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Abstract

With the continued digitization of transportation systems, there is an increas-
ing demand for path-based smart city applications which require appropriate
path representations. To support path-based applications, different techniques
have been proposed to learn path representations. However, existing studies
suffer from the following limitations: (1) Supervised methods learn a task-
specific path representation and require a large amount of labeled training
data, which works well on the labeled task, but generalizes poorly on other
tasks; (2) Although graph representation learning based methods learn a task-
unspecific path representation, they cannot capture sequential dependencies
and fail to introduce the temporal information into the learned path representa-
tions; (3) Existing works mainly focus on accuracy improvement, ignoring the
mode scalability and size, which plays a critical role in resource-constrained
environments.

In this thesis, we investigate the task-unspecific path representation learn-
ing approaches that are able to generalize well for different downstream tasks.
More specifically, we focus on the following specific works. (1) Context-aware
path ranking in road networks. (2) Unsupervised path representation learning.
(3) Weakly-supervised contrastive curriculum path representation learning.
(3) Lightweight and scalable path representation learning.

First, we study the path ranking framework PathRank. This framework
learns task-specific path representations, which are used to rank candidate
paths. In particular, we propose a training data enrichment strategy to enhance
the learning process. Subsequently, we propose an end-to-end context-aware
multi-task framework to enable the PathRank. We conduct extensive experi-
ments on one real-world dataset to verify the effectiveness of the PathRank.

Second, we study the unsupervised path representation learning frame-
work Path InfoMax (PIM) by maximizing the mutual information. PIM takes
as input a path and output task-unspecific path representations. In particu-
lar, we first propose a curriculum negative sampling strategy to enhance the
PIM training. Then, we propose a path-path discriminator and path-node
discriminator to jointly learn task-unspecific path representations by capturing
the global and local information of the path. Finally, we conduct extensive
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experiments on two downstream tasks under two real-world datasets. The
results illustrate our PIM is more effective than other baseline methods. In
addition, the pre-trained PIM can enhance supervised learning methods.

Third, we study a weakly-supervised contrastive curriculum temporal path
representation learning framework by leveraging the information from weak
labels and considering both spatial and temporal correlations. This framework
takes as input a temporal path (a path with a departure time) and returns
task-unspecific temporal path representations. We first introduce the weak
label to capture the temporal variation of traffic. Then, we study the weakly-
supervised contrastive learning method to enable the temporal path encoder
training. Subsequently, we combine weakly-supervised contrastive learning
with a two-stage curriculum learning strategy to improve the performance
of weakly-supervised contrastive learning. Finally, we conduct extensive
experiments on three downstream tasks under three real-world datasets. The
results show the effectiveness of our proposals.

Finally, we study the lightweight and scalable path representation frame-
work LightPath. This framework aims at learning task-unspecific path repre-
sentations by reducing resource consumption and enabling model scalability
with respect to path length. In particular, we first propose a sparse auto-
encoder that guarantees LightPath with good scalability of path length. Then,
we propose cross-network and cross-view relational reasoning to train sparse
path encoders jointly. Subsequently, we propose global-local knowledge distil-
lation to reduce the model size and improve the performance of the learned
path representations. Finally, extensive experiments are conducted, and the
results demonstrate the efficiency and scalability of the LightPath.



Resumé

I takt med digitaliseringen af transportsystemer stiger efterspørgslen efter sti-
baserede smart-city applikationer, hvilket skaber et behov for hensigtsmæssige
repræsentationer af stier i vejnetværk. Forskellige teknikker er de senere år
blevet udviklet til at lære sti-repræsentationer med henblik på at understøtte
sti-baserede applikationer. Men eksisterende teknikker har flere begræn-
sninger: (1) Superviserede teknikker er i stand til at lære opgavespecifikke
sti-repræsentationer, men de kræver store mængder af træningsdata; og
mens de er velfungerende til de valgte opgaver, så generaliserer de dårligt
til andre opgaver. (2) Selvom grafbaserede teknikker er i stand til at lære
opgave-uspecifikke repræsentationer, så kan de hverken modellere sekven-
tielle afhængigheder eller knytte tidsinformation til lærte sti-repræsentationer.
(3) Eksisterende teknikker fokuserer desuden på forbedring af nøjagtigheden
på bekostning af skalerbarhed og modelstørrelse, som er vigtige aspekter i
situationer med begrænsede ressourcer.

Afhandlingen præsenterer løsninger til læring af opgave-uspecifikke sti-
repræsentationer, der understøtter tiltænkte applikationer. Mere specifikt
omhandler afhandlingen følgende: (1) Kontekstafhængig rangering af stier.
(2) Ikke-superviseret læring af stier. (3) Svagt superviseret såkaldt contrastive
curriculum læring af stier. (4) Resursebesparende og skalerbar læring af stier.

Først præsenter afhandlingen PathRank, der muliggør rangering af stier
ved først at lære opgavespecifikke sti-repræsentationer, som derefter kan an-
vendes til at rangere stier. Indledningsvist præsenteres teknikker til berigelse
af træningsdata med henblik på forbedret læring. Herefter præsenteres et
komplet kontekstafhængigt rammeværk, der realiserer PathRank. Endelig
præsentes omfattende eksperimentelle studier af PathRank baseret på et virke-
ligt datasæt.

For det andet præsenterer afhandlingen PathInfoMax (PIM), der muliggør
ikke-overvåget læring af opgaveuspecifikke sti-repræsentationer baseret på
maksimering af gensidig information. Afhandlingen præsenterer en såkaldt
curriculum negative sampling-teknik for at forbedre PIM’s læring. Derefter
præsenter den sti-sti og en sti-knude diskriminatorer med henblik på fælles
læring af opgaveuspecifikke sti-repræsentationer baseret på globale og lokale
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informationer om stier. Endelig præsenteres eksperimentelle studier af to
opgaver baseret på to virkelige datasæt. Studierne viser, at PIM er bedre end
andre løsninger og at PIM med prætræning kan forbedre svagt superviserede
læringsmetoder.

For det tredje præsenterer afhandlingen et rammeværk, der tager stier med
afgangstider som input og lærer opgaveuspecifikke repræsentationer af disse
ved hjælp af svagt overvåget kontrastiv curriculum læring, som inddrager
bl.a. spatiale og tidsmæssige korrelationer. Afhandlingen præsenterer eksper-
imentelle studier af tre opgaver baseret på tre virkelige datasæt. Studierne
viser, at rammeværket fungerer hensigtsmæssig.

For det fjerde præsenterer afhandlingen et rammeværk, LightPath, der har
til formål at muliggøre resursebesparende og skalerbar læring af opgaveuspeci-
fikke stier. LightPath omfatter en encoder, der sikrer god skalerbarhed i
forhold til stilængden. Desuden anvendes såkaldt relational læring samt
teknikker til modelreduktion med henblik på at gøre LightPath resursebe-
sparende. Afhandlingen præsenterer eksperimentelle studier af resurseforbrug
og effektivitet, som viser at LightPath opnår sine designmål.
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Chapter 1

Introduction

1 Background and Motivation

With the acceleration of smart city developments, especially for the contin-
ued digitalization of transportation systems, a large number of trajectory
data has been generated, promoting an increasing range of path-based intel-
ligent transportation applications, e.g., travel cost estimation [22, 25, 30, 59],
routing [36, 39, 40, 74], path recommendation [14, 15, 24], and traffic analy-
sis [22, 25, 30, 59]. Path representation learning (PRL) is the basis to support
these applications under different traffic scenarios, where PRL aims to learn
the representation vector for each path. Figure 1.1 shows an example, we aim
at learning a function f (·) : RN×D → Rd, where N is the number of edges
in a path, D is the dimension of edge representation vector. This function
embeds each path in a road network into a d dimensional representation
vector (i.e., ZP1 and ZP2 ).

𝑒!

𝑒" 𝑒#

𝑒$

𝑒% 𝑒&

𝑓($): ℝ'×) → ℝ*
)
𝑍+!
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𝑃!

𝑃"

Figure 1.1: The road network consists of multiple paths, for example P1 = ⟨e1, e2, e3, e4⟩ and
P2 = ⟨e1, e6, e5, e4⟩.
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Chapter 1. Introduction

1.1 Task-Specific PRL

Supervised Learning

Some existing works explore the path representation learning from the task-
specific labels perspective through a supervised manner [10, 17, 33, 54, 70] and
return the task-specific path representations (PRs). It is worth noting that, task-
specific PRs are path representation learned from task labeled data. However,
(1) Task-specific PRs work well on the task labeled data but generalize poorly
on another tasks (e.g., PR1 works well on travel time estimation task but
returns poorly results on path ranking and traffic forecasting, respectively.
The same is true for PR2 and PR3. Refer to Figure 1.2a.). (2) Learning task-
specific PRs require a larger amount of labeled data, where high-quality data
annotations are very expensive and time-consuming, and there are many
unlabeled data available. These limitations call for a task-unspecific PRL.

Example 1.1 (Task-specific vs. Task-unspecific PRL)
Figure 1.2 compares the task-specific PRL with task-unspecific PRL. Given
an input path p = ⟨e1, e2, e3, e4⟩ and three downstream tasks, e.g., travel
time estimation, path ranking, and traffic forecasting. Task-specific PRL
aims to learn three independent PRs (i.e., PR1, PR2, and PR3) for three
different tasks with availability of a larger amount of labeled data, which is
shown in Figure 1.2a. In contrast, as shown in Figure 1.2b, task-unspecific
PR is to learn generic PR that can work well for different tasks. To this
end, we aim to learn a task-unspecific path representation PR for a given
path p by using larger amount of unlabeled data, which can be applied in
different downstream tasks, e.g., travel time estimation, path ranking, and
traffic forecasting, respectively.

Travel Time Estimation

Path Ranking

Traffic Forecasting

PR1

PR2

PR3

𝑒! 𝑒" 𝑒# 𝑒$

Input Path

(a) Task-specific PRL

Travel Time Estimation

Path Ranking

Traffic Forecasting

PR𝑒! 𝑒" 𝑒# 𝑒$

Input Path

(b) Task-unspecific PRL

Figure 1.2: Task-specific vs. Task-unspecific.

1.2 Task-unspecific PRL
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1. Background and Motivation

Unsupervised Learning

Some other existing works investigate path representation learning from
an unsupervised learning perspective based on graph representation learn-
ing [12, 46, 47], where we first learn a task-unspecific graph/node represen-
tation vector, and then we achieve the task-unspecific path representation
by aggregating node representation vector in a path. In particular, the goal
of unsupervised graph representation learning is to learn task-unspecific
graph/node representations by directly using raw unlabeled data, where
these representations can work well for different tasks, e.g., link prediction
and node classification. However, although we can achieve the PR through
aggregation based on learned node representations, it ignores the correlations
between each node in a path. This limitation calls for a novel algorithm that is
designed for learning a task-unspecific path representation in an unsupervised
manner.

Example 1.2 (Graph Representation Learning based PRL)
Figure 1.3 illustrates an example of graph representation learning based
PRL. Given an input road network graph, graph representation learning
methods aim to learn a mapping function g(·) that takes as input a road
network graph and returns node representation. In practice, this mapping
function g(·) can be Node2vec(·) [13], deepwalk(·) [42], etc.. Then, we use
g(·) to achieve each node representation vector in a road network graph. As
shown in Figure 1.3, the colored □ denotes the node representations. Finally,
we achieve the path representations (i.e., ZP1 , and ZP2 ) by aggregating each
node representation vectors in a path.

𝑒! 𝑒"

𝑒#

𝑒$ 𝑒%

𝑒&𝑒'

𝑒! 𝑒"

𝑒#
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𝑒&
g(#):→ ℝ(

𝑒! 𝑒"
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𝑒$ 𝑒%
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Input Road Network Graph Graph Representation Learning

𝑃'

Aggregation
)
𝑍)!
𝑍)"

𝑃!
Path Representations

Figure 1.3: Graph Representation Learning based PRL.

Weakly Supervised Learning

To the best of our knowledge, transportation systems is dynamic system
that varies with time, i.e., the temporal aspect plays an essential role in
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Chapter 1. Introduction

transportation system applications. A native way to learn task-unspecific
temporal path representations (TPRs) is first to learn task-unspecific PRs
through unsupervised learning and then concatenate the temporal embedding
with learned PRs. However, this operation is not effective as it cannot fully
explore the temporal information. It is non-trivial to learn temporal path
representations (TPRs) through unsupervised learning. To ensure the task-
unspecific TPRs that are able to conduct on different downstream applications,
we aim to learn TPRs based on weakly-supervised contrastive learning by
introducing weak labels, where weak labels are very cheap and easy to achieve.
In particular, these weak labels are relevant to different tasks, e.g., peak vs.
off-peak periods.

Example 1.3 (Travel Time Estimation and Weak Label)
Consider the travel-time estimation example from Google Maps in Figure 1.4.
Travel from “Cassiopeia" to “Nytorv" takes longer at 8:00 a.m. than at 10:00
a.m., due to the traffic congestion during morning peak hours. Further, it
can be seen that the path recommendation rankings are also different. It
recommends avoiding the highway at 8:00 a.m. due to the heavy congestion
there, while recommends the highway again at 10:00 a.m., when the traffic
is clear [63]. Thus, the temporal aspect plays an essential role in smart-
city path-based applications. Learning task-unspecific path representation
without considering temporal information led to poor performance. In
particular, we introduce the weak label to learn TPRs. Take Figure 1.4a as
example, we define temporal path as (Pi, dti), where Pi denotes the path
and dti denotes the departure time. In this case, the representation of
(Pi, 8 : 00a.m.) and (Pi, 10 : 00a.m.) should be different since they depart
from the peak and off-peak hour, respectively.

Lightweight and Scalability PRL

Since path is represented as a sequence of edges, path representation learning
often employs models that are good at capturing sequential relationships, such
as Transformer [49]. However, a Transformer-based method [3] employs a
self-attention mechanism, where one edge attends to all other edges in a path
in each attention, resulting in quadratic complexity, O

(
N2) of path length N,

where the path length is the number of edges in a path. As a result, models
exhibits poor scalability with respect to path length.

Example 1.4 (Scalability w.r.t. Path Length)
Figure 1.5 gives an example of the scalability w.r.t. path length N, cover-
ing both memory consumption and computational cost, in terms of GPU
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1. Background and Motivation

(a) 8:00 a.m. (b) 10:00 a.m.

Figure 1.4: Travel Time Estimation. Travel times of paths from Cassiopeia to Nytorv at (a) 8:00 a.m.
and (b) 10:00 a.m [63]. © 2022 IEEE

memory (gMem.) and Giga floating point operations per second (GFLOPs),
respectively. We observe when the path length N increases from 50 to 200,
the Transformer-based method performs poorly.
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Figure 1.5: Scalability w.r.t. Path Length [65].

In addition, existing path representation learning works mainly focus on
performance improvement by introducing more depth networks. Moreover,
models with large amounts of parameters also suffer from high storage and
computational costs. Such costs are unattractive, particularly in resource-
limited environments. These limitations require a lightweight and scalability
framework to learn task-unspecific path representations.
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Chapter 1. Introduction

Example 1.5 (Model Size with different Encoder Layers)
Table 1.1 shows the numbers of parameters of Transformer-based path
encoders when varying the number of layers among 12, 24, 48, and 96 while
fixing the number of heads at 8 per layer and the feature dimension of the
encoder at 512. We can observe that the model parameters grow dramatically
when the number of encoder layers increases, preventing the models from
being deployed in resource-constrained environments.

Table 1.1: Model Parameter Size with Varying Encoder Layers [65]

Encoder Layers L 12 24 48 96
Parameters
(Millions)

29.85 55.07 105.51 206.40

In a brief, efficient and accurate path representations enable drivers better
schedule their routes, thus improving traffic conditions and reducing carbon
emissions to meet the requirements of carbon neutrality [16]. Therefore, path
representation learning plays an essential role in Intelligent Transportation
Systems (ITS) as it enables efficient traffic system planning and management.
As mentioned above, there are several challenges to solving the problems
mentioned above. First, how to learn context-aware task-specific model for path
ranking? Second, how to mine the unlabelled data to learn task-unspecific path
representations through unsupervised learning? Third, how to enhance the task-
unspecific path representations learning by leveraging the information from the weak
labels? Fourth, how to design a lightweight and scalability framework to learn
task-unspecific path representations? However, there is still no systematic and
comprehensive study on path representation learning to solve these challenges,
which is shown in Figure 1.6. To bridge the gap, we propose and study the
following problems.

1. Context aware path ranking in road networks. Following the existing
supervised learning methods, we study the context-aware path ranking
framework, which learns a task-specific path representation. In particu-
lar, we first study the powerful training data enhancement methods that
generate compact and diversified training sample sets based on historical
trajectories, enhancing efficient and powerful feature learning by provid-
ing more effective training data. Then, we present the multi-task learning
based PathRank strategy to study the task-specific path representation
by considering different relevant contexts information [64, 66].

2. Unsupervised path representation learning with curriculum negative
sampling. We study a new unsupervised path representation learning

8



1. Background and Motivation

PRL

Unsupervised Learning

Weakly 
Supervised Learning

Lightweight and
Scalability

Papaer A & B

Supervised Learning

Papaer C

Papaer D

Papaer E

Figure 1.6: Path Representation Learning.

framework Path InfoMax(PIM), which returns task-unspecific path repre-
sentations based on mutual information maximization and a curriculum
negative sampling strategy [62]. To enhance the PIM training, we first
construct negative paths for each input path based on the fundamental
principles (i.e., generating paths from easy to hard order) of curriculum
learning, where we first generate the most accessible negative paths that
are entirely different from the input path (i.e., no overlap exists between
input and these negative paths). Then, we gradually increase the gen-
eration difficulty that makes the input path with overlap with negative
paths. Subsequently, we further investigate the path-path discriminator
and path-node discriminator to train the path encoder by mutual in-
formation maximization, which finally returns the task-unspecific path
representations [62].

3. Weakly-supervised temporal path representation learning with con-
trastive curriculum learning. We propose a novel path representation
learning methods based on weakly supervised contrastive curriculum
learning (WSCCL) [63]. It returns a task-unspecific temporal path repre-
sentation by simultaneously taking into account spatial and temporal cor-
relations. In particular, to enable temporal path representation learning,
we first introduce a weak label to capture the temporal variation of the
traffic dynamics, which is cheap and relevant to different downstream
applications [22, 25, 39, 59, 63]. Then, we study the weakly-supervised
contrastive learning method to train a temporal path encoder which
returns a task-unspecific temporal path representation [63]. To further
enrich the weakly-supervised contrastive learning, we next combine
curriculum learning strategies with weakly-supervised learning, leading
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Chapter 1. Introduction

to the improvement of the generalization capacity and convergence rate
for TPR learning [63].

4. LightPath: lightweight and scalable path representation. We further
propose and study a lightweight and scalable path representation learn-
ing, termed LightPath, which aims to reduce resource consumption and
achieve scalability without affecting accuracy, thus enabling broader ap-
plicability [65]. We first propose a sparse path auto-encoder that ensures
the LightPath with good scalability in terms of path length [65] Next, we
propose a relational reasoning framework to enable faster training of
sparse path encoder [65] We further design a global-local knowledge
distillation to reduce the size and improve the performance of sparse
path encoder [65].

2 Thesis Structure

The thesis utilizes machine learning methods to learn task-unspecific path
representations, the goal being of providing a foundation for systematic
and comprehensive path representation study that is able to contribute to
enabling different smart-city transportation system applications, e.g., travel
time estimation, eco-routing, path recommendation, and traffic analysis. As
already mentioned before, we aim at addressing three challenges in this thesis
and the overall outline is given in Figure 1.7. First, we study the context-aware
path ranking framework based on training data enrichment strategy and
multi-task learning by following existing supervised methods. However, this
model returns task-specific path representations. Then, to learn task-specific
path representations, we propose a novel unsupervised path representation
framework Path InfoMax PIM by mutual information maximization and
curriculum negative sampling, which provide a theoretic foundation for task-
unspecific PRL and thus solve the first challenge. Subsequently, considering
the dynamic properties of real traffic conditions, i.e., temporal variation, we
further investigate a task-unspecific temporal path representation learning
by leveraging the information of weak label (e.g., departure time.) and
introducing a weakly-supervised contrastive learning principle. To improve
the temporal path representation learning, we also study the curriculum
learning-based weakly-supervised contrastive learning methods, resulting in
the improvement of the generalization capacity and convergence rate for TPR
learning. This method solves the second challenge. Finally, we explore a
lightweight and scalable path representation learning framework, aiming at
reducing resource consumption and achieving scalability without affecting
accuracy. We propose a sparse path auto-encoder to guarantee the framework
with good scalability in terms of path length. Next, we further propose a
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2. Thesis Structure

relational reasoning framework to train sparse path auto-encoder faster and
more robustly. Finally, we study the global-local knowledge distillation to
reduce mode size and improve the performance of the sparse path encoder.
This framework solves the last challenge.

Paper A & B How to learn context aware task-specific 
model for path ranking ?

How to learn a path representation in an 
unsupervised such that it can be used for 

different downstream tasks?

How to learn a temporal path 
representation by leveraging the 

information from weak lable?

How to design a lightweight and 
scalable path representation framework 

by considering resource-constrained 
environments?

Motivations

Paper C

Paper D

Paper E

Task-specific
Path Representations

Task-unspecific
Path Representations

Figure 1.7: Thesis Structure. Paper A and Paper B study the context-aware path ranking by
training data enrichment and multi-task learning, which returns a task-specific path representation.
To learn task-unspecific PRs, Paper C proposes a unsupervised path representation learning
methods. Further, to learn powerful temporal path representations, Paper D study the weakly-
supervised contrastive learning for TPRs. Finally, we investigate the lightweight and scalability
path representation learning by considering resource-constrained environment. The recommended
order to go through the thesis is Paper A&B then Paper C then Paper D then Paper E.
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Chapter 2

Context-Aware Path Ranking
in Road Networks

This chapter provides a brief conclusion of Paper A [66] and Paper B [64].
Paper A is an original PathRank framework, which is a data-driven end-
to-end framework and was published as a poster paper in 2020 [66]. In
contrast, Paper B extends the original idea by proposing a novel training data
enrichment strategy and using multi-task learning to further improve the
ranking performance, where termed as a basic framework. Based on this,
we further propose advanced framework that is able to incorporate contexts,
e.g., departure time and driver information. Then we conduct some extra
experiments to verify the effectiveness of the proposed architectures, which
include the effects of different training data enriching strategies, effects of
different node embedding learning strategies, effects of multi-task learning,
effects of contexts, comparisons with baseline ranking strategies, comparisons
with driver-specific ranking strategies, effects on training data sizes, and online
efficiency. These changes improve the performance of Paper A. In addition,
we also reorganized the Paper structure based on these new changes. Thus,
Paper A is a special case of Paper B. This chapter reuses content from paper A
and paper B when that is considered the most effective.

1 Problem Motivation and Statement

Vehicular transportation plays an essential role in our daily lives. Recently,
with the acceleration of digitization of transportation systems, there are many
vehicle trajectory data generated, which offer a solid data assurance to improve
the performance of various transportation services, especially for vehicle
routing. Generally, we use an algorithm like Dijkstra to search for a single
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Chapter 2. Context-Aware Path Ranking in Road Networks

optimal path with the least travel cost, e.g., the fastest and shortest routes,
when given a source and destination. However, there is one routing service
study [6] pointed out that local drivers generally select the paths that are not
the fastest or shortest, indicating traditional routing algorithms do not work
well in some real-world routing cases. To this end, some works, e.g., top-k
shortest path routing [68] and skyline routing [60], are investigated to return
multiple paths that drivers can select.

Under this scenario, candidate path ranking becomes critical to guarantee
high-quality routing. Nonetheless, existing studies often rank these paths
based on simple heuristics, w.r.t. their travel times. In addition, when drivers
choose their paths, they may not always select the fastest paths. Moreover,
existing studies offer all drivers with the same ranking, which assume all
drivers with the same driver preference.

To address the aforementioned challenges, in Paper A [66], we study
the data-driven framework PathRank, which returns ranked candidate paths
by considering local driver used paths based on their historical trajectories.
In contrast, in Paper B [64], we propose a data-driven, context-aware rank-
ing framework PathRank to rank paths in road networks [64]. In particular,
PathRank formulates candidate path ranking as a regression problem, which
predicts the ranking score for each candidate path with respect to the local
driver’s trajectories. In addition, we can accommodate different contextual
information into the PathRank, which enables the flexible framework. More
specifically, we first propose a training data-enriching strategy that returns a
compact and diversified training path set, which includes different travel costs
that drivers may consider [64]. Then, we propose an end-to-end multi-task
framework to effectively train the PathRank, which simultaneously takes road
network topology and spatial properties into account. Next, we introduce the
context representation into the PathRank to enable context-aware ranking.

The contributions of Paper B are summarised as following [64]:

• First, we propose a method to generate a compact and diversified set of
training paths that enables effective and efficient learning [64].

• Second, we propose a multitask learning framework to enable spatial
network embedding that captures not only topological information but
also spatial properties [64].

• Third, we integrate contextual information embedding into the frame-
work to enable context-aware ranking [64].

• Fourth, we conduct extensive experiments using a large real-world
trajectory set to offer insight into the design properties of the proposed
framework and to demonstrate that the framework is effective [64].

14



2. Preliminaries

2 Preliminaries

We first give the preliminaries and problem definition. The following defini-
tions in this section are reproduced from [64, 66].

2.1 Basic Concepts

A road network is represented as a weighted, directed graph G = (V, E, D, T, F),
where V denotes vertex set and E denotes edge set. In particular, edge set
E ⊂ V×V denotes road segments. D, T, and F are the edge distance, travel
time, and fuel consumption, respectively [64].

A path P = (v1, v2, v3, . . . , vX) consists of a sequence of X vertices where
X > 1 and there should be an edge between two neighboring vertices [64].

A trajectory T = (p1, p2, p3, . . . , pY) consists of a sequence of GPS records
and each record pi = (location, time) denotes the vehicle location at a specific
timestamp [64].

Path Similarities: Many similarity functions [9, 14, 37, 61] can be employed
to compute the similarity between different paths. Here, we conduct the
weighted JaccardSimilarity [14, 61](see Equation 2.1) to calculate the ranking
score for training paths.

sim (P1, P2) =
∑e∈P1∩P2

G.D(e)
∑e∈P1∪P2

G.D(e)
(2.1)

Ranking scores: Given a trajectory path P and another path P′ that are under
the same source P.s and destination P.d. We treat the similarity between the
trajectory path P and another path P′ as the ranking score for P′, where we
take the trajectory path P as ground truth path. Thus, the higher the ranking
score is, the higher ranking P′ achieves [64].

2.2 Problem Definition

Given a set of N candidate paths P that connect the same source and desti-
nation and optional contexts such as a departure time and a driver identifier,
we aim at (1) estimating a ranking score sim(P, P′i ) for each candidate path
P′i ∈ P; and (2) providing a ranked list of the candidate paths ⟨P′1, P′2, . . . , P′N⟩,
such that sim(P, P′i ) ≥ sim(P, P′j ) when 1 ≤ i < j ≤ N [64].

3 Training Data Enrichment

Training data enrichment strategy aims to construct a set of paths PS , which
consist of the other paths that the driver takes into account during the routine
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schedule. This PS is called as competitive path set.
Generally, the competitive path set is generated by including all paths

from source s to destination d [64]. However, this is impractical in the form of
real-world applications since the PS may contain a larger number of paths
in terms of city-level road networks [64]. To this end, we aim to build a
competitive path set module to generate an identity competitive path set that
contains a small number of paths, e.g., less than 20 paths [64]. In particular,
we should select these paths carefully instead of randomly choosing them.
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(c) Multi-cost Diversified Paths

Figure 2.1: Similarity Spreads of Different Strategies [64].© 2022 IEEE TKDE

The easiest way to construct competitive path set PS is to use the traditional
top-k shortest path algorithm, e.g., Yen’s algorithm [68], to generate top-k
shortest paths from s to d to build competitive path set PS . However, the
shortcoming is that the generated paths are very similar. For example, we
randomly select four different sources and destinations based on the trajectory
paths [64]. Then, we conduct Yen’s algorithm to generate top-9 shortest
paths [64]. Next, the similarity between the competitive path with trajectory
paths is computed. Figure 2.1a illustrates the box plots for the trajectory path
similarity. It can be seen that the similarity spread in a small range for four
sources and destinations, which will degrade the training performance since
the limited estimation range of the training instances.

To this end, we propose the other strategy based on the diversified top-k
shortest paths [37], which generates top-k shortest paths set DkPS that the
paths are dissimilar with each other in terms of threshold δ. Figure 2.1b shows
the box plots of the similarity for the same four sources and destinations by
using the diversified top-9 shortest paths when threshold δ = 0.8 [64]. The
similarities spread larger ranges than Figure 2.1a [64].

In addition, existing works on personalized routing [6, 14, 61] indicates
that drivers may take different travel costs, e.g., distance, travel time, and fuel
consumption, into account when scheduling their routine. This encourages
us to consider different travel costs when constructing the competitive path
set. To address this, we study a simple but effective framework, where we
run diversified top-k shortest paths x times where each time we consider
a specific travel cost [64]. Then, we construct our competitive path set PS
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based on these diversified paths generated based on multiple travel costs.
For example, we consider three travel costs (i.e., distances, travel times, and
fuel consumption) to generate diversified top-3 shortest, fastest, and most
fuel-efficient paths, which makes our PS also contain 9 paths [64]. Figure
2.1c illustrates the similarities of four same sources and destinations under a
multi-costs diversified paths scenario. We observe that the similarities spread
larger ranges, and the ranges are closer to 1 [64].

4 Ranking Framework

We study the end-to-end, data-driven framework to predict the similarity
score for paths [64]. We first study the basic framework, including a spatial
network embedding and a recurrent neural network [64]. Next, we study the
advanced framework by introducing contextual embedding, e.g., departure
time and driver identifiers [64].

4.1 Basic Framework

Considering that PathRank takes as input a path, i.e., competitive path P′i , and
corresponding label ranking score, i.e., similarity, simi [64]. To address the
ranking score prediction issues, we first convert each vertex in the input path
to a feature vector [64]. Then, we use a recurrent neural network to embed a
sequence of feature vectors to achieve the path representations. Next, these
path representations are used to estimate the ranking score simi with respect
to the ground truth ranking score, which enables our basic framework, as
shown in Figure 2.2.
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Figure 2.2: Basic Framework of PathRank [64].© 2022 IEEE TKDE

17



Chapter 2. Context-Aware Path Ranking in Road Networks

Vertex Embedding

Given a competitive path P′i = ⟨v1, v2, . . . , vZ⟩, we employ the vertex em-
bedding to convert a node’s one-hot vector qi into a new feature vector
xi = Bqi ∈ RM by defining an embedding matrix B ∈ RM×N [64]. Thus, we
achieve a sequence of feature ⟨x1, x2, . . . , xZ⟩. Moreover, to capture the topol-
ogy of the road network graph, we further introduce the graph embedding
into the framework. We first achieved the node embedding through existing
graph embedding approaches, e.g., DeepWalk or node2vec, representing each
node in a graph into a low-dimensional feature vector. Then, we initialize the
embedding matrix B in the embedding module in PathRank based on this node
embedding achieved from graph embedding approaches [64]. This enables
PathRank to update the embedding matrix B during the training resulting
in the learned model being able to capture the graph topology and estimate
the ranking score simultaneously [64]. To further enhance the embedding
matrix B learning, we propose a multi-task learning framework, where we set
the similarity estimation as the main task and reconstruct the multiple travel
costs of the competitive path as the auxiliary tasks, which ensures the learned
embedding matrix B also considers spatial properties of the road network
graph [64]. In contrast, Paper A considers the ranking score estimation task.

RNN

After representing a path P′i into a sequence of feature vectors ⟨x1, x2, . . . , xZ⟩,
we apply a bidirectional gated recurrent neural network (BD-GRU) [4] to em-
bed the sequence of feature vectors into a path representation by considering
the sequence dependencies in both the direction and the opposite direction of
the travel flow on path P′i [64].

