar_e needed to implement the -
CHAMFIQN netlist. An estimate can always bé‘maﬁe based on the application size and
the RAM access constraint. In this‘calse, an algorithm such as MP2 cannot be easily
o ‘ édaptea since this algorithm requires :the nufﬁber of blocks k:to be speciﬁed in advance.
In the seconci point, the immediate evgluation of thé pfoduced féésible Solutioﬁ in each
' ﬁé}rtitioning stage is‘always preferred for a partitioning problem with sevleral-const-raims‘.

i .
VN




hi th‘isfca'se,,fan. algorithnr such as the “rnultiple-way approach ‘,ca'nnot be used since this
approach seeks to m‘\ininn‘ze‘thet:otat_‘ nurnber of interconnections between the blocks. The
rninimizati'on of the total nnnrber of rnterconnectrons -betnveen the PEs does not assnre a ,v :
‘feasible solution for an individila‘l'lIS,E}VB’ecahs.e of this, the hierarchical partitioni‘ng‘
methods and the 'recnr,sivevalgorfithnls were the best candidates among the existing work.
They fulfill our two consjderation pornts T M |

TN . B ., -
[ PR T

For solv1ng the pamtlonmg problem three different approaches are investigated in
this work. In the first and the second approaches we dlSCl.lSS the development and
. ..mnlplementatlon of two exrstlng algorrthms The ﬁrst approach is a hierarchical
part1t10n1ng method based on topologlcal order1ng (HP) The second approach isa
irecurswe algorlthm based on the Flducc1a and Mattheyses brpartmomng heuristic (RP)
We extend these algorithms to handle the RAM access constralnt the acyclic constralnt
and the temporalvpartitioning constraint:‘We shall describe the details of these two

algorithms, inc'luding.modiﬁcations and extensions.

- We also 1ntroduce a new recursive partltlonlng method based on topologlcal order1ng )
and levehzatlon (RPL). The detalls of this approach shall be descrlbed and explalned by
an 1llustrat1ve example.In addmon to handhng the pamtlonlng constralnts, the new |
‘approach efﬁcrently addresses the problern of minimizing the amount of computatron
thereby overcomrng the weaknesses of the HP and RP algorrthms All three al gorlthms

'._ start w1th a topologlcal sortlng solutlon of the glven apphcatron nethst This SOll.lthIl w111

42




assure. that no node is'processed‘ before any node that points to it. This step is necessary to

maintain t:h'e. acYclic constraint so that all the nodes point the same - way from left to right.

3.1 Hierarchical Partitioning Based on Topological Ordering (HP)

A topological sorting solution of a given network is a linear ordering L of all

- nodes N, such that node i appears before node _] if the outout of i is an input of j. This
. 'meane no node is r)rocessed before an}i node that pomts to it The breadth-ﬁrst search
-(BFS) algorithm is used to generate a’ topological sorting solution L. The BFS is a natural
‘way to visit’ every node and check every edge in the graph systematically. This step is
: necessary to maintain the acyclic eon‘straint SO 'that all the nodes point the same way. from
‘ left to right. Given a topological sorting solution L of all nodes, we can partition the list L
| from left to right into K Sub-Nethsts P {Pl, P2, . Pk} such 'that the constraints

" mentioned above are not violated: .

Initially all nodes are in'the linear ordering L and the first block P, is empty.

~ Figure 3.1 shows the initial step of the HP algorithm. At each step, we select anodei -

from L and put it into P;. The algorithm moves nodes into P; until the capacity constraint

Vor the RAM access constraint of the partition is violated. The RAM access constraint is L

checked first. Each partition can have only one RAM access module. The capacity
constraint is checked next. Once one of these constraints is violated, the algorithm checks

if the interconnect constraint of the current PE is satisfied. If this interconnect constraint

" is violated, the algorithm rolls back the moves until the constraint is met. Rolling back

43



Figure 3.1 Initial Phase of HP.

44



" refers to movrng nodes back to L If there e)rlsts more than one candldate node for bacK
o V'-rolhng, the algorlthm starts anoptlmlzatlon step ThlS 51tuat1on arlses ’when for example .
',two nodes with drfferent sizes. w111 lead to the same cut set if one of them is moved back
L to L, In th1s case,’ 1t is 1ntu1t1ve to keep the node with the maximum size in the current “
‘ partltlon ' Th1s optnmzatron step ﬁnds the best node whrchlmaxnmzes the capacity of the
- “current partltlon and meets the 1nterconnect constramt The optnmzatlon strategy uses the' .

: beneﬁt functlon to ﬁnd the node w1th the hlghest beneﬁt and leaves itin the current

part,ition.» .

We repeat th1s process. by creatmg anew block P2 and app1y1ng the same ,

: 'procedure to the remainder of L Frgure 3 2 shows some of the nodes moved to the first
. and second partltlons The process stops when the list L becomes empty and a11 nodes are

A1n P= {Pl, Pz, .. Pk} The algorlthm farls to find a solution to the partitioning problem

1f one of the constraints is v1olated Flgure 3.3 shows the pseudo code for the HP

a_lgorithm.

‘ 3.2 Recursive Algorithm Based on Fiduccia and Mattheyses Bipartitioning :

Heuristic (RP)

. The second approach to this problem is a recursive algorithm based on the

~ A, Fiduccia and Mattheyses (FM) b1part1tron1ng heuristic. The FM algorithm starts w1th

- 1n1t1a1 b1part1t10n A and B and iterates to improve it by reducrng the cutset size. For some

applications, a random method is used to generate an initial bipartition:

: 45,




Figuré 3‘;2~_Il'lus’tratien' of the Partitioning using-HP'

Input: G(N,E), D=devices;
Output: P], P2, P3, . Pk
Create a linear ordering solution L k—O
Create a new partition, Py;
| While( emptyLL =0) begin -
while(violation=False) begin
move nodes into Py; record size, I/O count

check constraints of Pk,
end while; :
if(violation=True) then begin
if there is more than one candldate then

. Optimize Py - .
Reverse move unt11 vrolatron-False
~ end
record final partrtron size, I/O count;
if Lis empty then = -~ .- =
" emptyL=1;
else begin
k=k+1; Create a niew partrtlon Pk, \
‘end :
‘| .end while;

Figure 3.3 Pseudo-Code fer the HP Al gorithm

- 46




An arbitrary random bipartition can no longer be used here since it may violate the
acyclic constraint. An efficient way of generatmg an acyclic initial bipartition is to use
the linear- order1ng approach ment1oned above To create an 1n1t1al solution, nodes are
moved from the linear ordering array L into the current partition P; until the capac1ty
constralnt of Py has been met. The recursive b1part1t1on1ng strategy, as 1llustrated 1n\

Figure 3.4, can be v1ewed as an. extreme case of unbalanced b1part1t1on1ng This means,

1

the s1ze of the current part1t1on is much smaller than the remalnder size of L dur1ng the
first part1t1on1ng stages In th1s process each appl1cat1on of the b1part1t1on1ng procedure
produces one feasible sub—nethst and the remalnder netl-1st. In the first 1terat1on, the entire
‘net11st Rois part1t10ned into one’ feas1ble solution Py, that meets the constraints of the ﬁrst '
PE on the board, and the remalnder part1t1on R 1. In th1s case, all the N nodes in the |
current partition P 1‘vand a remalnder\ Rl are unlocked and involved in the part1t1on1ng
process. When the partitio'ner ﬁn‘dys a feasible solution for the current partition Pl,the .
nodes in that partition become locked. In other u/ords, the nodes in P1 are no more |
involved in the subsequent itera'tions.jThe run “time of the RP algorithm is a.function'of B
the total number of nodes During the part1t1on1ng process, the rin time decreases as the -
number of locked nodes i 1ncreases Subsequent iterations apply the same procedure to the
remainder until all resulting,partitions‘meet the constranits‘., F1gure 3.5 shou/s the pseudo

code for‘th;e RP 'algorithm.

The RP algorithm uses"the FM concept of moving a single node either from A'to B or g

‘from B to A. As meritioned before, the FM algorithm was d‘esi'g-ned,to handle imbalance’.

47






Input: G(N,E), D = devices;
Output: P1, Pz, ‘P3 yeey Pk
Create a linear ordering solution L;
k=0;
Ro =L;
Proceed=True;
While (proceed) begin
Create initial bipartition {Py , Ry};
Optimize bipartition {Py , Ry} with FM heuristic;
Subject to the current device Dy ;
Record final partition size, I/O count;
if (Ry=Dyyp) 1* Ry fit into the next device Dy, ; */
proceed=False;
else
=k+1;
end while

Figure 3.5 Pseudo-Code for the RP Algorithm

To avoid having all nodes migrate to one block, the balance criterion defined in section

2.1.2 must be maintained.

3.3 A New Recursive Partitioning Method Based on Topological Ordering and

Levelization (RPL)

In this section, we present our new approach for solving the partitioning problem for
a CHAMPION netlist. This algorithm applies existing ideas to graph partitioning;
however, they have not been used in this manner préviously. The algorithm strategy is
based on two steps: the level construction step and the paﬂitiéning step. Below, we
describe the procedure to partition the CHAMPICN netlist with this approach. In the
following two sections, we demonstrate the level construction step and the partitioning

step in more detail with an illustrative example.

49




The aigorithm starts W1th a lihéér_dr"clér‘in.gh‘.solﬁtiényfor all the N nodes. Given a
topological sorting}"sqllut'ioﬁ of @ll.fh_éc%esl,:\'ﬁ_éi'\(’:é:n’,éldﬁst‘rilé:t{ multi levels L = {I;l, Lé, -
Ln } of nodes N with afmo‘dit{éd»liéé;réioﬁ"of b-r‘é;adtvhi-ﬁrst search (BFS), such that:nodes in
ievel Lj appear befére nodes in levél Lj and tﬁe nodgs in level Lj must be successors_of |
the nodes in level L;. Aftérw‘a‘rd-s,'»the resulting %l_oW is reduced to a.forﬁ shown in Figure

3.6. Each level consists of a subset of node'sv and no level.can have more than one RAM

. access node. Level construction is a onetime step and is denoted as a preprocessing step.

Since the RAM access constraint is é‘yé'ry’challenging one, we expect the preprocessing

step to solve any conflicts. assoéiated with this constraint before moving to the

Figure 3.6 Reducé;d form after le{lgl construction. )

‘partitioning step. Given a levelization so‘lutiéh'L ={L;, Ly ..., Lo}, we can pértition L

from left to right into K Sub-Netlists. P: {P1, Py, . . ., P} Initially all n(l)deslare inL and

- the first block P1 is empty. First,f\'gve. start the process by moﬁzing n levels from L and put
. them into P, until P, has met the capacity constraint. At this moment, the last level moved N

‘to P is marked as Li . Then we start an optimization step by fhoving nodes across the

marked level Lj and its successor level Li+] until the rest of the cbnstrajnts é;e satisfied.”

‘The optimization step is based on the benefit function discussed above. Since orily:twlo

- levéls are involved in the optimization step, the number of nodes involved in'the .

-~ 50



https://First,.we.st

optlmlzatlon process and the computatlon amount are reduced: s1gn1ﬁcantly If the.
:algorlthm fa11s to ﬁnd a vahd solutlon then we reduce the size of P; by removing the lastj
level moved to P1 and the optirnization step is repeated.: ‘We repeat this process by
creating a new block Pz and applying the same procedure‘to the remainder of L. The
process stops when L becornes empty and:al‘l nodes are.in P = {P1, P2, .. Pk }. Figure ,

3.7 shows the pseudo code for the RPL algorithm.

3.3.1 Level Construction step .

In this section, wedemonstrate the level construction_step in more detail. The
construction step is»very cruciai to .our proposed method and helps the RPL to reduce the
weaknesses iinherent in the other two approaches. ;I‘his step is best demonstrated by
considering a very simple example shown in Figure 3.8, with two sources S1 and S2 and
two destinations D1and D2. This process uses a modified vers1on of breadth- ﬁrst search
(BFS) for constructmg levels. To search the nodes of the graph systematlcally, we begln
with the first source S1 as a startmg pomt all others nodes are unseen. The BFS

_completely covers the area close to the startmg p01nt movmg farther away only when ;
: everythrng close has been looked at. The source node S1 and its successors (2,5) w1ll |
construct the first level. Before v151t1ng any successors of (2 5) we check out to see 1f any
of the nodes (2,5) has to wait for other nodes wh1ch are not included in the current level
In this particular example, we see ‘that node 5 has to wait for node 8. We force the

‘ algorithrn to add node 8 to the current level.:

51




Input: G(N.E), D = devices;

Output: P, P, P3;.., Py
Create levels L={ L, L,,...,L,};
k=0; j=1; ' o
Proceed=True;

violation=True;

While (Proceed) begin
Create new partition Py;
while(violation=False) begin
move level Ljto Py;
check constraints;
mark the last level moved to Py as L; and its successor L j,,;
=it ‘
end while
'Optimize Py by moving nodes across {Lj, L1}
Subject to the current device Dy ;
Record final partition size, I/O count;
if (L= Dy,;) /* if the remained of L fit into the next device Dy, */
Proceed=False;
else
k=k+1;
end while

Figure 3.7 Pseudo-Code for the RPL Algorithm

52


https://OxxVpvX-.Pi

S1

S2

D1

D2

Figure 3.8 Illustrative example for RPL algorithm

53




The set (1,2,5,8) now constructs the first level. We proceed with the construction step for
finding the second level by visitiné the successors of the nodes (2,5,8). The successors of
those nodes are (3,6,9) which build up the second level. We repeat the process until all

the N nodes have been visited. The resulting levels are showp in Figure 3.9. The next step
of level construction is to check if there is a RAM access conflict inside each level.

