1,134 research outputs found

    CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison

    Full text link
    Large, labeled datasets have driven deep learning methods to achieve expert-level performance on a variety of medical imaging tasks. We present CheXpert, a large dataset that contains 224,316 chest radiographs of 65,240 patients. We design a labeler to automatically detect the presence of 14 observations in radiology reports, capturing uncertainties inherent in radiograph interpretation. We investigate different approaches to using the uncertainty labels for training convolutional neural networks that output the probability of these observations given the available frontal and lateral radiographs. On a validation set of 200 chest radiographic studies which were manually annotated by 3 board-certified radiologists, we find that different uncertainty approaches are useful for different pathologies. We then evaluate our best model on a test set composed of 500 chest radiographic studies annotated by a consensus of 5 board-certified radiologists, and compare the performance of our model to that of 3 additional radiologists in the detection of 5 selected pathologies. On Cardiomegaly, Edema, and Pleural Effusion, the model ROC and PR curves lie above all 3 radiologist operating points. We release the dataset to the public as a standard benchmark to evaluate performance of chest radiograph interpretation models. The dataset is freely available at https://stanfordmlgroup.github.io/competitions/chexpert .Comment: Published in AAAI 201

    Conditional Consistency Regularization for Semi-supervised Multi-label Classification

    Get PDF
    In practical scenarios, a sample may have multiple labels that reveal its classes instead of a single label, which is widely known as multi-label classification (MLC). However, some practical situations may lack reliable labels due to the high cost, time-consuming and professional labelling process. Although Semi-supervised classification may become a potential solution, most of the outstanding existing methods are customized for the single-label situation and ignore multi-label situations. Consistency regularization has performed great success in Weakly/Semi-supervised Single-label classification (SS-SLC), but few efforts have been devoted to semi-supervised Multi-label classification (SS-MLC). A simple solution for introducing consistency regularization to SS-MLC is to regularize predictions of models to be consistent with different augmentation of the same image. Nonetheless, the solution lacks attention to label relations which are crucial components of Multi-label classification. In the thesis, I go beyond the consistency regularization in SS-SLC and propose Conditional Consistency Regularization (CCR) that is designed for SS-MLC. To be specific, we make potential labels (grand-truth label for labeled samples, pseudo-label for unlabeled samples) conditioned on different label states (i.e., positive, negative, or unknown for each class). By regularizing the two predictions to be invariant, the model can learn label relations implicitly between two different label states, which can boost classification performance. The comprehensive experiments that are conducted on different datasets show that the proposed method can surpass state-of-art SS-MLC and MLC methods by a large gap

    Path Representation Learning in Road Networks

    Get PDF

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Few-shot Object Detection in Remote Sensing: Lifting the Curse of Incompletely Annotated Novel Objects

    Full text link
    Object detection is an essential and fundamental task in computer vision and satellite image processing. Existing deep learning methods have achieved impressive performance thanks to the availability of large-scale annotated datasets. Yet, in real-world applications the availability of labels is limited. In this context, few-shot object detection (FSOD) has emerged as a promising direction, which aims at enabling the model to detect novel objects with only few of them annotated. However, many existing FSOD algorithms overlook a critical issue: when an input image contains multiple novel objects and only a subset of them are annotated, the unlabeled objects will be considered as background during training. This can cause confusions and severely impact the model's ability to recall novel objects. To address this issue, we propose a self-training-based FSOD (ST-FSOD) approach, which incorporates the self-training mechanism into the few-shot fine-tuning process. ST-FSOD aims to enable the discovery of novel objects that are not annotated, and take them into account during training. On the one hand, we devise a two-branch region proposal networks (RPN) to separate the proposal extraction of base and novel objects, On another hand, we incorporate the student-teacher mechanism into RPN and the region of interest (RoI) head to include those highly confident yet unlabeled targets as pseudo labels. Experimental results demonstrate that our proposed method outperforms the state-of-the-art in various FSOD settings by a large margin. The codes will be publicly available at https://github.com/zhu-xlab/ST-FSOD
    • …
    corecore