In particular, we first embed the path travel flow from left to right, where
a GRU unit embed sequential correlations by maintaining a hidden state
hj ∈ RQ at position j and hj = GRU(xj, hj−1), where xj represents the feature
vector of an input at position j and hj−1 indicates the hidden state at position
j− 1 [64]. The specific definition of GRU is given as follows:

rj = σ
(
Wrxj + Urhj−1

)
(2.2)

zj = σ
(
Wzxj + Uzhj−1

)
(2.3)

h̃j = ϕ
(
Whxj + Uh

(
rj ⊙ hj−1

))
(2.4)

hj = zj ⊙ hj +
(
1− zj

)
⊙ h̃j (2.5)

where σ is the logistic function, ⊙ denotes the Hadamard product, and ϕ is
the hyperbolic tangent function. xj and hj are the feature vector and hidden
state at position j, respectively. Wr, Wz, Wh, Ur, Uz and Uh are parameters to
be learned [64].
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Then, we further embed the path travel flow from right to left, where we
employ another GRU to achieve hidden state h′j = GRU′(xj, h′j+1) [64]. Here,
the GRU takes as input a feature vector at position j and the hidden state at
the position [64]. To this end, we represent the hidden state Hj at position
j as Hj = hj ⊕ h′j, where ⊕ is the concatenation operation [64]. We achieve
the path representations by stacking all hidden state output by BD-GRU, i.e.,
F(P′i ) = ⟨H1 ⊕ H2 ⊕ . . .⊕ HZ⟩.

Fully Connected Layer

We define weight vector WFC ∈ R|F(P′i )|×X to transfer each competitive path
P′i ’s to a vector of X values with respect to the estimated similarity score,
travel time ,distance and fuel consumption [64].

Loss Function

To enable our PathRank training, we formulate the objective function for the
multi-task learning in Equation 2.6.

L(W) =
1
|n| [(1− α) ·

n

∑
i=1

( ˆsimi − simi
)2

+

α ·
n

∑
i=1

m

∑
k=1

(
ŷ(k)i − y(k)i

)2
] + λ∥W∥2

2

(2.6)

The first term of the loss function measures the discrepancy between the
estimated similarity ˆsimi and the ground truth similarity simi [64]. The sec-
ond term of the loss function represents auxiliary tasks that consider the
discrepancies between the actual spatial properties vs. the estimated spatial
properties [64].

4.2 Advanced Framework

Ranking candidate paths should also consider context-dependent. For exam-
ple, drivers may choose different paths as the traffic condition varies with the
time. To capture such information, we further propose an advanced frame-
work by leveraging the contextual information of departure time t and a driver
ID k [64]. Figure 2.3 illustrate the advanced framework.

To enable the PathRank model to capture the context information, we first
need to embed each context into a meaningful feature space. As for departure
time, we first construct the temporal graph, which is shown in Figure 2.4,
where we split a day into five intervals–a morning peak interval, an afternoon
peak interval, and three off-peak intervals [64]. If two nodes have a similar
traffic situation, then we connect these two nodes. Next, we conduct graph
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Contextual Embedding
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Figure 2.3: Advanced PathRank Overview [64].© 2022 IEEE TKDE

embedding to achieve the node feature vectors for a temporal graph. Given a
departure time t, we first match the node node(t) into the specific time interval
and then achieve embedding vector for this node F(t) = GraphEmbed(node(t))
[64].
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Figure 2.4: Temporal Graph [64].© 2022 IEEE TKDE

In addition, we employ one-hot embedding to convert driver ID k into the
corresponding feature vector F(k) [64]. In particular, we can achieve the final
feature vector for the competitive path P′i is F(t)⊕ F(k)⊕ F(P′i ) of the driver
k at departure time t. Then, we follow the basic framework and estimate the
ranking score and spatial properties using the same loss function defined in
Equation 2.6 [64].
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5 Experiments

5.1 Experiments Setup

Road Network and Trajectory

We use the Danish dataset, where we achieve the corresponding road network
from OpenStreetMap. This road network contains 667,950 vertices and 818,020
edges [64]. We utilize the trajectory data recorded on this road network, and
we partition the GPS records into 22,612 trajectories, which represent the
different trips. Then, we use the map matching method [38] to obtain the
corresponding trajectory path.

Travel Costs and Ground Truth Data

Here we consider three different travel costs, i.e., travel distance (DI), travel
time (TT), and fuel consumption (FC) [64].

We use 70% trajectory set for training, 10% for validation, and 20% for
testing. More specifically, we first achieve the corresponding source s, desti-
nation d, and the trajectory path PT for each trajectory path T [64]. Then, we
construct seven different competitive path set based on the source-destination
pairs (s, d) [64].

1. Top-k shortest paths (TkDI) [64];

2. Top-k fastest paths (TkTT) [64];

3. Top-k most fuel efficient paths (TkFC) [64];

4. Diversified top-k shortest paths (D-TkDI) [64];

5. Diversified top-k fastest paths (D-TkTT) [64];

6. Diversified top-k most fuel efficient paths (D-TkFC) [64];

7. Diversified, multi-cost top-k paths (D-TkM) [64].

Then, the weighted Jaccard similarity sim(P, PT) is used to compute the
ground truth ranking score for each trajectory path P.

PathRank Frameworks

We consider 5 different PathRank variation in our implementation: (1) PR-B:
we first consider the implementation in Paper A. We random initialized the
vertex embedding matrix B and set the α = 0 in Equation 2.6, which means
we just consider the ranking score estimation task. (2) PR-A1: we use the
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node matrix from graph embedding methods to initialize the embedding
matrix B, and we do not update it during the training procedure. In addition,
here, we also consider the main task, i.e., α = 0. (3) PR-A2: This strategy is
almost the same as the PR-A1, but we update the embedding matrix during
the training. (4) PR-A2-Mx: The difference between PR-A2 and this strategy is
that we use multi-task learning to capture spatial properties. In addition, we
utilize PR-A2-Mx to represent a PathRank model, where x means how many
auxiliary tasks are considered in an objective function. (5) PRC: we introduce
the contextual information into PR-A2-Mx.

Evaluation metrics

To evaluate the performance of the PathRank framework, we consider two
different types of metrics. We use Mean Absolute Error (MAE) and Mean
Absolute Relative Error (MARE) to measure the ranking score estimation
accuracy with respect to the ground truth ranking scores [64]. We further apply
the Kendall rank correlation coefficient (τ) and Spearman’s rank correlation
efficient (ρ) to measure the ranking performance [64].

Baselines

We consider six regression models as the baselines to verify the effectiveness
of the PathRank [64].

1. Linear Regression (LR) [45];

2. Lasso Regression [52];

3. Support Vector Regression (SVR) [2];

4. Decision Tree Regression (DT) [27];

5. Decision Tree Regression with Adaboost(DTA) [31];

6. Long Short-Term Memory (LSTM) [21], we use the LSTM to replace the
GRU.

5.2 Experiments Results

We first evaluate the effect of the training data generation strategy on PR-A2,
where we update the embedding matrix B during the training procedure.
Table 2.1 illustrates the results. We observe that diversified, multi-cost top-k
paths obtain the best results compared to when using top-k paths or diversified
top-k paths. In addition, we also found that the larger embedding feature size
results in better results.
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Table 2.1: Training Data Generation Strategies, PR-A2 [64].© 2022 IEEE TKDE

Strategies M MAE MARE τ ρ

TkDI
64 0.1163 0.1868 0.6835 0.7256

128 0.1130 0.1814 0.7082 0.7481

TkTT
64 0.1218 0.1956 0.6858 0.7282

128 0.1161 0.1864 0.7026 0.7446

TkFC
64 0.1216 0.1952 0.6911 0.7321

128 0.1082 0.1737 0.7070 0.7477

D-TkDI
64 0.0940 0.1509 0.7144 0.7532

128 0.0855 0.1373 0.7339 0.7731

D-TkTT
64 0.1010 0.1622 0.7283 0.7693

128 0.0997 0.1600 0.7169 0.7596

D-TkFC
64 0.0938 0.1506 0.7318 0.7743

128 0.0809 0.1299 0.7386 0.7811

D-TkM
64 0.0966 0.1551 0.7393 0.7771

128 0.0725 0.1164 0.7528 0.7905

Next, we study the performance of different vertex embedding. For graph
embedding, we employ node2vec to embed nodes in a graph by considering
unweighted and weighted graphs. Table 2.2 shows the results. It can be seen
that PR-B achieves the worst estimation accuracy since it randomly initializes
the embedding matrix B. We further observe that PR-A1 is better than PR-B,
which means that the ranking performance can be improved by considering
the road network topology. We also find that with or without considering edge
weight does not improve the estimation and ranking performance. Moreover,
PR-A2 achieves the best results, indicating updating the embedding matrix B
is able to improve the performance.

Table 2.2: Effects of Vertex Embedding Strategies [64].© 2022 IEEE TKDE

Embedding MAE MARE τ ρ

PR-B — 0.1159 0.1816 0.7233 0.7611

PR-A1
unweighted 0.0878 0.1410 0.7453 0.7852

weighted 0.0792 0.1271 0.7478 0.7876

PR-A2
unweighted 0.0734 0.1178 0.7640 0.8012

weighted 0.0725 0.1164 0.7528 0.7905

We also study the effects of multi-task learning. In Table 2.3, PR-A2-M1
represents we just consider only one auxiliary task, i.e., travel distances. Under
this scenario, our PathRank estimates both the ranking score and travel distance
of the competitive paths. When α = 0, we ignore the auxiliary task, which
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changes the PR-A2-Mx into PR-A2. When α > 0, we consider the auxiliary
task, which improves the ranking performance. In particular, PR-A2-M3 gives
the best results when α = 0.6 with respect to both τ and ρ, which indicates the
estimated ranking score is the most consistent with the ground truth ranking.
In addition, auxiliary task, i.e., distance, travel time, and fuel consumption, is
able to improve the ranking performance.

Table 2.3: Effects of α, PR-A2-Mx [64].© 2022 IEEE TKDE

α MAE MARE τ ρ

PR-A2 0 0.0725 0.1164 0.7528 0.7905

PR-A2-M1

0.2 0.0756 0.1214 0.7713 0.8057
0.4 0.0704 0.1129 0.7765 0.8110
0.6 0.0693 0.1113 0.7783 0.8141
0.8 0.0680 0.1029 0.7712 0.8057

PR-A2-M2

0.2 0.0653 0.1048 0.7727 0.8089
0.4 0.0701 0.1125 0.7869 0.8235
0.6 0.0777 0.1247 0.7752 0.8100
0.8 0.0807 0.1296 0.7616 0.7973

PR-A2-M3

0.2 0.0724 0.1162 0.7732 0.8092
0.4 0.0740 0.1188 0.7711 0.8090
0.6 0.0662 0.1063 0.7923 0.8261
0.8 0.0695 0.1116 0.7842 0.8177

We further compare the PathRank with other regression baselines. Here
we conduct the compassion based on two different categories of features:
(1) Basic feature (BF), where we use the travel distance, travel time, and fuel
consumption to construct a feature vector for each path. (2) Advanced features
(AF), where we use the node embedding matrix from node2vec to construct
features for each path. Table 2.4 gives the comparison results. PRC achieves
the best results.
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Table 2.4: Comparison with Regression Baselines [64].© 2022 IEEE TKDE

Method MAE MARE τ ρ

BF

LR 0.2640 0.4012 0.6879 0.7150
Lasso 0.2876 0.4371 0.6245 0.6678
SVR 0.2390 0.3632 0.6543 0.6683
DT 0.2516 0.3824 0.6530 0.6777

DTA 0.2686 0.4082 0.6784 0.7135

AF

LR 0.3430 0.5213 0.0864 0.0854
Lasso 0.2955 0.4484 0.6260 0.6686
SVR 0.3369 0.5120 0.0857 0.0846
DT 0.4141 0.6284 0.0450 0.0693

DTA 0.4301 0.6527 0.0812 0.0395

Deep Learning
LSTM 0.2682 0.4076 0.4569 0.4619
PRC 0.0611 0.0929 0.8178 0.8454
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Chapter 3

Unsupervised Path
Representation Learning with
Curriculum Negative
Sampling

This chapter offers a brief summary of Paper C [62] and does not offer
additional contributions. This chapter reuses content from the paper C when
that is considered most effective.

1 Problem Motivation and Statement

Path Representation (PR) plays an essential role in various transportation appli-
cations, such as, travel cost prediction [25, 39], path recommendation [14, 66],
traffic analysis [5, 23], and routing [15, 40]. The goal of path representation
learning (PRL) is to learn path representations, which are distinguishable
for different paths in a transportation network and hence benefit various
downstream transportation applications. Existing works learn PRs based on
supervised learning, which suffers from two shortcomings. First, supervised
learning needs many labeled data for effective training. Second, the supervised
learning method returns a task-specific PR, which achieves good performance
on tasks with the label. In contrast, these learned path representations cannot
achieve better performance on other tasks. These two limitations constrain the
supervised learning widely used in generic path representation learning sce-
narios. In addition, although several studies investigate graph representation
learning, these studies cannot capture the sequence dependencies in a path.
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To address the above-mentioned limitations, in Paper C [62], we propose
a novel unsupervised path representation learning framework Path InfoMax
(PIM), which consists of a curriculum negative sampling strategy and a
task-unspecific path representation learning approach [62]. In particular, we
present a negative sample construction strategy based on the key principle of
curriculum learning, where we first generate the most accessible negative paths
that are entirely different from the input path (i.e., no overlap exists between
input and these negative paths). Then, we gradually increase the generation
difficulty that makes the input path with overlap with negative paths. Next,
we jointly maximize the mutual information of path-path discriminator and
path-node discriminator to learn task-unspecific PRs. The contributions of the
paper C are summaried as follows:

• We study a curriculum negative sampling strategy to enhance the path
representation learning [62].

• We propose the path-path and path-node discriminators to learn path
representations jointly from a global and a local view [62].

• We conduct extensive experiments on two datasets with two downstream
tasks to demonstrate the effectiveness of PIM [62].

2 Preliminaries

We first give the preliminaries and problem definition. The following defini-
tions in this section are reproduced from [62].

2.1 Basic Concepts

Road Network Graph. We define road network graph as a directed graph
G = (V, E), where V represents the node set and E denotes the edge set and
we define |V| = N and |E| = M. Each node Vi ∈ V is assigned with a node
representation vector vi ∈ RD [62].

Path. A path P = ⟨V1, V2, . . . , VZ⟩ consists of a sequence of nodes, where
Z represents the path length and P.s = V1 and P.d = VZ denote the source
and destination of path P, respectively. The connection between each pair of
neighboring nodes (Vk, Vk+1) is defined as an edge in E, 1 ≤ k < Z [62]. In
particular, we concatenate the node representation vectors in a path to achieve
IV(P) ∈ RZ×D. We define IV(Pi) as the initial view of path Pi.

28



3. Path InfoMax

2.2 Problem Definition

Given a set of path P in road network graph G, the goal of Path Representation
Learning (PRL) is to learn a task-unspecific path representation vector pi ∈ RD′

for each path Pi ∈ P [62]. In reality, PRL learns a path encoder PEψ that takes
the initial view IV(Pi) of path Pi as input, i.e., the node features of the nodes
in path Pi, and returns the corresponding path representation pi [62].

PEψ : RZ×D → RD′ , (3.1)

where ψ is the path encoder parameters, which is able to learn through
training, Z is the length of path Pi, and D′ ≪ Z×D represents the dimension
of the learned path representation vector pi [62].

3 Path InfoMax

Figure 3.1 illustrates the outline of the Path InfoMax (PIM). The design of PIM
contains a path encoder, path-path discriminator, and path-node discriminator.
In particular, PIM utilize contrastive learning to train the path encoder to
generate PRs without requiring task-specific labels [62].

The trained path encoder takes as input the initial view of an input path
and returns corresponding path representations [62]. The path encoder is
trained by maximizing the mutual information of the path-path discriminator
and path-node discriminator. Then, we construct negative paths for each input
path based on curriculum learning principles. Subsequently, the path-path
discriminator and path-node discriminator guide the path encoder to generate
path representations from the global and local view of an input path. Efficient
learn path representations. Finally, we give the objective function of PIM.

3.1 Path Encoder

We know that a path contains a sequence of nodes. We utilize the path
encoder PEψ(e.g., recurrent neural network [4, 21] or a Transformer [49]) that
can embed the sequential data into a corresponding PRs, where ψ is the
parameters of the path encoder and we aim to learn it during training. In this
paper, we use LSTM as our path encoder.

3.2 Curriculum Negative Sampling

Inspired by the principle of curriculum learning [1], we present a curriculum
negative sampling strategy to construct negative paths. Here, we first con-
struct the negative paths that are totally different from an input path, e.g.,
no overlap between the negative paths and the input path [62]. This enables
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Figure 3.1: PIM Overview. The Path Encoder takes as input the initial view IV(Pi) of input
path Pi and the initial view IV(P̄j) of negative path P̄j, and returns their representations pi and
p̄j, respectively. The Path-Path Discriminator takes as input a pair of path representations and
decides whether they are from the same path. A positive pair, e.g., is(pi , IV(Pi)), refers to two
different representation views of the same input path Pi . A negative pair, e.g., (pi , p̄j), refers to
the path representations of an input path vs. its negative path. The Path-Node Discriminator
takes as input a (input path representation, node feature vector) pair and decides whether the
node is from the input path. A positive pair, e.g., (pi , v2), represents the path representation of
Pi and a node feature vector of node v2 that only appears in Pi . A negative pair, e.g., (pi , v5),
represents the path representation of the input path and a node feature vector of node v5 that
only appears in the negative path [62]. © 2021 IJCAI

the path encoder to produce distinguishable path representations more easily.
Then, we gradually construct negative paths that have higher similarity with
the input path, e.g., with the same source and destination and with increas-
ingly overlapping nodes [62]. To this end, it can be difficult to train a path
encoder that returns distinguishable path representations of the input path
and negative paths [62]. Figure 3.2 gives three negative paths P̄1, P̄2, and P̄3
with increasingly difficulties for input path P1, along with the underlying road
network graph [62].

Figure 3.2: Curriculum Negative Sampling [62]. © 2021 IJCAI

3.3 Global Mutual Information Maximization

We investigate a path-path discriminator that trains the path encoder from a
global view of the path representations, which aims at the learned path repre-

30



3. Path InfoMax

sentations that are distinguishable from the negative path representations.
To enable the path-path discriminator DPP

ω1
training, we first generate negative

and positive pairs. As for negative pair, ⟨(pi, p̄j),−⟩, pi and p̄j represent the
PRs of input path Pi and a negative path P̄j, respectively, which are both
returned by the path encoder PEψ [62]. In contrast, as for positive pair,
⟨(pi, IV(Pi),+⟩, pi still represent the path representations of input path Pi
output by the path encoder and IV(Pi) denotes the initial view of path Pi [62].
Here, pi and IV(Pi) are two different views, i.e., a view from the path encoder
vs. a view from the node features, of the same input path Pi [62]. Figure 3.1
gives an example of a negative sample construction.

Next, the mutual information maximization is used to train the path-path
discriminator DPP

ω1
, which enables it to conduct a binary classification of the

negative vs. positive pairs [62]. In particular, we try to maximize the estimated
mutual information (MI) between the positive and negative pairs [62].

argmax
ψ,ω1

∑
Pi∈P

Iψ,ω1(pi, NPi),

where Iψ,ω1(·, ·) is the MI estimator modeled by the path-path discriminator
DPP

ω1
that is parameterized by parameters ω1 and the path encoder PEψ that is

parameterized by parameters ψ [62]. Path Pi is an input path from P, and pi
is its path representation returned by the path encoder [62]. NPi includes the
negative paths of Pi [62]. Motivated by [20, 50], we employ a noise-contrastive
type objective with a standard binary cross-entropy loss on the positive pairs
and the negative pairs, as shown in Equation 3.2 [62].

Iψ,ω1 (pi, NPi) :=
1

1 + |NPi|
(EP

[
log DPP

ω1
(pi, IV(Pi))

]
+

∑
P̄j∈NPi

ENPi

[
log

(
1− DPP

ω1

(
pi, p̄j

))]
)

(3.2)

3.4 Local Mutual Information Maximization

We then study the path-node path discriminator that trains the path encoder
from a local view perspective, which tries to distinguish the learned path
representation from the node feature vectors of the nodes from input vs.
negative paths [62].

We further choose the nodes only appear in the input path but not appear
in negative paths as a positive node set Xi [62]. In contrast, we select the
nodes only appear in negative paths but not appear in input path Pi as a
negative node set Yi [62]. We then train a path-node discriminator DPN

ω2
based on

negative and positive node sets. We let ⟨(pi, vj),−⟩ as a negative pair, where
pi denotes the PR of Pi, vj represents the node representation of a negative
node Vj [62]. Similarly, We treat ⟨(pi, vk),+⟩ as positive set, vk is the node
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representation of a positive node Vk ∈ Xi. Figure 3.1 gives an example of a
path-node discriminator.

We also conduct mutual information maximization to train the path-node
discriminator DPN

ω2
[62]. Specifically, we have

argmax
ψ,ω2

∑
Pi∈P

Iψ,ω2(pi, Xi ∪Yi),

where Iψ,ω2 denotes the MI estimator for path-node discriminator DPN
ω2

and ω2
is the parameters for the path-node discriminator. In addition, ψ denotes the
parameters of the path encoder PEψ. Similar with the path-path discriminator,
we also utilize a noise-contrastive with a BCE loss to calculate Iψ,ω2(pi, X∪Y).

Iψ,ω2 (pi, Xi ∪Yi) :=
1

|Xi ∪Yi|
( ∑

vk∈Xi

EXi

[
logDPN

ω2
(pi, vk)

]
+

∑
vj∈Yi

EYi

[
log

(
1− DPN

ω2

(
pi, vj

))]
)

(3.3)

3.5 Maximization of PIM

We jointly maximize the global and local mutual information to train the final
PIM, which is formulated as follows:

argmax
ψ,ω1,ω2

∑
Pi∈P

(
Iψ,ω1(pi, NPi) + Iψ,ω2(pi, Xi ∪Yi)

)
.

4 Experiments

4.1 Experimental Setup

Road Network and Paths

We first consider the road network of Aalborg, Denmark, which includes 8,893
nodes and 10,045 edges [62]. Then, we use the road network of Harbin, China
to verify the effectiveness of PIM. This dataset contains 5,796 nodes and 8,498
edges. We achieve the road network of both datasets from OpenStreetMap. In
particular, we utilize 52,494 paths in the Aalborg network and 37,079 paths in
the Harbin network [62].

4.2 Downstream Task

We consider two different downstream tasks: path travel time estimation and
path ranking [62]. We use the Mean Absolute Error (MAE), Mean Absolute
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Relative Error (MARE), and Mean Absolute Percentage Error (MAPE) as the
evaluation metric of the travel time estimation task [62]. We employ MAE,
Kendall’s rank correlation coefficient (denoted by τ), and Spearman’s rank
correlation coefficient (denoted by ρ) to evaluate the performance of the path
ranking [62].

4.3 Baselines

We select seven baselines for the effectiveness study of PIM. We select Node2vec [12],
Deep Graph InfoMax (DGI) [50], and Graphical Mutual Information Maxi-
mization (GMI) [41] as they are popular graph embedding methods. Next,
we choose the most recent representation learning methods Memory Bank
(MB) [58], InfoGraph [46] and BERT [8]. Finally, we also select PathRank as a
supervised baseline.

4.4 Regression Model

We select Gaussian Process Regressor (GPR) to estimate the path travel time
and path ranking score based on the learned path representation for all
unsupervised learning methods.

4.5 Experimental Results

Overall accuracy on both downstream tasks

Table 3.1 gives the overall results for travel time and ranking score estimation.
We can see that PIM achieve the best results on both tasks under two road
network when compared to Node2vec, DGI, GMI, MB,BERT, and InfoGraph.
This highlight the effectiveness of PIM.

Using PIM as a Pre-training Method

In this phase, we treat PIM as a pre-training approach for the supervised
method PathRank [62]. PathRank uses a GRU that takes as input a sequence of
the node feature vector in a path and estimates path travel time or ranking
scores [62]. To enable PIM as a pre-training method for PathRank, we choose
GRU as our path encoder [62]. In particular, we first train the path encoder
in the form of PIM, i.e., in an unsupervised manner. Then, we initialize
the parameters of the GRU path encoder in PathRank based on the learned
parameters of the GRU path encoder in PIM. Next, the labeled training paths
are used to fine-tune the model PathRank.

Figure 3.3 gives the performance comparison of travel time and ranking
score estimation whether considering pre-training or not. When we do not
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(a) Travel Time Estimation. (b) Path Ranking.

Figure 3.3: Effects of Pre-training [62]. © 2021 IJCAI

employ pre-training, the PathRank is trained by using 10K labeled training
paths [62]. We can see that: (1) Pre-training makes the PathRank obtain the
same accuracy using less labeled training paths [62]. (2) Pre-training makes
the PathRank achieve higher accuracy when using the same number of labeled
training paths.
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Table 3.1: Overall Accuracy on Travel Time Estimation and Ranking Score Estimation [62]. © 2021
IJCAI
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Chapter 4

Weakly-supervised Temporal
Path Representation Learning
with Contrastive Curriculum
Learning

This chapter offers a brief summary of Paper D [63] and does not offer
additional contributions. This chapter reuses content from paper D when that
is considered most effective.

1 Problem Motivation and Statement

Temporal variation is critical in transportation applications since it represents
the different types of traffic conditions, e.g., peaking hours vs. off-peaking
hours. Thus, temporal path representation learning is able to facilitate various
downstream task. However, it is non-trivial to learn task-unspecific temporal
path representations (TPRs) through supervised or unsupervised learning.
Supervised methods (Figure 4.1(a)) learn task-specific TPRs [32, 64], which
generalize poorly on other tasks and need a larger amount of labeled training
samples to train the model effectively. In contrast, unsupervised methods
learn a task-unspecific path representation without using task-specific labels.
However, existing unsupervised path representation learning methods mainly
focus on unsupervised graph representation learning, where we achieve the
node representation first and then aggregate node representations into a path
representation. In addition, existing graph representation learning methods
ignore the temporal aspect, resulting in the learned path representation also
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Figure 4.1: Supervised, Unsupervised, and Weakly-Supervised methods for learning Temporal
Path Representations (TPR): (a) Supervised learning relies on task-specific labels to obtain task-
specific path representations (PRs), and thus fails to generalize across tasks; (b) Unsupervised
learning produces generic path representations for use in different tasks, but fails to capture
temporal traffic aspects of paths; (c) Weakly supervised learning (Ours) uses weak labels to learn
generic TPRs [63]. © 2022 IEEE ICDE

lacking temporal information. This will degrade the estimation performance
of downstream applications.

To address the aforementioned challenge, in Paper D [63], we propose
using the weakly-supervised contrastive (WSC) learning principle to enable
the temporal path encoder training such that we can achieve task-unspecific
temporal path representations. Then, we further introduce two-stage cur-
riculum learning into a weakly-supervised contrastive learning framework
to improve the temporal path encoder training [63]. The contributions of the
paper D are summaried as follows:

• We formulate the temporal path representation learning problem [63].

• We propose a weakly-supervised, contrastive model (basic framework)
to learn generic path representations that take temporal information into
account [63].

• We integrate curriculum learning into the weakly-supervised contrastive
model to further enhance the learned temporal path representations,
yielding the advanced framework [63].

• We report on extensive experiments using three real-world data sets
on three downstream tasks to assess in detail the effectiveness of the
proposed framework [63].

2 Preliminaries

We first give the preliminaries and problem definition. The following defini-
tions in this section are reproduced from [62].

2.1 Basic Concepts
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3. Temporal Path Encoder

Road Network Graph. We consider road network graph as a directed graph
G = (V, E), where V represents a set of vertices vi that denotes intersections
and E ⊂ V×V is a set of edges ei = (vj, vk) that denotes edges [63].

GPS Trajectory. A GPS trajectory of moving object is defined as traj =

⟨(li, ti)⟩
|traj|
i=1 , which includes a sequence of location li with specific timestamp

ti [63].

Path. A path is defined as a sequence of neighboring edges p = ⟨ei⟩
|p|
i=1,

where ei ∈ E denotes the i-th edge in the path [63].

Temporal Path. A temporal path is defined as tp = (p, t), where tp.p denotes
a path and tp.t represents a departure time [63].

2.2 Problem Definition

Given a set of temporal paths TP = {tp1, tp2, . . . , tpn} and each tempo-
ral path tpi is assigned with a weak label yi, temporal path representation
learning (TPRL) aims to train the temporal path encoder and achieve the
task-unspecific temporal path representation TPRL(tpi) for each temporal
path tpi ∈ TP, which is given in Eq. 4.1 [63].

TPRLψ(tpi) : Rdtem ×RM×d → Rdh , (4.1)

where ψ is the parameters of path encoder, M represents the total number of
edges in the path, d, dtem, and dh denote the feature dimensions for an edge,
a departure time embedding, and a resulted temporal path representation,
respectively [63].

3 Temporal Path Encoder

Figure 4.2 shows the outline of the basic framework of WSC. We observe that
the temporal path encoder includes a spatial embedding layer, a temporal
embedding layer, and an LSTM layer [63].

3.1 Temporal Embedding

The temporal information is fed into the temporal embedding layer, which
returns temporal feature representations. In this case, we first build the tem-
poral graph G′ = (V′, E′). In temporal graph, each node v′ ∈ V′ represents a
departure time slot and each edge e′ ∈ E′ represents a connection between two
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Figure 4.2: Illustration of Basic Framework. Given a set of temporal paths in a minibatch, an
input temporal path is encoded into a feature map by the temporal path encoder. The global loss
framework takes a (query temporal path tpq, positive or negative temporal path) pair as input
and pulls together the TPRs of the query path and positive path, while pushing away the TPRs
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spatio-temporal edge representation (STER) and brings a TPR of a query path with the positive
edge representations closer while pushing apart TPR of a query path with the negative edge
representations [63]. © 2022 IEEE ICDE

time slots [63]. Then, we employ node2vec [12] to learn node representations
in the temporal graph [63], which is formulated as:

tall = Node2Vectg(temb
g ), (4.2)

where tall ∈ Rdtem represent the finalized temporal feature vector. temb
g denotes

initialized node feature vector.

3.2 Spatial Embedding

We consider four spatial edge categories, including Road Type (RT), Number
of Lanes (NoL), One Way (OW), and Traffic Signals (TS). Then, we first define
these spatial features as one-hot vectors, which is denoted as: sone

RT ∈ Rnrt ,
sone

NoL ∈ Rnl , sone
OW ∈ Rno , sone

TS ∈ Rnts , where nrt, nl , no, nts are the values for these
different spatial features. Next, we achieve the final spatial representation by
concatenating these four feature representations for edge si, which is given as
follows:

stype = [semb
RT , semb

NoL, semb
OW , semb

TS ], (4.3)

where [·, ·] represents concatenation operation.
In addition, to further capture the road network topology, we employ

node2vec [12] to learn the representations for road network graph, which
can be described as: nrn

vi = Node2Vecrn(none
vi ), where vione is initialized node

feature, e.g., one-hot vector, for node vi. nrn
vi ∈ R

dtop
2 denotes the feature vector

returned by node2vec. We can define the final edge representation as:

srn
ek

= [nrn
vi

, nrn
vj
], (4.4)
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where vi and vj denote start and end nodes of edge ek.
In this case, the final feature vector for the edge ek can be formulated as:

sall
ek

= [srn
ek

, stype], (4.5)

where sall
ek
∈ Rd represents the final spatial feature vector for an edge ek and

d = drt + dl + do + dts + dtop.

3.3 LSTM Encoder

Given a temporal path tp = (p, t), where tp.p denotes a path and tp.t denotes
a departure time [63]. We get a sequence of Spatio-temporal edge representa-
tions ⟨xe1 , xe2 , · · · xep⟩, where xei = [tall , sall

ei
], where tall denotes the temporal

feature vector for tp.t. Then, the LSTM encoder takes as input Spatio-temporal
edge representations and returns temporal path representations through ag-
gregate function.

p̂ = ⟨pe1 , pe2 , · · · pe⟩ = LSTM(⟨xe1 , xe2 , · · · xe⟩), (4.6)

h⃗p =
∑n

i=1 p⃗i

|p̂| ∈ Rdh , (4.7)

where p⃗ej ∈ Rdh denotes edge ej’s spatio-temporal representations that cap-

tures the sequence dependencies. h⃗p denotes the temporal path representa-
tions. p⃗i denotes the latent feature vector of edge i in a path. p̂ denotes the
average edge representations.

4 Weakly-Supervised Contrastive Learning

4.1 Generation of Positive and Negative Samples

To enable the weakly-supervised contrastive learning, we first generate the
positive and negative samples. Given a set of temporal paths (TPs), positive
TPs are defined as: (1) different temporal path representations of the same
path; (2) TPs pass through the same path and have the same weak labels,
e.g., peaking hours and off-peaking hours [63]. While we further define the
negative TPs as (1) sample paths with different weak labels, (2) different
paths with the same weak labels, (3) different paths with different weak labels.
To this end, we are able to construct many positive and negative TPs for a
query temporal path (TP) [63]. Figure 4.2 gives the MiniBatch example, where
we consider tpq, tp1, tp2, tp3, and tp4 five TPs with different weak labels, i.e.,
morning peak (Mor. Peak), Afternoon peak (Aft. Peak), and Off-Peak [63].
Suppose tpq is a query temporal path TP, tp1 is the positive sample since these
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two paths are the same and also have the same departure weak label (i.e., Mor.
Peak) [63]. In contrast, tp2, tp3, and tp4 are negative samples according to the
rules defined before.