Figure 3.9a shows a RAM access conflict inside the first and the fourth level. To remove
this conflict, we move node S?2 and its successors to the second level. In the fourth level, -
depending on the cut set, either D1or D7 has to be moved to a new level. For this
example, we move D2 to the fifth level since the cut set created after the move is lower.

The final step is shown in Figure 3.9b.
3.3.3 Partitioning Step

In this section we demonstrate the partitioning step in more detail by considering
the simple network from the previous section. At this point, we assume that the
levelization step has been done and the solution L = {L;, Lo, . . ., L.} is available to the
partitioner. Initially all nodes are in L and the first block P, is empty. First, we start the
process by moving n levels from L and put them into P; until P, has met either the
capacity coﬁstraint or Fhe RAM access constr;int. For this particular example, as shown
in Figure 3.10 and Figure 3.11, the ﬁfst level is moved to P;. A RAM access conflict
occurred when the algorithm tries to move'j the second level L, to P; since and S; and S,
are RAM access nodes. Before creating a new block, the algorithm starts to optimize the

capacity utilization of P; by moving nodes across the first and second levels.

54




Levell Level2 Level3 Leveld

S1
1 2 3 4
D1
5 6 — 7 I 12
S2 D2
8 9 10 1
RAM access violation .
since S1 and S2 are in the RAM access violation
same level since D1 and D2 are in the
same level
a. RAM access conflict
Levelt Level2 Level3 Level4 Level5
St
1 2 IR 3 4
D1
5 [ ——] 7 ml 2
S2 D2
8 [ 10 ]

b. Removing the RAM access conflict

Figure 3.9 RAM access conflict

55




Levell Level2 Level3 Leveld Level5
s1 '
1 2 H ] » 4
‘1 D1
[ 12
5 6 L, 7 |
S2 D2
8 > 10 > 11
S1
1 2 3
—]
i
S2
8 > 9
P1
RAM access violation
since S1 and S2 are in
the same PE
S1
1 > 2 I _; 3 4
Tl S e
5 6 ‘_L.' 7 ., ?
8 . 9 10
P1 p2

RAM access violation
since S2 and D1 are in

the same PE

Figure 3.10 Illustration of the partitioning step

56




P1

y .

- 82

P2

10

12

T

1

i

RAM access violation
since D1 and D2 are in

the same PE

P1

D1

10

—
12

P3

P4

D2

Figure 3.11 Illustration of the partitioning step

57




The .algorithm fails to m(‘we\any node from the second level to the current
partition since any node will violate the acyclic constraint. Therefore, the current partition
Py consists only of the nodes (1 ,2). If the total size of the nodes (1,2) is much smaller than
the available capacity of Py, then the current PE is very poorly utilized. This case shows
how the RAM access constraints can limit a full utilization of one PE. The algorithm
proceeds by creating a new block P,. Because of a RAM access conflict, only the second
and the third levels are moved to the current partition. Only two levels remain in L where
each of these requires acc;esé to the local RAM. Thepefore, another two new blocks are

created P3 and P4. The partitiohing procéss sfops since L became empty.

58



- 4.vExperimental Results and Analysis

In this chapter, we discuss the partitioning results for the three different

approaches in wh1ch we focused on the development of two different ex1st1ng partitioning

.algorithms and the development of a new partltlonlng approach. The HP and the RP

algorithms were developed to cons1der our pamtlonmg constraints. Our new 1dea the

RPL approach, was developed to cope with the weaknesses of the HP and RP algorithms.

The three partltlomng approaches were 1mplemented successfully in the C++

‘ language and are currently used to. part1tlon the CHAMPION netlrsts These algorrthms

were run on several netlists target1ng dlfferent hardware archrtectures Some of these
netllsts were generated randomly by usrng a random netllst generator developed in thls
research to test these algorlthms. - -

Partitioning for Hardware Ar'chitec'tuxr_'e‘s‘ A

In'the following sections“ we will discu'ss'th'e»partitioning results’for each -

| ,‘algorlthm by targetmg six dlfferent hardware arch1tectures The first hardware

, archltecture is the W1ldforce XL board from Annapolls M1cro Systems dlscussed 1n
'sectron 1 2 wh1ch uses ﬁve X111nx FPGAs In the second hardware archltecture we

consrder another versmn of the Wlldforce-XL We assume that the board has the same . .

‘structure as the prevrous one but comes w1th larger s1ze FPGAs (10 t1mes b1gger) blgger

i"

. - RAM:s for each FPGA (two RAM modules for each FPGA) and larger I/O count (72-b1t

'59..



: systohc bus). We denote th1s verslon as Wlldforce XLI In the th1rd and fourth hardware "
arch1tectures we cons1der the MSP board from Wthh uses two Altera FLEX10k FPGAs.
| . In this board RAM modules can be organrzed as one RAM bank or two RAM banks. In

‘ the fifth hardware arch1tecture we consrder the SLAAC 1V board. Th1s board uses two
Vrrtex FPGAs The srxth hardware architecture deals with the SLAAC 1P which uses

two Xilinx XC4000 FPG‘AS. :
Partitioning Netlists -

Different netlists are used 1n this researeh to determine the performanee of the
three partitioning a1gor1thms The partltromng algorithms are run.on 1dent1cal netlists in
' . order to compare the algorrthms aga1nst each other. The comparlson is based on the

. number of PEs_ requrred for 1mplement1ng the netlist and the running trme. Table 4.1

“ shows the ditferent netlists use‘d} 1nth1s research, The first three netlists were
automatically mapped and Iimp'le'rnentedsuecessfully from the Cantata workspaee to the
W ildforce-XL platform. The automatie target recognition (ATR) is relatively a complex’
netlist. The ATR was first implemehted manually by Ben Levine to assist in the |
development of function librariesfor use in the CHAMPION system [4]. The mapping -
.tec:hni'ques used were developed in such away that they could serve as the basis. for the
autornated system. The ATR netlist was used to test our three different partitioning

» approaches. This netlist consists of lO-l nodes and 234 hyper nets. Amo'ng the 101 nodes;

14 nodes are used for accessing the local RAMs. The M29 netlist is a very challenge one

60




‘Table 4.1 Pértitioning Netlists

Netlists | Size . RAM Modules Nodes # Nets #
Hipass Filter - 458 2 A 17 48
YNVL 549 2 45 71
- ATR 4885 14 101 234
M?29 29 7 29 28
R300 7845 | 11 301 311
R400 10130 7 . 406 421
R500 12845 12 504 493
R600 15320 9 601 571
R700 ' 17640 10 702 714
R800 | 19650 12 807 809
R900 23041 18 906 881
R1000 24533 23 1005 1041
R1100 29685 | 23 1101 1091
R1200 31420 - '22 1202 1231
R1300 33120 25 1303 1243
R 1400 36975 29 | 1401 1412
R1500 41453 34 1502 1497

61




" which util‘iées 7 RAM quules.ﬂ Thxs 'netlilist wlas. generated maﬁﬁaliy by.utilizing a
sigqiﬂéapt number of RAM~no&§s to :challenge the thréd partitioning é.lgo;ithms. 'To the
best of oﬁr i(nowledge, ther‘é‘éxis»t»vno.‘ beﬁchr"r'larks‘ that-représen; our pévr’t‘i‘tioning' |
copstré.{in}té. For tﬁis reason,' a random nétliig? g@nerator to produce benchrr'larks’ was
dévélobgd’ in this research to ihve.s{iégté the ’7perflormanée'of the threé partitioning |
aléofithiﬁg. In additioﬁ, this Will"en?a.blvé‘ us to investigate the running time of each

, | appréach.

The r;etlists R3;(')Q- 1A5Q0‘ wg;e',pfoéucéd raTnd_'()mlylwith a random netlist geﬁergtoy; ‘

Thé random netlist generator uses a pana;;m number generator "se’_eded by ~the time of the' .
system fo generate the qodgs ah_d to I‘n‘ap “th.e; c'onﬁection between these nodes. 'Initial.l}'l,‘
ngdes are placéd iltit‘o’n Blockg fv;/h_ere each block has a certain iium‘ber of nodes. The . - :
» iuLnber of nodes for the ith blockB,xs séiecFed randoxﬁly bet'ween. 1 and-10. Fof
e;t‘a‘mplg,‘ if the number clilosvenjvs;er»c;, ‘3,‘thisr would generate a Block with 3 ﬂodes. For
gach node in the block B; arandom nu;ﬁber‘ betw'ee_n (1 and # of ﬁodes in bléck Bis1) is
s\ellect~ed. to map tile nodes in- biock'B%.to tl}e n;)des"in block Bi+'1. The nbdes in ‘blocl; Bi+1A '
; .thz;t mapped to nodeé in bloek Bi are sel'ec':ltéd rzind;)mly. For example, we consider _twé
Blocks Bs and.B4 w‘itﬁ 2jhod‘e_s“zlmq ;jlnno'des‘in each blo‘ck respé'.ct-i‘vely.‘hl thlS case, |
L ranéom numbers between 1 and 5 v’vill be selected for each node‘ in Bs. For examﬁle, if

" the number chosen v.vére‘Z fo‘r: tl‘le,’ﬁrst node in 'block B3, thié wéuld ﬁlap ;his node to two . '
nodes in blqck B4.ﬂ In éddiﬁioﬁ, thé rahdém li;etli'st generafof usés "a rénde num‘pe;
selected between 1 and 100 to aiési‘gh Gveights; to 'thel nets and nodes.‘Finally, the.rar;dom
 netlist generator selects the RAM nodes 'rand'omlylb'y' usir;g a random huﬁﬁer bet‘w,e,'eh“ 1

62




and 100. For each node, if the randorn -'number chosen lies’between 45 and 55, the node is

assigned for RAM access.
‘ o Partitioning Configuration File - ;

"As mentionedbefore,‘ one’of the maj or goallsi 1n this 're“search is to itarget different
hardware arc'hitectures. The partitioning algor'ithrns are ex;tende'd to be dynamic. In this
case, the partitioner reads the part1cularhardware 's(trucrt‘ure,dat‘a from a partitioning
configuration file. This enables Athe. userto change some specific ‘.inmformatiph in the B '
conﬁguration file instead 'ot work1ng1n51de thehpartitioner._ This gives theAuser the
ﬂex1b111ty of sw1tch1ng from one hardware architecture to another. The hardware :
arch1tecture data 1ncludes the number of PEs available in the ACS the capacity of each
,PE the /0 p1ns between PEs the I/O pins between each PE and its local RAM and the
number of RAMs avmlable for each PE. In addition, the user can spec1fy the data that is
required to conﬁgure the memory used by the partitioner This includes the maxrmum

“number of nodes, the max1mum number of nets, the maximum number of levels, and the
maximum number of the produced partitions. Figure 4..1-4.3 show the partitioning -

“configuration files for the Wildforce-XL; ~Wildforce-XL1, and SLAAC-1V boards ‘
‘respectively. Using this approach, a user can"adopttheﬂpartitioner to a new ACS in only |
few’ nlinutes. This.is valuable inforrnation which may be used to select an existing |
‘hardware platform or to consider tradeoffs in the design of a new ACS. However,vthe :
steps involved in connecting partition blocks to PE I/O‘ and communicating with the host

. CPU maiy‘take:several days to accomplish. | | ..

63



/* Partitioner Configuration File For The Wildforce-XL Board */

#define NumberOfPE - 5 .

/* Number of PEs or FPGAs ava11ab1e on the ACS board */

# define MaxNodeSize 3000 */* Maximum Number of Nodes */

# define MaxLeve181ze 700 | o |

/* Maximum Number of Levels ThlS is required for the RPL Algorlthm * .

# define MaxNetSize 4000 . /* Maximum Number of Nets */
# de'ﬁne,, MaxPartNumber 300 ° - /* Maximum number of partitions */
# define PEO 1290 ‘ ' /¥ Capacity of PEQ */
#define PEl 570 . " /* Capacity of PE1 ¥/
#define PE2 570 - /* Capacity of PE2 %/ .
# deﬁne PE3 570. ) /* Capacity. of PE3 */
#define PE4 570 . /*Capacity of PE4 */ .
# tieﬁne' "UF_ ‘0.9 - t /* utilization factor for each PE */

# define TotalNumOfCLB 3550 A/* Total CLBs avallable on the ACS board */
 #define PEZMEMCutset 32 -

/* Maximum /O count between one PE and the local RAM */

# define PE2PECutset 36 r o '

/* Maximum I/O count between one PE and another PE */ .