4.2 Global Weakly-supervised Contrast Loss

Although we have witnessed the significant success of the self-supervised,
the contrastive loss for self-supervised cannot consider the difference among
negative samples. Inspired by SupCon [29], the good framework should
have the ability to leverage the information between samples with same class
and distinguish them from samples in other classes [63]. Toward this end,
we study weakly-supervised contrastive learning, which uses positive and
negative samples generated in Section 4.1. Thus, our global WSC can be
defined as:

Lglobal = ∑
(tpi ,yi)∈P

Lglobal
(tpi ,yi)

= ∑
(tpi ,yi)∈P

1
|Stpi
|

∑
tpj∈Stpi

log
exp

(
sim(TPRi, TPRj)

)
∑tpk∈Ntpi

exp (sim(TPRi, TPRk))
,

(4.8)

where sim(·) represents cosine similarity function that measures the similarity
between two TPRs; P = {(tpi, yi)}B

i=1 denotes temporal paths in the training

batch and yi denotes departure weak label for tpi; Stpi = {tpj}
|Stpi |
j=1 is the

positive sample set for query tpi, where yi = yj and tpi.p = tpj.p; and
Ntpi = P \ {tpi ∪ Stpi

} is the negative sample set for query tpi [63].

4.3 Local WSC loss

Instead of conducting weakly-supervised learning between query TP and
global positive and negative TPs, we further employ local WSC loss that
captures a local difference between positive and negative edge samples. In
particular, Local WSC aims to make TPRs close to a representation of positive
edges and be distant from representations of negative edges. We randomly
choose edges in positive temporal paths as positive edges (denoted by PNi)
[63]. In contrast, we select edges showing in negative temporal paths as our
negative edge set (denoted by NNi) [63]. Therefore, the objective of local
WSC is defined as:

Llocal = ∑
(tpi ,yi)∈P

1
|PNi|

log
∑(ej ,yi)∈PNi

exp
(

s(TPRi, ej)
)

∑(ek ,yj ̸=yi)∈NNi
exp (s(TPRi, ek))

, (4.9)
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where PNi and NNi represent the positive and negative edge sets, and yi is
the weak label for edge representation, which inherits from the corresponding
temporal path [63].
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Figure 4.3: Illustration of Advanced Framework [63]. © 2022 IEEE ICDE

4.4 Objective for WSC

To enable temporal path encoder training, we jointly maximize the global and
local WSC loss. Thus, we have:

L = arg max
ψ

∑
i∈I

λ · Lglobal
i + (1− λ) · Llocal

i , (4.10)

where λ represents a balancing factor. I denotes the training batch sets [63].

5 Contrastive Curriculum Learning

5.1 Curriculum Samples Evaluation

As shown in Figure 4.3, to conduct curriculum learning on training temporal
paths, we need first to evaluate the difficulty of each temporal path through
model learning instead of heuristic ways. We first rank all temporal training
sets D based on their length. Then, we partition D into N non-overlapping
meta-sets, i.e., D = {D̃1, D̃2, · · · , D̃N}, where D̃i denotes the i-th meta-set,
D̃i ∩ D̃j = ∅, ∀i ̸= j, i, j ∈ [1, N] [63]. Subsequently, we learn N unrelated

WSC models in terms of the different meta-sets, i.e., W̃SCi, i = [1, N]. In
particular, we only consider i-th meta-set, D̃i when training the W̃SCi model.
Finally, we achieve a number of N trained unrelated WSC models, which is
treated as Experts, to measure the difficulty of each temporal path [63].

We then utilize the Experts to compute the difficulty scores for each training
sample [63]. We feed a temporal path tpi ∈ D̃j into each Expert, W̃SCj, j ∈
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[1, N], which results in a total of N TPRs, i.e., TPR(1)
tpi

, TPR(2)
tpi

, · · · , TPR(N)
tpi

[63].

Considering tpi coming from D̃j, we treat TPR(j)
tpi

as the ground truth, and

compute the similarity between TPR(j)
tpi

and TPR(k)
tpi

, where ∀k ̸= j, k ∈ [1, N]

[63]. After that, we add all corresponding similarity scores and define them as
the difficulty score (denoted by Si) for the temporal path tpi, which is given
in Eq. 4.11.

Si =
N

∑
k=1,k ̸=j

Sim(WSCj(tpi), WSCk(tpi)), (4.11)

where Sim(·, ·) represent the similarity function. Finally, we can achieve the dif-
ficulty score for each training paths, which makes D = {(tp1, S1), · · · , (tpN , SN)},
where (tpi, Si) is one element and Si is the difficulty score for temporal path
tpi [63].

5.2 Curriculum Sample Selection

We further sort all temporal training paths based on their difficult scores and
split the training path sets into M subsets with respect to different difficulty
levels, which range from ST1 (the easiest) to STM (the hardest). Then, the
WSC is trained for one epoch in terms of each stage. After that, we train WSC
on another stage STM+1, until WSC coverage, where the STM=1 contains the
entire training paths.

6 Experiments

6.1 Experiments Setup

Data sets

We consider three datasets: Aalborg, Denmark; Harbin, China; and Chengdu,
China. We obtain the corresponding road network from OpenStreetMap [63].
More specifically, the Aalborg data set contains 10,017 nodes and 11,597 edges,
and we achieve 28,370 paths after map matching [63]. Harbin’s data set
includes 8,497 nodes and 14,497 edges. After map matching, we have 58,977
paths. Chengdu data set consists of 6,632 nodes and 17,038 edges [63]. We
obtain 57,404 paths after map matching.

Downstream Task

We consider three downstream tasks, including path travel time estimation,
path ranking, and path recommendation [63]. As for path travel time esti-
mation, we use Mean Absolute Error (MAE), Mean Absolute Relative Error
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(MARE), and Mean Absolute Percentage Error (MAPE) to evaluate the ac-
curacy [63]. While for Path Ranking, we utilize MAE, the Kendall rank
correlation coefficient (τ) [28], and the Spearman’s rank correlation coefficient
(ρ) [72] as the evaluation metrics [63]. Finally, we select Accuracy (Acc.) and
Hit Rate (HR) to evaluate the recommendation effectiveness.

Baselines

We first consider three graph embedding methods Node2vec [12], Deep
Graph InfoMax (DGI) [50], and Graphical Mutual Information Maximization
(GMI) [41]. We then consider four unsupervised representation learning
methods: Memory Bank (MB) [58], InfoGraph [46], BERT [8], and PIM [62]
since they are representative methods in different domains. Next, we also con-
sider five supervised methods: DeepGTT [33], HMTRL [35], PathRank [64],
GCN [7], and STGCN [69].

Models for Downstream Tasks

Based on the learned path representations, we use ensemble model Gradient
Boosting Regressor (GBR) to estimate path travel time and ranking score as they
are regression problems [63]. We employ ensemble model Gradient Boosting
Classifier (GBC) to predict the path recommendations since it is classification
problem [63].

Weak Label

We select two different types of weak labels, consisting of peak/off-peak (POP)
and traffic congestion indices (TCI). We treat POP as default weak labels [63].

6.2 Experimental Results

Overall accuracy on downstream task

Table 4.1, Table 4.2 and Table 4.3 illustrate the overall accuracy in terms of
three downstream tasks. We observe that (1) WSCCL outperforms all other
unsupervised baselines (i.e., graph embedding methods and representation
learning methods) on the three downstream tasks for three road network data
sets. (2) WSCCL also achieves the best results compared with supervised
baselines on these three tasks since we use the small size of training labeled
data to train these models.
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Table 4.1: Overall Accuracy on Travel Time Estimation [63]. © 2022 IEEE ICDE

Methods
Aalborg Harbin Chengdu
MAE MAPE MAE MAPE MAE MAPE

Node2vec 63.82 45.67 269.21 31.41 290.47 34.43
DGI 67.22 49.36 288.09 34.01 312.28 38.46
GMI 70.61 52.40 310.39 36.60 337.06 41.58
MB 57.32 39.37 315.25 35.28 333.73 42.45
BERT 71.96 45.42 217.96 24.52 303.00 36.77
InfoGraph 69.36 41.28 200.81 22.68 291.54 36.07
PIM 57.66 39.34 196.06 21.96 289.10 35.55
DeepGTT 44.78 26.53 214.95 22.76 305.08 35.47
HMTRL 40.59 21.81 228.58 23.60 360.08 37.33
PathRank 37.09 23.89 190.08 20.12 334.94 35.11
GCN 78.04 53.05 368.21 35.62 480.83 42.01
STGCN 58.57 38.97 284.12 23.48 406.09 33.58
WSCCL 31.66 21.39 178.89 19.43 281.20 33.30

Table 4.2: Overall Accuracy on Path Rank Estimation [63]. © 2022 IEEE ICDE

Methods
Aalborg Harbin Chengdu
MAE τ MAE τ MAE τ

Node2vec 0.23 0.60 0.22 0.37 0.20 0.73
DGI 0.24 0.60 0.21 0.48 0.21 0.52
GMI 0.24 0.59 0.21 0.49 0.21 0.51
MB 0.23 0.62 0.22 0.44 0.20 0.71
BERT 0.26 0.49 0.22 0.46 0.22 0.55
InfoGraph 0.26 0.52 0.21 0.45 0.20 0.73
PIM 0.22 0.60 0.21 0.43 0.19 0.76
DeepGTT 0.39 0.12 0.29 0.04 0.23 0.20
HMTRL 0.17 0.65 0.22 0.51 0.16 0.77
PathRank 0.23 0.64 0.18 0.55 0.17 0.79
WSCCL 0.15 0.68 0.14 0.68 0.13 0.84
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Table 4.3: Overall Performance on Path Recommendation [63]. © 2022 IEEE ICDE

Methods
Aalborg Harbin Chengdu
Acc. HR Acc. HR Acc. HR

Node2vec 0.79 0.51 0.76 0.51 0.75 0.61
DGI 0.74 0.55 0.70 0.36 0.70 0.57
GMI 0.78 0.53 0.72 0.41 0.68 0.58
MB 0.67 0.48 0.61 0.69 0.73 0.69
BERT 0.60 0.43 0.64 0.53 0.66 0.61
InfoGraph 0.72 0.69 0.79 0.78 0.73 0.65
PIM 0.79 0.82 0.86 0.83 0.76 0.74
HMTRL 0.80 0.86 0.81 0.82 0.78 0.83
PathRank 0.77 0.71 0.79 0.74 0.77 0.73
WSCCL 0.82 0.88 0.97 0.91 0.81 0.90

Using WSCCL as a Pre-training Method

We further treat WSCCL as a pre-training approach for a supervised framework
PathRank, where we first train WSCCL in a weakly-supervised manner, and
then we initialize the parameters of the encoder in PathRank by using the
temporal path encoder’s parameters learned in WSCCL [63]. Figure 4.4 report
the results. We observe that (1) The same performance is achieved by using
less labeled data under the pre-training scenario. and (2) We can achieve
higher performance when using pre-training in the format of same size data
(e.g., 12K).
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Figure 4.4: Effects of Pre-training [63]. © 2022 IEEE ICDE

47



Chapter 4. Weakly-supervised Temporal Path Representation Learning with
Contrastive Curriculum Learning

48



Chapter 5

LightPath: Lightweight and
Scalable Path Representation
Learning

This chapter offers a brief summary of Paper E [65] and does not offer addi-
tional contributions. This chapter reuses content from paper E when that is
considered most effective.

1 Problem Motivation and Statement

Recently, we have witnessed increasing intelligent transportation and smart
city services that run on movement paths. Thus, path representation learning
(PRL) has attracted significant attention [11, 14, 73]. In particular, various
intelligent transportation applications are related to paths, e.g., e.g., travel
cost estimation [23, 48, 57, 62, 70, 71], routing [15, 26, 39, 53, 56], trajectory
analysis [18, 43, 44, 51, 55] and path ranking [35, 62, 64]. To this end, ac-
curate and compact path representations are in high demand due to their
ability to greatly improve the services they are used in. However, existing
path representation learning approaches primarily focus their attention on
accuracy improvement, ignoring scalability and resource usage. This leads to
the trained model containing many parameters and layers, resulting in higher
computational costs and memory consumption, especially for the long paths
(i.e., the path with many edges). More specifically, existing path representation
approaches have two limitations: Poor scalability w.r.t. path length We know
a path consists of a sequence of road network graph edges. Thus path repre-
sentation learning takes advantage of models skilled in modeling sequence,
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Figure 5.1: Encoder Architectures: (a) A traditional transformer encoder with L layers and
M heads, takes as input a path (N-Length) and thus has complexity O

(
L ·M · N2); (b) A

sparse transformer encoder takes as input a sparse path (i.e., reducing path length from N
to N′), resulting in O

(
L ·M · N′2

)
complexity; (c) LightPath further compresses the traditional

transformer in terms of layers and heads, yielding complexity O
(

L′ · N′2
)
, making it more

scalable and lightweight than a traditional transformer encoder [65].

such as Transformer [49]. However, Transformer-based approaches [3] adopt
a self-attention principle, where one edge attends to all other edges in a path
in each attention, leading to quadratic complexity, O

(
N2) of path length N.

As a result, such models have poor scalability regarding path length, where
path length denotes the number of edges that appear in a path.
Very large model size. To continuously improve the performance of different
smart city applications, several existing PRL models are trained with many
parameters and layers, which constrains their usage in resource-limited en-
vironments. Take Transformer-based approach [3] as example, We achieve
Transformer model by stacking L transformer layers, where each layer con-
ducts multi-head (i.e., M heads) attentions. This makes the Transformer
models a large cuboid that has a total complexity of O

(
L ·M · N2), as shown

in Figure 5.1a, which prevents the traditional Transformer encoder from being
used in resource-limited environments.

To address the above-mentioned limitations, in Paper E [65], we propose a
lightweight and scalable path representation learning framework LightPath.
Specifically, we first study the sparse auto-encoder, which reduces the path
length from N to N′ to achieve good scalability, w.r.t. path length. Thus,
this function reduces the complexity from O

(
L ·M · N2) to O

(
L ·M · N′2

)
,

as shown in Figure 5.1b. Then, we introduce relational reasoning to enhance
the sparse path encoder training. Next, we propose a global-local knowledge
distillation strategy to reduce the size of the path encoder, further reducing a
slimmer cuboid to a slim rectangle (cf. Figure5.1c). This global-local knowl-
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edge distillation enables the lightweight framework. The main contributions
of Paper E are summarised as follows:

• Sparse Auto-encoder. We propose a sparse auto-encoder framework that
takes as input sparse paths with reduced path lengths, achieve good
scalability. w.r.t the path length.

• Relational Reasoning. We introduce relational reasoning to enable efficient
sparse auto-encoder training. Specifically, we propose two types of rela-
tional reasoning objectives for accurate and efficient path representation
learning. These two objectives regularize each other and yield a more
effective path encoder.

• Global-local Knowledge Distillation. We propose a novel global-local knowl-
edge distillation framework that enables a lightweight student sparse
encoder to mimic a larger teacher sparse encoder from global and local
perspectives. The resulting lightweight model can be deployed on edge
devices while achieving accurate performance at different downstream
tasks.

• Extensive Experiments. We report on extensive experiments for two large-
scale, real-world datasets with two downstream tasks. The results offer
evidence of the efficiency and scalability of the proposed framework as
compared with nine baselines.

2 Preliminaries

We first give the preliminaries and problem definition. The following defini-
tions in this section are reproduced from [65].

2.1 Basic Concepts

Road Network Graph. A road network graph is represented as G = (V, E),
where vi ∈ V represents a vertex and V denotes a vertex set, E ⊆ V × V
denotes edge set and ei = (vj, vk) is road segments [65].

GPS Trajectory. A GPS trajectory of a vehicle is represented as a sequence
of tuple of (location, timestamp) [65].

Path. A path is defined as p = ⟨e1, e2, e3, · · · , eN⟩, where ei ∈ E is an edge
in path p. We define p.Φ = ⟨1, 2, 3, · · · , N⟩ as a sequence edge order in p [65].
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Sparse Path. A sparse path p′ =
{

ei
}

i∈p′ .Ω consists of a subset of edges in
path p, where p′.Ω is a sub-sequence of p.Φ. We define p.Φ as the original
edge orders of p′ in p and p′.Ω ⊆ p.Φ [65].
Example. Given a path p = ⟨e1, e3, e4, e6, e7⟩ and p.Φ = ⟨1, 2, 3, 4, 5⟩, then
sparse path p′ =

{
e1, e4, e7

}
, where p′.Ω = ⟨1, 3, 5⟩, is one of the sparse paths

for p.

Edge Representation. The edge representation vector is a vector Rdk , where
dk denotes the dimensionality of the vector [65].

Transformer Layer. Given a sequence of edge representation vectors X =
⟨x1, x2, x3, · · · , xN⟩ for a path p. Transformer layer takes a X as input and
outputs the encoded edge representation vector Z = ⟨z1, z2, z3, · · · , zN⟩ that
capture the dependencies of different edges. Especially, each Transformer layer
contains multi-head attention and position-wise feed-forward networks [65].

Multi-Head Attention. Multi-head attention aims to integrate multiple at-
tention layers to linearly project the queries, keys and values into M subspaces
with different, learned linear projections to dk, dk and dv dimensions, re-
spectively [65]. Multi-head attention allows the model to jointly attend to
information from different representation subspaces at different positions [65].
Then, we define it as:

Z = MultiHead(X) = Concat ( head 1, . . . , head M) ·WO ,

head i(·) = softmax
((

XWQ
i

) (
XWK

i

)T
/
√

dk

)(
XWV

i

)
,

(5.1)

where Concat(·, ·) denotes concatenation. WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
WV

i ∈ Rdmodel×dv , WO ∈ RMdv×dmodel represent parameter matrices of projection
of scaled dot-product attention. M is heads number. dmodel is final feature
dimension.

Position-wise Feed-Forward Networks. Except the attention sub-layers, each
of the layers in Transformer (encoder/decoder) contains a fully connected
feed-forward network (FFN), which is employed to each position individually
and identically [65]. This FFN contains two linear transformations with ReLU
activation in between [65]. Specifically, we have

FFN(Z) = max
(

0, ZWFFN
1 + bFFN

1

)
WFFN

2 + bFFN
2 , (5.2)

where WFFN
1 , WFFN

2 , bFFN
1 , and bFFN

2 are learnable parameters of feed-forward
network.
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3. Sparse Path Encoder
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Figure 5.2: Sparse Auto-encoder. We remove a subset of edges from a path based on a reduction
ratio γ to obtain a sparse path. We introduce a learnable path representation in front of the
sparse path. And then, we fed the resulting sparse path vectors with position embeddings to a
Transformer based encoder. We then introduce a learnable edge representation, denoted as a
triangle, to represent the removed edges. The encoded edges in the sparse path and the removed
edge representations with position embeddings are processed by a decoder that reconstructs the
edges in the original path [65].

2.2 Problem Definition

Given a set of paths P = {pi}
|P|
i=1 in a road network graph G, lightweight and

scalable path representation learning aims at learning a function SEPRLθ (·)
which can generate a task-unspecific path representation for each path pi ∈
P by considering model scalability and resource-constrained environment
applications, which can be defined as follows.

PR = SEPRLθ (pi) : RN×dk → Rd , (5.3)

where PR denotes the learned path representation. θ is the parameter of
sparse path encoder. N is path length, dk and d are the feature dimensions for
an edge, and a final path representation, respectively.

3 Sparse Path Encoder

Figure 5.2 gives an overview of sparse path encoder.

3.1 Sparsity Operation

Sparsity operation takes a full path as input and outputs a sparse path, w.r.t.,
reduction ratio γ, which aims at reducing path length from N to N′. N′ is
much less than N. In particular, we randomly remove a subset of edges in a
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path based on the corresponding reduction ratio γ (e.g., γ = 0.6 in Figure 5.2),
enabling the scalability of the path. We also define sparsity operation as:

p′ = f (p, γ) =
{

ej
}

j∈Ω , (5.4)

where p denotes an input path. p′ represents a sparse path. For example,
as shown in Figure 5.2, if we have a path p = ⟨e1, e3, e4, e6, e7⟩, then after
conducting sparsity operation, we have a sparse path p′ =

{
e3, e6

}
and

p′.Ω = [2, 4], where a subset of edge e1, e4, e7 has removed from path p when
γ = 0.6. This operation enables the path reduction, e.g., from 5 to 2 in this
scenario.

3.2 Learnable Path Representation

We select Transformer as our path encoder since it supports the parallel oper-
ation using the self-attention principle. To achieve the path representations
directly, we add a super extra learnable path representation vector PR in front
of each sparse path. In particular, we attach PR at the position for all sparse
paths, which makes it able to capture global information during the training
procedure. We rewritten p′ as:

p′ =
{

PR
}
+

{
ej
}

j∈Ω =
{

ek
}

k∈Ω′ , (5.5)

where e0 = PR represents a virtual edge and Ω′ = [0, Ω].
To keep the sequential information for each path, we add the learnable

position embedding into the sparse path feature vectors according to corre-
sponding order information in Ω′. Thus, we have:

X = Concat
{

xk
}

k∈Ω′ , where xk = ek + posk , (5.6)

where posk denotes the learnable position embedding. X denotes final sparse
path edge representation through concatenation.

3.3 Transformer Path Encoder

The transformer contains multiple Transformer layers, and each of them
consists of two sub-layer: multi-head attention and position-wise feed-forward
network. Thus, we define our Transformer Path Encoder as:

Z = LayerNorm(X + MultiHead (X)) ,

PR = LayerNorm (Z + FFN (Z)) ,
(5.7)

where LayerNorm is layer normalization and PR is learned path representa-
tion. MultiHead and FFN are multi-head attention and position-wise feed
forward network operation, respectively.
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3.4 Path Reconstruction Decoder

To avoid the path information missing, the lightweight path encoder is in-
troduced to reconstruct the removed edges in a path. Take Figure 5.2 as an
example; we first compliment the encoded spare path with shared, learnable
vectors that denotes the presence of removed edges based on the original
index of each edge in a path. Then, we also add position embedding into the
complemented sparse path representation. Next, the path decoder takes the
complemented path representation as input and predicts the removed edges.
We use mean square error (MSE) as our reconstruction loss function, which is
given as:

Lrec =
1
N

N

∑
i=1

(ei − êi)
2 , (5.8)

where ei and êi represent the initial and predicted removed edge representa-
tion, respectively. N is the number of edges in an input path.

4 Relational Reasoning Path Representation Learn-
ing

Figure 5.3 illustrates an overview of relational reasoning for path representa-
tion learning. Here, we aim to train a relation to head RRHφ(·) to distinguish
how path representations to themselves (same class) and other paths (dif-
ferent class). More specifically, this relational reasoning framework contains
path representation construction and relational reasoning, whereas relational
reasoning also includes cross-network relational reasoning and cross-view
relational reasoning.

4.1 Dual Sparse Path Encoder

To enable effective relational reasoning training, we first introduce a dual
sparse path encoder (SPE), which is used to construct different path represen-
tations according to different path views. Take Figure 5.3a as example, given
a path p1, we first achieve two sparse paths according to different reduction
ratios, i.e., γ1 and γ2. We call them different path views, i.e., path view 1 p1

1
and path view 2 p2

1. Then, dual sparse path encoder, consisting of a main and
an auxiliary encoders, takes p1

1 and p2
1 as input and returns four different path

representations, where solid and dotted □ represent the path representations
output by main encoder in terms of p1

1 and p2
1, respectively, i.e., PR1

1 and PR2
1.

While solid and dotted △ denote the path representations returned by the
auxiliary encoder with respect to both path views, respectively, i.e., P̂R1

1 and
P̂R2

1. Finally, we define it as:
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(b) Relational Reasoning

Figure 5.3: Illustration of RR Training: (a) Given an input path p1, we construct two path views
(i.e., p1

1 and p2
1) through two reduction ratios γ1 and γ2, based on which a main encoder and an

auxiliary encoder are employed to generate path representations for each view (i.e., PR1
1, PR2

1,

P̂R1
1, and P̂R2

1). (b) After getting corresponding path representations for paths in a minibatch,
a relational reasoning path representation learning scheme, which utilizes both cross-network
and cross-view relational reasoning modules, is deployed. In particular, for both modules,

an aggregation function a joins positives (representations of the same paths, e.g., a(PR1
1, P̂R1

1),

a(PR1
1, PR2

1)) and negatives (randomly paired representations, e.g., a(PR1
1, P̂R1

3), a(PR1
1, PR2

3))
through a commutative operator. Then relation head module RRHφ(·) estimates the relation
score y, which must be 1 for positive and 0 for negatives. Both cross-network and cross-view
objectives are optimized minimizing the binary cross-entropy (BCE) between prediction and
target relation value t. In this example, i ∈ [1, 2, 3] denotes the number of paths in the minibatch
and j ∈ [1, 2] represents the number of views [65].
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PRj
i = SPEθ(pj

i , γ) , P̂Rj
i = SPEθ̂(pj

i , γ) , (5.9)

where PRj
i and P̂Rj

i denote path representations returned by main encoder
and auxiliary encoder, respectively. pi is the i-th path in a path set. j ∈ [1, 2]
represents path views. θ and θ̂ represent parameters for the main encoder and
auxiliary encoder.

4.2 Relation Reasoning

Cross-Network Relational Reasoning

As shown in Figure 5.3a, given a set of path
{

p1, p2, · · · , pK
}

, we are able to
achieve a set of path representations

{
PR1

1, PR1
2, · · · , PR1

K
}

from main encoder

and
{ ˆPR1

1, P̂R1
2, · · · , P̂R1

K
}

or
{

P̂R2
1, P̂R2

2, · · · , P̂R2
K
}

from auxiliary encoder,
w.r.t., different path views. Then, we join the positive relation pairs ⟨PR1

i , PR2
i ⟩

(e.g., ⟨PR1
1, P̂R1

1⟩ in Figure 5.3 ) and negative relation pairs ⟨PR1
i , PR2

\i⟩(e.g.,

⟨PR1
1, P̂R1

2⟩ in Figure 5.3) through aggregation function. Next, the relational
head RRHφ(·) takes representation relation pairs of cross-network as input
and returns a relation score y. Finally, we formulate cross-network relational
reasoning as a binary classification, where the binary cross-entropy loss is
used to train a sparse path encoder, which is defined as follows.

Lcn = argmin
θ,φ

K

∑
i=1

2

∑
j=1
L
(

RRHφ

(
a
(

PRj
i , P̂Rj

i

))
, t = 1

)
+ L

(
RRHφ

(
a
(

PRj
i , P̂Rj

\i

))
, t = 0

)
,

(5.10)

where K is the the number of path samples in the minibatchand K = 3 in
Figure 5.3. a(·, ·)is defined as an aggregation function. L represents a loss
function between relation score and a target relation value. t is a target relation
values.

To enable the cross-network framework training, we employ Siamese
architecture for our dual sparse path encoder, where we update the parameters
of the auxiliary encoder by leveraging the momentum updating principle
based on the parameters of the main encoder. Then, we have:

θ̂t = m× θ̂(t−1) + (1−m)× θt, (5.11)

where m represents momentum parameter. θ and θ̂ denote the parameters of
main encoder and auxiliary encoder.
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Cross-View Relational Reasoning

To further enhance the sparse path encoder training, we conduct the relational
reasoning between different views within the main encoder, termed cross-view
relational reasoning.

Similar to cross-network, given a set of paths
{

p1, p2, · · · , pK
}

. We first
obtain two set of path representations regarding two path views using main
encoder, i.e.,

{
PR1

1, PR1
2, · · · , PR1

k
}

and
{

PR2
1, PR2

2, · · · , PR2
K
}

. Then, we also
join the positive relation pairs ⟨PR1

i , PR2
i ⟩ (e.g., ⟨PR1

1, PR2
1⟩ in Figure 5.3 ) and

negative relation pairs ⟨PR1
i , PR2

\i⟩ (e.g., ⟨PR1
1, PR2

3⟩ in Figure 5.3) through
aggregation function. Next, we learn relational head RRHφ(·) to obtain the
corresponding relation score y for the cross-view relational reasoning. Last,
we define the objective function as:

Lcv = argmin
θ,φ

K

∑
i=1
L
(

RRHφ

(
a
(

PR1
i , PR2

i

))
, t = 1

)
+ L

(
RRHφ

(
a
(

PR1
i , PR2

\i

))
, t = 0

)
,

(5.12)

where K denotes the the number of path samples in the minibatch.

Objective for RR

To efficiently train our dual path encoder, we jointly minimize the cross-
network and cross-view relational reasoning loss. The objective function for
RR is defined as:

min
θ,φ
LRR = Lcn + Lcv (5.13)

4.3 LightPath Training

Finally, we jointly minimize the reconstruction and RR loss, which can be
described as:

L = Lrec + LRR (5.14)

5 Global Local Knowledge Distillation (GLKD)

We further introduce global local knowledge distillation (GLKD) to enable
LightPath can be deployed in a resource-limited environment by reducing the
model size, as shown in Figure 5.4.
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Figure 5.4: Illustration of GLKD. Given an input path, we formulate our GLKD as a weighted sum
of global path representation knowledge distillation (GPRKD) loss and local edge representation
knowledge distillation (LERKD) loss [65].

5.1 Global-path Representation Distillation

Given an input path pi = ⟨e1, e2, e3, · · · , en⟩, where n represents the number
of edges in an input path. We define PRT (pi) and PRS (pi) represent the path
representations achieved from teacher encoder Tθ and student encoder Sθ .
The global path representation distillation aims to push the smaller student
encoder to mimic the global characteristic of the large cuboid teacher encoder.
This problem is formalized as minimizing the latent space distance between
the large cuboid teacher encoder and the rectangle student encoder. Thus, we
have:

min
θ
Lglobal

(
PRT (pi), PRS (pi)

)
=

∥∥∥sp(PRT (pi)/t)− sp(PRS (pi)/t)
∥∥∥2

, (5.15)

where sp(·) denotes exponential function. t is the temperature.

5.2 Local-edge Correlation Distillation

Local-edge correlation distillation aims to keep the local smooth of the edge
correlations in a path.

In particular, a rectangle student encoder tries to mimic the edge correla-
tions in a path captured by a large cuboid teacher encoder.

In specific, given a path p = ⟨e1, e2, e3, · · · eN⟩, where N represents the
number of edges in a path. Through employing an L-layers Transformer en-
coder (i.e., teacher encoder Tθ) and L′-layers Transformer encoder (i.e., student
encoder Sθ) upon sparse path p′, where L≪ L′, the edge representation that
captures spatial dependencies are derived as follows.

FT (ei)
N′
i=1 = Tθ(p) , FS (ei)

N′
i=1 = Sθ(p) , (5.16)
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where FT (ei)
N′
i=1 and FS (ei)

N′
i=1 represent the edge representation with respect

to the teacher and student encoder, respectively.
In this phase, we define the objective function as:

min
θ
Llocal

(
FT (ei), FS (ei)

)
=

1
n

n

∑
i=1

∥∥∥sp(FT (ei)/t)− sp(FS (ei)/t)
∥∥∥2

, (5.17)

where sp(·) is exponential function. t denotes the temperature.

5.3 Objective for GLKD

To enable the GLKD, the overall objective function for GLKD is defined in
Eq. 5.18.

min
θ
LGLKD = α ∗ Lglobal + (1− α) ∗ Llocal , (5.18)

where α is balancing factor.

6 Experiments

6.1 Experimental Setup

Data sets

We consider two real-world road network data sets and one synthetic data
set. We collect the road network of Aalborg, Denmark, from OpenStreetMap,
which contains 10,017 nodes and 11,597 edges [65]. After map matching, we
have 39,160 paths with lengths of 50. In addition, we collect the road network
of Chengdu, China, from OpenStreetMap, which includes 6,632 nodes and
17,038 edges [65]. After map matching, we obtain 50,000 paths with lengths of
50. Due to the lack of large amounts of long paths in the real-world datasets,
we also generate one synthetic data set that includes paths with a length of
100, 150, and 200, which is used to verify the efficiency and scalability of the
LightPath.

Downstream Task

We consider two downstream tasks: path travel time estimation and path
ranking. We evaluate the accuracy of travel time estimation based on Mean
Absolute Error(MAE), Mean Absolute Relative Error(MARE), and Mean Ab-
solute Percentage Error(MAPE) [65]. In contrast, we evaluate the performance
of path ranking based on MAE, the Kendall rank correlation coefficient (τ),
and Spearman’s rank correlation coefficient (ρ) [65].