# define PEMernNurn 1 /* Number of local RAMs avaﬂable for each PE */

Figure 4.1 Partitioning Configuration File for Wildforce-XL A

64




/* Partitioner Configuration File For The Wildforce-XL1 Board */

' #define NumberOfPE.° = 5

/* Number of PEs ‘or FPGAs avallable on the ACS board */ '

- # def1ne MaxNodeSize 3000 /* Max1mum Number of Nodes */
# deﬁne MaxLeve181ze 700 e ‘. . -

o Max1mum Number of Levels. ThlS is. requlred for the RPL Algorlthm */.

‘ # deﬁne' MaxNet81ze 4000 /* Max1mum Number of Nets */
# define MaxPartNumber 300 /* Max1mum number of partltlons *
- #define PEO 1290*10 R Capa01ty of PEO*/
© #define PE1'S70%10 ~ /*Capacity of PE1*/ -
 # define PE2 570410 ; : | /?"‘(.Japacity of PE2 */
- #define PE3 57010 . - | ‘. S capacity of PE3 */
#deﬁne; PE4 570*10' L | o r* Capacity of PE4 %
# define UF 0.9 - ) /* utlhzatlon factor-for éach PE */ o

#define TotalNumOfCLB 35500 /* Total CLBs avallable on the ACS board */
# define PE2MEMCutset 32 *2
. /* Maximum I/O ¢ount between one: PE and the local RAM */ :
| # define PE2PECutset 36*2 . ,
* Max1mum I/O count between one PE and another PE */

- # deﬁne PEMemNum 2 ) - /* Number of local RAMs avallable for each PE %

Figure 4.2‘Par‘titioning Configuration File for Wildforee-XLl

63




 /* Partitioner -Conﬁgu,ra_tion File For The SLAAC-1V Board */

#define NumberOfPE 2

/* Number of PEs or FPGAs availa{blei'oﬁ the ACS board */

# define MaxNedeSize 3000. I* Mai){irﬁﬁm Number of Nodes */ -

. #define MaxLevelSize 700 o

L Max1mum Number of Levels. ThlS is requ1red for the RPL Algorlthm */

~ #define MaxNetSize 4000 . /¥ Maximum Number of. Nets */
# deﬁdne» w‘1\/lIaxPa.rt¥\Iumber 300 /* Maxxmum number of pamtlons */
. #deﬁne PEO 1000000 '. I Capacity of PEO */ '
: # deﬁne PE1 1000000 ‘ ‘. 7 [* Capacity of PE1 */
# define .<UF. 09 , /* utilization factor for each PE #/

# define TotalNumOfCLB 2000000 /* Total CLBs avallable on the ACS board ¥
# define PE2MEMCutset 36 \ “

| vk Max1mum I/O count between one PE and the local RAM */

# deﬁne PE2PECutset 72

| - /* Maximum VO count between one PE and another PE *

- #define PEMemNum . 4 Wk Number of local RAMs available for each PE */

Figure 4.3 Partitioning Configuration File for SLAAC-1V

66 .-




. 4.1 HP Algorithm

kIn this section we discuss the partitioning results of the HP algorithm for the
netlist shown in Table 4.1. In 1997 Stanley developed this algorrthm targeting a
partrcular hardware emulator [8] The HP algorrthm was developed and extended in thrs
. 'research to handle the CHAMPION netlists. T-he algorlthm is relatrvely a simple 1dea j
compared with the RPL and RP algorrthms As mentioned in section 3.1, the algorithm
- starts with a lrnear orderrng L of all nodes and wrth an empty block P,. At each step, the
algorithm selects a node i from L and put 1t 1nto P; The algorithm moves nodes into Py
until the capacity constramt or the V.RAM access constraint of the partition is violated. The
‘ RAM access constraint is checked ﬁrst. Each partition can have only a certain number of -
RAM access modules based on the selected hardware board. The capacity constraint‘is
checked next. Once one of these constraints is violated, the algorithm checks if the
: interconnect c"onstraint of the cnrrent PE is satisfied. If this interconnect constraint is
violated, the algorithm rolls back the‘moves nntil the constraint is met. Rolling- back
refers to moving nodes back to L. If there exists ‘more than one candidate node for back
rolling, the algorithrn starts an optirnization step. This sitnation arises‘when for example
. two nodes with different sizes will lead to the same cut set if one of them is moved back .
to.L.In this case, it is intuitive to‘keep the node With the maximum size in the current
partition. This ‘optinlization step finds the best node which maximizes the capacity of the
.current partition and meets the interconnect const'raint. The optiniization strategy uses the

 benefit function discussed in chapter 2 to find the node with the highest benefit and

. 67




leaves it in the current partition. We repeat this process by creating a new block P, and

applying the same procedure to the remainder of L.

As mentioned above, the HP algorithm uses a linear ordering array to access the
nodes and move theme across partitions. Therefore, the running time of the HP algorithm
depends on the linear ordering array size, the number of the RAM access modules, and
the selected hardware architecture. A complekity analysis for this algorithm was not
undertaken in the existing work frorvlll Stanley [8]. In this research, for each hardware the
running time for each netlist is presented. We will show how the running time varies with

the selected hardware architectures and the netlist size.

Tables 4.2-4.7 show the partitioning results for the six hardware architectures. For
each netlist the tables show the size of the netlist, the RAM modules count, the nodes
size, the nets size, the partitions number, and the running time of partitioning process. We

assume that the RAM modules require external implementation. The reported run times

are for a 300MHz Pentium I CPU.

As expected, the partitions number produced and the running time for the
partitioning process vary with the selected hardware board and the netlist size. Referripg
to Table 4.2, the HP algorithm was not able to produce valid partitioning results for the
ATR, M29, R700, and R1500 when we targeted the Wilaforce-XL board. The reason for |
this is the limited external /O per PE. For the ATR netlist, a non-valid partitioning result
was produced after we relaxed the I(O count from 36 to 50 for the same Wildforce-XL.

68




Table 4.2 Partitioning results for Wildforce-XL using HP algorithm

Netlists Size RAM Nodes # Nets # | Partitions # | Time(s)
Modules

Hipass 458 2 17 48 2 <ls
Filter

NVL 549 2 45 71 2 <ls
ATR 4885 14 101 234 | Not feasible | 2
M29 519 7 29 28 | Not feasible | <ls
R300 7845 11 301 311 25 4
R400 10130 7 406 421 23 10
R500 12845 12 504 493 33 19
R600 15320 9 601 | 571 29 34
R700 17640 10 702 714 | Not feasible | 761
R800 19690 12 807 809 42 89
R900 23041 8 906 881 52 132
R1000 24533 23 1005 1041 58 184
R1100 29685 23 1101 1091 61 257
R1200 31420 22 1202 1231 67 | 336
R1300 33120 25 1303 1243 72 424
R1400 36975 29 1401 1412 81 571
R1500 41453 34 1502 1497 | Not feasible | 1129

(X}

69



Table 4.3 Partitioning.results for ,Wiidforce—XLl using HP'élgodthr'rx

Nétiists Size | RAM | ‘Nocries# Nets # | Partitions | - Time(s)
o ol Modules || #
Hipass | 4% 7| 2 | 17 | 48 1 <Is
Filter o )
TNVL 5% | 2 | 45 K] 1 <Is
"ATR 2885 | 14 | . 101 234 7 2
29 59 | 7 . | 29 28 T | <Is
R300. 7845 1. .| 301 311 6 3
R400 | 10130 7| a6 | 41 | 4 8
~_R500 12845 2 | 504 | 493 | 6 | I3
TR600 15320- K 601 | 51 5 2
R700 | 17680 | - 10 702 | 714 6 a1
TRBO0 | 19650 | - 12 | 807 g0 | 7| 7.
R900 | 23041 | - 18 - | 906 881 10 | 107
TRI000 | 24533 | 23 1005 | 1041 | 13 61
" RII00 | 29685 23 1101 1091 13 221
TRI200 | 31420 | 22 | 1202 | 1231 13 291
"R1300 33120 25 . [ . 1303 1243 15 383
RI400 | 36975 /| . 20 | 1401 | 1412 18 31
TTRIS00 | 41453 | 34| 1502 | . 1497 21 521

0




(AN

" * " Table 4.4 Partitioning results for MSP1 board using HP algorithm.

Netlists Size RAM Nodes # Nets # | Partitions # _Time(s) |
o . Modiles “ ‘ ‘
Hipass .| . 458 2 17 48 1 <1s
 Filter | o
NVL 549 2 45 71 | Notfeasible | <l
ATR | 4885 14 101 234 4 |1
“M29 519 7 29 | 28 6 <ls
R300 7845 T 301 311 10 3
R400 10130 7 406 a1 5 5
R500 | 12845 12 504 493 10 5
R600 15320 9 - | . 601 571 7 29
R700 17640 10 702 714 9 Y]
R800 | 19690 12 807 809 11 8l
R900 23041- 18 906 881 17 107
R1000 24533 23 1005 - | 1041 2 172
"R1100 20685 23| 1101 1091 21 234
R1200 3420 | 22| 1202 1231 21 313
RI1300 | 33120 %5 1303 | 1243 - 24 401
'RI400 | 36975 20 | 1401 | 1412 27 453
R1500 41453 34 1502 | 1497 34 503

71




Table 4.5 Partitioning results for MSP2 board using HP algorithm.

Netlists Size RAM Nodes # | Nets # [ Partitions # Time(s)
Modules
Hipass 458 2 17 48 2 <ls
Filter
NVL 549 2 45 71 2 <ls
ATR 4885 14 101 234 Not feasible <ls
M29 519 7 29 28 Not feasible <ls
R300 | 7845 - 11 301 - 311 Not feasible <ls
R400 10130 7 406 421 Not feasible <ls
R500 12845 12 504 . 493 Not feasible <ls
RG00 | 15320 | 9 601 | 571 | Notfeasible | <lIs
R700 17640 10 702 714 Not feasible <ls
R800 19690 12 807 809 Not feasible <ls
R900 23041 18 906 881 Not feasible <ls
R1000 24533 © 23 1005 1041 Not feasible <ls
R1100 29685 23 1101 1091 | Not feasible <ls
R1200 31420 22 1202 1231 | Not feasible <ls
R1300 33120 25 1303 1243 | Not feasible <ls
R1400 36975 29 1401 1412 | Not feasible <ls
R1500 41453 34 1502 1497 | Not feasible <ls

72




~ Table 4.6 Parfitioning resul't's for SLAAC-1V board uéing HP algorithm

“Netlists Size RAM | Nodes# | Nets# | Partitions # | Time(s)
’ - Modules - - |
Hipass 458 2 7| .48 T <Is
Filter - ) |
NVL 549 2 5 | 71 I <Is
TATR | 4885 14 101 234 ) I
™29 | 519 7 29 28 2 <Is
"R300 | 7845 TR 301 | 311 | 4. 2
TRa0 | 10130 | 7. | . 406 | 421 2 6
TR500 ZEas |12 . 504 | 493 4 9
R600 | 15320 | 0 |- 601 | 571 3 19
R700 17640 | - A0 | 702 | 714 4 37
“RS00 19690 | 12 | 807. | 809 4 62 -
R900 23041 | 18 906 881 6 | 89
RI000 | 24533 | 23 .| 1005 | 1041 | 8 131
TR1100 29685 | .23 . |. 10l | 1091 g 192
RI1200 | 31420 2 | 1202 | 1231 | 8 | 216
RI1300 | 33120 | 25 -| 1303 | 1243 T | 289
R1400 | 36975 | 29 . | 1401 | 141z | 10 305
RIS00 | 41453 | - 34 1502 | . 1497 1 351
73




Table 4.7 Partitioning resuits for SLAAC-1P board using HP algorithm

Netlists Size RAM Nodes # | Nets# | Partitions # | Time(s)
Modules | ‘
- Hipass 458 2 17 48 1 <ls
Filter |
NVL 549 2 45 71 Not feasible <ls
ATR 4885 14 101 234 Not feasible 2
M29 | 519 7 29 28 2 <Is
R300 7845 1 - 301 311 4 2
R400 10130 . 7 406 421 2 7
R500 12845 12 k 504 493 4 20
R600 15320 9 601 571 Not feasible 14
R700 - 17640 10 702 714 4 41
R800 19690 12 807 - 809 4 66
R900 23041 18 906 881 6 98
R1000 24533 23 1005 1041 10 143
R1100 29685 23 1101 1091 8 203
R1200 31420 22 1202 1231 8 227
R1300 33120 25 1303 1243 9 297
R1400 36975 29 1401 | 1412 | Not feasible 21
R1500 41453 34 1502 1497 | Not feasible 27

74




This partitioning result cannot be implemented by targeting the Wildforce-XL since the

I/O limitation is violated.

Targeting the Wildforce-XLl the HP algorrthm was able to produce valid
partrtionlng results for all the netllsts cons1dered in this research To’ compare the runnlng
times and the number of partltions produced by targeting the Wildforce-XL and the
Wildforce XL1, we cons1der the R1400 netlist. For the Wildforce-XL 77 PEs are - |
required to implement the R1400 netlist and the running time for the partltroner is 571

seconds At the other side, only 17'-Pl§s are required to implement the R1400 by targeting

the Wildforce-XL1 while the runnlng trme ‘was reduced to 431 seconds ThlS result is

presented in Table 4.3 Targeting the SLACC 1V board and R1400 petlist, the HP

- produced 10 partitrons within 305 seconds This shows how the performance of the HP

algorithm depends on the selected hardware architecture

‘. . ‘Referring to Table 4.5 the partitioning results are presented for the MSP board

‘where the local RAM for-each PE islorganized as one bank of 512kX48 bits. In this case,

only one RAM module is available for each PE. The HP failed to produce valid

partitioning results for all netlists, which require multiple,'conﬁgu‘rat'ion of the board. A

singlelconfiguration of the board is the same as the configuration of all available PEs. If

the entire application cannot fit in one board configuration, then multiple configurations

of the board are necessary. When m‘ultiple conﬁgurations are used, storage of

1ntermed1ate results between board configurations is needed In this case, one RAM read

: ‘-hardware glyph must be added at the beginmng of each configuration and one RAM write

75




1.

hardware glyph must be added at the end of each conﬁguratlon Usmg the RAM as one

" bank of 512kX48 bits w111 hrmt the MSP board fora smgle board conﬁguratlon only

~ since both RAM modules are always used to store the intermediate results. Orgamzmg

the RAM as two banksv of 5 12kX24.bit‘s‘ c_:ah’ solve the problem. These results are shown

in Table 4.4.
4.3 RP Algorithm

. In this section we discuss the partitioning results for the RP algorithm by targeting

the netlists shown ih'Table 4.1. The RP algorithm was developed and extended in this

research to handle the CHAMPION netlists. The partitioning results are presented for the

six hardware architectures considered in this research. The FM algorithm starts with a

" current partition P and a remainder R, and iterates to improve it by reducing the cutset

size. Subsequent iterations apply the same procedure to the remainder until all resulting
partitions meet the constraints. The RP algorithm uses the FM concept, discussed in

chapter 2, of moving a single node cross the cut.

Tables 4.8-4.13 show the baﬁitiohing results for the six hardware architect{lres.

Referring to Table 4. 8 the RP algorlthm was not able to produce val1d partitioning results

~ forthe M29 and the R700 nethsts by targetmg the Wildforce-XL board. The reason for

this is the limited external VO count per PE. For the ATR nethst, a valid partmomng :

result was produced with 23 FPGAS. The partitioning results show that the running time |

of the RP algorithm depends on the netlist size, the number of the RAM access modules,

76



https://4.8-4.13

Table 4.8 Partitioning results for Wildforce-XL using RP algorithm

Netlists Size RAM Nodes # | Nets# | Partitions # | Time(s)
Modules
Hipass 458 2 17 48 2 <ls
Filter
NVL 549 2 45 71 2 <ls
ATR 4885 14 101 234 23 9
M29 519 7 29 28 Not 2
feasible
R300 7845 11 301 311 23 26
R400 10130 7 406 421 21 39
R500 12845 12 504 493 32 89
R600 15320 9 601 571 24 138
R700 17640 10 702 714 Not 61
feasible
R800 19690 12 807 809 36 171
R900 23041 18 906 881 49 195
R1000 24533 23 1005 1041 58 236
R1100 29685 23 1101 1091 57 292
R1200 31420 22 1202 1231 66 392
R1300 33120 25 1303 1243 66 501
R1400 36975 29 1401 1412 79 693
R1500 41453 34 1502 1497 91 863

71




Table 4.9 Partitioning results for Wildforce-XL1 using RP algorithm

Netlists Size RAM Nodes # | Nets # | Partitions # | Time(s)
Modules
Hipass 458 2 17 48 1 <ls
Filter
NVL 549 2 45 71 1 <ls
ATR 4885 14 101 234 7 6
M29 519 7 29 28 4 <lIs
R300 7845 11 301 311 6 17
R400 10130 7 406 421 4 31
R500 12845 12 504 493 7 62
R600 15320 9 601 . 571, 5 101
R700 17640 ‘10‘ "'702 ‘714 7 125
R800 19690 12 807 - 809 7 143
R900 23041 18 906 881 10 177
R1000 24533 23 1005 B 1041 13 211
R1100 29685 23 1101 1091 13 276
R1200 31420 22 1202 1231 13 314
R1300 33120 25 1303 1243 15 461
R1400 36975 29 1401 1412 17 515
R1500 41453 34 1502 1497 21 594

78




Table 4.10 Partitioning results for MSP1 board using RP algorithm.

Netlists Size RAM Nodes # | Nets# | Partitions # Time(s)
Modules

Hipass 458 2 17 48 1 <ls
Filter
NVL 549 2 : 45 71 Not <ls

‘ feasible

ATR 4885 14 101 234 14 7
M29 519 7 29 28 6 <ls
R300 7845 11 301 - 311 | 10 21
R400 10130 7 406 421 5 35
R500 12845 12 504 493 10 71
R600 '15320 9 601 571 7 113

~R700 17640 10 702 714 9 139
R800 19690 12 807 809 11 151
R900 23041 18 906 881 16 185
R1000 24533 23 1005 1041 21 222
R1100 29685 23 1101 1091 21 281
R1200 31420 22 1202 1231 21 331
R1300 33120 25 1303 1243 24 471
R1400 36975 29 1401 1412 27 523
R1500 41453 34 1502 1497 604

33

79




Table 4.11 Partitioning results for MSP2 board using RP algorithm.

Netlists Size RAM Nodes # | Nets# | Partitions # | Time(s)
Modules
Hipass 458 2. 17 48 2 <ls
Filter ‘ -
NVL 549 2 45 71 2 <Is
ATR 4885 14 101 - 234 Not feasible <ls
M29 519 7 29 28 Not feasible <Is
R300 7845 11 301 311 Not feasible <ls
R400 10130 7 406 421 Not feasible <ls
R500 12845 12 504 493 Not feasible <ls
R600 15320 9 601 571 Not feasible <ls
R700 17640 10 702 714 Not feasible <ls
R800 19690 12 807 809 Not feasible <ls
R900 23041 18 906 881 Not feasible <ls
R1000 24533 23 1005 1041 | Not feasible <ls
R1100 29685 23 1101 1091 | Not feasible <ls
R1200 31420 22 1202 1231 | Not feasible <ls
R1300 33120 25 1303 1243 | Not feasible <ls
R1400 36975 29 1401 1412 | Not feasible <1s
R1500 41453 34 1502 1497 | Not feasible <ls

80




Table 4.12 Partitioning results for SLAAC-1V board using RP algorithm

Netlists Size RAM Nodes # Nets # | Partitions # | Time(s)
Modules
Hipass 458 2 17 48 1 <ls
Filter .
NVL 549 ' 2 45 71 1 <ls
ATR 4885 14 . 101 234, 5 2
M29 519 7 29 28 2 <ls
R300 7845 11 301 311 4 11
R400 10130 7 406 421 2 17
R500 12845 12 504 493 4 44
R600 15320 9 601 571 3 89
R700 17640 10 702 714 4 101
R800 19690 12 807 809 4 121
R900 23041 18 906 881 6 152
R1000 24533 23 1005 1041 8 174
R1100 29685 23 1101 1091 8 205
R1200 31420 22 1202 1231 8 281
R1300 33120 25 1303 1243 8 379
R1400 36975 29 1401 1412 10 411
R1500 41453 34 1502 1497 11 434

81




Table 4.13 Partitioning results for SLAAC-1P board using RP algorithm

Netlists Size RAM Nodes # Nets # Partitions # | Time(s)
Modules
Hipass 458 2 17 48 1 <ls
Filter
NVL 549 2 45 71 Not feasible <ls
ATR 4885 14 101 234 Not feasible 11
- M29 519 7 29 28 2 <ls
R300 7845 11 301 311 4 13
R400 10130 7 ‘ 406 421 2 18
R500 12845 12 504 493 4 47
R600 15320 9 601 571 Not feasible 31
R700 17640 10 702 714 4 108
R800 19690 12 807 809 4 126
R900 23041 18 906 881 6 169
R1000 24533 23 1005 1041 9 178
R1100 29685 23 1101 1091 9 211
R1200 31420 22 1202 1231 8 295
R1300 33120 25 1303 1243 9 386
R1400 36975 29 1401 1412 Not feasible 76
R1500 41453 34 1502 1497 13 451




and the selected hardware architecture. To compare the rﬁnning times and the numbér of
PEs for the Wildforce-XL and the Wildforce-XL1, we consider the R1500 netlist. For the
Wildforce-XL, the RP algorithm produced 99 partitions within 863 seconds. On the other
hand, only 21 partitions were produped by targeting the Wildforce-XL1 while the running
time was reduced to 594 seconds. This result is presented in Table 4.9. Targeting the
SLACC-1V board for the same R1500 netlist, the RP produceci 11 partitions within 434
seconds. This shows how the performance of the RP algorithm depends on the selected

hardware architecture.

To compare the running tjrnes and the number of PEs for the Wildforce-XL and
the Wildforce-XL1, we cotn‘sider the RISOO netlist. For the Wildforce—XL, the RP
algorithm produced 99 partitions within 863 seéonds. On the other hand, only 21
partitions were produced by targeting the Wildforce-XL1 while the running time was
reduced to 594 seconds. This result is presented in Table 4.9. Targeting the SLACC-1V
board for the same R1500 netlist, the RP produced 11 partitions within 434 seconds. This
shows how the performance of the RP algorithm depends on the selected hardware

architecture.

Referring to Table 4.11 the part'itioning results are presented for the MSP board
‘where the local RAM for each PE is organized as one bank of 512kX48 bits. Similar to
HP algorithm, the RP algorithm failed to produce valid partitioning results for all netlists,
which require multiple configurations of the board. Using the RAM as one bank of
512kX48 bits will limit the MSP board for a single board configuration only since both

83



RAM modules are always used to store the intermediate results. Organizing the RAM as

two banks of 512kX24 bits can solve the problem. These results are shown in Table 4.10.

Referring to Table 4.13, the RP algorithm failed to partition the ATR, the R600,
and the R1400 netlists when we targeted the SLAAC-1P board. The reason for that is the
limited RAM bus size. This problem can be solved by targeting a hardware board with
bigger the'RAM bus size. Targeting the SLAAC-1V, the RP algorithm was able to
produce feasible solutions for all netlists including the ATR, the R600, and the R1400
netlists. Table 4.12 shows the partitioning results for SLAAC-1V where the size of the

local RAM bus is 36 bits.

4.1 RPL Algorithm

. In this section we discuss the partitioning results for the RPL algorithm by using
the netlists shown in Table 4.1. As mentioned in section 3.3, the RPL algorithm was
developed to reduce the weaknesses of the HP and RP algorithms. The RPL starts the
partitioning process v;/ith a levelization solution L of all nodes. Initially all nodes are in L

and the first partition P] is empty. First, we start the process by moving n levels from L
and put them into P; until P; has met the capacity constraint or the RAM module
constraint. At this moment, the last level moved to P, is marked as Lj. Then the algorithm
starts an optimization step by moving nodes across the rﬁarked level Lj and its successor
level Li+] until the rest of the constraints are satisfied. If the algorithm fails to find a

valid solution, then we reduce the size of P; by removing the last level moved to P, and

84




the optimization step is repeated. We repeat this process by creating a new block P2 and

applying the same procedure to the remainder of L. The optimization step is based on the
benefit function discussed in chaptgr 2. For each partition, only two levels Lj and its
successor level Li+, are involved in the optimization step. Therefore, the running time of -

the RPL algorithm and computatioln amount of the partitioning process is a function of
the number of levels involved in the optimization step. In the same time, the number of
levels involved in the optimization steps is a function of the partitions. number required to
implement the netlist application. For this reason, a hardware architecture with bigger PE
capacity, bigger /O count, and bigger RAM banks will reduce the partitioner running
time significantly. In addition, minimizing the PEs number will reduce the data
processing time on the targeted hardware. The last statement will be supported when we
discuss the implementation of the A’fR algorithm, section 4.5, on different hardware

architectures.

Tables 4.14-4.19 show the partitioning results for the six hardware architectures.
As expected, the partitions number produced and the running time for the partitioning
process vary with the selected hardware board and the netlist size. For example, we
consider the R1500 netlist and compare the performance of the RPL algorithm for both
Wildforce-XL and SLACC-1V hardware boards. For the Wildforce-XL, 88 PEs are
required to implement the R1500 netlist and the running time for the partitioner is 371
seconds. In the same time, the partitions number required to implement the R1500 netlist
is reduced to 11 PEs by targeting the SLACC-1V board. The running time is reduced to

193 seconds. This big change is very significant for the data processing time on the

85



https://4.14-4.19

Table 4.14 Partifioning results for Wildforce-XL using RPL algorithm

Time(é)

Netlists Size RAM Nodes # Nets # Partitions
' Modules ' #

Hipass 458 2 17 48 2 <ls
Filter ~

NVL 549 2 45 71 2 <ls
ATR 4885 " 14 101 234 20 2
M29 519 7 29 28 9 <ls
R300 7845 11 301 311 21 3
R400 10130 7 406 421 19 4
R500 12845 12 504 493 32 11
R600 15320 9 601 571 23 21
R700 17640 10 702 714 26 33
R800 19690 12 807 809 34 51
R900 23041 18 . 906 881 47 71
R1000 24533 23 1005 1041 55 101
R1100 29685 23 . 1101 1091 55 135
R1200 31420 22 1202 1231 63 178
R1300 33120 25 1303 1243 64 225
R1400 36975 29 1401 1412 77 293
R1500 | 41453 34 1502 1497 88 371

86




Table 4.15 Partitioning results fof Wildforce-XL1 usiﬁg RPL algorithm

41453

Netlists - Size ﬂvRAMI g Nodés#r Nets # Paﬁitioﬁs Tifne(s)v '
o Modules | , | - # |
Hipass | 458 2 7| 48 1 <Is
Filter | N |
NVL 549 2 45 7 1 s .
TATR 2885 | 14 101 234 7 1
M29 519 7 29 | 28 2 <Is
R300 7845 11 301 311 6 2
R400 | 10130 7 406 21 4 5
R500 | 12845 | 12 | 504 | 493 6 T
RGO | 1320 | © | 601 571 5 15
R700 17640 | 10 [ 702 714 6 26
R800 19690 1| 12 . |. 807, | 809 7 38
RO00 | 23041 18 906 881 0 | 59
R1000 | 24533 | 23 1005 1041 13 T
R1100 | 29685 23 1101 001 | 13 o3
R1200 314200 | . 22 - 1202 | 1231 13 127
R1300 33120 25, 1303 243 | 15 | 165
R1400 | 36975 | . 29 1401 1412 17 199
R1500 34 1502 1497 20 257

87




Table 4.16 Partitioning results for MSP1 board using RPL algorithm.