60



6. Experiments

Models for Downstream Task

We select the ensemble model Gradient Boosting Regressor (GBR) as a regression
model to estimate the travel time and ranking score based on the learn path
representation through unsupervised learning methods.

Baselines

We compare LightPath with 9 baselines. We first consider Node2vec [12] since
it is famous graph embedding methods. Then, we select MoCo [19] due to it
being the representative work of self-supervised learning. Next, we choose
three trajectory representation learning methods as our baselines, i.e., Toast [3],
t2vec [34], and NeuTraj [67]. In addition, we also consider unsupervised path
representation learning methods PIM [62]. Finally, we further consider three
supervised methods: HMTRL [35], PathRank [64], and LightPath-Sup.

6.2 Experiment Results

Overall Performance

Table 5.1 reports the overall performance comparsion between our LightPath
and all baselines on two downstream tasks regarding two real-world data
sets. In particular, we use 30K unlabeled paths on Aalborg and Chengdu,
respectively, but we only use 12K labeled paths to train GBR and supervised
baseline methods. Overall, LightPath outperforms all the baselines on these
two tasks for both data sets, which demonstrates the advance of our model.

Model Scalability

In the section, we conduct the experiments to study the model scalability
regarding reduction ratio and path length based on the synthetic dataset.
Table 5.2 reports the results for both LightPath and its teacher model, with
varying γ = 0, 0.1, 0.3, 0.5, 0.7, 0.9. γ = 0 represents we do not consider
sparsity operation for the input path, i.e., using a classic Transformer based
encoder. We can observe that the GFLOPs and gMem. (GiB) decrease with
the increase in the reduction ratio. It is because the higher value of γ is,
the more edges we can remove. Second, LightPath has significantly reduced
model complexity, w.r.t., GFLOPs and gMem.. For example, we can reduce
the training GFLOPs by 2.54× for the LightPath by increasing the reduction
ratio γ from 0 to 0.9 in terms of path length 200. Third, the parameters (Para.
(Millions)) of teacher model is at least 3.5× of LightPath, which indicates the
effectiveness of our proposed framework. Overall, LightPath shows potential
of scalability to support path representation learning for long paths.
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Table 5.1: Overall Accuracy on Travel Time Estimation and Ranking Score Estimation [65].
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6. Experiments

Table 5.2: Model Scalability vs. Reduction Ratio (γ) and Path Length (N) [65].
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Chapter 6

Conclusion and Future Work

1 Conclusion

This thesis focuses on path representation learning in road networks. It
summarizes five research works. One is four pages report, while the other
four studies are four novel advanced path representation learning frameworks.
The contributions of each work are summarized as follows.

• Paper A [66] and Paper B [64] study the supervised path representation
from the path ranking perspective. In particular, in Paper B, we first
propose a training data enrichment strategy, which includes diversified
multi-cost shortest paths, to enhance learning ability. Then, we propose
an end-to-end multi-task framework PathRank that captures both road
network topology and spatial proprieties to enable efficient path feature
learning. Extensive experiments are conducted, and the corresponding
results demonstrate the effectiveness of the proposed framework.

• Paper C [62] studies the unsupervised path representation learning
framework Path InfoMax PIM, which learns task-unspecific path repre-
sentations and works well on different downstream tasks. In particular,
we first propose a curriculum negative sampling strategy to generate
a small number of negative paths by following the curriculum learn-
ing principles. Next, PIM conduct mutual information maximization
to learn task-unspecific path representations from a global and a local
view. As for the global view, PIM aims to distinguish the input path
representations from the representation of negative paths. In a local
view, the goal of PIM is to distinguish the input path representation
from the representation of nodes that only appear in negative paths.
This enables the learned representations to capture both global and local
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information. The extensive experiments demonstrate the efficiency of
the learned task-unspecific path representations.

• Paper D [63] proposes weakly-supervised contrastive curriculum learn-
ing (WSCCL) framework to learn task-unspecific temporal path represen-
tations (TPR) by leveraging the weak label information. More specifically,
we first employ a temporal path encoder that captures both spatial and
temporal information to learn TPRs. We then introduce weak labels
to enable the encoder training. These weak labels (e.g., peak hour vs.
off-peak hour) are easy and economical to achieve but relevant to various
smart-city applications. Next, we generate positive and negative tempo-
ral path samples with respect to weak labels, which benefits temporal
path encoder training using weakly-supervised contrastive learning by
pulling together positive paths’ representations and pushing apart neg-
ative paths’ representations. Subsequently, we integrate curriculum
learning with weakly-supervised contrastive learning to further enhance
the weakly-supervised contrastive learning. The extensive experiments
indicate that our WSCCL performs best because it leverages the temporal
information from weak labels.

• Paper E [65] proposes a lightweight and scalable path representation
learning framework LightPath. LightPath aims at reducing resource con-
sumption and achieving scalability without affecting accuracy, resulting
in broader applicability. More specifically, we first study a sparse auto-
encoder that offers the framework with good scalability in terms of path
length. Then, we propose a relational reasoning path representation
learning framework, including cross-network relational reasoning and
cross-view relational reasoning, to enable faster and more robust sparse
path encoder training. Next, we investigate the global-local knowledge
distillation to reduce the size of the sparse path encoder and further
improve the downstream tasks’ performance. Finally, the results of the
experiments indicate the efficiency and scalability of the LightPath.

2 Future Work

As for future work, several meaningful directions could be considered.

• Stochastic Path Representation Learning Studying stochastic path rep-
resentation learning instead of deterministic ones from the distribution
perspective. This enables the learned path representations to be robust
to the external uncertainty (e.g., traffic accidents), thus improving the
performance for different downstream tasks.
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• AutoPRL Automated machine learning (AutoML) has driven related
innovation in different research communities. Such technology can also
be employed to construct a unified task-unspecific path representation
learning framework. For example, we can search between different self-
supervised learning strategies to fit the different environment settings,
e.g., with /without negative paths.
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1. Introduction

Abstract

Modern navigation services often provide multiple paths connecting the same source
and destination for users to select. Hence, ranking such paths becomes increasingly
important, which directly affects service quality. We present PathRank, a data-driven
framework for ranking paths based on historical trajectories. If a trajectory used
path P from source s to destination d, PathRank considers this as an evidence that
P is preferred over all other paths from s to d. Thus, a path that is similar to P
should have a larger ranking score than a path that is dissimilar to P. Based on this
intuition, PathRank models path ranking as a regression problem that assigns each
path a ranking score. We first propose an effective method to generate a compact set of
diversified paths using trajectories as training data. Next, we propose an end-to-end
deep learning framework to solve the regression problem. In particular, a spatial
network embedding is proposed to embed each vertex to a feature vector by considering
the road network topology. Since a path is represented by a sequence of vertices, which
is now a sequence of feature vectors after embedding, recurrent neural network is
applied to model the sequence. Empirical studies on a substantial trajectory data set
offer insight into the designed properties of the proposed framework and indicating
that it is effective and practical.

1 Introduction

Vehicular transportation reflects the pulse of a city. It not only affects people’s
daily lives and also plays an essential role in many businesses as well as
society as a whole [5]. A fundamental functionality in vehicular transportation
is routing [14]. Given a source and a destination, classic routing algorithms,
e.g., Dijkstra’s algorithm, identify an optimal path connecting the source and
the destination, where the optimal path is often the path with the least travel
cost, e.g., the shortest path or the fastest path. However, a routing service
quality study [2] shows that local drivers often choose paths that are neither
shortest nor fastest, rendering classic routing algorithms often impractical in
many real world routing scenarios.

To contend with this challenge, a wide variety of advanced routing al-
gorithms, e.g., skyline routing [19] and k-shortest path routing [11, 21], are
proposed to identify a set of optimal paths, where the optimality is defined
based on, e.g., pareto optimality or top-k least costs, which provide drivers
with multiple candidate paths. In addition, commercial navigation systems,
such as Google Maps and TomTom, often follow a similar strategy by suggest-
ing multiple candidate paths to drivers, although the criteria for selecting the
candidate paths are often confidential.

Under this context, ranking the candidate paths is essential for ensuring
high routing quality. Existing solutions often rely on simple heuristics, e.g.,
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ranking paths w.r.t. their travel times. However, travel times may not always
be the most important factor when drivers choose paths, as demonstrated
in the routing quality study where drivers often do not choose the fastest
paths [2]. In addition, existing solutions often provide the same ranking to all
users but ignore distinct preferences which different drivers may have.

In this paper, we propose a data-driven ranking framework PathRank,
which ranks candidate paths by taking into account the paths used by local
drivers in their historical trajectories. More specifically, PathRank models
ranking candidate paths as a “regression” problem—for each candidate path,
PathRank estimates a ranking score for the candidate path.

We first prepare a training data set using historical trajectories. For each
trajectory, we consider the path used by the trajectory, i.e., trajectory path, as
the ground truth path and thus has the highest ranking score, say 1. We then
propose an effective method to generate a diversified training path set for the
trajectory path, where each training path is associated with a ranking score
that equals to the similarity between the training path and the trajectory path.
The intuition behind is that if a training path is similar to the ground truth
trajectory path, it should also have a higher ranking score.

Next, we propose a deep learning framework to learn meaningful feature
representations of paths, which enables effective ranking. The input for
PathRank is a path and its label is a similarity score. In order to use deep
learning to solve the similarity score regression problem, a prerequisite is to
represent the input path into an appropriate feature space. To this end, we
propose to use a vertex embedding network to transfer each vertex in the
input path to a feature vector. Since a path is a sequence of vertices, after
vertex embedding, the path becomes a sequence of feature vectors. Then, since
RNNs are capable of capturing dependency for sequential data, we employ
an RNN to model the sequence of feature vectors. The RNN finally outputs
an estimated similarity score, which is compared against the ground truth
similarity.

To the best of our knowledge, this is the first data-driven, end-to-end
solution for ranking paths in spatial networks.

2 Related Work

2.1 Learning to rank

Learning to rank plays an important role in ranking in the context of in-
formation retrieval (IR), where the primary goal is to learn how to rank
documents or web pages w.r.t. queries, which are all represented as feature
vectors. Learning to rank methods in IR can be categorized into point-wise [3],

78



3. Preliminaries

pair-wise [17], and list-wise [1] methods. In particular, point-wise methods
estimate a ranking score for each individual document. Then, the documents
can be ranked based on the ranking scores [3]. We follow the idea of the
point-wise learning to rank techniques and propose PathRank to rank paths in
spatial networks while considering road network topology.

2.2 Network Representation Learning

Network representation learning, a.k.a., graph embedding, aims to learn low-
dimensional feature vectors for vertices while preserving network topology
structure such that the vertices with similar feature vectors share similar struc-
tural properties [4, 16]. A representative method is DeepWalk [16]. DeepWalk
first samples sequences of vertices based on truncated random walks, where
the sampled vertex sequences capture the connections between vertices in the
graph. Then, skip-gram model [13] is used to learn low-dimensional feature
vectors based on the sampled vertex sequences. Node2vec [4] considers higher
order proximity between vertices by maximizing the probability of occurrences
of subsequent vertices in fixed length random walks. A key difference from
DeepWalk is that node2vec employs biased-random walks that provide a
trade-off between breadth-first and depth-first searches, and hence achieves
higher quality and more informative embedding than DeepWalk does. We
use node2vec in our experiments.

2.3 Machine Learning for Route Recommendation

Machine learning has been applied to improve route recommendation [5, 7].
Personalized routing aims to identify the best path for a specific driver but
cannot rank a set of candidate paths [20]. Multitask learning is applied to
model different drivers’ driving behavior [9], but cannot be used directly for
ranking paths. Additional attempts have been made for estimating travel time
or fuel consumption distributions [6, 8, 15, 18], which are also different from
ranking.

3 Preliminaries

3.1 Basic Concepts

A road network is modeled as a weighted, directed graph G = (V, E, D, T, F).
Vertex set V represents road intersections; edge set E ⊂ V×V represents
road segments. Functions D, T, and F maintain distances, travel times, and
fuel consumption of traversing the edges in graph G.
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A path P = (v1, v2, v3, . . . , vX) is a sequence of vertices and each two adja-
cent vertices must be connected by an edge in E.

A trajectory T = (p1, p2, p3, . . . , pY) is a sequence of GPS records pertaining
to a trip, where each GPS record pi = (location, time) represents the location
of a vehicle at a particular timestamp. Map matching is able to map a GPS
record to a specific location on an edge in the underlying road network, thus
aligning a trajectory with a path in the underlying road network. We call such
paths trajectory paths.

We use the weighted Jaccard Similarity [5] to evaluate the similarity be-
tween two paths.

4 Training Data Generation

We proceed to elaborate how to generate a set of training paths for a trajectory
path P from source s to destination d.

A naive way to generate the training path set is to simply include all paths
from s to d. This is infeasible to use in real world settings since the training
path set may contain a huge number of paths in a city-level road network
graph, which in turn makes the training prohibitively inefficient. Thus, we
aim to identify a compact training path set, where only a small number of
paths, e.g., less than 10 paths, are included.

To this end, the classic top-k shortest path algorithm, e.g. Yen’s algorithm
[21], could be employed to choose top-9 shortest paths connecting s and d
as the training paths. However, a serious issue of this strategy is that the
top-k shortest paths are often highly similar. Thus, their similarities w.r.t. the
ground truth, trajectory path P, are also similar, which adversely affect the
effectiveness of the subsequent ranking score regression—if the similarities
of training paths only spread over a small range, they only provide training
instances for estimating ranking scores in the small range, which may make
the trained model unable to make accurate estimations for ranking scores
outside the small range. Thus, an ideal strategy should be providing a set of
training paths whose similarities cover a large range.

To this end, we propose the second strategy using the diversified top-k
shortest paths [11]. We first include the shortest path into the result. Next,
we check the next shortest path P′ and only include P′ into the result if P′

is dissimilar with all the existing paths in the result. In other words, if the
similarity between P′ and an existing path in the result is greater than a
threshold, P′ is not included into the result set. We keep this procedure until
we find k paths or we examine all paths from s to d.

For each trajectory path P, we identify a set of diversified shortest paths
{P′i }. Then, {P′i , simi} serves the training data set where the similarity scores
simi = WeightedJaccard(P, P′i ) are considered as labels.
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5 PathRank

We propose an end-to-end deep learning framework PathRank to estimate
similarity scores for paths.

As shown in Figure A.1, PathRank consists of two neural networks—a
vertex embedding network and a recurrent neural network (RNN).
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Figure A.1: Framework overview.

5.1 Vertex Embedding

We represent a vertex vi in road network graph G as a one-hot vector qi ∈ RN ,
where N represents the number of vertices in G, i.e., N = |G.V|. Specifically,
the i-th vertex vi in graph G is represented as a vector qi where the i-th bit is 1
and the other N − 1 bits are 0.

Vertex embedding employs an embedding matrix B ∈ RM×N to transfer
a vertex’s one-hot vector qi into a new feature vector xi = Bqi ∈ RM. The
feature vector is often in a smaller space, where M < N.

Graph embedding aims at learning low dimensional, latent representations
of vertices in a graph by taking into account the graph topology. Here,
we apply an existing graph embedding method, node2vec [4], to initialize
embedding matrix B so that the road network topology is well captured. In
addition, during training, we allow PathRank to update B to better fit the
similarity score regression task.

Given a training path P′i = ⟨v1, v2, . . . , vZ⟩, we apply the same embedding
matrix B to transfer each vertex to a feature vector. Thus, the training path P
is represented as a sequence of features ⟨x1, x2, . . . , xZ⟩, where xj = Bqj and
1 ≤ j ≤ Z.

5.2 RNN

The feature sequence represents the flow of travel on path P′i and we would like
to capture the flow. To this end, we fed the feature sequence ⟨x1, x2, . . . , xZ⟩
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into a recurrent neural network, which is known to be effective for modeling
sequences. Specifically, we employ a bidirectional gated recurrent neural
network (BD-GRU) [12] to capture the sequential dependencies in both the
direction and the opposite direction of the travel flow.

We consider the direction of the travel flow first, i.e., from left to right.
A GRU unit learns sequential correlations by maintaining a hidden state
hj ∈ RM at position j, which can be regard as an accumulated information of
the positions on the left of position j. Specifically, hj = GRU(xj, hj−1), where
xj is the input feature vector at position j and hj−1 is the hidden state at
position j− 1, i.e., the hidden state of the left position.

For the opposite direction of the travel flow, i.e., from right to left, we apply
another GRU to generate hidden state h′j = GRU′(xj, h′j+1). Here, the input
consists of the feature vector at position j and the hidden state at position
j + 1, i.e., the right hidden state. The final hidden state Hj at position j is the
concatenation of the hidden states from both GRUs, i.e., Hj = hj ⊕ h′j where
⊕ indicates the concatenation operation.

5.3 Fully Connected Layer

We stack all outputs from the BD-GRU units into a long feature vector fi =
⟨H1 ⊕ H2 ⊕ . . .⊕ HZ⟩ where ⊕ indicates the concatenation operation. Then,
we apply a fully connected layer with weight vector WFC ∈ R| fi |×1 to produce
a single value ˆsimi = f T

i WFC, as the estimated similarity for the training path
P′i .

5.4 Loss Function

The loss function of the basic framework is shown in Equation A.1.

L(W) =
1
|n|

n

∑
i=1

( ˆsimi − simi
)2

+ λ∥W∥2
2 (A.1)

The first term of the loss function measures the discrepancy between
the estimated similarity ˆsimi and the ground truth similarity simi. We use
the average of square error to measure the discrepancy, where n is the total
number of training paths we used for training.

The second term of the loss function is a L2 regularizer on all learnable
parameters in the model, including the embedding matrix B, multiple matrices
used in BD-GRU, and the matrix in the final fully connected layer WFC. Here,
λ controls the relative importance of the second term w.r.t. the first term.

5.5 Experiments
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5.6 Experiments Setup

Road Network and Trajectories

We consider the road network in North Jutland, Denmark. We use a substantial
GPS data set occurred on the road network, which consists of 180 million
GPS records for a two-year period from 183 vehicles. The sampling rate of
the GPS data is 1 Hz (i.e., one GPS record per second). We split the GPS
records into 22,612 trajectories representing different trips. We map match
the GPS trajectories, such that for each trajectory, we obtain its corresponding
trajectory path.

Ground Truth Data

For each trajectory T, we obtain its source s, destination d, and the trajectory
path PT . Then, we employ two different strategies to generate two sets of
training paths according to the source-destination pairs (s, d)—top-k shortest
paths (TkDI) and diversified top-k shortest paths (D-TkDI). For each training
path P, we employ weighted Jaccard similarity WeightedJaccard(P, PT) as P’s
ground truth ranking score.

Evaluation Metrics

We evaluate the accuracy of the proposed PathRank framework based on
two categories of metrics. The first category includes Mean Absolute Error
(MAE) and Mean Absolute Relative Error (MARE). The second category
includes Kendall rank correlation coefficient (denoted by τ) and Spearman’s
rank correlation coefficient (denoted by ρ), which measure the similarity, or
consistency, between a ranking based on the estimated ranking scores and a
ranking based on the ground truth ranking scores.

5.7 Experimental Results

We investigate how the different training data generation strategies affect the
accuracy of PathRank. We first consider PR-A1, where we only use graph
embedding method node2vec to initialize the vertex embedding matrix B and
do not update B during training.

Table A.1 shows the results, where we categorize the training data genera-
tion strategies into two categories based on top-k shortest paths (TkDI) and
diversified top-k shortest paths (D-TkDI). For each category, the best results are
highlighted with underline. The best results overall is also highlighted with
bold. We also show results when the embedding feature sizes are M = 64 and
M = 128, respectively. The results show that (1) when using the diversified
top-k paths for training, we have higher accuracy (i.e., lower MAE and MARE
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and larger τ and ρ) compared to when using top-k paths, suggesting that
using diversified paths is essential for accuracy; (2) a larger embedding feature
size M achieves better results.

Table A.1: Training Data Generation Strategies, PR-A1

Strategies M MAE MARE τ ρ

TkDI
64 0.1433 0.2300 0.6638 0.7044

128 0.1168 0.1875 0.6913 0.7330

D-TkDI
64 0.1140 0.1830 0.6959 0.7346

128 0.0955 0.1533 0.7077 0.7492

Next, we consider PR-A2, where the graph embedding matrix B is also
updated during training to fit better the ranking score regression problem.
Table A.2 shows the results. The two observations from Table A.1 also hold
for Table A.2. In addition, PR-A2 achieves better accuracy than does PR-A1,
meaning that updating embedding matrix B is useful.

Table A.2: Training Data Generation Strategies, PR-A2

Strategies M MAE MARE τ ρ

TkDI
64 0.1163 0.1868 0.6835 0.7256

128 0.1130 0.1814 0.7082 0.7481

D-TkDI
64 0.0940 0.1509 0.7144 0.7532

128 0.0855 0.1373 0.7339 0.7731

6 Conclusion and Future work

We propose PathRank, a learning to rank technique for ranking paths in
spatial networks. We propose an effective way to generate a set of training
paths to enable effective and efficient learning. Then, we propose and end-
to-end deep learning framework to enable graph embedding that takes into
account road network topology. A recurrent neural network, together with the
learned graph embedding, is employed to estimate the ranking scores which
eventually enable ranking paths. Empirical studies conducted on a large real
world trajectory set demonstrate that PathRank is effective and efficient for
practical usage. As future work, it is of interest to apply outlier detection
algorithms [10] to filter abnormal trajectories to improve the ranking quality
of PathRank.
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1. Introduction

Abstract

Ranking paths becomes an increasingly important functionality in many transporta-
tion services, where multiple paths connecting a source-destination pair are offered to
drivers. We study ranking such paths under specific contexts, e.g., at a departure time
and for a specific driver. More specifically, we model ranking as a regression problem
where we assign a ranking score to each path with the help of historical trajectories.
The intuition is that if a driver’s trajectory used path P at time t, we consider this
as an evidence that path P is preferred by the driver at time t, thus should have a
higher ranking score than other paths connecting the same source and destination.
To solve the regression problem, we first propose an effective training data enriching
method to obtain a compact and diversified set of training paths using historical
trajectories, which provides a data foundation for efficient and effective learning.
Next, we propose a multi-task learning framework that considers features representing
both candidate paths and contexts. Specifically, a road network embedding is proposed
to embed paths into feature vectors by considering both road network topology and
spatial properties, such as distances and travel times. By modeling different departure
times as a temporal graph, graph embedding is used to embed departure times into
feature vectors. The objective function not only considers the discrepancies on ranking
scores but also the reconstruction errors of the spatial properties of the paths, which
in turn improves the final ranking estimation. Empirical studies on a substantial
trajectory data set offer insight into the designed properties of the proposed framework,
indicating that it is effective and practical in real world settings.

1 Introduction

Vehicular transportation reflects the pulse of a city. It plays an essential
role in people’s daily lives and many businesses as well as society as a
whole [16]. With recent deployment of sensing technologies and continued
digitization, large amounts of vehicle trajectory data are collected, which
provide a solid data foundation to improve the quality of a wide variety of
transportation services, such as vehicle routing [19], traffic prediction [23],
and urban planning [12].

A fundamental functionality in vehicular transportation is routing. Given a
source and a destination, classic routing algorithms, e.g., Dijkstra’s algorithm,
identify a single optimal path connecting the source and the destination, where
the optimal path is the path with the least travel cost, e.g., the shortest path or
the fastest path. However, a routing service quality study [6] shows that local
drivers often choose paths that are neither shortest nor fastest, rendering classic
routing algorithms often impractical in many real world routing scenarios. To
contend with this challenge, a wide variety of advanced routing algorithms,
e.g., skyline routing [55] and k-shortest path routing [58], are proposed to
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identify a set of optimal paths, where the optimality is defined based on, e.g.,
pareto optimality or top-k least costs, which provide drivers with multiple
candidate paths to choose. Commercial navigation systems, such as Google
Maps and TomTom, often follow a similar strategy that suggests multiple
candidate paths to drivers.

Under this context, ranking such candidate paths is essential for ensuring
high routing quality. Existing solutions often rely on simple heuristics, e.g.,
ranking paths w.r.t. their travel times. However, travel times may not always
be the most important factor when drivers choose paths, and a routing quality
study shows that drivers often do not choose the fastest paths [6]. In addition,
existing solutions often provide the same ranking to all drivers but ignore
distinct preferences which different drivers may have.

In this paper, we propose a data-driven, context-aware ranking framework
PathRank to rank paths in road networks. More specifically, PathRank models
ranking candidate paths as a regression problem—for each candidate path,
PathRank estimates a ranking score using local drivers’ trajectories, which
in turn enables ranking the candidate paths w.r.t. their ranking scores. The
framework is flexible where different contextual information can be accom-
modated. For example, when accommodating driver information, it enables
personalized ranking. To enable PathRank, two challenges must be addressed.
Enriching Training Data: To train any regression model, we need to prepare
training data. We borrow the idea often used in ranking products in online
shops. If a user clicks a specific product on a webpage, it provides evidence
that the user is interested in the product than other products on the same
webpage. Then, the clicked vs. not clicked products are considered as positive
vs. negative training data to enable traning. Similarly, if a driver’s trajectory
used path P from source s to destination d at time t, it is an evidence that the
driver considered path P as the preferred path over other paths from s to d at
time t. Thus, path P is a positive training data and should have the largest
ranking score. However, trajectories only provide positive training data and
we still lack negative training data. Since there often exist a large amount of
paths from a source to a destination, it is thus prohibitive to include all paths
other than P as the negative paths. In contrast, randomly selecting a small
subset of such paths may adversely affect the training effectiveness. Thus, it
is challenging to select a compact and diversified training path set to represent
the negative training data. A compact set ensures training efficiency and a
diversified set ensure training effectiveness.
Effective Feature Representations: Effective regression models often rely on
meaningful feature representations of input data. In our setting, an input
to PathRank is a path that is a sequence of vertices in a road network graph.
Here, a meaningful feature space should take into account both the topology
of the underlying road network and the spatial properties of the road network,
such as distances and travel times, which may influence drivers’ choices.
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However, no existing methods are able to capture both topological and spatial
properties. In addition, it is also important to embed context information,
such as departure times, into meaningful representations, where, for example,
temporal closeness can be preserved. This calls far new feature learning
methods.

To contend with the first challenge, we propose an effective method to
generate a compact and diversified training path set. We consider different
travel costs that drivers may consider, e.g., distance, travel time, and fuel
consumption. Next, for each travel cost, we identify a set of diversified, top-k
least-cost paths. Here, two paths are diversified if the path similarity between
them is smaller than a threshold, where a number of different path similarity
functions can be applied [39]. As an example, diversified top-3 shortest paths
consist of three paths where the path similarity of every pair of paths is smaller
than the threshold and there does not exist another set of three paths which
are mutually diversified and whose total distance is shorter. Considering
diversity avoids including top-3 shortest paths where they only differ slightly,
e.g., only one or two edges. This method makes sure that the candidate path
set is diversified because the set (i) considers multiple travel costs that a driver
may consider when making routing decisions; and (ii) includes paths that are
dissimilar with each other. These together represent a large feature space of
the underlying road network. In addition, the set is also compact since it only
includes a small number of top-k paths.

Next, we address the second challenge by proposing an end-to-end learn-
ing framework to learn feature representations of paths, which capture both
topological and spatial properties. Recall that the input is a path that is
represented as a sequence of vertices in a road network graph. To capture the
topology of the road network, we utilize unsupervised graph embedding [15]
to transform vertices into feature vectors by considering road network topol-
ogy. Since recurrent neural networks (RNNs) are good at modeling sequential
information and since a path is a sequence of vertices, we employ an RNN
to model the sequence of the feature vectors of the vertices in a path. So
far, the framework already considers the topology of the underlying road
network, but still lacks spatial properties, which are not captured by classic
graph embedding. To accommodate the spatial properties, we let the RNN
estimate multiple values, including a ranking score of the input path and also
the input path’s spatial properties, such as the length, the travel time, and the
fuel consumption of the path. This makes the framework a multi-task learning
framework where the main task is to estimate the ranking score, which is used
for the final ranking, and the auxiliary tasks enforce to update the feature
vectors of the vertices to also capture the spatial properties of the underlying
road network, which eventually also help improve the accuracy of the main
task.

The proposed learning framework is flexible where contextual information
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can be seamlessly integrated. For example, we propose a temporal graph to
model peak vs offpeak periods in different days and then departure times
can be converted into feature vectors that reflect temporal closeness. We show
how the temporal features can be integrated into the learning framework and
thus enable temporal ranking. Similarly, when incorporating feature vectors
representing drivers, we enable personalized ranking.

This paper presents the first data-driven, end-to-end solution to context-
aware ranking for paths in road networks. Specifically, we make four contri-
butions. First, we propose a method to generate a compact and diversified set
of training paths which enables effective and efficient learning. Second, we
propose a multi-task learning framework to enable spatial network embed-
ding that captures not only topological information but also spatial properties.
Third, we integrate contextual information embedding into the framework
to enable context-aware ranking. Fourth, we conduct extensive experiments
using a large real world trajectory set to offer insight into the design properties
of the proposed framework and to demonstrate that the framework is effective.
A preliminary four-page report on the study appeared elsewhere [57].

2 Related Work

We review related studies on (1) learning to rank in the context of information
retrieval, (2) graph representation learning, (3) machine learning techniques
for path recommendation, and (4) top-k path finding.

2.1 Learning to rank

Learning to rank plays an important role in ranking in the context of informa-
tion retrieval (IR), where the primary goal is to learn how to rank documents
or web pages w.r.t. queries, which are all represented as feature vectors.
Learning to rank methods in IR can be categorized into point-wise, pair-wise,
and list-wise methods. Point-wise methods estimate a ranking score for each
individual document. Then, the documents can be ranked based on the rank-
ing scores [35]. Pair-wise methods focus on, for a given pair of documents,
making a binary decision on which document is better, i.e., a relative order.
Here, although we do not know the ranking scores for individual documents,
we are still able to rank documents based on the estimated relative orders [27].
List-wise methods take into account a set of documents and estimate the
ranking for the documents [1].

Although learning to rank techniques have been applied widely and
successfully in IR, they only consider textual documents and queries and
cannot be applied for ranking paths in road networks, since both graph
topology and spatial properties, which are the two most important factors in
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road networks, are ignored. We follow the idea of the point-wise learning to
rank techniques in IR and propose PathRank to rank paths in road networks
while considering both graph topology and spatial properties.

2.2 Graph Representation Learning

Graph representation learning, a.k.a., graph embedding, aims to learn low-
dimensional feature vectors for vertices while preserving graph topology
structure such that the vertices with similar feature vectors share similar
structural properties [4, 15, 47, 49, 50]. We distinguish two categories of
methods: random walk based methods and deep learning based methods.

A representative method in the first category is DeepWalk [47]. DeepWalk
first samples sequences of vertices based on truncated random walks, where
the sampled vertex sequences capture the connections between vertices in the
graph. Then, skip-gram model [40] is used to learn low-dimensional feature
vectors based on the sampled vertex sequences. Node2vec [15] considers
higher order proximity between vertices by maximizing the probability of
occurrences of subsequent vertices in fixed length random walks. A key
difference from DeepWalk is that node2vec employs biased-random walks that
provide a trade-off between breadth-first and depth-first searches, and hence
achieves higher quality and more informative embedding than DeepWalk
does.

To overcome the weaknesses of random walk based methods, e.g., the
difficulty in determining the random walk length and the number of random
walks, deep learning based methods utilize the random surfing model to
capture contextual relatedness between each pair of vertices and preserves
them into low-dimensional feature vectors for vertices [4]. Deep learning
based methods are also able to take into account complex non-linear relations.
GraphGAN [50] is proposed to learn vertex representations by modeling the
connectivity behavior through an adversarial learning framework using a
minimax game. LINE [49] does not fall into the above two categories. Instead
of exploiting random walks to capture network structures, LINE [49] proposes
a model with a carefully designed objective function that preserves both the
first-order and second-order proximities.

However, all existing graph embedding methods consider non-spatial
networks such as social networks, citation networks, and biology networks.
They ignore spatial properties, e.g., distances and travel times, which are
crucial features in spatial networks such as road networks. In this paper, we
propose a multi-task learning framework to extend existing graph embedding
to incorporate important spatial properties. Experimental results show that the
graph embedding that considers spatial-properties gives the best performance
when ranking paths in road networks.

93



Paper B.