Netlists Size RAM Nodes # Nets # Partitions # | Time(s)
| Modules

Hipass 458 2 17 48 1 <ls
Filter f
NVL 549 2 45 71 Not feasible <ls
ATR 4885 14 101 234 12 1
M29 519 7 29 28 6 <ls
R300 7845 11 301 311 10 3
R400 10130 7 406 421 5 6
R500 12845 12 504 493 10 11
R600 15320 9 601 571 7 21
R700 17640 10 702 714 9 32
R800 19690 12 807 809 11 48
R900 23041 18 906 881 16 68
R1000 24533 23 1005 1041 21 76
R1100 29685 23 1101 1091 21 107
R1200 31420 22 1202 1231 21 133
R1300 33120 25 1303 1243 23 181
R1400 36975 29 1401 1412 27 209
R1500 41453 34 1502 1497 32 273

88



Table 4.17 Partitioning results for MSP2 board using RPL algorithm.

Netlists Size RAM Nodes # Nets # Partitions # | Time(s)
Modules
Hipass 458 2 17 48 2 <ls
Filter
NVL 549 2 45 71 2 <ls
ATR 4885 14 101 234 Not feasible <ls
M29 519 7 29 28 Not feasible <ls
R300 7845 11 301 311 Not feasible <ls
R400 10130 7 406 421 Not feasible <ls
R500 12845 12 504 493 Not feasible <ls
R600 15320 9 601 571 Not feasible <ls
R700 17640 10 702 714 Not feasible <ls
R800 19690 12 807 809 Not feasible |  <lIs
R900 23041 18 906 881 Not feasible <ls
R1000 24533 23 1005 1041 Not feasible <ls
R1100 29685 23 1101 1091 Not feasible <ls
R1200 31420 22 1202 1231 Not feasible <ls
R1300 33120 25 1303 1243 Not feasible <ls
R1400 36975 29 1401 1412 Not feasible <ls
R1500 41453 34 1502 1497 Not feasible <ls

89




; "‘Tzfible'4.18 Partitioning fesuifs for SLAAC-1V board using RPL algorithm

Time(s)>

Netlists Size RAM | Nodes# | Nets# | Partitions
| Modules | #
Hipass 458 C2 s 17 48 1 <Is . |

" Filter . | R ‘

TNVL 49 [ 2 . 45 | T s
ATR m®es | 14| 101 | 234 4 T
M29 519 | 1 | 28 2 | <ls

T R300 7845 | 1T | 301 311 4 1
R400 |- 10130 | 7 . | . 406 421 7} 3

R500 | 12845 | 12 | 504 | 493 4 8
TR600 | 15320 9 .| 60l 571 | 3 11
R700 17640 0 - [ 702 14| 4 20
R800 19690 | .12 .| 807 | 809 4 31

TRO00 | 23041 18 | 906 | - 881 6 52

TRIO00 | 24533 |. . 23 | 1005 | 1041 3 6

"RI00 | 29685 | 23 | 1ol | 1091 8 87

TRI200 | 31420 | 22 | 1202 1231 3 103
R1300 - | 33120 25 | 1303 1243 g 127
R1400 | 36975 29 | 1401 | 1412 10 162
RIS00 | 41453 34 1502 | 1497 1 193

90




Table 4.19 Partitioning results for SLAAC-1P board using RPL algorithm

Netlists Size RAM Nodes # Nets # Partitions # | Time(s)
- Modules
Hipass 458 2 17 48 1 <lIs
Filter
NVL 549 2 45 71 Not feasible <ls
ATR 4885 14 101 234 5 1
M29 519 7 29 28 2 <lIs
R300 7845 11 301 311 4 1
R400 10130 7 406 421 2 3
R500 12845 12 504 493 4 9
R600 15320 9 601 571 Not feasible 6
R700 17640 10 702 714 4 23
R800 19690 12 807 809 4 37
R900 23041 18 906 881 6 57
R1000 24533 23 1005 1041 9 67
R1100 29685 23 1101 1091 8 93
R1200 31420 22 1202 1231 8 111
R1300 33120 25 1303 1243 9 136
R1400 36975 29 . 1401 1412 Not feasible 73
R1500 41453 34 1502 1497 11 203

91




targeted hardware. Reducing the PEs eount'required to implement a particular netlist can’

Speed up the data processing signiﬁcan’tly.",

q Referring to Table 4.17 the partitioning results are presented for the MSP board
where the local RAM for each PE is orgamzed as one bank of 512kX48 bits. Using the

RAM as one bank of 5 12kX48 bits w1ll limit the MSP board for a single board

' conﬁguration only since both RAM rnodules are always used to store the intermediate
, results Orgamzmg the RAM as two banks of 5 12kX24 bits can solve the problem. These _ !

- results are shown in Table_ 4. 16; -

Referrin gto Table 4 19 the partltioning results for the SLAAC 1P board are

1llustrated As mentioned before four RAM modules each of the size 256KX18 bits are

, avallable for each PE. In this case the systolic bus between the PE and the local RAM is

lirnited to 18 bits. For this reason, the RPL failed to find a valid partitioning result for the

NVL, the R600, and R1400 netlists smc‘e these netlists need to access the local RAMs by -

. more than 18 bits. Increasing the PE to RAM systolic bus width can solve this problem.

‘ Table 4.18 shows the partltioning results for SLAAC 1V where the size of the local

RAMis 512KX36 b1ts and the RAM bus w1dth is 36 bits.

4.4 Comparison Between RPL, HP, and RP Algorithms

' - In this section, we shall compare the three different partitioning approaches

against each other. We will refer to the partitioning results shown in Tables 4.2-4.19.

92



https://4.2-4.19

The ATR netlist is given more attention in this discussion because of the following

reasons:

1. Tﬁe ATR is a very chéllenging netlist where a high number of RAM nodes are
used.

2. There exists a manual partitioning result for the ATR netlist.

3. The ATR was implemented manually from CANTATA workspace to the
Wildforce-XL.

4. The ATR netlist has a moderate'size of nodes and nets so that the visualization

of some problems for the partitioning process is possible.

The partitioning resﬁlts shows‘th‘at the HP and the_RP. approaches have difficulties
in finding valid partitioning reéults for ‘so'rne of the netlists which utilize a high number of
RAM access nodes. The problems arise when these RAM access nodes are close to each
other in the hypergraph netlist. Therefore, the partitioning result is depending on the
number of the RAM. access nodes and on how these nodes are distributed in the netlist.
The RAM access constraint is equivalent to the locking of a certain number of nodes in a
netlist in which these nodes are prevented from moving freely across the cuts. This
constraint is not affecting the movement of the particular node only but its neighbors

nodes too.

Another major weakness of the HP and RP algorithms is the acyclic constraint. In
addition to the original requirements of maintaining the acyclic constraint, the RAM

93




access constraint adds more difficulties to this constraint. This means, if one RAM node
is locked in one partition, then the successors of this node are locked too because the
movement of the successor nodes across a cut will violate the acyclic constraint.
Therefore, adding these two constraints to the partitioning problem makes it a very

challenging one.

To show the strength of our RPL algorithm, we illustrate the results of two
different examples. In the first example, we consider a very challenging netlist, M29,
shown in Figure 4.4, with 29 nodes and 28 nets. Among the 29 nodes, 7 nodes are
utilized for RAM accessing. The shaded nodes represent the sources and destinations for
this netlist. This netlist was generated manually where a valid partitioning result exists.
At least seven PEs are needed for successful implémentation of this netlist on the
Wildforce-XL since the netlist utilizes seven RAM access modules. Referring to the
Tables 4.2 and 4.8', both HP and RP algorithms failed to produce a valid partitioning
result for the M29 netlist when we targeted the Wildforce-XL board. However, the RPL
was able to produce a valid partitioning result for this particular netlist. The result is
shown in Table 4.14. A total number of seven partitions were produced where nine levels
were constructed during the partitioning process. In the M29 netlist, the source nodes
(1,8,13) and the destination nodes (23,24,25,26) are used to access the RAMs for reading
and writing the data. The source and destination nodes are placed closely to each other in
Fhe hypergraph. By removing the RAM access need for the nodes (8,23) and assigning a
RAM access need for the nodes (12,27), the RP algorithm was able to produce a valid
partitioning result while the HP algorithm still failed.

94







In other words, the distribution of the RAM nodes in the hypergraph was changed to
affect the results produced by the RP and HP algorithms. The RPL was still able to
produce a valid partitioning result for this netlist. Several experiments were conducted
with the RAM nodes to investigate the performance of the algorithms. The small size of
the M29 netlist enabled us to conduct these experiments and to observe the weaknesses of
the HP and RP algorithms. The results of these experiments showed that the performance
of the RP algorithm is determined by the RAM nodes distribution in the hypergraph. The
results showed that the HP performance depends on the number of RAM nodes, the
distribution of the RAM nodes in the hypergraph, and the hypergraph density. To obtain a
valid partitioning result for the HP algorithm, we had to reduce the number of the RAM

nodes and the weights for some of the hyper nets.

An application netlis;t similar to the M29 netlist can arise in the practice.
Sometimes the user tries to collapse the design by using macros instead of cells. Of
course this will improve the visualization and the manageability of the design, but it will
reduce the granularity in the hypergraph. This means the nodes and nets numbers are
reduced. If the design ends up having a structure similar to the M29 netlist and a high
number of RAM nodes, then the partitioning results will be affected greatly by the RAM
distribution and the density of the hypergraph. Therefore, the user must be aware of the

size and I/O of the macros and the RAM distribution.

The automatic target recognition (ATR) application was automatically mapped
from the Cantata workspace to the Wildforce platform recently. The ATR was first

96




'implemen'ted manually by the CHAMPION research group to assist in the development
of function libraries and hardware ior (use in the CHAMPION system. Theimapping
techniques used were developed in su_ch a way that they could serve as the hasis for the
automated system [4]. The ATR netiist was used to test odr three different partitioning
approaches This netlist consists of 101 nodes and 234 hyper nets. Among the 101 nodes,
14 nodes are used for accessing the local RAMs. The ATR apphcation utihzes a high
' number of macros where the sizes of these macros dlffer. A total number of 20 FPGAs
was needed to implement the ATR netlist manually. Both RPL and RP algorithms were |
able to produce two different mappable partitioning results by targeting the Wildforce-
XL, while the HP algorithm failed; The RPL result was identical to the manual
partitioning result in terms of the’FP_GAs numbers. A total numher of 20 partitions were
‘produced where 51 levels were constructed during the partitioning process by using the
RI;L algorithm. The run time is 2 seconds. In the meantime, the RP algorithm produced' .
23 -partitions within 9 seconds. Tahles 4. 20_4'21 show the ATR partitioning result for the
RPL and RP algorithms respectively Similar to the manual result, the RPL and RP

-_results showed a poor utilization of the PEs capac1ty The RAM access constramt and the

‘macros sizes was the main reason for thls poor utilization of the PEs capac1ty.

The run time for the RP algorithm is relatively longer when compared to the run
time of the RPL and HP algorithms In section 3.2, we mentioned that the run time of the

RP algorlthm isa function of the unlocked nodes in the current partition P and the

remainder R. In the first phase of the RP algorithm the entire netlist Rg is partltloned into .-

one feasible solution, Py, that meets the constraints of the first PE on the board, and the

97


https://4.20-4.21

| Table 4.20 RPL Partitioning results for the ATR by targeting the Wildforce-XL board.

Partition Number CLB Usage I/0 Count Nodes #
1 741 24 9
2 462 15 5
3 482 32 12
4 424 28 10
5 0. - 0
6 0 - 0
7 367 28 8
8 345 26 8
9 389 25 7
10 0 - 0
11 0 - 0
12 367 29 9
13 367 28 8
14 389 25 7
15 0 - 0
16 0 - 0
17 389 19 9
18 32 30 1
19 80 11 7

.20 52 11 1

98




Table 4.21 RP Partitioning results for the ATR by targeting the Wildforce-XL. board.
Partition Number CLB Usage /O Count Nodes #
1 718 33 3
2 400 35 5
3 434 29 11
4 471 9 14
5 0 - 0
6 0 - 0
7 362 10 9
8 367 9 8
9 367 11 8
10 0 - 0
11 0 - 0.
12 367 9 8
13 371 9 7
14 367 7 8
15 0 - 0
16 0 - 0
17 421 19 10
18 56 19 1
19 32 30 1
20 0 - 0
21 0 - 0
22 80 11 7
23 52 11 1

99



remainder partition, R;. During this phase, all the N nodes in the current partition P and
a remainder R, are unlocked and involved in the partitioning process. When the
partitioner finds a feasible solution for the current partition Py, the nodes in partition P,
become locked. Therefore, during the partitioning process the run time decreases as the
number of locked nodes increases. Figure 4.5a shows the RP run time during the
partitioning of the ATR netlist. In section 4.1, it was mentioned that the run time of the
RPL algorithm is a function of the number of levels involved in the partitioning process.
For each partition, only two levels Lj and its successor level Li+; are involved in the
optimization step. Therefore, the run time for each partition is a function of the nodes size
in Lj and its successor level Lj+. Figure 4.5b shows the RPL run time during the

partitioning of the ATR netlist. -

The HP algorithm failed to proc‘iuc:eh a valid partitioning result for the ATR when we
targeted the Wildforce-XL. The HP algorithm depends strongly on the node order in the
linear ordering arragl. In general, the node order produced by a topological sort is not
unique [42]. This situation arises when one node has no direct or indirect dependence on
another and therefore they can be performed in either order. The HP algorithm made 10
attempts to partition the ATR netlist where each time the algorithm started with a
different linear ordering solution. No vélid result was found for any of these attempts.
The HP result was affected greatly by the first few nodes in the netlist where three big
size macros are used. The port count for these macros is relatively high when compared

to other cells.

100




RP Algorithm

R T i S R R

| ! [

S SR E N n  e R

e

1200

L
t
(=]
(=]
[o2)

(sw)awn

Partitions#

Run time of the RP algorithm

a.

RPL ALgorithm

| T -
PN I
T e 5

AT

R

300

250

. (sw)awn

Partitions#

b. Run time of the RPL algorithm

Figure 4.5 Run time during the ATR partitioning process

101




The HP algorithm produced a non-feasible solution, shown in Table 4.22, after we
relaxed the I/O count between the PEs from 36 to 50 for the Wildforce-XL. This result
shows that only the first partition violates the I/O limitation. This partitioning result
cannot be implemented on the Wildforce-XL since the I/O limitation is violated. The run
time for the HP algorithm depends on the linear ordering array size, the number of the
RAM access modules, how many times the algorithm rolls back, and the selected
hardware architecture. Figure 4.6 shows the HP run time during the partitioning of the

ATR netlist for the relaxed I/O count.

In several examples, the HP and RP algorithms used more PEs to implement one
netlist when they are compared to RPL algorithm. For example, the RP algorithm uses 23
FPGAs s to implement the ATR algorithm by targeting the Wildforce-XL while the RP
algorithm uses only 20 FPGAs. The increased number of the PEs is related to the nature
of the RP algorithm. The drawback inherent in the RP partitioning scheme, pointed out in
[15], its effect of increasing the connectivity inside the remainder partition R. This effect
makes the I/O constraint harder to meet during the final partitioning stages and causes
more PEs to be used. In other words, the RP algorithm aims to minimize the cutset for the
~ current partition. In addition, many previous works reported that the performance of
partitioning schemes using the FM heuristic degrades as the number 6f nodes increase

[431[44]. The RPL algorithm reduces these weaknesses by performing a preprocessing

102






HP Algorithm

N
m
o

1
)

T

kd
RO T

time(ms)
o
o
l

O A RS

0 (|:2| T “I ‘Il-:;llﬂ
1 234567891011121314151617181920
Partitions#

{ 1 1 1 [ T ¥ i

Figure 4.6 Run time of the HP algorithm during the ATR partitioning process

step (levelization) before starting the partitioning process. The preprocessing step reduces
the number of nodes used during the partitioning stages significantly. This will increase
the performance of the RPL algorithm and decrease the run time. In addition, the RPL
algorithm strategy aims to maximize the capacity of the current partition while satisfying

the I/O constraint.

In the HP algorithm, nodes are moved to the current partition according to their order
in the linear ordering array. This means, a node is moved to the current partition whether
or not it is a good choice. The algorithm stops the movements when a feasible solution is
found for the current partition. In other words, no more than one feasible solution for the

current partition is recorded during the partitioning process. This is the drawback inherent
104




in the HP partitioning scheme that degrades the performance of the algorithm and tends’

to increase the number of the PEs used.

Figures 4.72-4.Tb compare the produced }partitions and the run time on the netlists,
shown i_n Table 4.1, for the Wildforce-XL. A similar behavior was obtained for the other
hardware architectures. These experimental results demonstrate that the propoeed
'ar)proach, the RPL algorithrn, eichté‘ves superior performance when compared to the RP
"~ and HP algo‘rithms_. Tables 4.23-28 show the combined restllts for ttle three partitioning

algorithms.

4.5 Processing Time for Three Different Applications by Targeting Different

~ Hardware Architectures.

This section ctiscuséeé- tﬁé hzir"cAiW*are irrlllnlerr‘:lentati—err of the automatic target
recognition (ATR), the: Hipe$§ ﬁlter, and the:I\iV[f applications by targeting different
hardware architectures. First we will give experimental results for the Wilclforce-XL
implementation. Second we will giile én_estirrlate fcr the proce'csihg times by targeting
the Wildforce-XL1, the SLACC, arlct thie MSP boards. The ATR application was
automatically mapped from the Cantat; workspace to the WildforceTXL platform by -
using two different canitioning results. Early'ih this research project, the ATR waé
implemented mamtally by the CHAMPIbN research group to assist in the development

of function libraries and hardware for use in the CHAMPION §Ystem.

105



https://4.7a-4.7b

100

90
B
c --4--HP
:..'3 —if— R P
5 —&—RPL

0 500 1000 1500 2000
" Nodes#
a. Produced partitions by targeting the Wildforce-XL
1000

900

800

700
O 600 —e—HP
g 500 —=—RP
400 —&—RPL

300

200

100

0 .
0 500 1000 1500 2000
Nodes#

~b. Run time of the HP, RP, RPL algorithms by targeting the Wildforce-XL.

Figure 4.7 Partitioning results for the Wildforce-XL

106




Table 4.23 Partitioning Results for the Wildforce-XL Board

Netlists HP Algorithm RP Algorithm RPL Algorithm
Partitions # | Time(s) | Partitions # | Time(s) | Partitions # | Time(s)

Hipass 2 <Is 2 <ls 2 <ls
Filter

NVL 2 <ls 2 <ls 2 <ls
ATR | Not feasible 2 23 9 20 2
M29 Not feasible <ls Not feasible 2 9 <ls
R300 25 4 23 26 2] 3
R400 23 10 21 39 19 4
R500 33 19 32 89 32 11
R600 29 34 24 138 23 21
R700 | Not feasible 761 Not feasible 61 26 33
R800 42 89 36 171 34 51
R9S00 52 132 49 195 47 71
R1000 58 184 58 236 55 101
R1100 61 257 57 292 55 135
R1200 67 336 66 392 63 178 |
R1300 72 424 66 501 64 225
R1400 81 571 79 693 77 293
R1500 | Not feasible 1129 91 863 88 371

107




Table 4.24 Partitioning Results for the Wildforce-XL.1 Board

Netlists HP Algorithm RP Algorithm RPL Algorithm
Partitions # | Time(s) | Partitions # | Time(s) | Partitions # | Time(s)
Hipass 1 <ls 1 <Is 1 <lIs
Filter
NVL 1 <ls 1 <ls 1 <ls
ATR 7 2 7 6 7 1
M29 4 <ls 4 <ls 4 <ls
R300 6 3 6 17 6 2
R400 4 8~ 4 31 4 5
R500 6 13 7 62 6 11
R600 5 25 "5 101 5 15
R700 6 41 7 125 6 26
R800 7 71 7 143 7 38
R900 10 107 10 177 10 59
R1000 13 161 13 211 13 71
R1100 13 221 13 276 13 98
R1200 13 291 13 314 13 127
R1300 15 383 15 461 15 165
R1400 18 431 17 515 17 199
R1500 21 521 21 594 20 257

108




Table 4.25 Partitioning Results for the MSP1 Board

Neitlists HP Algorithm RP Algorithm RPL Algorithm
Partitions # | Time(s) | Partitions # | Time(s) | Partitions# | Time(s)

Hipass 1 | <ls -1 . <lIs 1 <ls
Filter
NVL | Not féasib‘le 1 <ls Not feasible <lIs Not feasible <ls
ATR 4 | 1 T 14 7 12 1
M29 6 <ls 6 <ls 6 <ls
R300 10 3 10 21 10 3
R400 5 9 5 35 5 6
R500 10 15 ' 10 71 10 11
R600 7 29 7 113 7 21
R700 9 47 9 139 9 32
R800 11 81 11 ' 151 11 48
R900 17 107 16 185 16 68
R1000 22 172 21 222 21 76
R1100 21 234 21 281 21 . 107
R1200 21 313 21 331 21 133
R1300 24 401 24 a1 23 181
R1400 27 453 27 523 27 209
R1500 34 503 33 604 32 273

109




Table 4.26 Partitioning Results for the MSP2 Board

Netlists HP Algorithm RP Algorithm RPL Algorithm
Partitions # | Time(s) | Partitions # | Time(s) | Partitions # | Time(s)
Hipass 2 <Is - 2 <Is 2 <Is
Filter (
NVL 2 <ls 2 <ls 2 <ls
ATR | Notfeasible | <Is | Notfeasible | <Is | Not feasible | _ <ls
M29 | Not feasible <ls Not feasible <ls Not feasible <ls
R300 | Not feasible <ls Not feasible <ls Not feasible <ls
R400 | Not feasible <ls Not feasible <ls Not feasible <ls
R500 | Not feasible <Is Not feasible <ls Not feasible <ls
R600 | Not feasible <lIs Not feasible <ls Not feasible <ls
R700 | Not feasible <ls Not feasible <ls Not feasible <ls
R800 | Not feasible <ls Not feasible <ls Not feasible <ls
R900 | Not feasible <ls Not feasible <ls Not feasible <ls
R1000 | Not feasible <ls Not feasible <Is Not feasible <ls
R1100 | Not feasible <ls Not feasible | * <ls Not feasible <ls
R1200 | Not feasible <ls - | Not feasible <ls Not feasible <ls
R1300 | Not feasibié <ls Not feasible <ls Not feasible <ls
R1400 | Not feasible <ls Not feasible <ls Not feasible <ls
R1500 | Not feasible <ls Not feasible <ls Not feasible <ls

110



Table 4.27 Partitioning Results for the SLAAC-1V Board

Netlists HP Algorithm RP Algorithm RPL Algorithm
Partitions # | Time(s) | Partitions # | Time(s) | Partitions# | Time(s)
Hipass 1 <ls 1 <ls 1 <ls
Filter
NVL 1 <ls 1 <ls 1 <ls
ATR 4 1 5 2 4 1
M29 2 <Is 2 <ls 2 <ls
R300 4 2 4 11 4 1
R400 2 6 2 17 2 3
R500 4 9 4 44 4 8
R600 3 19 3 89 3 11
R700 4 37 4 101 4 20
R800 4 62 4 121 4 31
R900 6 89 6 152 6 52
R1000 8 131 8 174 8 63
R1100 8 192 8 205 8 87
R1200 8 216 - 8 281 8 103
R1300 8 289 | 8 379 8 127
R1400 10 305 - 10 411 10 162
R1500 11 351 11 434 11 193

111




Table 4.28 Partitioning Results for the SLAAC-1P Board

Netlists HP Algorithm RP Algorithm RPL Algorithm
Partitions # | Time(s) | Partitions# | Time(s) | Partitions # | Time(s)

Hipass 1 <ls 1 <ls 1 <ls
Filter

NVL | Not feasible <ls Not feasible <ls: Not feasible <ls
ATR | Not feasible 11 5 1 5 1
M29 2 <ls 2 <ls 2 <ls
R300 4 13 4 1 4 1
R400 2 18 2 3 2 3
R500 4 47 4 9 4 9
R600 | Not feasible | 31 Not feasible 6 Not feasible 6
R700 4 108 4 23 4 23
R800 4 126 4 37 4 37
R900 6 169 6 57 6 57
R1000 9 178 9 67 9 67
R1100 9 211 8 93 8 93
R1200 8 295 8 111 8 111
R1300 9 386 9 136 9 136
R1400 | Not feasible 76 Not feasible 73 Not feasible 73
R1500 13 451 11 203 11 203

112




- For thé‘manual implemt;htation, the ATR z;pplication was partitioneld insucha -
Way go that an ifnage of the size 256);256Icm be processed and recorded in the local
RAM. In this case; the total memory required .to store an image is 65kx8 bits. The local
RAM on the Wildforce-XL is limited-to 32kx32‘ bits'so, that a data amount of 65k bytES‘
cannot t;e stored witl;out memory %r;a_nz}gs;r_qbnt.‘\ ”_I‘o'overc'o;‘ne this pfoblem, each four
words (4x8 bits) were pgcke»:él}nytgyget‘hcrl and ,Istpreé in'one z';ddress.A The ATR was
partitioned for multi?le b(‘);lrd coﬁﬁgﬁ'rations first where the cutset size was limited to 8.