2.3 Machine Learning on Spatio-Temporal Data

Machine learning has been applied to spatio-temporal data such as trajectories
to improve path recommendation [19, 20, 25, 55, 56]. Personalized routing [56]
and context-aware routing [19, 20] aim to identify a single, optimal path for
a specific driver or under a specific context. Although such studies do not
provide ranking functions directly, we derive a personalized ranking approach
from [56] and compare with PathRank in Section 6.4. Skyline routing returns
a set of non-dominated paths, which are considered to be incomparable to
each other and thus no ranking is provided [45, 55]. Additional attempts have
been made for estimating accurate travel time or fuel consumption distribu-
tions [23, 26, 44, 44, 46, 53, 54], which are also different from ranking paths.
RoadRank [3] computes influence scores for all road segments, i.e., edges, in
a road network and then ranks the edges according to the influence scores.
In contrast, our paper proposes PathRank to rank paths, not edges. Multitask
learning is applied to model different drivers’ driving behavior [31] such that
trajectories from a same driver can be clustered together. However, it cannot
be used directly for ranking paths. In addition, one paper also considers tra-
jectory clustering [52], which is an unsupervised learning problem. It cannot
be used for solving the path ranking problem, which is a supervised learning
problem.

Some traffic time series prediction methods also consider graph operations,
e.g., graph convolution and graph attention, in RNNs [9, 10, 24, 37, 43], but the
problem settings are different and their solutions cannot be used for ranking
paths. In such models, the input to an RNN unit is a whole road network
graph and the RNN units capture temporal dependency. In contrast, the input
to our RNN unit is a vertex in a road network graph and the RNN units
capture the spatial dependency along a path.

2.4 Top-k Queries on Road Networks

A wide variety of top-k queries on road networks exist [28, 38, 39, 41]. Top-k
path selection algorithms often use simple ranking functions to rank paths [39,
58]. For example, top-k fastest path finding algorithms rank paths according
to the paths’ travel times. In the experiments, we compare PathRank with
such baseline ranking functions used in top-k path finding algorithms. Some
other top-k algorithms consider different problem settings. For example,
top-k optimal sequenced paths aim at finding the top-k shortest paths that
visit a set of points of interest (POIs) such as a post office, a bank, and a
grocery store [38]. Another study considers ranking a set of POIs in a road
network [41], which cannot be used for ranking paths. Probabilistic top-k
shortest path queries [2, 28] rank paths w.r.t. the probability of arriving within
a time budget, which is provided by end users. Our problem dose not require
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end users to provide such time budgets.

3 Preliminaries

3.1 Basic Concepts

A road network is modeled as a weighted, directed graph G = (V, E, D, T, F).
Vertex set V represents road intersections and road ends; edge set E ⊂ V×V

represents road segments. Functions D, T, and F maintain the travel costs of
the edges in graph G. Specifically, function D : E→ R+ maps each edge to
its length. Functions T and F have similar signatures and maps edges to their
travel times and fuel consumption, respectively.

A path P = (v1, v2, v3, . . . , vX) is a sequence of X vertices where X > 1 and
each two adjacent vertices must be connected by an edge in E. We use P.s
and P.d to denote the source and the destination of path P.

A trajectory T = (p1, p2, p3, . . . , pY) is a sequence of GPS records pertaining
to a trip, where each GPS record pi = (location, time) represents the location
of a vehicle at a particular timestamp. The GPS records are ordered according
to their corresponding timestamps, where pi.time < pj.time if 1 ≤ i < j ≤ Y.

Map matching [42] is able to map a GPS record to a specific location on an
edge in the underlying road network, thus aligning a trajectory T with a path
in the underlying road network, denoted as T .P. We call such paths trajectory
paths. In addition, a trajectory T is also associated with a driver identifier,
denoted as T .driver, indicating who made the trajectory. From trajectory T,
we know that driver T .driver used path T.P at time T.p1.time. Thus, path
T.P is considered as a ground truth path under the contexts, i.e., for driver
T .driver at time T .p1.time.

Path Similarities: Multiple similarity functions [14, 19, 39, 56] are available to
calculate the similarity between two paths, where the most popular functions
belong to the Jaccard similarity function family, in particular, the weighted
Jaccard similarity [19, 56]. In this paper, we use the weighted Jaccard Similarity
(see Equation B.1) to evaluate the similarity between two paths.

sim (P1, P2) =
∑e∈P1∩P2

G.D(e)
∑e∈P1∪P2

G.D(e)
(B.1)

Here, we use P1 ∩ P2 and P1 ∪ P2 to represent two edge sets: edge set P1 ∩ P2
consists of the edges that appear in both P1 and P2; and edge set P1 ∪ P2
consists of the edges that appear in either P1 or P2. Recall that function G.D(e)
returns the length of edge e. Then, the intuition of the weighted Jaccard
similarity is two-fold: first, the more edges the two paths share, the more
similar the two paths are; second, the longer the shared edges are, the more
similar the two paths are. Note that the proposed PathRank is a generic

95



Paper B.

path ranking framework, which is able to easily incorporate other similarity
functions.

Ranking scores: Given a trajectory path P and another path P′ that also
connects P.s and P.d, we use the similarity between the two paths sim(P, P′)
to represent the ranking score of P′. Since we consider trajectory paths as
the ground truth path under the contexts, the more similar P′ is w.r.t. P,
the higher similarity score P′ should have and thus should rank higher. The
trajectory path P itself always has a ranking score of 1 and thus ranks the
highest among all paths connecting P.s and P.d.

3.2 Problem Definition

Given a set of N candidate paths P that connect the same source and desti-
nation and optional contexts such as a departure time and a driver identifier,
we aim at (1) estimating a ranking score sim(P, P′i ) for each candidate path
P′i ∈ P; and (2) providing a ranked list of the candidate paths ⟨P′1, P′2, . . . , P′N⟩,
such that sim(P, P′i ) ≥ sim(P, P′j ) when 1 ≤ i < j ≤ N.

3.3 PathRank Overview

Fig. B.1 shows an overview of the proposed PathRank. We distinguish a
training phase and a testing phase. The training phase employ historical
trajectories to train PathRank, and we use the trained PathRank in the testing
phase.

Trajectory Paths
Source, Destination,

and Contexts

Training Data Enrichment Advanced Routing

( ) , sim ,P P P  Candidate Paths

Spatial Network 

Embedding

Recurrent Neural Network 

Candidate Paths with 

Estimated Ranking Scores

P
ath

R
a
n
k

Context 

Embedding

Figure B.1: Solution Overview.
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4. Training Data Enrichment

We proceed to elaborate the training phase. Given a set of historical trajec-
tory, we first map match them to obtain their corresponding trajectory paths.
The trajectory paths are fed into the Training Data Enrichment module where an
enriched training data set is generated. Specifically, for each trajectory path P,
the training data enrichment module generates a compact and diversified set
PS of candidate paths such that each candidate path P′ ∈ PS also connects
the same source and destination of the trajectory path P. In addition, for
each path P′ ∈ PS , the module computes a similarity score sim(P, P′) as
the ground truth ranking score of P′. Thus, the output of the training data
enrichment module is a set of “candidate path” and “ranking score” pairs,
denoted as {P′, sim(P, P′)}, where the ranking scores are labels. This set is
used as the input for the PathRank.

4 Training Data Enrichment

We proceed to elaborate how to generate a compact and diversified set of
training paths for a trajectory path.

4.1 Intuitions

Ranking paths is similar to ranking products in online shops. If a user clicks a
specific product, it provides evidence that the user is interested in the product
than other similar products. Similarly, a trajectory path P from a source s to
destination d at time t also provides strong evidence that a driver prefers path
P than other paths that connect s to d at time t. The main difference is that,
in online shops, the other similar products, i.e., competitor products, can be
obtained explicitly, e.g., those products that are shown to the user in the same
web page but are not clicked by the user. Based on the positive and negative
training data, i.e., the products that are clicked and not clicked by the user,
effective learning mechanism, e.g., learning to rank [5, 29], is available to learn
an appropriate ranking function. However, in our setting, other candidate
paths are often unknown and implicit because we do not know when the
driver made the decision to take path P, what other paths were in driver’s
mind. Thus, the main target of the training data enrichment module is to
generate a set of paths PS that include the other paths that the driver has
considered. We call PS competitive path set.

A naive way to generate the competitive path set is to simply include all
paths from s to d. This is infeasible to use in real world settings since the
competitive path set may contain a huge number of paths in a city-level road
network graph, which in turn makes the training prohibitively inefficient.
Thus, we aim to identify a compact competitive path set, where only a small
number of paths, e.g., less than 10 paths, are included. However, we cannot
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Figure B.2: Similarity Spreads of Different Strategies.

just randomly choose a small number of paths. We need to carefully choose
such paths to resemble “the unclicked products” in online shopping.

4.2 Top-k Shortest Paths

The first strategy is to employ a classic top-k shortest path algorithm, e.g.,
Yen’s algorithm [58], to include the top-k shortest paths from s to d into the
competitive path set PS . This provides us a compact set. In addition, this
strategy is simple and efficient since a wide variety of efficient algorithms are
available to generate top-k shortest paths in the literature [21, 58]. However, a
serious issue of this strategy is that the top-k shortest paths are often highly
similar. For example, the top-2 shortest paths may only differ with one or two
edges. Thus, their similarities w.r.t. the ground truth, trajectory path P, are
also similar, which adversely affect the effectiveness of the subsequent ranking
score regression.

For example, we randomly choose four trajectory paths with different
sources and destinations. For each trajectory path, we identify its origin
and destination. Then, we use the origin and destination to generate top-9
shortest paths. Then, we compute the competitive paths’ similarities w.r.t.
the trajectory path. Figure B.2a shows the box plots of the similarities per
trajectory path. We observe that the similarities often only spread over a very
small range. For example, for the first trajectory path P1, its corresponding
top-9 shortest paths have similarities spreading from 0.65 to 0.75.

If the similarities of competitive paths only spread over a small range,
they only provide training instances for estimating ranking scores in the
small range, which may make the trained model unable to make accurate
estimations for ranking scores outside the small range. Thus, an ideal strategy
should be providing a set of training paths whose similarities cover a large
range. In other words, we aim at getting a diversified competitive path set to
ensure effectiveness. To this end, we propose the second strategy using the
diversified top-k shortest paths [39].
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4.3 Diversified Top-k Shortest Paths

Diversified top-k shortest paths finding aims at identifying top-k shortest
paths such that the paths are mutually dissimilar, or diverse, with each other.
First, we always include the shortest path into the diversified top-k shortest
path set, say DkPS. Next, we iteratively check the next shortest path Pi until
we have included k paths in DkPS or we have checked all paths connecting the
source and destination. When checking the next shortest path Pi, we include
Pi into DkPS if the similarity between Pi and each existing path in DkPS is
smaller than a threshold δ. This means that Pi is sufficiently dissimilar with
the paths in DkPS, thus making sure that DkPS is a diversified top-k shortest
path set. The smaller the threshold δ is, the more diverse the paths in DkPS
are. However, if the threshold δ is too small, it may happen that less than k
diverse shortest paths or even only the shortest path can be included in DkPS.

Figure B.2b shows the similarities of the same four trajectory paths when
using diversified top-9 shortest paths with threshold δ = 0.8. We observe that
the similarities spread over larger ranges compared to Figure B.2a when using
classic top-k shortest paths.

4.4 Considering Multiple Travel Costs

Recent studies on personalized routing [11, 19, 56] suggest that a driver may
consider different travel costs, e.g., travel time, distance, and fuel consumption,
when making routing decisions. This motivates us to consider multiple travel
costs, but not only distance, when generating competitive path sets. The first
option to do so is to use Skyline routing [55], which is able to identify a set of
pareto-optimal paths, a.k.a., Skyline paths, when considering multiple travel
costs. However, Skyline routing also suffers the high similarity problem that
the classic top-k shortest paths have—it often happens that the skyline paths
are mutually similar, which may adversely affect the training effectiveness.

We propose a simple yet effective approach. We run the diversified top-k
shortest paths x times where each time we consider a specific travel cost. Then,
we use the union of the diverse paths as the final competitive path set PS. For
example, when considering three travel costs, i.e., distances, travel times, and
fuel consumption, we set x = 3 and identify the diversified top-k shortest,
fastest, and most fuel efficient paths, respectively. Then, the union of the
diversified top-k shortest, fastest, and most fuel efficient paths is used as the
final competitive path set PS.

Since we run the diversified top-k shortest path finding multiple times for
different travel costs, we can use a small k for each run. For example, when
we set k = 3 and consider three travel costs, this makes PS also consist of up
to 9 paths including the top-3 shortest, fastest, and most fuel efficient paths.
Figure B.2c shows the similarities of the same four trajectory paths when using
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the multi-cost diversified paths that include the top-3 shortest, fastest, and
most fuel efficient paths. The similarities in Figure B.2c spread over larger
ranges and the ranges are closer to 1. This is preferred since it helps us to
distinguish the rankings of “good enough” candidate paths.

To summarize, we use multi-cost, diversified top-k least-cost paths as
the compact competitive path set PS for each trajectory path P. We use
paths in PS and trajectory path P together as the training data, denoted as
{(P′i , simi)}. Here, path P′i ∈ PS∪ {P} is associated with a ranking score label
simi = sim(P′i , P). If P′i is a trajectory path, its ranking score simi is 1, which
serves as a positive training data. Otherwise, the ranking score is smaller
than 1, which serves as a negative training data. After identifying competitive
path sets for all trajectory paths, we use {(P′i , simi)} as the training data for
PathRank. If we do not enrich training data and only use trajectory paths for
training, then they all have ranking score of 1, making it impossible to rank
different paths.

5 Ranking Framework

We propose an end-to-end deep learning framework to estimate similarity
scores for paths. We first propose a basic framework that consists of a spatial
network embedding network and a recurrent neural network. Next, we extend
the basic framework with the help of contextual embedding by considering
two contexts, i.e., departure time and driver identifiers.

5.1 Basic Framework

Recall that the input for PathRank is a path, i.e., competitive path P′i , and
the label of the input is its ranking score, i.e., similarity, simi. To solve the
ranking score regression problem, a prerequisite is to represent the input path
P′i into an appropriate feature space. To this end, we propose to use a vertex
embedding network to convert each vertex in the input path to a feature
vector. Since a path is a sequence of vertices, after vertex embedding, the path
becomes a sequence of feature vectors. Next, since recurrent neural networks
(RNNs) are capable of capturing dependency for sequential data, we employ
an RNN to model the sequence of feature vectors. The RNN finally outputs an
estimated ranking score, which is compared against the ground truth ranking
score simi. This results in the basic framework of PathRank, which consists of
two neural networks—a vertex embedding network and a recurrent neural
network (RNN), as shown in Figure B.3.
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Figure B.3: Basic Framework of PathRank.

Vertex Embedding

We represent a vertex vi in road network graph G as a one-hot vector qi ∈ RN ,
where N represents the number of vertices in G, i.e., N = |G.V|. Specifically,
the i-th vertex vi in graph G is represented as a vector qi where the i-th bit is
1 and the other N − 1 bits are 0. Vertex embedding employs an embedding
matrix B ∈ RM×N to transfer a vertex’s one-hot vector qi into a new feature
vector xi = Bqi ∈ RM. The feature vector is often in a smaller space, where
M < N.

Given a competitive path P′i = ⟨v1, v2, . . . , vZ⟩, we apply the same embed-
ding matrix B to transfer each vertex to a feature vector. Thus, the competitive
path P is represented as a sequence of features ⟨x1, x2, . . . , xZ⟩, where xj = Bqj
and 1 ≤ j ≤ Z.

Next, we elaborate different means of obtaining embedding matrix B. An
naive method to obtain B is to simply initialize a random matrix, which is
then updated through back-propagation in the training phase. However, the
naive method does not consider the graph topology and spatial properties,
which hinders accuracy.
Capturing Graph Topology with Graph Embedding: Graph embedding, e.g.,
DeepWalk [47], node2vec [15], LINE [49], GraphGAN [50], aims at learning
low-dimensional, feature vectors of vertices in a graph by taking into account
the graph topology. A typical way to enable graph embedding is to mimic the
way of embedding words for natural languages [15, 47]. In particular, multiple
vertex sequences can be generated by using random walks, where random
walks can consider edge weights or ignore edge weights. Next, vertices are
considered as words and the generated vertex sequences are considered as
sentences, which enables the use of word embedding techniques to generate
embeddings for vertices. Since the vertex sequences are generated by applying
random walks on the graph, the obtained vertex embedding actually already
takes into account the graph topology. The output of graph embedding is an
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embedding matrix B that considers graph topology.
We propose two different strategies to incorporate graph embedding into

the framework. First, we simply apply an existing graph embedding method,
e.g., DeepWalk or node2vec, to obtain embedding matrix B that embeds a
one-hot representation of a vertex to a low dimensional feature vector. Then,
we use the feature vector as the input to the RNN. This means that PathRank
only includes an RNN module, whose inputs are sequences of feature vectors,
and the vertex embedding module only provides the inputs and are then
disconnected from PathRank.

Second, inspired by the well-known practice of unsupervised pre-training [13],
we use the embedding matrix obtained from an existing graph embedding
method to initialize the embedding matrix B in the vertex embedding module
in PathRank. This allows PathRank to update the embedding matrix B during
training such that it not only captures the graph topology but also better fits
the similarity regression.
Capturing Spatial Properties with Multi-Task Learning: Although many
vertex embedding algorithms exist, they are only able to capture graph topol-
ogy because they only focus on graphs representing, e.g., social networks and
citation network. In other words, they do not consider graphs representing
spatial networks such as road networks. However, in road network graphs,
many spatial attributes, in addition to topology, are also very important. For
example, distances and travel times between two vertices are crucial features
for road networks and also influence drivers’ path choices. To let the graph em-
bedding also maintain the spatial properties, we design a multi-task learning
framework using pre-trained graph embedding.

We first employ an existing graph embedding algorithm to initialize the
vertex embedding matrix B in the vertex embedding module of PathRank. This
pre-trained embedding matrix captures the graph topology. Next, we try to
update B such that it also captures relevant spatial properties during training.
To this end, we employ multi-task learning principles, where the main task is
to estimate similarity and the auxiliary tasks are to reconstruct travel costs of
competitive paths which help learning an appropriate embedding matrix B
that also considers spatial properties of the underlying road network.

RNN

After vertex embedding, a path is represented by a sequence of feature vectors
⟨x1, x2, . . . , xZ⟩. The feature sequence represents the flow of travel on path P′i .
As a recurrent neural network (RNN) is known to be effective for modeling
sequences, we fed the feature sequence ⟨x1, x2, . . . , xZ⟩ into an RNN. Specifi-
cally, we employ a bidirectional gated recurrent neural network (BD-GRU) [8]
to capture the sequential dependencies in both the direction and the opposite
direction of the travel flow on path P′i .
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We consider the direction of the travel flow first, i.e., from left to right.
A GRU unit learns sequential correlations by maintaining a hidden state
hj ∈ RQ at position j, which can be regard as an accumulated information of
the positions to the left of position j. Specifically, hj = GRU(xj, hj−1), where xj
is the input feature vector at position j and hj−1 is the hidden state at position
j− 1, i.e., the hidden state of the left position. More specifically, the GRU unit
is composed of the following computations.

First, the GRU unit employs a reset gate rj, shown in Equation B.2, to
decide how much information from the previous position should be forgotten.
Equation B.2 computes rj, which is a value between 0 and 1, meaning that the
reset gate may fully forget to fully remember. The GRU then uses a similar
gate called update gate to compute zj using Equation B.3. Both the reset and
update gates are contributed to control how much information from the left
hidden states should be considered in order to make the final similarity score
estimation accurate. More specifically, In Equation B.4, the GRU computes
an internal state h̃j that considers both inputs xj and hj−1. Here, the output
of the reset gate rj is used to control how much we want to consider the
output from the previous position hj−1. Finally, In Equation B.5, the GRU
uses the update gate zj to combine the internal state h̃j and the output from
the previous position hj−1, which produces the output state hj for the current
GRU unit at position j. By doing this, it is possible to remember and forget
left hidden states which are found to be relevant and irrelevant for the final
similarity score estimation.

rj = σ
(
Wrxj + Urhj−1

)
(B.2)

zj = σ
(
Wzxj + Uzhj−1

)
(B.3)

h̃j = ϕ
(
Whxj + Uh

(
rj ⊙ hj−1

))
(B.4)

hj = zj ⊙ hj +
(
1− zj

)
⊙ h̃j (B.5)

where σ is the logistic function, and ⊙ denotes Hadamard product and ϕ is
hyperbolic tangent function. xj and hj are the feature vector and hidden state
at position j, respectively. Wr, Wz, Wh, Ur, Uz and Uh are parameters to be
learned.

For the opposite direction of the travel flow, i.e., from right to left, we apply
another GRU to generate hidden state h′j = GRU′(xj, h′j+1). Here, the input
consists of the feature vector at position j and the hidden state at position
j + 1, i.e., the right hidden state.

The final hidden state Hj at position j is the concatenation of the hidden
states from both GRUs, i.e., Hj = hj ⊕ h′j where ⊕ indicates the concatenation
operation. We stack all outputs from the BD-GRU units into a long feature
vector F(P′i ) = ⟨H1 ⊕ H2 ⊕ . . . ⊕ HZ⟩ where ⊕ indicates the concatenation
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operation. Now, the competitive path P′i is converted to a feature vector F(P′i ).

Fully Connected Layer

For each competitive path P′i , we apply a fully connected layer with weight
vector WFC ∈ R|F(P′i )|×X to produce a vector of X values, including the esti-
mated similarity score ˆsimi and a number of spatial properties, such as travel
time, distance, and fuel consumption.

Loss Function

To enable the multi-task learning framework, in the final fully connected layer,
PathRank not only estimates a similarity score but also reconstruct the spatial
properties of the corresponding competitive path P′i , such as the distance,
travel time, and fuel consumption of P′i . The loss function for the multi-task
learning framework is defined in Equation B.6.

L(W) =
1
|n| [(1− α) ·

n

∑
i=1

( ˆsimi − simi
)2

+ α ·
n

∑
i=1

m

∑
k=1

(
ŷ(k)i − y(k)i

)2
] + λ∥W∥2

2

(B.6)

The first term of the loss function measures the discrepancy between
the estimated similarity ˆsimi and the ground truth similarity simi. We use
the average of square error to measure the discrepancy, where n is the total
number of competitive paths we used for training. The second term of the loss
function represents auxiliary tasks that consider the discrepancies between the
actual spatial properties vs. the estimated spatial properties. More specifically,
ŷ(k)i and y(k)i denote the estimated cost of the k-th auxiliary task and the
ground truth of the k-th auxiliary task, respectively. For example, when
considering distance, travel time, and fuel consumption, we set m to 3; and
ŷ(k)i and y(k)i represent the estimated and ground truth distance, travel time,
or fuel consumption of the i-th competitive path P′i . α is a hyper parameter
that controls the trade-off between main task and auxiliary tasks. Finally, the
loss function uses a L2 regularizer on all learnable parameters in the model,
including the embedding matrix B, multiple matrices used in BD-GRU, and
the matrix in the final fully connected layer WFC.

5.2 Advanced Framework

Path ranking is often context dependent. For example, during peak vs off-peak
hours, drivers may consider different paths as the best paths. To accommodate
such contexts, we design an advanced framework to extend the basic frame-
work with the help of contextual embedding by considering a departure time
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Figure B.4: Advanced PathRank Overview.

t and a driver ID k. The advanced PathRank framework is shown in Figure B.4.
We proceed to describe the embedding of various contexts such as departure
times and driver IDs. Departure time is an important context when drivers
make routing decisions as it often correlates with traffic conditions which
affect heavily drivers’ routing decisions. We aim at embedding departure time
into a meaningful feature space such that the ranking model is able to take
into account departure time.

We first partition a day into five intervals—a morning peak interval, an
afternoon peak interval, and three off-peak intervals. Various methods are
available to partition a day into peak and off-peak intervals [36, 55]. For
example, an example partition is shown at the top of Figure B.5.
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Figure B.5: Temporal Graph.

Next, we construct a temporal graph based on the intervals in different
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days in a week, as shown in Figure B.5. In the graph, each node represents
an interval in a specific day. If two nodes are supposed to have similar traffic,
we connect the two nodes by an edge. For each weekday, we assume that
the peak intervals have similar traffic situations, thus we connect the two
nodes representing the two peak intervals. Similarly, we connect the nodes
representing offpeak hours in the same weekday. We also connect the two
nodes which represent the same interval but on two adjacent weekdays, e.g.,
two nodes representing the morning peak on Wednesday and the morning
peak on Thursday. For each weekend, we connect all nodes in the weekend.
Between the two weekends, we connect the two nodes representing the same
interval.

Based on the temporal graph, we apply graph embedding to embed the
nodes in the temporal graph into feature vectors. Given a departure time
t, we first identify the node node(t) that t belongs to in the temporal graph
and then obtain its embedding F(t) = GraphEmbed(node(t)). Like the road
network embedding, we allow the learning framework to update the temporal
graph embedding to better fit the ranking score regression.

We use one-hot encoding to convert driver ID k into a multidimensional
feature vector F(k).

To incorporate the context features into the framework, we concatenate
the context features with the path feature. Specifically, assume that the
competitive path P′i corresponds to a trajectory path that is made by driver
k at departure time t, the final feature vector for the competitive path P′i is
F(t)⊕ F(k)⊕ F(P′i ). Then, similar to the basic framework, the feature vector
is fed into a fully connected layer to estimate similarity scores and different
spatial properties using the same loss function shown in Equation B.6.

6 Experiments

We conduct a comprehensive empirical study to investigate the effectiveness
of the proposed PathRank framework.

6.1 Experiments Setup

Road Network and Trajectories

We obtain the Danish road network from OpenStreetMap, which consists
of 667,950 vertices and 818,020 edges. We use a substantial GPS data set
occurred on the road network, which consists of 180 million GPS records for
a two-year period from 166 drivers. The sampling rate of the GPS data is 1
Hz (i.e., one GPS record per second) and each GPS record is associated with a
driver identifier. We split the GPS records into 22,612 trajectories representing
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(a) Training Set (b) Validation Set (c) Testing Set

Figure B.6: Cardinalities of the trajectory paths.

different trips. A well-known map matching method [42] is used to map match
the GPS trajectories such that for each trajectory, we obtain its corresponding
trajectory path.

Travel costs

We consider three travel costs: travel distance (DI), travel time (TT), and fuel
consumption (FC). The travel distances are computed based on the geomet-
ric information provided by OpenStreetMap. Travel times are obtained as
the difference between the times of the last and first GPS records of the tra-
jectories. We use the SIDRA-running model to compute fuel consumption
based on the speeds that are obtained from the available GPS records [17]. A
recent benchmark indicates that the SIDRA-running is appropriate for this
purpose [18].

Ground Truth Data

We split the trajectories into three sets—70% for training, 10% for validation,
and 20% for testing. The distributions of the cardinalities of the trajectory
paths in training, validation, and testing sets are shown in Figure B.6.

For each trajectory T, we obtain its source s, destination d, and the trajectory
path PT . Then, we employ seven different strategies to generate seven sets of
competitive paths according to the source-destination pairs (s, d).

1. Top-k shortest paths (TkDI);

2. Top-k fastest paths (TkTT);

3. Top-k most fuel efficient paths (TkFC);

4. Diversified top-k shortest paths (D-TkDI);

5. Diversified top-k fastest paths (D-TkTT);

6. Diversified top-k most fuel efficient paths (D-TkFC);
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7. Diversified, multi-cost top-k paths (D-TkM).

For each competitive path P, we employ weighted Jaccard similarity sim(P,
PT) as the ground truth ranking score of path P.

When training and validation, we use the competitive path set generated
by a specific training data generation strategy to train a PathRank model. Thus,
we are able to train seven different PathRank models using the same set of
training and validation trajectories, but seven different sets of competitive
paths.

When testing, to make the comparison among different PathRank models
fair, for each testing trajectory, we merge all competitive paths generated by
the 7 different strategies and randomly choose 10 paths from them. This
makes sure that (1) PathRank models that are trained on different training data
sets are tested against on the same set of competitive paths; (2) a PathRank
model that is trained on a specific strategy is tested against competitive paths
that are not generated from the same strategy.

PathRank Frameworks

We consider different variations of PathRank.

1. PR-B: the vertex embedding just employs a random initialized embed-
ding matrix B, which ignores the graph topology. We also let α = 0,
meaning that PR-B has a single task on estimate similarity scores, where
α is a parameter that controls the relative importance between the main
task and auxiliary tasks as shown in Equation B.6.

2. PR-A1: vertex embedding employs graph embedding that considers
graph topology, but the vertex embedding is static and is not updated
during training. Only the main task is considered, i.e., α = 0.

3. PR-A2: similar to PR-A1, graph embedding is used. In addition, the
vertex embedding is updated during training. Only the main task is
considered, i.e., α = 0.

4. PR-A2-Mx: Similar to PR-A2, graph embedding is used and the vertex
embedding is updated during training. In addition, multi-task learning
that considers spatial properties is used. We use PR-A2-Mx to indicate
a PathRank model that uses an objective function considering x spatial
properties, i.e., x auxiliary tasks.

5. PRC: the advanced framework PRC with contextual embedding and
multi-task learning.

For all frameworks that use graph embedding, i.e., PR-A1, PR-A2, PR-
A2-Mx and PRC, we choose node2vec [15] as the graph embedding method.
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Node2vec is a generic random walk based graph embedding method, which
outperforms alternative methods such as DeepWalk [47] and LINE [49]. When
new, better unsupervised graph embedding method becomes available, it can
be easily integrated into PathRank to replace node2vec.

Parameters

When generating diversified top-k paths, we consider two different similarity
thresholds δ—0.6 and 0.8. A smaller threshold enforces more diversified
paths. However, it is also more likely that we cannot identify k paths that
are significantly diversified paths, especially when k is large. Recall that the
vertex embedding utilizes a embedding matrix B ∈ RM×N to embed each
vertex into a M-dimensional feature vector, where N is the number of vertices.
We consider two settings of M, namely 64 and 128. For the multi-task learning
framework, we vary α from 0, 0.2, 0.4, 0.6, to 0.8 to study the effect on learning
additional spatial properties.

We summary different parameter settings in Table B.1, where the default
values are shown in bold.

Table B.1: Parameters of PathRank

Parameters Values
Similarity Threshold δ 0.6, 0.8
Vertex Embedding Feature Size M 64, 128
Multi-task Learning Parameter α 0, 0.2, 0.4, 0.6, 0.8

Evaluation Metrics

We evaluate the accuracy of the proposed PathRank framework based on two
categories of metrics. The first category includes metrics that measure how
accurate the estimated ranking scores w.r.t. the ground truth ranking scores.
This category includes Mean Absolute Error (MAE) and Mean Absolute
Relative Error (MARE). Smaller MAE and MARE values indicate higher
accuracy. Specifically, we have

MAE =
1
n

n

∑
i=1
|xi − x̂i| ; MARE =

∑n
i=1 |xi − x̂i|
∑n

i=1 |xi|
(B.7)

where xi and x̂i represent the ground truth ranking score and the estimated
ranking score, respectively; and n is the total number of estimations.

The second category includes Kendall rank correlation coefficient (denoted
by τ) and Spearman’s rank correlation coefficient (denoted by ρ), which mea-
sure the similarity, or consistency, between a ranking based on the estimated
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ranking scores and a ranking based on the ground truth ranking scores. Some-
times, although the estimated ranking scores deviate from the ground truth
ranking scores, the two rankings derived by both scores can be consistent. In
this case, we consider the estimated ranking scores also accurate, since we
eventually care the final rankings of the candidate paths but not the specific
ranking scores for individual candidate paths. Both τ and ρ are able to mea-
sure how consistent between the two rankings. The higher the values are, the
more consistent the two rankings are. If the two rankings are identical, both τ
and ρ values are 1. Specifically, we have

τ =
Ncon − Ndis
n(n− 1)/2

; ρ = 1−
6 ∑n

i=1 d2
i

n(n2 − 1)
(B.8)

Assume that we have a set of n = 3 candidate paths {P1, P2, P3}, the ground
truth ranking is ⟨P1, P2, P3⟩, and the estiamted ranking is ⟨P2, P3, P1⟩.

In τ, Ncon and Ndis represent the number of path pairs are consistent and
inconsistent in the two rankings. We have Ncon = 1 since in both ranking,
P2 appears before P3; and Ndis = 2 since P1 appears before P3 in the ground
truth ranking, but P3 appears before P1 in the estimated ranking. Similarly,
the orderings between P1 and P2 are also inconsistent in two rankings.

In ρ, di represents the rank difference on the i-th competitive path in both
rankings. Following the running example, we have d1 = 1− 3 = −2 because
path P1 has rank 1 and rank 3 in both rankings, respectively.

Baselines

Baseline Ranking Heuristics: We consider seven baseline ranking heuristics.
The first three baseline ranking heuristics consider a single cost, i.e., ranking
the candidate paths according to only distances (DI), travel times (TT), and
fuel consumption (FC). The three baseline ranking heuristics represent the
ranking part of top-k path selection algorithms. For example, DI represents
the ranking part of top-k shortest path selection.