~ Then each board conﬁgurafion'was partitioned further to fit into five FPGAS.

"In our partitioning st;ategy, we attempted to partition for multiple bqard
cohﬁgﬁratiogsl first. By adding this" Constraint to the partitioning strategy, the p.artitioning
problem became ,\-/ery complicated. None of the partitioning algv()rith‘r'n“;]could handle £his
constfai_pt. Therefore, this cénstrain¥ wés rf;laxed to ease the péﬂi?ioning problem and to |
allow a_cuts;:t; size of 32 betvx‘/een multiple board configurations. In thi~s case, each addreés l
in the local R’AM is used to,s;dre oﬁe word of 0 to 432 bits only. By déingl this, an image
~of the s_iie 256x256 can no lé)nger fit in the RAM. To overcome this problem, the image .

size was reduced to 128x128 o that the r’némory needed to store an image is 16kx8 bits.
To compare the automated mapping against the manual mapping, we had to rerun

. the ménual implementation for reduced image sjie (128x128). The average of 10 runs

gave the following values, shown in Table 4.29, for the automated and manual mapping:

113



Table 4.29 Processing time for the ATR algorithm

Manual Automated Automateci
Processing time Implementation' Implementation Implementation
20 FPGAs 20 FPGAs 23 FPGAs
Board configuration -
_ 5125 ms 9147 ms 11010 ms
time
Host code run time +
573 ms 695 ms 715 ms
Wildforce setup time :
Data transfer time 10 ms 40 ms 41 ms
Hardware execution .
) 10 ms 10 ms 11 ms
time '
Total time to process '
) 5718 ms 9890 ms - 11777 ms
one image

These results are also shown graphically in Figure 4.8. For both manual and
automated implementation Fhe I;rocess time of one image is dominated greatly by the
board configuration time. In the rﬁanual implerﬁentation, some of the FPGAs ended up
with the same glypim. This means that not every FPGA needed to be reprogrammed
every time [4]. Only 11 FPGAs' needed to be reprogramfﬁed. Because of this, the total
processing time for thé manﬁal implementation was reduced significantly, nearly to the

half, when compared with the automated mapping.

The partitioning process cannot handle the situation where some of the FPGAs

might have the same glyphs. This is a very challenging problem that will have to be

addressed in future research. In section 4.1 it was mentioned that minimizing the number

114







of FPGAs used will reduee: the .t;e_‘tald,lproees:sing’ tjr’ne fbr one application. Referring to the
| proceseing time results for the erd different automated implementations shown above, it
is obvious that the 20 FPGA inrplenrentation has a better performance when cempared to
the 23 FPGA implementatien. The 20 FPGA'implementarien needed four board
configurations. At the other side, five board c'onﬁgnrations were needed for the 23

FPGAs implementation. -

The total processmg t1me of one image can be further 1mproved by targeting

| 1arger hardware architecture. A hardware board with more PE capacity and bigger RAMs
which requlres.only a smgle board configuration for a particular apphcatlon, will reduce
the proeessing time signiﬁcantly" be removing the ‘board reconfiguration trme and by '

_ reducing the host code and the data transfer times. The ATR application has unusual '
high rdumber of operations reduirin'g RAM access. Some of the'delay gi'yphs’ in the ATR
algorithm required e)rtemal inrplementation by accessing thé ldcal RAMs.‘ The ATR

| algorithm needs onlsl three RAM modules to transfer the input and output data. The rest
of the RAM modules -were needed to transfer data-between multiple configurations and to -
implement delay glybhs. These delay glyphs could not be implemented internally becairse V

of the limited PEs resources on the Wildforce-XL.

Targeting the SLAAC-IV b‘oard-,‘ the ATR algorithm can be implemented by -
using a single board conﬁguration only. The SLAAC-1V board bas enough resources, 3
one million logic gates and 4 local RAMs for each FPGA, to implement the ATR
: apphcatlon by using two FPGAs only In this case, a total number of 8 local RAMs w111

'116




be available to implement some of the delay glyphs and the three RAM modules needed
to transfer the input and output data. Some of the delay glyphs can be implemented
iﬁternally since we have enough resources on the SLAAC-1V board and these delay
glyphs require small delay values. The remaining 5 RAMs can still be utilized for delay
glyphs that require a big delay value. In the ATR application, four delay glyphs must be
implemented externally since the required delay value for these glyphs is 65550 cycles.
Referring to the manual implementation results above, if the reconfiguration time could
be eliminated, the time to process one image would be dominated by the time needed to
run the host code plus the time to setup the Wildforce-XL. The average time for running
the host code plus the Wildforce setup 66 1ms. The data transfer time is 10ms. The
SLAAC-1V board would need,tq transfer the processed data three times only, as
compared to 11 times for the Wildforce-XL. This would reduce the data transfer time for
the SLAAC-1V board to a negligible amount. If we assume that the SLAAC-1V board
would need 661ms to setup the board a;nd to run the host code and 10ms for hardware
execution, the SLACC-1V board implementation would be 9 times faster than the manual
Wildforce-XL implementation, 15 times faster than the 20 FPGA automated
implementation, and 18 times faster than the 23 FPGA automated implementation. The

same discussion is valid for the SLACC-1P board.

Targeting the MSP board, the ATR algorithm can be implemented by using three
board configurations if the local RAM for each FPGA is organized as two banks _of
512kX?24 bits. In this case, a totél number of 6 FPGAs and 12 local RAMs will be
available to implement some of the delay glyphs and the seven RAM modules needed to

117




transfer the input and output data and data between multiple board configurations. The
reconfiguration time cannot be eliminated since there is a need of three Board
coﬁﬁgurations. The time to process one image would be dominated by the time needed to
reconfigure the MSP board. This means tﬁe MSP bbard will not reduce the processing
time to a significant amount when compared to SLAAC-1V board. The MSP board can
;till improve the performance if it is compared to the Wildforce-XL implementation.
Referring to the above Wildforce-XL results, the a(verage total time to process one image
for each board conﬁguratioﬁ of the manual Wildforce implementation is 1430ms. If we
assume that tﬁe MSP implementation would need this time fo;' éach board configuration,
the MSP implementation would bel.4 times faster than the manual implementation and

2.7 times faster than the 23 FPGAs implementation on the Wildforce-XL.

The Hipass filter application was automatically implemented on the Wildforce-
XL. The application utilizes two RAM glyphs. The average of 10 runs gave a total
processing time of 521 ms where the hardware execution time for one image is only 3ms.
The total processing time of one image is dominated greatly by the time needed to setup
the Wildforce-XL and to run the host code. The total processing time can be reduced by a
small amount AT by targeting bigger hardware architecture, such as the SLAAC-1V
board, where only one PE would be needed to implement the Hipass filter. In this case,
AT would include the delay time between two PEs, the delay time between the core and
the PE interface circuit for two PEs, and the reduced time for the board setup and the host

code run time since only one PE would be used.

118



Based on the above discussion the total processing time for the NVL algorithm
can be estimated by targeting different hardware architectures. The NVL algorithm
utilizes two RAM access nodes so that two PEs is needed by targeting the Wildforce-XL.
and only one PE is needed for the SLAAC, the MSP, the Wildforce-XL1 boards. The
hardware execution time can be estimated by counting the number of cycles needed to
process one image. For one image of the size 640x480 and a running frequency of
25MHz the hardware execution time is 368ms. Targeting the Wildforce-XL and adopting
the time needed to setup the bc;ard and the host code run time from the Hipass filter, the
NVL totai processing time for one image is 885ms. The total pvrocessing time can be

reduced by a small amount AT by targeting the other hardware architectures.

The above discussion shows that sele;:ting the proper hardware architecture will
improve the performance for a particular application greatly. Targeting a hardware
structure with more RAMs for each FPGA is p‘refel:rred for an application utilizing a high
number of operations requiring RAM access. These results show that both the
partitioning process and the hardware architecture determine the performance rate for a
particular application. Table 4.30 summarizes the total processing time, given in ms, for

three different applications by targeting different hardware architectures.

119




Table 4.30 Processing time for different hardware architectures

MSP

Applications Wildforce | Wildforce MSP SLAAC- | SLAAC-
-XL -X11 2RAM | 1 RAM 1P 1V
Blocks Block
ATR 5718/9890 _
; 671 4290 - 671 671
Manual/20PEs/23PEs 111777
Hipass Filter 521 521-AT | 521-AT | 521-AT | 521-AT | 521-AT
NVL 885 885-AT - 885 - 885-AT

120




*..5: Conclusion

The goal of this reseérch was to develop and investigate three different
partitioning algorithms and determine the one that has a higher performance rate. The
research presented in this thesis accomplished these goals. In the first and the second
approaches, we discussed the development and implementation of two existing
algorithms. The first approach is a hierarchical partitioning method based on topological
ordering (HP). The second approach is a recursive algorithm based on the Fiduccia and
Mattheyses bipartitioning heuristic (RP). We extended these algorithms to handle the:
CHAMPION partitioning constraints by targetin-g different hardware architectures. We
also ~introduced a new recursive partitioning method based on topological ordering and
levelization (RPL). In addition to handling the partitioning constraints, the new approach
efficiently addresses the problem of minimizing the number of PEs used to implement a
particular application and overcoming the weaknesses of the HP and RP algorithms. The
hardware architectures considered in this research includes the Wildforce-XL, the

SLAAC-1V, the SLAAC-1P, and the MSP boards.
The partitioning strategy is based on the following constraints:
1. Capacity per partition

2. Number of I/O pins per partition

3. Each partition can only have one RAM access module

121



4. Input module and output module must be placed in the first partition and in
the last partition.

5. Temporal partitioning constraint. For multiple board configurations, storage of
intermediate results bétween board configurations is needed.

6. Maintaining the acyclic constraint so that all edges point the same way (from

left to right).

One of the major goals in this research is to target different hardware
architec.tures. The partitioning algorithms were extended to be dynamic so that the
partitioner will read the particular hardware structure data from a partitioning
configuration file. This will enable the user to change some specific information in the
configuration file instead of working ivnsi'de tfle partitioner and gives the user the

flexibility to switch from one hardware architecture to another one.

The performances of the three different partitioning approaches were compared
against eéch other. Comparisons between these algorithms we‘re made on a variety of
netlists. The comparison was based on the number of PE required to implement the netlist
on the targeted hardware board and the running time for the partitioner. Practical netlists

and random generated netlists were used to investigate the three partitioning algorithms.

In this research we considered a subset of netlists for CHAMPION applications,
which were implemented automatically from the Cantata workspace to the Wildforce-XL
platform. This subset of netlists includes the Hipass Filter, the NVL Round0, and the

122



ATR applications. The automatic targethrecognition (ATR) was given a special attention
in this research because this n;:tlist is a very challenging one. The ATR was first
implemented manually by the CHAMPION research group to assist in the development
of function libraries and hardware for use in the CHAMPION system. The ATR
application has an unusual high number of operations requiring RAM access. This

number of RAMs made the ATR netlist a very challenging one.

To the best of our knowledge, there exist no benchmarks that represent our
partitioning constraints. For this reason, a random netlist generator to produce
benchmarks wés developed in this research. By considering large netlists, we were able
to investigate the performaﬁce .of the HP, the RP, and the RPL algorithms. The netlists
R300-R1500 were produced randomly. In addition, a very challenging netlist M29, which
- utilizes 7 RAM modules, was generated manually to challenge the three partitioning |

algorithms.

We started the; evaluation process of the partitioning algorithrﬁs with netlists that
were known to have a partitioning solution. The RP and HP algorithms had difficulties in
producing‘valid péﬂitioning results for netlists which utilized a high percentage of RAM
acécss modiles. For example, the ATR and M29 utilize a high number of RAM modules.
The RPL algorithm produced 20 part'itions for the ATR netlist Within 2 seconds, while
the RP algorithm produced 23’ partitions within 9 seconds by targeting the Wildforce-XL.

The HP algorfthm failed to partition the ATR netlist. Both RP and HP algorithms failed

123



to partition the M29 netlist by targeting the Wildforce-XL board. However, the RPL was

able to partition the M29 netlist.

In several examples, the number of partitions produced by RPL algorithm was
less than the number produced by the other algorithms. The RPL algorithm uses a level
construction step, denoted as a preprocessing step, to reduce the weaknesses of the HP
and RP algorithms and to minimize the number of PEs used. Since the RAM access
constraint is a very challenging one, the preprocessing step was able to solve any
conflicts associated with this constraint before moving to the partitioning step. The RPL
algorithm creates partitions by moving levels instead of nodes to the current partition.
Because of this, the run time for the RPL was faster when compared to the HP and RP

algorithms.

In this research we con51dered several hardware architectures which includes the
Wildforce-XL, the MSP and the SLAAC boards. The partltlomng results for the run time
and the number of PEs used varled with the selected hardware architecture. For the three
partitioning algorithms, the run tlme and the number of partitions were reduced
significantly by targeting hardware boards with bigger I/O, bigger PE capacity, and
bigger RAMs. For example, the RPL algorithm produced 63 partitions for the R1200
netlist within 178 seconds by targeting the Wildforce-XL board. However, the algorithm
produced 8 partitions within 103 seconds for the same netlist when we targeted the .
SLAAC-1V board. In general, this big change reduces the computation time for the
commercial tools and the data processing time for a particular application.

124



Minimizing the number of the PEs used was one of the primary goals in this
research. To show tHe importance of this point, the ATR application was implemented
automatically from the CANATA workspace to the Wildforce-XL board for the two
different partitioning results produced by the RPL and the RP algorithms. The first
partitioning result used 20 FPGAs. The second partitioning result used 23 FPGAs. The
resulted total time to process one image for the 20 FPGAs and the 23 FPGAs
implementations is 9890ms and 11777ms respectively. The total time to process one
image for the manual implementation was 5718ms. The manual implementation used 20
FPGAs where only 11 FPGAs needed to be reconfigured. Because of this, the manual
implementation was faste.r than the automated implementation. In this research, we also
discussed the implementation of the ATR application by targeting the SLAAC and the
MSP boards. The estimated total time to process one image on the SLAAC board would
be 37 times faster than the manual implementation and 77 times faster than the 23 FPGAs
. implementation on the Wildforce-XL. At the other side, the MSP board would be 1.4
- times faster than the manual implementation and 2.7 times faster than the 23 FPGAs
ifnplementation on the Wildforce-XL. These results showed that both the partitioning
process and the hardware architecture determine th¢ performance rate for a particular

application. '

In the CHAMPION design flow each sub-netlist resulting from the partitioning
step must be converted to a structural VHDL file representing the hardware resources
desired for each FPGA. A PERL script file was written to generate the structural VHDL

125



file and to assign the E;ommunication signals between the PEs. The script file identifies
the glyphs used in the sub-netlist, the connections between glyphs, and the connections

between glyphs and the other FPGA:s.

The host code, which is used to communicate with the board, was automated to a
certain level. The host code uses a set of function calls provided by the manufacture of
the ACS. In addition, the automated host code uses a configuration file produced by a
PERL script, which accesses the resulting sub-netlists and extracts the configuration data.
This configuration file is used by the host code to determine the number of
configurations, the name and location for each programming bit file, if a specific PE

needs to access the SRAM, and where to write the result after each configuration.

There are several improvements that can be investigated in the future to enhance
the solution quality produced by the partitioning process. The effect of using look-ahead
schemes in the partitioning process can be explored. The look-ahead method Was used in
" many previous works where enhancements were reported. In this case, the partitioning
process can be improved by defining a gain vector for each node. Using the géir} vector

allows to swap nodes that reduces the mean cuts in the resulting partitions.

The partitioning process investigated in this research could not handle the
situation where some of the FPGAs might have the same glyphs. This is a very

challenging problem that will have to be addressed in a future research. This will improve

126




the data processing time by reducing the number of the reconfigure PEs. It is not clear to

the author what form the solution to this problem may take.

The RAM access constraint was the most challenging one for the partitioning
process and the performance of abplica;ions on the hardware boards. This constraint can
be relaxed to a certain level by implementing some of the used RAM modules internally.
This will require hardware architectures with big resources. Some of the RAM modules,
which are used to transfer the input and output data and between multiple board
configuratiorns, need to be implemenfed externally. In several examples, the I/O
constraint between multiple board configurations could not be met during the partitioning
process. One way to overcome this problem is to use hardware architectures with bigger
RAM resources. Another v&;ay is to m}lltipléx data between a PE and the local RAM
whenever the I/O constraints cannot belmet. This will require extra implementation of

multiplexing 5glyphs.

127



References

128




[1] C.‘Fidu'ccia and R. Mattheyses, “A Linear Time Heuristic for Improving Network
Pdrtitions”, Proc. Of the 19th Design Automation Conference, pp. 175-181, 1982.
| [2] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”, Bell System Technical Journal, v.49, n.2, pp. 291-307, February 1970.

[3]S. M. Sait and H. Youssef, VLSI Physical Design Automation, McGraw-Hill,

- pp. 43-53, 1995.

[4] B. Levine, A System for the Implementation of Image Processing Algorithms on
Configurable Computing Hardware, University of Tennessee, Master Thesis, 1999.
“[51S. Nétaraj an, Dévelopment and Verification of Library Cells for Reconfigurable
Logic, University of Tenneséee, Master Thesis, 1999.

[6] N. A. Sherwani, Algorithms for VL.SI Physical Design Automation, Kluwer

Academic PuBlishers, pp. 168-190, 1999.

[7] D. Schweikert and B. Kernighan, “A Proper Model for the Partitioning of Electrical
Circuits”, Proc. Of 9™ Design Automation Conference, pp. 57-62, 1972.

[8] B. Stanley, Hierarchical Multiway Partitioﬁing'Strategy with Hardware Emulator

Architecture Intelligence, Georgia Institute of Technology. Ph.D. Dissertation, 1997.

[9] S. Brown , J. Rose, and Z. G. Vranesic, “A Detailed Router for F ield-Programmable -

Gate Arrays”, IEEE tansaction on compﬁter-Aided Design, Vol. 11, No.5, pp. 629-628,
May 1992. |

[10] J. Spillane and H. Owen, “Temporal Partitioning for Partially Reconfigurable
Field-Programmable Gate Arrays”, Reconfigurable Architectures Workshop, 1998 in

IPPS/SPDP'98.

129




[11] B. Krisnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI
Networks”, IEEE Transactions on Computer, v. C-33, n. 5, pp.438-446, May 1984.
[12] S. Kirkpatrick, C. Gellat, Jr., M. Veechi, “Optimization by Simulated Annealing”,
Science, v. 220, pp. 671-680, May 1983.

[13]. R.Kuznar, F. Berglez, and K. Kozminski, “Partitioning Digital Circuits fér
Implementation in Multiple FPGA ICs”, Technical Repprt TR93-03, MCNC, Research
Triangle Park, NC, March 1993.

[14] S. Brown and Z. Vranesic, Fundamentals of Digital Logic With VHDL Design,

McGraw-Hill, pp. 81-100, QOOO.

[15] R.Kuznar , “PROP: A Recursive Paradigm for Area-Efficient and Performance
Oriented Partitioning of Large FPGA Netlists”, International Conference on Computer
Aided Design, San Jose, CA, November 5-9, 1995.

[16] L. Sanchis, “Multiple-Way Network Partitioning” IEEE Transaction on Computers,
Vol. 38, No. 1, pp.62-81, 1989. |
[17]'Zycad, “K-Way Algorithm”, 'Cor;cept Silicon Reference Manual — Paradigm RP, pp.
116-119, November 1994, |

[18] S. Hauck and G. Bdrriello, “Logic Partition Ordering for Multi-FPGA Systems”,
International Symposium on Field Programmable Gate Arrays, pp. 1-7, 1995.

[19] R. Bﬁna and D. Bhatia, "Timing Driven Multi-FPGA Board FPartitioning",
Proceedings of IEEE International Conference on VLSI Design, Chennai, India, January

1998.

130




[20] M. Karthikeya and G. Purna and D. Bhatia, "Partition;'hg'in Time: A Paradigm for

Réconﬁgur&ble Computing", Procgedings of International Conference on Computer
Design (ICCD 98), p]g;. 340-347, Austin, October 1998.

[21] K.M. Gajjalapuma and D. Bhatia, "Temporal Partitioning and Scheduling for ‘
Reconfigurable Computers”, IEEE International Conference on FPGAs in Custom
Computing Machines (FCCM 98), pp. 329-33AO,Y Napa Valley, April 1998.

[22] G. Tumbush and D. Bhatia, “K-way Partitioning under Timing, Pins, and Area
Constraints”, Proceedings of International Conference on Computer Design, October
1997.

[23] C. Lee and T. Yang and Y. F. Wang, “Partitioning and Scheduling for Parallel
Image Processing Operations”, Proc. IEEE/ACM International Conference on Computer-
Aided Design, pp. 497-504, 1998.

[24] C.Lee and T. Yang and Y. F. Wang, “Global Optimization for Mapping Parallel
Image Processing Tasks on Distribﬁte,d Memory Machines”, Journal of Parallel and
Distributed Computing, 45(1): 29-45, 1997.

[26] C. Shetters, Scheduling Task Chains on an Array of Reconfigurable FPGAs,
University of Tennessee, Master Thesis, 1999.

[271 S. Hauck, Multi-FPGA Systems, University of Washington, Ph.D. Dissertation,

1995.

[28] M. J. S. Smith, Application-Specific Integrated Circuits, Addison Wesley, 1997.

[29] N. Woo and J. Kim, “An Efficient Method of Partitioning Circuits for Multiple-
FPGA Implementation”, Proc. Of 30" Design Automation Conference, pp- 202-207,

1993.

131



[30] C. H. Gebotys, "An Optimal methodology of Synthesis of DSP Multichip

Architectures", Journal of VLSI Signal Processing, v11, p9-19 1995.

[31] A. Athanas and A. Abbot,."Real-Time Image Processing on a Custom Computing
Platform," IEEE Computer, vol. 28, pp.16-24, Feb. 1995.

[32] H. Liu and D. F. Wong, "Network Flow Based Circuit Partitioning for Time-
Multiplexed FPGAs," Proc. IEEE/ACM International Conference on Computer-Aided

Design, pp. 497-504, 1998.

[33] D. Gajski, N. Dutt, A. Wy, and S. Lin, High-Level Synthesis: Introduction to Chip

and Svstem Desien: Kluwer Academic Publishers, 1992.

[34] C. T. Hwang, J. H. Lee, and H. Yu-Chin, "A Formal Approach to the Scheduling
" Problem in High Level Synthesis,'; IEEE Transactions on Computer Aideci Design, vol.
10, pp. 464-475, 1991, | .
[35] D. Chang and M. Marek-SadoWska, "Buffer Minimization and Time-Multiplexed 1/0
on Dynamically Reconfigurable FPGAs," Proc. ACM International Symposium on
FPGAs, pp. 142-148, 1997. |
[36] F. Vahid and D.D. Gajski, “Clustering for Improved System-Level Functional
_Partitioning,” Intemétional Symposium on.System Synthesis, pp. 28-33, Septernbér
1995.
[37] F. Vahid and T.D.M. Le, “Extending the Kernighaﬁ/Lin Heuristic for Hardware and
Software Functional Partitioning,” Kluwer Journal on Design Automation of Embedded
Systems, Vol. 2, No. 2, pp. 237-261, March 1997. :

[38] F. Vahid, “Techniques for Minimizing and Baiancing I/0 during Functional

Partitioning,” IEEE Transactions on CAD, Vol. 18, No. 1, pp. 69-75 January 1999.

132




. [391 D. Gajski, "Specification Partitioning for System Design," Design Automation
Conference, pp. 219-224, June 1992.

[40] S. Narayan, F. Vahid and D.D. Gajski, "System Level Specification and Synthesis,"
International Conference on VLSI Design, January 1992.

[41] T.D.M. Le and Y.C. Hsu, "A Comparison of Functional and Structural
Partitioning," International Symposium on System Synthesis, pp. 121-126, November

1996.

[42] R. Sedgewick, Algorithms in C++, Addison Wesley Publishing Company, pp. 479-
481, 1992.

[43] L. Hagen, Circuit Partitioning, PhD thesis, UCLA, 1994.

[44] L. Hagen and A. B. Kahng, “ Combining Problem Reduction and adaptive Multi-
Start: A New Technique for Superior Iterative Part;'tioning,” IEEE Trans. Computer-

Aided Design, 1996.

133



 VITA

Nabil Kerkiz was born in Jabalia, Gaza Strip. on May 24™ 1965. He liifed in Gaza Strip
until 1985, when he moved to Germany. He finished his higii school education at E]--
Faluja High Schnol in Gaza Strip and entered the University des Saarlandes for hin
undergraduate studies in Electrical Engineering. Upon completion of his Diploma of EE
in 1994, he returned to Gaza Strip. While there, he worked for Hejazy Comi)any asa
Hardware Design Engineer. In 1996 , he moved to the USA to attend the Southern
Hlinoie University at Carbondale. Pie received his Master of Science in electrical
engineering in December of 1997. In January of 1998, he moved to Tennessee te attend
the University of Tennessee in Knoxville. He entered the graduate program in electrical
engineering at UT in January of 1998 and worked as a teaching assistant for two
semesters before beginning work as a research assistant for Dr. Don Bouldin. He _hzis '
completed all of the requirements for the Ph.D in electrical engineering and that degree ‘

will be awarded by UT‘in December of 2000.

Nabil Kerkiz and his family will move to San Jose in California, in J anuary of 2001,

where he will work as a Hardware Design Engineer for Intel Inc.

134




	Developments and experimental evaluation of partitioning algorithms for adaptive computing systems
	Recommended Citation

	Thesis2000b.K47_2.pdf
	Thesis2000b.K47.pdf