Next, we consider four more baseline ranking heuristics that consider
multiple travel costs—ranking the candidate paths according to both distance
and travel times (DI+TT), both distance and fuel consumption (DI+FC), both
travel times and fuel consumption (TT+FC), and distance, travel times and
fuel consumption (DI+TT+FC). When considering more than one travel cost,
we consider each travel cost equally.

1. Distances (DI);

2. Travel times (TT);

3. Fuel consumption (FC);
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4. Distance and travel times (DI+TT);

5. Distance and fuel consumption (DI+FC);

6. Travel times and fuel consumption (TT+FC);

7. Distance, travel times and fuel consumption (DI+TT+FC).

Baseline Regression Methods: To justify the effectiveness of PathRank, we
consider six regression baselines.

1. Linear Regression (LR) [48];

2. Lasso Regression [51];

3. Support Vector Regression (SVR) [7];

4. Decision Tree Regression (DT) [30];

5. Decision Tree Regression with Adaboost (DTA) [34];

6. Long Short-Term Memory (LSTM) [22], we replace the bi-directional
GRU units by LSTM units.

Implementation Details

All algorithms are implemented in Tensorflow. Code is available at https://
github.com/Sean-Bin-Yang/Learning-to-Rank-Paths. We conduct experi-
ments on a computer node on the CLAAUDIA cloud (www.claaudia.aau.dk),
running Ubuntu 16.04.6 LTS, with one Intel(R) Xeon(R) CPU @2.50GHz and
one Tesla V100 GPU card.

6.2 Verifying the Design Choices of PathRank

Effects of Training Data Generation Strategies

We investigate how the different training data generation strategies affect the
accuracy of PathRank. We first consider PR-A1, where we only use graph
embedding method node2vec to initialize the vertex embedding matrix B and
do not update B during training.

Table B.2 shows the results, where we categorize the training data gener-
ation strategies into three categories based on top-k paths, diversified top-k
paths, and multi-cost, diversified top-k paths. For each category, the best
results are highlighted with underline. The best results over all categories is
also highlighted with bold. We also show results when the embedding feature
sizes are M = 64 and M = 128, respectively.
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The results show that (1) when using the diversified top-k paths for training,
we have higher accuracy (i.e., lower MAE and MARE and larger τ and ρ)
compared to when using top-k paths; (2) using multi-cost, diversified top-k
paths achieves better accuracy compared to single-cost, diversified top-k paths,
thus achieving the best results; (3) a larger embedding feature size M achieves
better results.

Table B.2: Training Data Generation Strategies, PR-A1

Strategies M MAE MARE τ ρ

TkDI
64 0.1433 0.2300 0.6638 0.7044

128 0.1168 0.1875 0.6913 0.7330

TkTT
64 0.1302 0.2090 0.6642 0.7046

128 0.1181 0.1896 0.6818 0.7208

TkFC
64 0.1208 0.1940 0.6692 0.7131

128 0.1257 0.2019 0.6699 0.7110

D-TkDI
64 0.1140 0.1830 0.6959 0.7346

128 0.0955 0.1533 0.7077 0.7492

D-TkTT
64 0.1050 0.1686 0.7124 0.7554

128 0.0974 0.1564 0.7271 0.7714

D-TkFC
64 0.1045 0.1678 0.7100 0.7544

128 0.0900 0.1445 0.7238 0.7685

D-TkM
64 0.1077 0.1729 0.7261 0.7679

128 0.0792 0.1271 0.7478 0.7876

Next, we consider PR-A2, where the graph embedding matrix B is also
updated during training to fit better the ranking score regression problem.
Table B.3 shows the results. The three observations from Table B.2 also hold
for Table B.3. In addition, PR-A2 achieves better accuracy than does PR-A1,
meaning that updating embedding matrix B is useful.

From the above experiments, the multi-cost, diversified top-k strategy
D-TkM is the most promising strategy. Thus, we only use D-TkM for the
remaining experiments.

Next, we investigate the effects on the similarity threshold δ used in the
diversified top-k path finding. Specifically, we consider two threshold values
0.6 and 0.8 and the results are shown in Table B.4. When a smaller threshold
is used, i.e., higher diversity in the top-k paths, the accuracy is improved.

Effects of Vertex Embedding

We investigate the effects of different vertex embedding strategies. We consider
PR-B where we just use a randomly initialized embedding matrix B, which
totally ignores graph topology. For PR-A1 and PR-A2 where we both use
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Table B.3: Training Data Generation Strategies, PR-A2

Strategies M MAE MARE τ ρ

TkDI
64 0.1163 0.1868 0.6835 0.7256

128 0.1130 0.1814 0.7082 0.7481

TkTT
64 0.1218 0.1956 0.6858 0.7282

128 0.1161 0.1864 0.7026 0.7446

TkFC
64 0.1216 0.1952 0.6911 0.7321

128 0.1082 0.1737 0.7070 0.7477

D-TkDI
64 0.0940 0.1509 0.7144 0.7532

128 0.0855 0.1373 0.7339 0.7731

D-TkTT
64 0.1010 0.1622 0.7283 0.7693

128 0.0997 0.1600 0.7169 0.7596

D-TkFC
64 0.0938 0.1506 0.7318 0.7743

128 0.0809 0.1299 0.7386 0.7811

D-TkM
64 0.0966 0.1551 0.7393 0.7771

128 0.0725 0.1164 0.7528 0.7905

Table B.4: Effects of Similarity Threshold δ

δ M MAE MARE τ ρ

PR-A1
0.6

64 0.1006 0.1615 0.7321 0.7733
128 0.0770 0.1237 0.7496 0.7874

0.8
64 0.1077 0.1729 0.7261 0.7679
128 0.0792 0.1271 0.7478 0.7876

PR-A2
0.6

64 0.0817 0.1311 0.7404 0.7792
128 0.0710 0.1140 0.7751 0.8109

0.8
64 0.0966 0.1551 0.7393 0.7771
128 0.0725 0.1164 0.7528 0.7905

node2vec to embed vertices. Here, we use node2vec to embed both weighted
and unweighted graphs, respectively. When embedding weighted graphs, we
simply use distances as edge weights.

Based on the results in Table B.5, we observe the following. First, PR-B
gives the worst accuracy: the estimated ranking scores have the largest errors
in terms of both MAE and MARE; and the ranking based on estimated ranking
scores deviates the most from the ground truth ranking in terms of both τ
and ρ. This suggests that ignoring graph topology when embedding vertices
is not a good choice.

Second, when embedding vertices using node2vec, whether or not consid-
ering edge weights does not significantly change the accuracy. Thus, it is not
a significant design choice.
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Third, PR-A2 achieves the best accuracy in terms of both errors on es-
timated ranking scores and consistency between two rankings. Thus, this
suggests that considering graph topology improves accuracy and updating
the embedding matrix B according to the loss function on ranking scores
makes the embedding matrix fit better the ranking score regression problem.
This also suggests that, by including spatial properties in the loss function, it
has a potential to tune the embedding matrix B to capture spatial properties,
which in turn should improve ranking score regression. This is verified in the
following experiments on the multi-task framework.

Table B.5: Effects of Vertex Embedding Strategies

Embedding MAE MARE τ ρ

PR-B — 0.1159 0.1816 0.7233 0.7611

PR-A1
unweighted 0.0878 0.1410 0.7453 0.7852

weighted 0.0792 0.1271 0.7478 0.7876

PR-A2
unweighted 0.0734 0.1178 0.7640 0.8012

weighted 0.0725 0.1164 0.7528 0.7905

Effects of Multi-task Learning

In the following set of experiments, we study the effects of the proposed
multi-task learning framework. In particular, we investigate how much we
are able to improve when incorporating different spatial properties in the loss
function to let the vertex embedding also consider spatial properties, which
may potentially contribute to better ranking score regression.

We start by PR-A2-M1, which considers only one auxiliary task on recon-
structing distances. This means that PathRank not only estimate the ranking
score of a competitive path but also tries to reconstruct the distance of the
competitive paths. Table B.6 shows the results with varying α values. When
α = 0, the auxiliary task is ignored, which makes PR-A2-M1 into PR-A2, i.e.,
its corresponding model with only the main task on estimating ranking scores.
When α > 0, i.e., the auxiliary task on distances is considered while learning,
we observe that the estimated ranking scores are improved. In particular, the
setting with α = 0.6 gives the best results in terms both τ and ρ, indicating
that the ranking w.r.t. the estimated ranking scores is more consistent with
the ground truth ranking. When α = 0.8, it achieves the smallest MAE and
MARE. Both settings suggest that considering the additional auxiliary task on
reconstructing distance helps improve the final ranking.

PR-A2-M2 includes two auxiliary tasks on reconstructing both distances
and travel times, and PR-A2-M3 includes three auxiliary tasks on reconstruct-
ing distances, travel times, and fuel consumption. All the three multi-task
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models show that considering spatial properties improve the final ranking. In
particular, when considering all the three spatial properties give the best final
ranking in terms of τ and ρ, i.e., achieving the most consistent ranking w.r.t.
the ground truth ranking.

Table B.6: Effects of α, PR-A2-Mx

α MAE MARE τ ρ

PR-A2 0 0.0725 0.1164 0.7528 0.7905

PR-A2-M1

0.2 0.0756 0.1214 0.7713 0.8057
0.4 0.0704 0.1129 0.7765 0.8110
0.6 0.0693 0.1113 0.7783 0.8141
0.8 0.0680 0.1029 0.7712 0.8057

PR-A2-M2

0.2 0.0653 0.1048 0.7727 0.8089
0.4 0.0701 0.1125 0.7869 0.8235
0.6 0.0777 0.1247 0.7752 0.8100
0.8 0.0807 0.1296 0.7616 0.7973

PR-A2-M3

0.2 0.0724 0.1162 0.7732 0.8092
0.4 0.0740 0.1188 0.7711 0.8090
0.6 0.0662 0.1063 0.7923 0.8261
0.8 0.0695 0.1116 0.7842 0.8177

Effects of Contexts Embedding

We also investigate how much we improve when adding the contextual
information to the basic framework. To this end, we consider the advanced
framework PRC where we include the departure time feature F(t) and driver
feature F(k). Table B.7 shows that contextual information contributes to
improve the overall accuracy. This also suggests that the proposed temporal
graph embedding is effective. However, recall that the contextual information
is an optional input. In case that departure time and driver identifiers are not
provided as inputs, we can only use the basic framework.

Table B.7: Effects on Context Embeddings

MAE MARE τ ρ

PR-A2-M3 0.0662 0.1063 0.7923 0.8261
PRC 0.0611 0.0929 0.8178 0.8454

6.3 Comparison with Baselines
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Comparison with Baseline Ranking Heuristics

We consider the baseline ranking heuristics covered in Section 6.1. For each
heuristics, we obtain a ranking. Then, we compare the ranking with the
ground truth ranking to compute the corresponding τ and ρ.

Table B.8 shows the comparison, where we categorize the testing cases
based on the distances of the lengths of their corresponding trajectory paths
into three categories (0, 5], (5, 10], and (10, 15] km. The results show that the
ranking obtained by the proposed framework PRC is clearly the best in all
categories, suggesting that the proposed multitask framework outperforms
baseline heuristics.

Table B.8: Comparison with Baseline Ranking Heuristics

(0, 5] (5, 10] (10, 15]
τ/ρ τ/ρ τ/ρ

DI 0.7515/0.7806 0.6630/0.6860 0.3784/0.3370
TT 0.6776/0.7054 0.6712/0.7024 0.6053/0.6625
FC 0.6885/0.7192 0.3920/0.3986 0.0279/-0.0210

DI+TT 0.7146/0.7430 0.6681/0.6942 0.4919/0.4998
DI+FC 0.7200/0.7499 0.5275/0.5423 0.2032/0.1580
TT+FC 0.6831/0.7123 0.5316/0.5505 0.3166/0.3208

DI+TT+FC 0.7059/0.7351 0.5754/0.5957 0.3372/0.3262
PRC 0.8239/0.8521 0.8115/0.8382 0.6497/0.6620

Comparison with Regression Baselines

For the regression baseline methods covered in Section 6.1, we consider two
different types of features.

• Basic features (BF): each path is represented as a 3-dimensional vector
that represents its distance, travel time, and fuel consumption.

• Advanced features (AF): each path is represented as an N ×M matrix,
where N is the cardinality of the path. For each vertex in the path, we
obtain a M-dimensional vector using node2vec. This makes an N ×M
matrix.

Table B.9 shows the comparison. The results show that the ranking ob-
tained by the proposed framework PRC outperforms all baselines. This
suggests that simply using basic features and advanced features do not offer
meaningful representations for ranking paths. Our design on path represen-
tation that captures both road network topology and spatial properties is
effective.
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Table B.9: Comparison with Regression Baselines

Method MAE MARE τ ρ

BF

LR 0.2640 0.4012 0.6879 0.7150
Lasso 0.2876 0.4371 0.6245 0.6678
SVR 0.2390 0.3632 0.6543 0.6683
DT 0.2516 0.3824 0.6530 0.6777

DTA 0.2686 0.4082 0.6784 0.7135

AF

LR 0.3430 0.5213 0.0864 0.0854
Lasso 0.2955 0.4484 0.6260 0.6686
SVR 0.3369 0.5120 0.0857 0.0846
DT 0.4141 0.6284 0.0450 0.0693

DTA 0.4301 0.6527 0.0812 0.0395

Deep Learning
LSTM 0.2682 0.4076 0.4569 0.4619
PRC 0.0611 0.0929 0.8178 0.8454

6.4 Comparison with Driver Specific PathRank

We investigate if driver specific models are able to provide more accurate
personalized ranking. We select two drivers with the largest amount training
trajectories. Driver 1 has 2,068 trajectories and Driver 2 has 1,457 trajectories.
We train two driver-specific PRC models, PRC-Dr1 and PRC-Dr2, using only
the trajectories from the corresponding driver. In addition, we consider a
baseline BA from a personalized routing algorithm [56], which learns a 3-
dimensional vector to combine the distance, travel time, and fuel consumption
of a path to derive a personalized cost for the path. Then, the paths are
ranked according to their personalized costs. The vector is learned from
individual drivers’ trajectories and thus different drivers have different vectors.
BR-Dr1 and BR-Dr2 use trajectories from the corresponding drivers to learn
the vectors.

We test the models on two testing sets Dr1 and Dr2 which consist of
testing trajectories from Driver 1 and Driver 2, respectively. Table B.10 shows
that for the testing trajectories from Driver 1, PRC-Dr1 outperforms PRC-Dr2;
and for the testing trajectories from Driver 2, PRC-Dr2 outperforms PRC-Dr1.
This is not surprising and this indicates that different drivers do have different
preferences; and a ranking model trained on one driver may not provide
accurate ranking for a different driver. In addition, PRC-Dr1 outperforms
BA-Dr1 and PRC-Dr2 outperforms BA-Dr2, indicating that the proposed
PathRank outperforms the baseline. Note that BA ranks path according to the
personalized costs but does not estimate the ranking scores. Thus, BA has no
MAE and MARE values but only τ and ρ values.

The proposed PRC performs the best on both testing sets. This suggests
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that the proposed method is able to learn a better ranking when using much
more trajectories from different drivers. Together with the context embedding,
it enables accurate personalized ranking.

Table B.10: Comparison with Driver Specific PathRank

Testing
Data

Model MAE MARE τ ρ

Dr1

PRC-Dr1 0.1037 0.1532 0.8395 0.8531
PRC-Dr2 0.2557 0.3975 0.6544 0.6419
PR-A2-M3 0.0786 0.1162 0.8309 0.8513
PRC 0.0658 0.0972 0.8466 0.8710
BA-Dr1 — — 0.7298 0.7392

Dr2

PRC-Dr1 0.1476 0.2182 0.7741 0.7851
PRC-Dr2 0.1079 0.1677 0.8535 0.8750
PR-A2-M3 0.0851 0.1323 0.8571 0.8900
PRC 0.0625 0.0971 0.8668 0.8945
BA-Dr2 — — 0.7573 0.7800

Next, we report statistics on a case-by-case comparison, where Table B.11
shows the percentages of the cases where a driver specific PathRank outper-
forms PRC. Specifically, PRC-Dr1 outperforms PRC in ca. 22% of the testing
cases from Driver 1, and PRC-Dr2 outperforms PRC in ca. 19% of the testing
cases from Driver 2.

Table B.11: Percentage when PR-Dr Outperforms PRC

PR-Dr1 PR-Dr2
τ ρ τ ρ

22.70% 22.70% 19.31% 18.81%

The results from the above two tables suggest that user-specific PathRank
models still have a potential to achieve personalized ranking, which may
outperform the PathRank model trained on all trajectories, i.e., PRC. We plan
to explore attention mechanisms on driver feature vectors to achieve this in
future work.

6.5 Effects on Training Data Size

We conduct the next experiment to investigate the performance when varying
the sizes of training data. Specifically, we use 25%, 50%, 75%, 100% of the
total training data to train PRC, respectively. Based on the results shown in
Table B.12, more training data gives better performance.
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Table B.12: Effects of the Size of Training Data

Percentage MAE MARE τ ρ

25% 0.1071 0.1672 0.7574 0.7898
50% 0.0871 0.1323 0.7873 0.8179
75% 0.0892 0.1355 0.7928 0.8227

100% 0.0611 0.0929 0.8178 0.8454

6.6 Online Efficiency

Since ranking candidate paths is conducted online, we report the runtime.
Table B.13 reports the runtime for estimating a path when using different
PathRank models. It shows that the non-multi-task learning models, i.e., PR-B,
PR-A1, and PR-A2, have similar run time. Multi-task learning models take
longer time and the more auxiliary tasks are included in a model, the longer
time the model takes. PRC takes the longest time, on average 58.2 ms. Suppose
that an advanced routing algorithm or a commercial navigation system returns
10 candidate paths, PRC is able to return a ranking in 58.2 ms on average,
which is within a reasonable response time.

Table B.13: Average Testing Runtime Per Path (ms)

PR-B PR-A1 PR-A2 PR-A2-M1 PR-A2-M2 PR-A2-M3 PRC
11.4 11.3 11.5 22.8 34.4 45.1 58.2

6.7 Offline Training Efficiency

We study training efficiency by varying road network graph sizes and path
lengths. First, we consider three road network graphs with different sizes in
Table B.14. When the road network graph has 1 million vertices, each epoch
takes 24.7 seconds, which is still within a reasonable time. Note that the main
application scenario is intra-city, where multiple path candidates connecting
the same source and destination exist. When traveling inter-cities, there are
often very few path alternatives, e.g., using highways. Thus, a road network
graph with 1 million vertices should already be able to model a very large city.

Table B.14: Effects of Graph Size for Training Time

# of Vertices 50K 500K 1000K
Run time per epoch (s) 8.3 12.1 24.7

119



References

Next, Table B.15 shows the training time when the training paths are with
different numbers of vertices. For long paths with more vertices, the RNN
needs to go through more GRU units. Thus, it takes longer time.

Table B.15: Effects of Path Lengths, Training Time

# of vertices per path 60 120 180 240
Run time per epoch (s) 7.8 12.6 21.3 24.8

7 Conclusion and Future Work

We propose a context-aware, multitask learning framework to rank paths in
road networks. We propose an effective method to generate a compact and
diverse set of training paths to enable efficient and effective learning. Then, we
propose a multi-task learning framework to enable road network embedding
that takes into account spatial properties. A recurrent neural network, together
with the learned road network embedding, is employed to estimate the ranking
scores which eventually enable ranking paths. In addition, a temporal graph
is proposed to embed temporal contexts. Empirical studies conducted on
a large real world trajectory set demonstrate that the proposed framework
is effective and efficient for practical usage. As future work, it is of interest
to exploit different means, e.g., attention mechanisms on path lengths and
outlier trajectories removal [32, 33], to further improve the ranking quality of
PathRank. It is also of interest to explore parallel computing [59] to improve
efficiency.
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1. Introduction

Abstract

Path representations are critical in a variety of transportation applications, such
as estimating path ranking in path recommendation systems and estimating path
travel time in navigation systems. Existing studies often learn task-specific path
representations in a supervised manner, which require a large amount of labeled
training data and generalize poorly to other tasks. We propose an unsupervised
learning framework Path InfoMax (PIM) to learn generic path representations that
work for different downstream tasks. We first propose a curriculum negative sampling
method, for each input path, to generate a small amount of negative paths, by following
the principles of curriculum learning. Next, PIM employs mutual information
maximization to learn path representations from both a global and a local view. In the
global view, PIM distinguishes the representations of the input paths from those of the
negative paths. In the local view, PIM distinguishes the input path representations
from the representations of the nodes that appear only in the negative paths. This
enables the learned path representations encode both global and local information
at different scales. Extensive experiments on two downstream tasks, ranking score
estimation and travel time estimation, using two road network datasets suggest that
PIM significantly outperforms other unsupervised methods and is also able to be used
as a pre-training method to enhance supervised path representation learning.

1 Introduction

Path representations are crucial for various transportation applications, e.g.,
travel cost estimation [12, 18], routing [8, 19], path recommendation [7, 28],
and traffic analysis [3, 11]. Path representation learning (PRL) aims to obtain
distinguishable path representations for different paths in a transportation
network and hence facilitating various downstream applications. Existing
studies on PRL often learn path representations in a supervised manner,
which has two limitations. First, they require a large amount of labelled
training data. Second, the learned path representations are task-specific, e.g.,
working well for the task with labels, but generalize poorly to other tasks. The
two limitations restrict supervised path representation learning from broader
usage, thus calling for unsupervised path representation learning.

Although unsupervised graph representation learning methods exist, they
are not designed to capture representations of paths. Node representation
learning [6, 22] learns representations for individual nodes in a graph but
does not consider paths, i.e., sequences of nodes. Simply aggregating the node
representations of the nodes in a path fails to capture the sequential informa-
tion in paths. Whole graph representation learning [21] learns representations
for different graphs, while path representation learning considers different
paths from the same graph. In addition, unsupervised graph representation
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learning often utilize random negative sampling to enable training, which is
ineffective for path representation learning.

We propose an unsupervised path representation learning framework Path
InfoMax (PIM), including a curriculum negative sampling method and a
path representation learning method. First, we propose a curriculum negative
sampling strategy to generate a small number of negative paths for an input
path. Instead of randomly select other input paths as negative paths, the
strategy follows the principles of curriculum learning [1] to first generate
paths that are largely different from the input path and thus are easy to
be distinguished from the input path. Then, we gradually generate paths
that are increasingly similar to the input path and thus are more difficult
to be distinguished from the input path. The proposed curriculum negative
sampling facilitates effective learning of distinguishable path representations.

Next, we propose two different discriminators, a path-path discriminator and
a path-node discriminator, to jointly learn path representations. The path-path
discriminator captures the representation differences between an input path
and its negative paths, which we refer to as a global view. The path-node
discriminator captures the representation difference between an input path
and the representations of the nodes that only appear in its negative paths,
which we refer to as a local view. The two discriminators ensure the quality
of the learned path representations, because they are distinguishable from
not only the representations of negative paths from a global view but also
the representations of the nodes in negative paths from a local view. To the
best of our knowledge, PIM is the first work that studies unsupervised path
representation learning. We make the following contributions.

1. We propose a curriculum negative sampling strategy for path represen-
tation learning.

2. We propose the path-path and path-node discriminators to learn jointly
path representations from a global and a local view.

3. We conduct extensive experiments on two data sets with two down-
stream tasks to demonstrate the effectiveness of PIM.

2 Related Work

Path Representation Learning. Existing proposals on path representation
learning are all under the supervised learning setting. Such proposals often
require large amount of labeled training data and the learned path represen-
tations cannot be easily reused for other tasks. For example, Deepcas [15],
ProxEmbed [17], and PathRank [27, 28] employ different kinds of RNNs to
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combine node representations of the nodes in a path to obtain a path represen-
tation. Then, the training is performed in an end-to-end fashion by using the
labeled training data. Instead, we propose an unsupervised path representa-
tion learning framework PIM that does not require labeled training data and it
generalizes nicely to multiple downstream tasks (cf. Table C.1 in Section 5.2).
In addition, PIM can be used as a pre-training method to enhance existing
supervised path representation learning (cf. Figure D.7 in Section 5.2). An un-
supervised trajectory representation learning method transforms trajectories
into images and thus do not apply on paths in graphs [13].

Mutual Information Maximization on Graphs. Motivated by Deep Info-
Max [9], mutual information maximization has been applied for unsupervised
graph representation learning. Deep Graph Infomax (DGI) [24] and Graph
Mutual Information (GMI) [20] learn node representations and InfoGraph [21]
learns whole graph representations. Here, negative samples are often ran-
domly drawn from a different graph and the mutual information only con-
siders a local view, e.g., a node representation vs. a graph representation.
In PIM, we propose a curriculum negative sample strategy to generate neg-
ative paths with different overlapping nodes with the input paths from the
same graph, which facilitates training. Other advanced negative sampling
approaches exist [5, 25], but they are not proposed for graphs and do not
follow curriculum learning. In addition, we compute mutual information
on both a local view (i.e., the representations of input paths vs. the node
representations of negative paths) and a global view (i.e., the representations
of input paths vs. negative paths) and use them jointly to train the model,
which improves accuracy.

3 Preliminaries

Graph. We consider a directed graph G = (V, E), where V is the node set
and E is the edge set and we have |V| = N and |E| = M. Each node Vi ∈ V

is associated with a node feature vector vi ∈ RD.

Path. A path P = ⟨V1, V2, . . . , VZ⟩ is a sequence of nodes, where Z is the
path length and P.s = V1 and P.d = VZ are the source and destination of path
P, respectively. Each pair of adjacent nodes (Vk, Vk+1) is connected by an edge
in E, 1 ≤ k < Z. We use IV(P) ∈ RZ×D to represent the concatenation of the
node feature vectors of the nodes in path P. We call IV(Pi) the initial view of
path Pi.
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Problem Definition. Given a set of path P in graph G, Path Representation
Learning (PRL) aims at learning a path representation vector pi ∈ RD′ for each
path Pi ∈ P. Formally, PRL learns a path encoder PEψ that takes as input the
initial view IV(Pi) of path Pi, i.e., the node features of the nodes in path Pi,
and outputs its path representation vector pi.

PEψ : RZ×D → RD′ , (C.1)

where ψ indicates the learnable parameters for the path encoder, e.g., weights
in a neural network, Z is the length of path Pi, and D′ ≪ Z× D is an integer
indicating the dimension of the learned path representation vector pi.

The learned path representation vectors are supposed to support a variety
of downstream tasks, e.g., path ranking and path travel time estimation.

4 Path InfoMax

Figure C.1 offers an overview of the proposed framework Path InfoMax (PIM).

Figure C.1: PIM Overview. The Path Encoder takes as input the initial view IV(Pi) of input
path Pi and the initial view IV(P̄j) of negative path P̄j, and returns their representations pi and
p̄j, respectively. The Path-Path Discriminator takes as input a pair of path representations and
decides whether they are from the same path. A positive pair, e.g., is(pi , IV(Pi)), refers to two
different representation views of the same input path Pi . A negative pair, e.g., (pi , p̄j), refers to
the path representations of an input path vs. its negative path. The Path-Node Discriminator
takes as input a (input path representation, node feature vector) pair and decides whether the
node is from the input path. A positive pair, e.g., (pi , v2), represents the path representation of
Pi and a node feature vector of node v2 that only appears in Pi . A negative pair, e.g., (pi , v5),
represents the path representation of the input path and a node feature vector of node v5 that
only appears in the negative path.

PIM employs contrastive learning, specifically mutual information maxi-
mization, to train the path encoder to produce path representations without
requiring task-specific labels.

The path encoder takes as input the initial view of an input path and
outputs its path representation (cf. Sec. 4.1). Training the path encoder is
supported by a path-path discriminator and a path-node discriminator using
negative samples. To this end, we first introduce the curriculum negative
sampling strategy to generate negative paths (cf. Sec. 4.2). Then, the path-path
discriminator guides the path encoder to produce path representations such
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that the path representations of input paths can be distinguished from the
path representations of negative paths (cf. Sec. 4.3). In addition, the path-node
discriminator guides the path encoder to produce path representations such
that the path representations of input paths can be distinguished from the
node features of the nodes that only appear in the negative paths (cf. Sec. 4.4).
Finally, we discuss the final training objectives of PIM.

4.1 Path Encoder

Since a path consists of a sequence of nodes, we use a model that is able to
encode sequential data, e.g., a recurrent neural network [2, 10] or a Trans-
former [23] as the path encoder PEψ, where ψ represents the parameters to be
learned for the path encoder.

Given a path Pi = ⟨V1, V2, . . . , VZ⟩, we use its initial view IV(Pi) ∈ RZ×D

as the input to the path encoder, which returns its path representation vector
pi ∈ RD′ .

4.2 Curriculum Negative Sampling

Motivated by curriculum learning [1], we propose a curriculum negative
sampling method to generate negative samples. The idea behind curriculum
learning is that we start to train a model with easier samples first, and then
gradually increase the difficulty levels. In our setting, we first generate
negative paths that are different from the input path, e.g., paths without any
overlapping nodes with the input path. In this case, it can be easy to train a
path encoder that returns distinguishable representations of the input path
and the negative paths. Then, we gradually generate negative paths that
are increasingly similar to the input path, e.g., sharing the same source and
destination with the input path and with increasingly overlapping nodes. This
makes more difficult for the path encoder to generate distinguishable path
representations. Figure C.2 shows three negative paths P̄1, P̄2, and P̄3 with
increasingly difficulties for input path P1, along with the underlying road
network graph.

Specifically, for each input path P1, we first randomly select a path from
the path set P as the first negative path. Next, we use the source and the
destination of P1 as the input to call the top-k diversified shortest path algo-
rithm [16] to generate paths that share the same source and destination of P1.
This algorithm allows us to set different diversity thresholds, enabling us to
generate negative paths with different overlapping nodes with the input path.
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Figure C.2: Curriculum Negative Sampling.

4.3 Global Mutual Information Maximization

We proceed to the learning of the path encoder using the negative paths. We
first consider a global view of the path representations. We expect that the
learned path representations are distinguishable from the path representations
of the negative paths.

To this end, we first construct negative and positive pairs for training a
path-path discriminator DPP

ω1
. In a negative pair ⟨(pi, p̄j),−⟩, pi and p̄j represent

the path representations of input path Pi and a negative path P̄j, respec-
tively, which are both returned by the path encoder PEψ. In a positive pair
⟨(pi, IV(Pi),+⟩, pi is still the path representations of input path Pi returned by
the path encoder and IV(Pi) is the initial view of path Pi (cf. Section 4.1). Here,
pi and IV(Pi) represent two different views, i.e., a view from the path encoder
vs. a view from the node features, of the same input path Pi. Figure C.1 shows
examples of a negative and a positive pair.

Next, we use mutual information maximization to train the path-path
discriminator DPP

ω1
such that it is able to make a binary classification on the

negative vs. positive pairs. Specifically, we aim at maximizing the estimated
mutual information (MI) over the positive and negative pairs.

argmax
ψ,ω1

∑
Pi∈P

Iψ,ω1(pi, NPi),

where Iψ,ω1(·, ·) is the MI estimator modeled by the path-path discriminator
DPP

ω1
that is parameterized by parameters ω1 and the path encoder PEψ that is

parameterized by parameters ψ. Path Pi is an input path from P and pi is its
path representation returned by the path encoder. NPi includes the negative
paths of Pi. Following [9, 24], we use a noise-contrastive type objective with
a standard binary cross-entropy loss on the positive pairs and the negative
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pairs, as shown in Equation C.2.

Iψ,ω1 (pi, NPi) :=
1

1 + |NPi|
(EP

[
log DPP

ω1
(pi, IV(Pi))

]
+

∑
P̄j∈NPi

ENPi

[
log

(
1− DPP

ω1

(
pi, p̄j

))]
)

(C.2)

Here, we use EP and ENPi to denote expectations w.r.t. the empirical prob-
ability distribution of the input paths and the negative paths. Note that pi
and p̄j are the path representations returned by the path encoder PEψ. Thus,
maximizing the MI estimator enables the training of both the path encoder
(i.e., parameters ψ) and the path-path discriminator (i.e., parameters ω1).

4.4 Local Mutual Information Maximization

We proceed to consider a local view of the path representations. We expect that
the learned path representations are distinguishable from the node feature
vectors of the nodes from input vs. negative paths. This is particularly
important when distinguishing two paths with significant overlapping nodes.
We introduce a positive node set Xi that includes nodes appearing only in
the input path Pi but not the negative paths and a negative node set Yi
that includes nodes appearing only in the negative paths but not the input
path Pi. We then construct negative and positive pairs for training a path-
node discriminator DPN

ω2
. In a negative pair ⟨(pi, vj),−⟩, pi represents the

path representations of input path Pi, returned by the path encoder PEψ; vj
represents the node feature vector of a negative node Vj ∈ Yi. Similarly, in a
positive pair ⟨(pi, vk),+⟩, vk represents the node feature vector of a positive
node Vk ∈ Xi. Figure C.1 shows examples of two negative and two positive
such pairs for the path-node discriminator.

Similar to the path-path discriminator training, we also employ mutual
information maximization to train the path-node discriminator DPN

ω2
. In

particular, we have
argmax

ψ,ω2
∑

Pi∈P

Iψ,ω2(pi, Xi ∪Yi),

where Iψ,ω2 is the MI estimator modeled by the path-node discriminator DPN
ω2

that is parameterized by parameters ω2 and the path encoder PEψ that is
parameterized by parameters ψ. We use a noise-contrastive with a BCE loss,
similar to Equation C.2, to compute Iψ,ω2(pi, X∪Y) as follows.

Iψ,ω2 (pi, Xi ∪Yi) :=
1

|Xi ∪Yi|
( ∑

vk∈Xi

EXi

[
logDPN

ω2
(pi, vk)

]
+

∑
vj∈Yi

EYi

[
log

(
1− DPN

ω2

(
pi, vj

))]
)

(C.3)

133



Paper C.

4.5 Maximization of PIM

We combine both the global and local mutual information maximization when
training the final PIM model, see below.

argmax
ψ,ω1,ω2

∑
Pi∈P

(
Iψ,ω1(pi, NPi) + Iψ,ω2(pi, Xi ∪Yi)

)
.

5 Experiments

We conduct experiments to investigate the effectiveness of the proposed unsu-
pervised path representation learning framework PIM on two downstream
tasks using two data sets. In addition, we also demonstrate that PIM is able
to use as a pre-training method to enhance supervised path representation
learning.

5.1 Experimental Setup

Road Network and Paths

We obtain two road network graphs from OpenStreetMap. The first is from
Aalborg, Denmark, consisting of 8,893 nodes and 10,045 edges. The second
is from Harbin, China, consisting of 5,796 nodes and 8,498 edges. We also
obtain two substantial GPS trajectory data sets on the two road networks. We
consider 52,494 paths in the Aalborg network and 37,079 paths in the Harbin
network.

Downstream Tasks

Path Travel Time Estimation. Each path is associated with its travel time
(seconds) obtained from trajectories. We aim at building a regression model to
estimate the travel time of paths. We evaluate the accuracy of the estimations
by Mean Absolute Error (MAE), Mean Absolute Relative Error (MARE) and
Mean Absolute Percentage Error (MAPE).

Path Ranking. Given a set of paths, which often share the same source
and destination, each path is associated with a ranking score in range [0, 1].
The ranking scores are obtained with the help of trajectories by following
an existing study [27]. In path ranking, we aim at building a regression
model to estimate the ranking scores of the paths. To evaluate the accuracy of
the estimated ranking scores, we not only report the MAE of the estimated
ranking scores but also use Kendall rank correlation coefficient (denoted by
τ) and Spearman’s rank correlation coefficient (denoted by ρ) to measure the
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consistency between the ranking derived by the estimated ranking scores vs.
the ranking derived by the ground truth ranking scores. Smaller MAE and
higher τ and ρ values indicate higher accuracy.

Baselines

We compare PIM with seven baseline methods.

• Node2vec [6], Deep Graph InfoMax (DGI) [24], Graphical Mutual In-
formation Maximization (GMI) [20] are three unsupervised node rep-
resentation learning models, which output the node representation for
each node in a graph. We use the average of the node representations of
the nodes in a path to get the path representation of the path. We also
consider using concatenation instead of average, but resulting worse
accuracy.

• Memory Bank (MB) [26] is an unsupervised learning approach to obtain
representations from high-dimensional data. It uses a memory bank
to achieve the negative samples from current batch to train an encoder,
then gets the representation based on contrastive loss. We re-implement
MB with an LSTM encoder to better capture the sequential information
to get the path representations.

• InfoGraph [21] is an unsupervised whole graph representation learning
model. Here, we treat a path as a graph to learn the path representation.

• BERT [4] is an unsupervised language representation learning model.
To enable training, we (1) treat a path as a sentence and mask some
nodes in the path; and (2) split a path P into two sub-paths P1 and P2,
and consider (P1, P2) as a valid Q&A pair and (P2, P1) as an invalid Q&A
pair because the former keeps a meaningful order while the latter does
not.

• PathRank [27] is a supervised path representation learning model based
on GRU. PathRank takes into account the labels from a specific down-
stream task to obtain path representations.

Among these baselines, Node2vec, DGI, GMI, MB, InfoGraph, and BERT are
unsupervised learning approaches, which do not employ labels from specific
downstream tasks to produce path representations. In contrast, PathRank is
a supervised learning approach, where it employ labels from specific down-
stream tasks to produce path representations, meaning that the obtained path
representations are different when using labels from different downstream
tasks.
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Regression Model

For all unsupervised learning approaches, we first obtain a task-independent
path representation and then apply a regression model to solve different down-
stream tasks using task-specific labels. In the experiments, we choose Gaussian
Process Regressor (GPR) to make travel time and ranking score estimation. We
randomly choose 85%, 10%, and 5% of the paths as the training, validation,
and test sets.

Implementation Details

We use an LSTM as the path encoder. We use node2vec [6], an unsupervised
node representation learning method, to obtain a 128 dimensional node
feature vector for each node, i.e., D = 128. We set the path representation
size D′ = 128. In the curriculum negative sampling, for each input path, we
generate four negative paths—the first two paths are randomly selected from
P and the third and the fourth paths are two paths returned by the top-k
diversified shortest paths with different overlapping nodes with the input
path. We use Adam [14] for optimization with learning rate of 0.001. All
algorithms are implemented in Pytorch 1.7.1. We conduct experiments on
Ubuntu 18.04.5 LTS, with 40 Intel(R) Xeon(R) Gold 5215 CPUs @ 2.50GHz and
four Quadro RTX 8000 GPU cards. Code is available at https://github.com/
Sean-Bin-Yang/Path-InfoMax.git.

5.2 Experimental Results

Overall accuracy on both downstream tasks

Table C.1 shows the results on travel time and ranking score estimation. PIM
consistently outperforms all baselines on both tasks and on both data sets.
Node2vec, DGI, and GMI fail to capture the dependencies among node feature
vectors in paths. In contrast, PIM considers such dependencies by using the
LSTM based path encoder. In addition, the two discriminators further improve
the accuracy.

InfoGraph implicitly considers node feature vector sequences. However,
the discriminator in InfoGraph only considers the local view. In addition,
InfoGraph considers other paths in the same batch as negative samples, whereas
PIM employs curriculum negative sampling to generate negative samples.
PIM outperforms InfoGraph suggests that the proposed curriculum negative
sampling and jointly consider both local and global views are effective.

Although MB and BERT also capture dependencies among the node feature
vectors in paths, such methods only achieve relatively poor accuracy. This is
because MB often requires large amount of negative samples (e.g., more than
256), which is not feasible in our setting. Although the unsupervised training
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strategy in BERT works well for NLP, it does not fit our problem setting on
learning path representations.

Using PIM as a Pre-training Method

In this experiment, we consider PIM as a pre-training method for the super-
vised method PathRank. PathRank employs an GRU that takes as input node
feature vectors in a path and predicts travel time or ranking scores. To use
PIM as a pre-training method for PathRank, we use a GRU based path encoder.
Then, we first train PIM in an unsupervsied manner, and then use the learned
parameters in the GRU path encoder to initialize the GRU in PathRank. Finally,
we use the labelled training paths to fine tune PathRank.

Figure D.7 shows the travel time estimation performance of PathRank with
vs. without pre-training on both data sets. When not using pre-training, we
train PathRank using 10K labelled training paths. We observe that: (1) when
using pre-training, we are able to achieve the same accuracy of the non-pre-
training PathRank using less labelled training paths, e.g., ca. 7K for Aalborg
and 6K for Harbin. (2) when using 10K labelled training paths, the pre-training
PathRank achieves higher accuracy than the non-pre-training PathRank. We
observe similar results on the other task of path ranking, suggesting that PIM
can be used as a pre-training method to enhance supervised methods.

(a) Travel Time Estimation. (b) Path Ranking.

Figure C.3: Effects of Pre-training.

Impact of Local and Global MI Maximization

We investigate the impact of jointly using both path-path and path-node
discriminators to consider both the local and global MI maximization. We con-
sider two variants of PIM where (1) we only use the path-path discriminator
to maximize the global MI and (2) we only use the path-node discriminator to
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Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Global 237.92 0.51 85.88 0.34 0.22 0.25
Local 118.03 0.25 26.20 0.14 0.70 0.74
Joint 76.10 0.16 17.28 0.12 0.72 0.76

Table C.2: Effects of Local and Global MI Maximization, Aalborg.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Rand. 101.16 0.22 23.51 0.14 0.65 0.69
Top-k 100.87 0.22 22.31 0.13 0.72 0.75
Curr. 76.10 0.16 17.28 0.12 0.72 0.76

Table C.3: Effects of Curriculum Negative Sample Strategy, Aalborg.

maximize the local MI. Table C.2 shows that jointly maximizing both the local
and global MI achieves the best accuracy, which justifies our design choices of
using both the path-path and path-node discriminators.

Impact of Curriculum Negative Sample Strategy

To investigate the effectiveness of the proposed curriculum negative sample
strategy, we compare it with the following two strategies.

1. Random only: it randomly selects paths from P.

2. Top-k only: it employs the top-k diversified shortest path algorithms to
generate negative paths sharing the same origin and destination with
the input path with different overlapping nodes.

To make a fair comparison, we use each strategy to generate the same number
of negative paths, i.e., 4. Table C.3 shows that the top-k only strategy is better
than random only, suggesting that it is important to distinguish the represen-
tations of input paths vs. paths sharing the same origin and destination. The
proposed curriculum negative sampling strategy achieves the best accuracy,
suggesting that training PIM from easy to hard negative paths help further
improves accuracy.

Impact of Negative Path Numbers

We investigate the impact of using different numbers of negative paths. We
vary the number of negative paths K from 1, 2, 3, to 4. Recall that when using
curriculum negative sampling, the first two paths are from P and the last two
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Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

K=1 119.77 0.29 32.91 0.19 0.58 0.63
K=2 107.46 0.26 29.22 0.18 0.59 0.63
K=3 87.58 0.19 20.00 0.12 0.71 0.74
K=4 76.10 0.16 17.28 0.12 0.72 0.76

Table C.4: Effects of Negative Path Numbers, Aalborg.

Posi.
Nods.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

20% 114.31 0.25 24.92 0.20 0.65 0.70
40% 111.33 0.24 24.08 0.16 0.66 0.70
60% 104.57 0.23 22.94 0.14 0.68 0.71
80% 101.31 0.23 22.56 0.13 0.68 0.72
100% 76.10 0.16 17.28 0.12 0.72 0.76
Neg.
Nods.

Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

20% 130.90 0.29 28.21 0.19 0.60 0.65
40% 110.86 0.24 25.30 0.15 0.67 0.70
60% 105.70 0.23 24.01 0.13 0.67 0.71
80% 102.80 0.22 23.35 0.13 0.68 0.72
100% 76.10 0.16 17.28 0.12 0.72 0.76

Table C.5: Effects of Positive / Negative Nodes, Aalborg.

paths are from the top-k diversified shortest path finding algorithm. Table C.4
suggests that when using more negative paths, the accuracy improves. The
accuracy improvements from 2 to 3 is the largest, suggesting that the top-k
algorithm is very effective on generating high quality negative paths.

Impact of Positive/Negative Nodes in local MI

To study the impact of positive and negative nodes, we consider cases where
we only use 20%, 40%, 60%, 80% of positive or negative nodes. Table C.5
shows that the accuracy increases when using more less positive and negative
nodes.

6 Conclusion

We study unsupervised path representation learning without using task-
specific labels. We propose a novel contrastive learning framework Path
InfoMax (PIM), including a curriculum negative sampling strategy to generate
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a small number of negative paths and a training mechanism that jointly
learns distinguishable path representations from both a global and a local
view. Finally, we conduct experiments on two datasets with two downstream
tasks. Experimental results show that PIM outperforms other unsupervised
methods and, as a pre-training method, PIM is able to enhance supervised
path representation learning.
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1. Introduction

Abstract

In step with the digitalization of transportation, we are witnessing a growing range
of path-based smart-city applications, e.g., travel-time estimation and travel path
ranking. A temporal path (TP) that includes temporal information, e.g., departure
time, into the path is of fundamental to enable such applications. In this setting,
it is essential to learn generic temporal path representations (TPRs) that consider
spatial and temporal correlations simultaneously and that can be used in different
applications, i.e., downstream tasks. Existing methods fail to achieve the goal since
(i) supervised methods require large amounts of task-specific labels when training
and thus fail to generalize the obtained TPRs to other tasks; (ii) though unsupervised
methods can learn generic representations, they disregard the temporal aspect, leading
to sub-optimal results.

To contend with the limitations of existing solutions, we propose a Weakly-
Supervised Contrastive learning model. We first propose a temporal path encoder
that encodes both the spatial and temporal information of a temporal path into a
TPR. To train the encoder, we introduce weak labels that are easy and inexpensive
to obtain, and are relevant to different tasks, e.g., temporal labels indicating peak
vs. off-peak hour from departure times. Based on the weak labels, we construct
meaningful positive and negative temporal path samples by considering both spatial
and temporal information, which facilities training the encoder using contrastive
learning by pulling closer the positive samples’ representations while pushing away
the negative samples’ representations. To better guide the contrastive learning, we
propose a learning strategy based on Curriculum Learning such that the learning
performs from easy to hard training instances. Experimental studies involving three
downstream tasks, i.e., travel time estimation, path ranking, and path recommendation,
on three road networks offer strong evidence that the proposal is superior to state-of-
the-art unsupervised and supervised methods and that it can be used as a pre-training
approach to enhance supervised TPR learning.

1 Introduction

Road-network paths are central in many intelligent transportation system
applications, such as path recommendation [10, 11, 16], routing [29, 32, 33, 50],
travel cost estimation [15, 17, 22, 44], and traffic analysis [3, 5, 6, 21, 23, 41].
Path representation (PR) learning is the process of learning representations of
paths in the form of vectors with a fixed and relatively low dimensionality that
is independent of the actual lengths of path. Thus, such representations can
render downstream applications that operate on paths much more efficient
than what is possible when operating directly on traditional, variable-length
representations of paths. This illustrates the potential of path representation
learning for improving intelligent transportation applications. Indeed, initial
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(a) 8:00 a.m. (b) 10:00 a.m.

Figure D.1: Travel Time Estimation. Travel times of paths from Cassiopeia to Nytorv at (a) 8:00 a.m.
and (b) 10:00 a.m.

studies of path representation learning [27, 45] already exist.
In this study, we aim at learning generic temporal path representations

(TPRs), meaning that the representations can be utilized in variety of down-
stream tasks, and we do so without the need for task-specific labeled data.
Next the temporal aspect is essential in transportation applications. Consider
the travel-time estimation example from Google Maps in Figure D.1. Travel
from “Cassiopeia" to “Nytorv" takes longer at 8:00 a.m. than at 10:00 a.m., due
to the traffic congestion during morning peak hours. Further, it can be seen
that the path recommendation rankings are also different. It recommends
to avoid the highway at 8:00 a.m. due to the heavy congestion there, while
recommends the highway again at 10:00 a.m., when the traffic is clear. Learn-
ing path representations without considering the temporal aspect results in
poor accuracy, which in turn reduces the utility of such representation in
downstream tasks. However, it is non-trivial to learn generic TPRs using
either supervised or unsupervised learning.

Supervised approaches (Figure D.2(a)) learn TPRs based on task-specific
labels [26, 46]. We call these “strong” labels because their use targets specific
tasks. For example, for the task of travel-time prediction, the time and path
encoders first take as input a departure time t and a path p, respectively. Then,
their outputs are aggregated into a travel-time (TT) specific TPR, which is then
utilized to predict the travel time of path p when departure at time t. This
supervised learning approach has two drawbacks: (1) task specific TPRs do
not generalize across tasks. For example, TPRs learned from travel-time labels
may perform poorly in path ranking tasks. (2) supervised learning requires a
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Figure D.2: Supervised, Unsupervised, and Weakly-Supervised methods for learning Temporal
Path Representations (TPR): (a) Supervised learning relies on task-specific labels to obtain task-
specific path representations (PRs), and thus fails to generalize across tasks; (b) Unsupervised
learning produces generic path representations for use in different tasks, but fails to capture
temporal traffic aspects of paths; (c) Weakly supervised learning (Ours) uses weak labels to learn
generic TPRs.

large amount of labeled training data, which may be impossible or expensive
to obtain.

Unsupervised approaches do not rely on task specific labels and are
thus able to offer generic path representations. Existing unsupervised path
representation approaches rely heavily on unsupervised graph representation
learning, where the representations of the edges in a path are aggregated into
a path representation [36, 45]. Since existing graph representation learning
does not consider temporal information, the obtained path representations
also lacks the temporal aspect. However, as argued in the context of Figure D.1,
disregarding the temporal aspect adversely affects the quality of downstream
tasks.

In this paper, we target at a solution that is able to offer generic TPRs that
take into account spatial and temporal correlations simultaneously without
using task specific labels. To this end, we propose a temporal path encoder,
consisting of a temporal and a spatial embedding module, to encode a tem-
poral path into a TPR by considering both spatial and temporal information.
Specifically, we construct a temporal graph to learn temporal embeddings for
different departure times via graph representation learning; next, we embed
various traffic related information from pertinent road networks into spatial
embeddings. Finally, the temporal path encoder combines the temporal and
spatial embeddings to generate the TPR of the input temporal path.

To enable the training of the temporal path encoder such that the obtained
TPRs are generic and include temporal information, we introduce weak labels
on the temporal aspect. Such weak labels are easy to obtain and are relevant
to different tasks. Example weak labels include labels indicating peak vs. off-
peak periods, which only depend on departure times. This way, all temporal
paths are associated with weak labels according to their departure times.

Next, we construct meaningful positive and negative temporal path sam-
ples to enable contrastive learning such that no task-specific labels are required
and thus the learned TPRs are generic across downstream tasks. The positive
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samples are those with the same paths and same weak labels and all other
temporal paths, i.e., same paths with different weak labels, different paths
with both same and different weak labels, are negative samples. To learn
meaningful representations, we design an objective function to try to pull
together representations of positive samples, while separating representations
of negative samples. This enables generic TPRs while capturing the temporal
information. Unlike the supervised methods, we therefore do not require
strong, task-specific labeled data for our training. Instead, by deriving weak
labels for temporal paths we obtain more generic representations. And unlike
the unsupervised approaches, we consider the temporal aspect when we learn
path representations.

To further enhance the weakly-supervised contrastive (WSC) learning, we
integrate curriculum learning to improve the convergence rate and generaliza-
tion capabilities of the TPR learning. Specifically, we propose an curriculum
sample evaluation model that outputs difficulty scores for all training samples,
according to which the training samples can be sorted. To achieve this we
first split the training data set into non-overlapping meta-sets. Then, we train
separate weakly supervised contrastive (WSC) models on each meta-set, re-
spectively. Next, we calculate a TPR similarity score and treat it as a difficulty
score for each training sample, based on which we sort all the samples. Fi-
nally, we provide a curriculum selection algorithm to perform the curriculum
learning according to the difficulty scores.

To the best of our knowledge, this is the first solution that combines
advantages of supervised and unsupervised learning to learn generic temporal
path representations. In summary, we make the following contributions.

• We formulate the temporal path representation learning problem.

• We propose a weakly-supervised, contrastive model (basic framework)
to learn generic path representations that take temporal information into
account.

• We integrate curriculum learning into the weakly-supervised contrastive
model to further enhance the learned temporal path representations,
yields the advanced framework.

• We report on extensive experiments using three real-world data sets
on three downstream tasks to assess in detail the effectiveness of the
proposed framework.

2 Related Work
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2. Related Work

2.1 Path Representation Learning

Deep learning is already being used for representation learning, and different
studies have proposed a variety of methods to learn useful path representa-
tions. To the best of our knowledge, recurrent neural network (RNN) archi-
tectures, including long short-term memory (LSTM) [13] and gated recurrent
unit (GRU) networks [4], have been established firmly as the state-of-the-art
for path representation learning. Deepcas [25] leverages bi-directional GRUs
to sequentially process forward and backward node representations of paths,
representing a path by the concatenation of resulting forward and backward
hidden vectors. ProxEmbed [30] uses LSTMs to process node representations
and apply max-pooling on outputs across all time steps to generate a path
representation. SPAE [26] proposes self-attentive path embedding. Paths of
arbitrary length are first embedded into fixed-length vectors that are then
fed to LSTMs to generate path representations. PathRank [46] propose a
supervised path representation learning model that takes departure time as
additional context information. The above methods all perform end-to-end
training and rely on the availability of large amounts of labeled training data.
In addition, their path representations are task specific. Most recently, the
unsupervised path representation learning framework PIM [45] learns path
representations. However, it does not include temporal information. In con-
trast, we propose a temporal path representation learning framework based on
weakly-supervised contrastive loss that can learn path representations when
given different departure times.

2.2 Contrastive Learning

Recently, the most effective approaches for learning representations with
or without labeled data have been supervised or unsupervised contrastive
learning [12, 20, 34, 36, 38, 45], which have shown impressive performance
in computer vision and graph learning. As a form of metric learning [2],
contrastive approaches achieve representations in a discriminating manner
through contrasting positive data pairs against negative data pairs. In early
work, Hjelm et al. [12] proposed Deep InfoMax (DIM) for learning a generic
image representations by maximizing mutual information between local and
global features in an unsupervised manner. Inspired by DIM, Velickovic et
al. [38] proposed a similar approach, called Deep Graph Informax (DGI),
that learns graph-node representations in an unsupervised manner. Recently,
Sun et al. [36] proposed InfoGraph for graph representation learning and
evaluated the proposal in both unsupervised and semi-supervised settings.
Most Recently, Khosla et al. [20] extended the self-supervised batch con-
trastive method to a fully-supervised setting, making it possible to leverage
label information effectively. However, no previous studies have explored the
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direction of weakly supervised contrastive learning.

2.3 Curriculum Learning

Inspired by the human learning principle of starting by learning simple
tasks before proceeding to learn increasingly hard tasks, curriculum learn-
ing (CL) [1] uses nonuniform sampling of mini-batches according to the order
of sample difficulty. Due its great potential to improve sample efficiency
for different deep learning models, CL has attracted considerable interest
and has found application in different research domains, e.g., computer vi-
sion [18, 24, 40], and natural language processing (NLP) [35, 39, 43]. However,
none of these studies apply CL to path representation learning. PIM [45] is
the closet to our paper, in that it proposes a curriculum negative sampling
method to enhance the path representation learning. However, PIM focuses
on negative sampling generations, but not on training. Xu et al. [43] propose
two-staged curriculum learning for NLP, including difficulty evaluation and
curriculum arrangement. Inspired by Xu et al. [43], we propose a curricu-
lum learning framework that can evaluate the difficulty levels of data in a
training data set automatically, so that models can be trained on increasingly
difficult subsets of the training data set. The new framework features two
key novelties. (i) Difficulty score computation: In NLP settings, difficulty
scores, e.g., accuracy or F1 score, are computed based on strong labels in a
supervised setting. In contrast, our difficulty scores are computed based on
representation similarities, which do not rely on strong labels. (ii) How the
training data is split into metasets: In NLP settings, training data is often split
into metasets at random. In contrast, we split the training data based on the
lengths of paths. This facilitates distinguishing the difficulty scores of paths.

3 Preliminaries

We first cover important concepts and then present the problem statement.

3.1 Definitions

Road network. A road network is defined as a directed graph G = (V, E),
where V is a set of vertices vi that represent intersections and E ⊂ V×V is a
set of edges ei = (vj, vk) that represent edges. Figure D.3 shows an example
road network.

GPS Trajectory. A GPS trajectory traj = ⟨(li, ti)⟩
|traj|
i=1 of a moving object

is defined as a timestamped location sequence, where li represents the GPS
location at timestamp ti.
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Figure D.3: An Example Road Network

Path. A path = ⟨ei⟩
||
i=1 is a sequence of adjacent edges, where ei ∈ E is the

i-th edge in the path.
Temporal Path. A temporal path is given by tp = (, t), where tp. is a path

and tp.t is a departure time.
Downstream Task. A downstream task is a task that make estimations

based on temporal path representations. Specifically, we consider travel time
estimation, path ranking score estimation, and path recommendation.

Weak Labels. Weak labels are easy and inexpensive to obtain, which do
not dependent on specific tasks but are relevant to different tasks.

Example. An example of weak labels are labels indicating peak v.s. off-
peaks periods based on the departure time. For example, it can be Morning
peak (7 to 9 a.m., weekdays), Afternoon peak (4 to 7 p.m., weekdays), and
Off-peak (all other times). Such labels are easy and inexpensive to obtain,
compared to task-specific labels, e.g., labels indicating travel time or path
ranking for different paths. Meanwhile, such weak labels are also relevant
for three downstream tasks, because the travel time, path ranking, and path
recommendation of the same path during peak vs. off-peak periods often
differ significantly.

Temporal Path Representation. The temporal path representation TPRtp

of a temporal path tp is a vector in Rdh , where dh is the dimensionality of the
vector.

3.2 Problem Statement

Given a set of temporal paths TP = {tp1, tp2, . . . , tpn} where each temporal
path tpi is with a weak label yi, temporal path representation learning (TPRL)
aims at learning a temporal path representation TPRL(tpi) for each temporal
path tpi ∈ TP as formulated in Eq. D.1.

TPRLψ(tpi) : Rdtem ×RM×d → Rdh , (D.1)

where ψ represents the learnable parameters for the path encoder, M is the
total number of edges in the path, d, dtem, and dh are the feature dimensions
for an edge, a departure time embedding, and a resulted temporal path
representation, respectively.
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Figure D.4: Solution Overview

3.3 Solution Overview

Figure D.4 shows an overview of the proposed weakly-supervised contrastive
curriculum learning (WSCCL), which consists of three modules: 1) Temporal
path encoder, 2) Weakly-supervised contrastive learning, and 3) Curriculum
Learning. The details of those modules are provided in Sections 4, ??, and 6,
respectively.

4 Temporal Path Encoder

Figure D.5 gives an overview of the WSC base framework. We detail the
Temporal Path Encoder, which consists of a Spatial Embedding layer, a Tem-
poral Embedding layer, and an LSTM layer. Spatial embedding takes as
input a sequence of edges and outputs a sequence of spatial feature repre-
sentations. Temporal embedding takes temporal information as input and
converts input to a temporal feature vector. Next, we concatenate the spatial
and temporal vector representations and feed the resulting representation
to the LSTM model that extracts coupled spatio-temporal relationships and
outputs spatio-temporal edge representations. Finally, we aggregate these
edge representations to obtain the desired temporal path representations.

4.1 Temporal Embedding

Motivated by Yuan et al. [48], we construct a temporal graph G′ = (V′, E′),
where each node v′ ∈ V′ denotes a departure time slot and each edge e′ ∈ E′

denotes a connection between two time slots. We first split the 24 hours
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Figure D.5: Illustration of Basic Framework. Given a set of temporal paths in a minibatch, an
input temporal path is encoded into a feature map by the temporal path encoder. The global loss
framework takes a (query temporal path tpq, positive or negative temporal path) pair as input
and pulls together the TPRs of the query path and positive path, while pushing away the TPRs
of the query path and negative paths. The local loss takes as input a TPR of query path and a
spatio-temporal edge representation (STER) and brings a TPR of a query path with the positive
edge representations closer while pushing apart TPR of a query path with the negative edge
representations.

of a day into 5-minute time slots to get 288 time slots. Then, to capture
periodicities, we consider the 7 days of a week separately to get a total of
2016 nodes in the temporal graph, where each node represents a time slot
and a day of the week. Next, we use two one-hot vectors, ts ∈ R288 and
tw ∈ R7, to denote the initial representations for time slots and days of the
week, respectively. For example, the departure time 00:06 a.m. on Monday is
represented as ts = [0, 1, 0, · · · , 0] and tw = [1, 0, 0, 0, 0, 0, 0].

Therefore, the node representation temb
g of temporal graph G′ can be formu-

lated as the concatenation of the two representations: temb
g = [ts, tw] ∈ R288+7.

To consider the local similarities and weekly periodicities, we draw con-
nections between different nodes in the temporal graph. More specifically, we
connect adjacent time slots, indicating that neighboring time ranges should
be similar. Further, we connect the adjacent nodes during neighboring days,
indicating that time ranges during neighboring days should be similar. Finally,
we also connect the time slots between Sunday and Monday.

Next, we apply a graph representation model, specifically, node2vec [9], to
the temporal graph to further learn node representations in the graph. This is
expressed in Eq. D.2.

tall = Node2Vectg(temb
g ), (D.2)

where tall ∈ Rdtem is the finalized temporal representation.

4.2 Spatial Embedding

Recall that a path consists of a sequence of edges, each of which as a number
of spatial features, including, e.g., road types, number of lanes.
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Capture of Spatial Features The intuitive way to learn TPRs is to encode
the spatial features of all edges in a temporal path into TPRs. We consider
the following four types of spatial edge features: Road Type (RT): a categorical
value that includes primary, secondary, residential, etc. Number of Lanes (NoL):
a real value that represents the number of traffic lanes in the edge. One
Way (OW): a Boolean that indicates whether the edge is one way or not. Traffic
Signals (TS): a Boolean that indicates whether the edge has one or more traffic
signals on the edge or not.

Next, we represent these different categorical features as one-hot vectors,
which can be formulated as sone

RT ∈ Rnrt , sone
NoL ∈ Rnl , sone

OW ∈ Rno , sone
TS ∈ Rnts ,

where nrt, nl , no, nts represent the number of possible values in the four types
of features.

Afterward, we leverage embedding matrices to convert these sparse one-
hot vectors into dense vectors, which is formulated in Eq. D.3.

semb
RT = MT

RT × sone
RT , semb

NoL = MT
NoL × sone

NoL,

semb
OW = MT

OW × sone
OW , semb

TS = MT
TS × sone

TS , (D.3)

where MRT ∈ Rnrt×drt , MNoL ∈ Rnl×dl , MOW ∈ Rno×do , and MTS ∈ Rnts×dts ,
where drt, dl , do, and dts are feature dimensions for dense vectors of RT, NoL,
OW, and TS, respectively.

Finally, we concatenate all four dense features as final spatial feature
embeddings for edge si, which can be formulated as follows.

stype = [semb
RT , semb

NoL, semb
OW , semb

TS ], (D.4)

where [·, ·] denotes concatenation vectors.

Road Network Topology Since each edge has effects on its neighboring
edges, connected edges should have similar representations. Inspired by
graph embedding [9, 34, 38], which aims to learn node representations in
a graph by considering the graph topology. Again, we apply node2vec [9]
to learn graph representation of road network, which can be formulated
as nrn

vi = Node2Vecrn(none
vi ), where none

vi is one-hot vector of node vi and

nrn
vi ∈ R

dtop
2 is the finalized node representation in a road network. The

finalized edge representation of ek ∈ E can be formulated as follows.

srn
ek

= [nrn
vi

, nrn
vj
], (D.5)

where vi and vj are start and end nodes of edge ek.
Finally, the finalized topology feature with spatial feature of edge ek can

be rewritten as follows.
sall

ek
= [srn

ek
, stype], (D.6)

where sall
ek
∈ Rd is the finalized spatial embedding for ek, where d = drt + dl +

do + dts + dtop.
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4.3 LSTM Encoder

Given an input temporal path tp, we achieve a sequence of spatio-temporal
representations ⟨xe1 , xe2 , · · · xe⟩, where xei = [tall , sall

ei
], where tall is the tem-

poral embedding for tp.t. As recurrent neural networks (RNN) are known
to be effective at modelling sequences, we feed this spatio-temporal repre-
sentation into an RNN to further learn path representations. Specifically, we
employ an LSTM model [14] to capture the sequential dependencies by taking
each element of the spatio-temporal representations as input, which can be
formulated as follows.

p̂ = ⟨ p⃗e1 , p⃗e2 , · · · p⃗e⟩ = LSTM(⟨xe1 , xe2 , · · · xe⟩), (D.7)

where p⃗ej ∈ Rdh is the finalized spatio-temporal representation of edge ej.
LSTM(·) is the RNN model to capture the sequential dependencies, but it is
also possible to use more advanced sequential models, e.g., Transformer [37].

4.4 Aggregate Function

As shown in Figure D.5, the Aggregate function takes as input a sequence
of spatio-temporal edge feature vectors and returns a TPR. In particular, we
aggregate p̂ into a TPR via an aggregate function P(·) : Rn×dh 7−→ Rdh , where
n is the number of edges in the path. We use an average aggregate function
that takes the average of the edge representations in p̂ across edges.

h⃗p =
∑n

i=1 p⃗i

|p̂| ∈ Rdh , (D.8)

where h⃗p represents the temporal path representation. p⃗i is the latent repre-
sentation of edge i in the path.

5 Weakly-supervised Contrastive Learning

To ensure that we obtain generic TPRs that apply to different downstream
tasks, we employ contrastive learning to construct the learning objectives for
the whole framework. Here, we first detail positive and negative sample gen-
eration with weak labels. Then, we show how to construct weakly-supervised
contrastive global and local losses.

5.1 Generation of Positive and Negative Samples

Positive and negative samples play an essential role in contrastive learning.
Contrastive learning does not require strong labels and provides us with
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a good way of constructing the learning objectives for our model. In self-
supervised contrastive learning, positive samples are always derived from
the same object with different views, e.g., cropped parts of an object or
generated by different models. Negative samples are simply representations
that come from different objects. However, if some negative samples that
have properties that are similar to those of positive samples, self-supervised
contrastive learning faces difficulties because all negative samples are treated
equally.

Suppose we have a set of temporal paths, positive TPs are not only different
representations of the same temporal path, but they also include TPs that
traverse the same path with the same weak label. In contrast, negative TPs
belong to three categories: (1) same paths but different weak labels; (2)
different paths but the same weak labels; (3) different paths and different
weak labels. Therefore, we can generate multiple positive and negative TPs
for a query TP.

The block of MiniBatch Samples in Figure D.5 shows an example, with five
TPs, i.e., tpq, tp1, tp2, tp3, and tp4, and three weak labels, i.e, morning peak
(Mor. Peak), Afternoon peak (Aft. Peak) and Off-Peak. If we take tpq as the
query TP, tp1 is the corresponding positive sample since the two share the same
path (i.e., ⟨e1, e2, e3, e4⟩) and the same departure weak label (i.e., Mor. Peak),
although their exact departure times are different. Next, tp2, tp3, and tp4 are
negative samples, where tp2 has the same path but a different weak label, tp3
has a different path and a different weak label, and tp4 has a different path
but the same weak label.

5.2 Global Weakly-supervised Contrastive Loss

Given a batch of training samples with batch size B, self-supervised contrastive
loss can be formulated as in Eq. D.9.

Lself =
2B

∑
i=1
− log

exp
(
< Ψ

(
x′i
)

, Ψ
(

x′p
)
> /Ψ

(
x′k
)
> /τ̂

)
∑2B

k=1 1i ̸=k exp <
(
Ψ
(
x′i
)

, Ψ
(
x′k
)
> /τ̂

) , (D.9)

where exp(·) denotes the exponential operation, < ·, · > denotes the inner
product of two vectors, Ψ(·) ∈ Rdh represents the output from the encoder, τ̂
is a temperature parameter, x′p is an alternative view of object x′i which can be
generated by using data augmentation, e.g., rotate an image by 90 degree. x′k
denotes the negative samples from the batch, which is all samples from the
batch other than x′i , meanwhile 1i ̸=k is an indicator vector, where all elements
are 1s, except a 0 at the i-th position.

However, the self-supervised contrastive loss in Eq. D.9 is unable to take
into account differences among negative samples. Motivated by SupCon [20],
good generalization requires the ability to capture the similarity between
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samples in the same class and contrast them with samples in other classes. In
this paper, we propose instead a WSC loss that utilizes positive and negative
sample generation, as introduced in Section 5.1. As is shown in Figure D.5, for
each query temporal path tpq, we try to pull closer TPRs with positive tem-
poral path samples, which can be represented as TPRq →← TPR1, and push
away TPRs from negative temporal path samples, denoted by TPRq ←→ TPR2,
TPRq ←→ TPR3, and TPRq ←→ TPR4. This yields global WSC formulated in
Eq. D.10.

Lglobal = ∑
(tpi ,i)∈

Lglobal
(tpi ,i)

= ∑
(tpi ,i)∈

1
|tpi
|

∑
tpj∈tpi

log
exp

(
sim(TPRi, TPRj)

)
∑tpk∈tpi

exp (sim(TPRi, TPRk))
,

(D.10)

where sim(·) is cosine similarity function that quantifies the similarity between
two TPRs; = {(tpi, yi)}B

i=1 is a set of temporal paths in one training batch,

where yi is the departure weak label for tpi; tpi = {tpj}
|tpi |
j=1 is the positive

sample set for query tpi, where yi = yj and tpi.p = tpj.p; and tpi = \{tpi∪tpi
}

is the negative sample set for query tpi.

5.3 Local WSC Loss

In addition to the weakly-supervised learning across query temporal path
with global positive and negative temporal paths, we also consider local
differences between positive and negative temporal edge samples. These acts
as a strong regularization that enhances the learning ability of our method.
The Local Contrastive Loss element in Figure D.5 illustrates the design of our
local contrastive loss, which consists of WSC with TPRtpq .

The goal of local contrastive learning is to preserve the local similarity be-
tween a TPR and the spatio-temporal representation of its edges. In particular,
it is expected that a TPR can capture local similarity (edge-level similarity), i.e.,
TPRs are close to embeddings of positive edge samples and are distant from
embeddings of negative edge samples. Similar to global WSC, we formulate
the local WSC loss as maximizing the similarity with positive temporal edge
samples as well as minimizing the similarity with negative temporal edge
samples.

We proceed to describe the construction of the positive and negative edge
samples. First, we randomly select edges that appear in positive temporal
paths as our positive edge set, which is denoted as PNi. Then, edges that
appear in negative temporal paths are selected as our negative edge set,
denoted as NNi. Next, we set the weak temporal label of each temporal path
be the label of the corresponding edge in the temporal path. As is shown in
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Figure D.5, for each query path tpq, we try to pull TPRs with positive edges
closer, e.g., (TPRq, Mor. Peak) →← (STER(e4), Mor. Peak), and push away
TPRs from negative edges, e.g., (TPRq, Mor. Peak)←→ (STER(e4), Off-Peak),
(TPRq, Mor. Peak) ←→ (STER(e5), Aft. Peak), and (TPRq, Mor. Peak) ←→
(STER(e5), Mor. Peak).

In this phase, the objective of local contrastive learning is to increase
the similarity of TPRs with positive edge samples while decreasing the
similarity of TPRs with negative edge samples. Using cosine similarity
s(x, y) = x⊤y/∥x∥∥y∥, we aim to optimize the objective function for local
contrastive loss that is formulated in Eq. D.11.

Llocal = ∑
(tpi ,i)∈

1
|PNi|

log
∑(ej ,yi)∈PNi

exp
(

s(TPRi, ej)
)

∑(ek ,yj ̸=yi)∈NNi
exp (s(TPRi, ek))

, (D.11)

where PNi and NNi are the positive and negative edge sets, and yi denotes
the weak label for edge representation, which inherits from the corresponding
temporal path.

5.4 Objective for WSC

To train our temporal path encoder in an end-to-end manner, we jointly
leverage both the the weakly-supervised global and local contrastive loss.
Specifically, the overall objective function to maxmize is defined in Eq. D.12.

L = arg max
ψ

∑
i∈I

λ · Lglobal
i + (1− λ) · Llocal

i , (D.12)

where λ is a balancing factor and I is the set of training batches.

6 Contrastive Curriculum Learning

When training WSC using randomly shuffled training data, the training
process is prone to getting stuck in a bad local optimum, which leads to
suboptimal TPRs. To alleviate this problem, we build on the intuition that the
algorithm should be presented with the training data in a meaningful order
that facilitates learning. Specifically, the order of the samples is determined
by how easy they are, as this can be expected to enhance weakly-supervised
contrastive learning. We proceed to integrate curriculum learning with WSC,
thus obtaining the advanced framework called WSCCL.
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Figure D.6: Illustration of Advanced Framework

6.1 Overview of Curriculum Learning

Motivated by Xu et al. [43], we decompose curriculum sample generation into
two stages: Curriculum Sample Evaluation and Curriculum Sample Selection, as
shown in Figure D.6.

1) In curriculum sample evaluation, we assign a difficulty score Si to path
pi in the training dataset . The score reflects the difficulty of the model to
learn a good representation w.r.t. path pi. 2) In curriculum sample selection,
we aim to partition the training data into different difficulty stages. More
specifically, we first sort the training data according to the difficulty scores.
Then, we split the sorted training data into a sequence of sorted learning
stages {STi|i = 1, 2, . . . , M} in an easy-to-difficult fashion. Finally, our base
model, WSC, is trained according to this curriculum. We detail these two
stages in Sections 6.2 and 6.3, respectively.

6.2 Curriculum Sample Evaluation

The difficulty of a given temporal path can be quantified in many different
ways. We argue that difficulty scores, like the intrinsic properties of the
training dataset, should be decided by the model itself.

We first sort the training data set according to the lengths of the paths.
Then, we split into N non-overlapping meta-sets, i.e., = {̃1 ,̃ 2, · · · ,̃ N}, where
ĩ is the i-th meta-set, ĩ ∩ j̃ = ∅, ∀i ̸= j, i, j ∈ [1, N]. Next, we train N indepen-

dent WSC models w.r.t. the different meta-sets, i.e., W̃SCi, i = [1, N]. More
specifically, W̃SCi is trained only on the i-th meta-set, ĩ. After that, we obtain a
total of N trained independent WSC models, which we call Experts, to evaluate
the difficulty of each training sample.

We then use the Experts to calculate the difficulty scores for the training
data. We take a temporal path tpi ∈ j̃ as input to each Expert, W̃SCj, j ∈ [1, N],

and obtain a total of N TPRs, i.e., TPR(1)
tpi

, TPR(2)
tpi

, · · · , TPR(N)
tpi

. Since tpi

comes from j̃, we take TPR(j)
tpi

as the ground truth, and calculate the similarity
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between TPR(j)
tpi

and TPR(k)
tpi

, where ∀k ̸= j, k ∈ [1, N]. The resulting similarity
scores are then summed up to denote as the difficulty score of temporal path
tpi, denoted by Si. This is formulated in Eq. D.13.

Si =
N

∑
k=1,k ̸=j

Sim(WSCj(tpi), WSCk(tpi)), (D.13)

where Sim(·, ·) denotes the similarity function.
Finally, we repeat the difficulty score calculation for the entire training

data. This yields a temporal path dataset = {(tp1, S1), · · · , (tpN , SN)}, where
(tpi, Si) is one element and Si is the difficulty score for temporal path tpi. The
intuition is that if one element, i.e., (tpi, Si) can obtain a similar representations
in all other Experts compared to the representation from its own Expert, then
we denote it as an easy sample. Since we calculate the sum of similarities, the
higher Si is, the easier the temporal path tpi.

6.3 Curriculum Sample Selection

To define the curriculum sample selection strategy, we first represent the
learning curriculum in a multi-stage manner: {STi|i = 1, 2, . . . , M}. More
specifically, we rank all the training samples according to their difficulty
scores and then distribute them evenly among M training stages. This way,
the training data is partitioned into M parts with different levels of difficulty,
ranging from S1 (the easiest) to SM (the hardest). To ensure some local
variations, the training samples in different stages are shuffled.

Next, we train our WSC for one epoch at each stage. When the training
reaches stage SM, the WSC should be ready for the original distribution in
the whole training dataset . Finally, we add another stage, denoted by SM+1,
that covers the entire training data, and WSC is trained on this stage until it
converges. For simplicity, we keep N = M, as is done elsewhere [43], and we
leave the investigation of different combinations of N and M for future work.

7 Experiment Study

7.1 Experimental Setup

Data sets

We use three traffic data sets to study the effectiveness of the proposed
framework. Using each of these, we report results for three downstream tasks:
travel time prediction, path ranking, and path recommendation.
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Aalborg, Denmark [46] We use the road network graph of Aalborg from
OpenStreetMap1 that consists 10,017 nodes and 11,597 edges. We use a
substantial GPS data set that captures travel in this road network. Specifically,
the data set consists of 180 million GPS records from 183 vehicles sampled
at 1 Hz over a two-year period. A well-known map matching method [31] is
used to map match the trajectories. This yields a total of 28,370 paths.

Harbin, China [27] The data set was collected from 13,000 taxis in Harbin,
China. We extract the corresponding road network from OpenStreetMap. The
network contains 8,497 nodes and 14,497 edges. The GPS data was sampled
at about 1/30 Hz. After map matching, we obtain 58,977 paths.

Chengdu, China2 The data set was collected in Chengdu, China during
October and November 2016. We extract the corresponding road network
from OpenStreetMap. The network contains 6,632 nodes and 17,038 edges.
The GPS data was sampled at about 1/4–1/2 Hz. After map matching, we
obtain 57,404 paths.

Downstream Tasks

We consider three tasks.

Path Travel Time Estimation Each path is associated with a travel time (in
seconds) obtained from the corresponding trajectory. We aim at building a
regression model to estimate the travel times of paths based on their TPRs. We
evaluate the accuracy of estimations using the Mean Absolute Error (MAE),
Mean Absolute Relative Error (MARE), and Mean Absolute Percentage Error
(MAPE). Smaller values indicate higher estimation accuracy.

Path Ranking In path ranking, each path is associated with a ranking
score in the range [0, 1]. The ranking scores are obtained with the help
of historical trajectories by following an existing procedure [46]. Given a
historical trajectory of a driver, we consider the path used by the trajectory,
called the trajectory path, as the top ranked path. Then, we use a path
finding algorithm to generate multiple paths connecting the same source and
destination. We use the similarity between a generated path and the trajectory
path for ranking: the more similar a generated path is to the trajectory path,
the higher its similarity score; and the trajectory path itself has score 1 and thus
ranks the highest. As for the previous task, we aim at building a regression
model to estimate the ranking scores of paths.

1https://www.openstreetmap.org
2https://outreach.didichuxing.com/research/opendata/en/
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To quantify the performance of path ranking, we report the MAE of the
estimated ranking scores, the Kendall rank correlation coefficient (τ) [19], and
the Spearman’s rank correlation coefficient (ρ) [49]. The latter two capture the
similarity, or consistency, between the ground truth and estimated rankings.
The higher the τ and ρ values are, the more consistent the two rankings are,
indicating higher accuracy.

Path Recommendation A similar strategy is used in an existing study [28],
where a path is associated with a binary label with the help of users’ trajec-
tories. A path used by a user’s trajectory, say path A, is labeled 1, whereas
alternative paths connecting the same source and destination, say paths B
and C, are labeled 0. This follows the intuition that given three paths A, B,
and C, the user should choose A, not B and C, meaning that path A should
be recommended to the user. We conduct the path recommendation task on
all three data sets. We evaluate the recommendation effectiveness using the
classification Accuracy (Acc.) and Hit Rate (HR). Higher values indicate better
performance.

Baselines

We compare WSCCL with 12 baseline methods, which include 7 unsuper-
vised methods and 5 supervised methods. The unsupervised methods are:
(1) Node2vec [9], Deep Graph InfoMax (DGI) [38], Graphical Mutual In-
formation Maximization (GMI) [34] are unsupervised graph representation
learning frameworks, that give the edge representation for each edge in a
graph. We use the average of the edge representations of the edge in a path
as the path’s representation. (2) Memory Bank (MB) [42] is an unsupervised
learning approach to learn representations based on contrastive loss, where
the representations of negative sample are randomly selected from memory
bank. We re-implement MB with an LSTM encoder to capture the sequential
information in paths. (3) InfoGraph [36] is a graph representation learning
framework for unsupervised and semi-supervised settings. Here, we consider
the unsupervised variant and treat a path as a graph to learn the path’s repre-
sentation. (4) BERT [8] is an unsupervised language representation learning
model. To enable training, we treat a path as a sentence and mask some edges
in the path. Then we split a path P into sub-paths P1 and P2, and consider
(P1, P2) as a valid question-answer (Q&A) pair and (P2, P1) as an invalid Q&A
pair because the former represents a meaningful ordering while the latter
does not. (5) PIM [45] is an unsupervised path representation learning model
based on global and local mutual information maximization. The supervised
methods that take into account the labels from a specific downstream task
to obtain path representations, which are: (1) DeepGTT [27] is a supervised
travel time distribution estimation (i.e., to learn the parameters for inverse
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Gaussian distribution) framework based on a deep generative model. (2)
HMTRL [28] enables unified route representation learning and exploits both
spatio-temporal dependencies in road networks and the semantic coherence
of historical routes. (3) PathRank [46] is a supervised path representation
learning model based on GRUs. (4) GCN [7] is a graph covolutional neural
network based method that estimates the travel times of all edges in a road
network. The travel time of a path is then the sum of the travel times of the
edges in the path. (5) STGCN [47] is a traffic prediction framework based
on spatio-temporal graph convolutional networks. Similar to GCN, the travel
time of a path is the sum of the predicted travel times of the edges in the path.
Finally, note that for the path ranking task, we cannot simply aggregate the
rankings of edges to obtain the rankings of paths. This also applies to the
newly included path recommendation task. Thus, GCNs and STGCNs cannot
work as baselines for the these two tasks.

Models for Downstream Tasks

For all unsupervised learning approaches, we first obtain a task-independent
TPR and then apply a regression model to address different downstream tasks
using task-specific labels. In the experiments, we use the ensemble model
Gradient Boosting Regressor (GBR) to estimate travel time and ranking scores
for paths as they are regression problems. In addition, we use the ensemble
model Gradient Boosting Classifier (GBC) to make path recommendations, as
they are classification problems.

Weak Labels

We consider two different types of weak labels, including peak/off-peak (POP)
and traffic congestion indices (TCI). We use POP as default weak labels. We
only conduct experiments on the Harbin and Chengdu data sets for TCI since
we cannot obtain TCI for Aalborg, Denmark from Baidu Maps3.

Implementation Settings

We set embedding feature dimensions of RT, NoL, OW, and TS as drt = 64,
dl = 32, do = 16, dts = 16, respectively. The feature dimensions of output
from Node2Vec on both temporal graph and road networks are set to be 128.
Meanwhile, we apply 2 LSTM layers and set the dimensionality of the hidden
state hj to 128. Further, we set the size for temporal path representation
dimensionality to 128, i.e., dh = 128. The number of Meta-Set is set to be
N = 10, and the number of stages in curriculum learning is also set to be
M = 10. The hyper-parameter λ is set to 0.8. We set the learning rate (lr)

3https://jiaotong.baidu.com/congestion/city/urbanrealtime/
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Table D.1: Overall Accuracy on Travel Time Estimation

Methods
Aalborg Harbin Chengdu
MAE MAPE MAE MAPE MAE MAPE

Node2vec 63.82 45.67 269.21 31.41 290.47 34.43
DGI 67.22 49.36 288.09 34.01 312.28 38.46
GMI 70.61 52.40 310.39 36.60 337.06 41.58
MB 57.32 39.37 315.25 35.28 333.73 42.45
BERT 71.96 45.42 217.96 24.52 303.00 36.77
InfoGraph 69.36 41.28 200.81 22.68 291.54 36.07
PIM 57.66 39.34 196.06 21.96 289.10 35.55
DeepGTT 44.78 26.53 214.95 22.76 305.08 35.47
HMTRL 40.59 21.81 228.58 23.60 360.08 37.33
PathRank 37.09 23.89 190.08 20.12 334.94 35.11
GCN 78.04 53.05 368.21 35.62 480.83 42.01
STGCN 58.57 38.97 284.12 23.48 406.09 33.58
WSCCL 31.66 21.39 178.89 19.43 281.20 33.30

to 3e− 4 and the batch size 32. In particular, we train our WSCCL using all
unlabeled paths shown in data sets section and then we randomly choose
80% and 20% paths in labeled path as training and testing data for GBR.
Finally, we evaluate all models on a powerful Linux server with 40 Intel(R)
Xeon(R) Gold 5215 CPUs @ 2.50GHz and four Quadro RTX 8000 GPU cards.
Finally, all algorithm are implemented in PyTorch 1.9.1. The code is available at
https://github.com/Sean-Bin-Yang/TPR.git and the CoRR version is available
at https://arxiv.org/abs/2203.16110.

7.2 Experimental Results

Overall accuracy on downstream tasks

Table D.1, Table D.2 and Table D.3 report the overall results on the three
downstream tasks. WSCCL achieves the best performance on these three tasks
for three real-world data sets. The three graph node representation learning
methods Node2vec, DGI, and GMI are unable to capture temporal correlation
in the temporal path. In contrast, WSCCL takes temporal correlation into
consideration by virtue of its temporal embedding layer. In addition, the
weakly supervised contrastive curriculum learning improves the estimation
accuracy.

Although MB and BERT can capture dependencies among the edge feature
vectors in temporal paths, these approaches achieve poor estimation accuracy.
This is because MB needs large amounts of negative samples to ensure effective
training, which is not feasible in our scenario. In addition, BERT is not well
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Table D.2: Overall Accuracy on Path Rank Estimation

Methods
Aalborg Harbin Chengdu
MAE τ MAE τ MAE τ

Node2vec 0.23 0.60 0.22 0.37 0.20 0.73
DGI 0.24 0.60 0.21 0.48 0.21 0.52
GMI 0.24 0.59 0.21 0.49 0.21 0.51
MB 0.23 0.62 0.22 0.44 0.20 0.71
BERT 0.26 0.49 0.22 0.46 0.22 0.55
InfoGraph 0.26 0.52 0.21 0.45 0.20 0.73
PIM 0.22 0.60 0.21 0.43 0.19 0.76
DeepGTT 0.39 0.12 0.29 0.04 0.23 0.20
HMTRL 0.17 0.65 0.22 0.51 0.16 0.77
PathRank 0.23 0.64 0.18 0.55 0.17 0.79
WSCCL 0.15 0.68 0.14 0.68 0.13 0.84

Table D.3: Overall Performance on Path Recommendation

Methods
Aalborg Harbin Chengdu
Acc. HR Acc. HR Acc. HR

Node2vec 0.79 0.51 0.76 0.51 0.75 0.61
DGI 0.74 0.55 0.70 0.36 0.70 0.57
GMI 0.78 0.53 0.72 0.41 0.68 0.58
MB 0.67 0.48 0.61 0.69 0.73 0.69
BERT 0.60 0.43 0.64 0.53 0.66 0.61
InfoGraph 0.72 0.69 0.79 0.78 0.73 0.65
PIM 0.79 0.82 0.86 0.83 0.76 0.74
HMTRL 0.80 0.86 0.81 0.82 0.78 0.83
PathRank 0.77 0.71 0.79 0.74 0.77 0.73
WSCCL 0.82 0.88 0.97 0.91 0.81 0.90

suited for our setting of learning generic TPRs since BERT cannot support
contrastive learning in the setting of multiple positive samples against multiple
negative samples.

InfoGraph learns full graph representations. However, it only applies
a local view and cannot capture the sequential information of edge in a
path. In contrast, WSCCL not only uses sequence model (e.g., LSTM) to
capture sequential information between edge in a path but considers both
the (global) path and (local) edge levels. Although PIM is designed for path
representation learning, it is unable to learn meaningful TPRs because it
ignores temporal information and only has one positive sample. In contrast,
WSCCL allows multiple positive temporal path samples in each minibatch and
also uses a learned curriculum instead of the pre-defined curriculum negative
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sampling used by PIM. The supervised learning methods DeepGTT, HMTRL,
and PathRank achieve relatively poor accuracy due to the small size of labeled
training data. Since task-specific labels (“strong labels”) are expensive to
obtain, we consider a setting where labelled training data is limited. DeepGTT
exhibits the worst performance on the Path Ranking task because it is designed
for travel-time estimation, which is evidence for the poor generalizability of
supervised feature representation learning, as discussed in Section ??. In
contrast, the GCN and STGCN results also are worse than the WSCCL results.
This is because dependencies among edges are disregarded.
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Figure D.7: Effects of Pre-training.

Using WSCCL as a Pre-training Method

We conduct experiments that treat WSCCL as a pre-training method for the
supervised method PathRank. Here, PathRank takes as input a sequence of
edge features and estimates the travel time and ranking score. To use WSCCL
for pre-training method for PathRank, we first train WSCCL in a weakly
supervised manner and then apply the learned parameters in temporal path
encoder to initialize the encoder in PathRank.

Figure D.7 shows performance of PathRank with and without pre-training
for the two tasks. Without pre-training, PathRank is trained by using 12K
labeled training paths. We observe the following: 1) With pre-training we
can achieve the same performance as with non-pre-trained PathRank while
using fewer labeled training paths. For example, when using WSCCL for pre-
training, PathRank only needs 8K, 7K and 10K labeled samples for the Aalborg,
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Table D.4: Effect of the CL Design Strategy

Methods
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

Heuristic 33.58 0.15 22.06 0.19 0.61 0.65
WSCCL 31.66 0.13 21.39 0.15 0.68 0.72

Table D.5: Effects of CL, Global Loss and Local Loss

Methods
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

w/o CL 32.58 0.14 21.88 0.19 0.62 0.66
w/o Global 51.19 0.22 31.13 0.24 0.54 0.58
w/o Local 32.80 0.14 23.34 0.21 0.57 0.62
WSCCL 31.66 0.14 21.39 0.15 0.68 0.72

Harbin and Chengdu data sets, respectively, to achieve the same performance
as PathRank with 12K labeled samples, on the path ranking task. 2) When we
pre-train PathRank with 12K samples, the performance is much better than
without pre-training. In both tasks, we obtain similar observations, which
indicates that WSCCL can be applied advantageously for the pre-training of
different downstream tasks.

Ablation Studies

We conduct ablation studies on WSCCL to observe 1) the effect of the CL design
strategy on TPR learning; 2) the effect of variants of WSCCL, specifically CL,
global loss, and local loss; 3) the effect of different weak labels; and 4) the effect
of temporal information.

Effect of the CL Design Strategy To observe the effectiveness of the learned
CL, we compare with WSCCL with a heuristic curriculum design where we
simply sort the paths based on the number of edges. The comparison between
these two CL variants is reported in Table D.4 that shows that our learned
curriculum is better than the heuristic curriculum design on all tasks over on
Aalborg data sets. This is because the lengths of edges are varying (from few
meters to kilometers), even two paths with the same number of edges, the
lengths of two paths may have a big difference. Thus, the difficulties of paths
cannot simply represented by the number of edges directly.

Effects of Global Loss, Local Loss, and CL To study the effect of these
three modules, we consider three variants of WSCCL: 1) w/o Global, 2) w/o
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Table D.6: Effect of Different Weak Labels

Methods
Harbin
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

WSCCL-TCI 177.07 0.18 19.19 0.13 0.70 0.74
WSCCL-POP 178.89 0.18 19.43 0.14 0.68 0.73

Methods
Chengdu
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

WSCCL-TCI 280.85 0.29 32.97 0.12 0.86 0.87
WSCCL-POP 281.20 0.29 33.30 0.13 0.84 0.86

Local, and 3) w/o CL. In w/o Global, we remove Global WSC loss from WSCCL,
in WSCCL w/o Local, we remove the Local WSC loss, and in WSCCL w/o CL,
the curriculum strategy is omitted. The results on Aalborg data sets are
reported in Table D.5. We can observe that WSCCL w/o Global shows the worst
performance and has a clear margin to the other variants. This shows that the
proposed Global WSC performs well. We also observe that WSCCL achieves
the best performance. This indicates that all the proposed modules contribute
positively to the final performance, which validates the overall design.

Effect of Different Weak Labels We conduct additional experiments by
using traffic congestion indices (TCI), which indicate four congestion levels in
a city across time, as weak labels. Table D.6 shows the results on the Harbin
and Chengdu data sets. We observe that WSCCL works well when using the
TCI as weak labels.

Effect of Temporal Information We further conduct experiments on the
three data sets using a WSCCL variant that disregards temporal information.
The results, shown in Table D.7, indicate that the non-temporal WSCCL-NT
performs worse than WSCCL on both downstream tasks, suggesting that our
temporal embedding is effective.

Comparison with Temporally Enhanced Unsupervised Method

To compare WSCCL with the unsupervised PIM method, we first incorporate
a temporal representation into the non-temporal path representations learned
by PIM. Specifically, we use the same temporal embedding to learn temporal
representations and then concatenate these with the path representation from
PIM to obtain PIM-Temporal unsupervised TPRs. The results of comparing
this approach with WSCCL are reported in Table D.8. We see that WSCCL
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Table D.7: Effect of Temporal Information

Methods
Aalborg
Travel Time Estimation PathRank
MAE MARE MAPE MAE τ ρ

WSCCL 31.66 0.14 21.39 0.15 0.68 0.72
WSCCL-NT 41.25 0.18 29.38 0.21 0.55 0.59

Methods
Harbin
Travel Time Estimation PathRank
MAE MARE MAPE MAE τ ρ

WSCCL 178.89 0.18 19.43 0.14 0.68 0.73
WSCCL-NT 199.58 0.20 22.20 0.15 0.64 0.68

Methods
Chengdu
Travel Time Estimation PathRank
MAE MARE MAPE MAE τ ρ

WSCCL 281.20 0.29 33.30 0.13 0.84 0.86
WSCCL-NT 292.76 0.31 35.10 0.18 0.81 0.83

Table D.8: Comparison with Temporally Enhanced Unsupervised PIM Method

Methods
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

PIM-Temporal 42.27 0.19 27.95 0.19 0.65 0.70
WSCCL 31.66 0.13 21.39 0.15 0.68 0.72

Table D.9: Comparison with Supervised Methods

Methods
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

PathRank-PR 37.09 0.16 23.89 0.24 0.58 0.62
PathRank-TTE 55.08 0.24 36.71 0.23 0.64 0.68
HMTRL-PR 40.59 0.18 21.81 0.25 0.60 0.64
HMTRL-TTE 47.22 0.21 29.97 0.17 0.65 0.68
DeepGTT-PR 44.78 0.20 26.53 0.31 0.56 0.57
DeepGTT-TTE 59.52 0.26 37.80 0.39 0.12 0.12
WSCCL 31.66 0.13 21.39 0.15 0.68 0.72
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Table D.10: Effects of λ

λ
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

0.0 51.19 0.22 31.13 0.24 0.54 0.58
0.2 40.25 0.18 24.67 0.22 0.60 0.64
0.4 34.22 0.15 21.80 0.18 0.64 0.68
0.6 34.76 0.15 22.35 0.17 0.65 0.69
0.8 31.66 0.14 21.39 0.15 0.68 0.72
1.0 32.80 0.14 23.34 0.21 0.57 0.62

Table D.11: Effects of Number of Meta-Set.

N
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

2 36.64 0.17 25.86 0.20 0.56 0.60
6 36.06 0.16 24.96 0.20 0.56 0.60
10 31.66 0.14 21.39 0.15 0.68 0.72
14 33.16 0.15 21.60 0.19 0.58 0.63
18 33.47 0.15 21.65 0.20 0.56 0.61

outperforms PIM-Temporal on both tasks. This indicates that TPRs obtained by
adding a temporal representation to the path representation directly is not as
good as the TPR learned by WSCCL. This is because the added temporal rep-
resentation can only capture the overall traffic condition on the road network
for all the paths, yet not more unique spatio-temporal path representations
learned by our Temporal Path Encoder for different paths. This experiment
shows that it is not feasible to obtain a generic TRP by independently adding
a temporal representation to an unsupervised learned generic PR (i.e., spatial
representation). Further, it offers evidence of a more correlated and intricate
interplay between space and time in TPRs. For example, during the morning
peak hours, different paths may have different traffic conditions.

Comparison with Supervised Method

To study the applicability of TPRs from supervised method across tasks, we
use the supervised methods PathRank, HMTRL and DeepGTT as baselines.
In the supervised methods, we define a primary and a secondary task: A
supervised model is trained on the primary task, and then the learned path
representation is applied to the secondary task directly. Thus, we have two
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experimental settings: 1) Baseline-PR, travel-time estimation is the primary
task and path ranking is the secondary task; 2) Baseline-TTE, where path
ranking is the primary task and travel-time estimation is the secondary task.
The results are reported in Table D.9. We first observe that WSCCL achieves
the best performance on both downstream tasks. Further, we observe that
the performance of PathRank and HMTLR are always better on the primary
task than on the secondary task. For example, for travel-time estimation on
Aalborg, PathRank-PR is better than PathRank-TTE. This is evidence of the
drawbacks of supervised approaches that task-specific TPRs do not generalize
well across tasks. Moreover, we also observe that DeeGTT-PR is always better
than DeeGTT-TTE on both data sets. This is because DeepGTT is designed to
do travel time distribution estimation. Given the task of path ranking, whose
distribution may not follow the same inverse-Gaussian distribution like in
travel time, so it fails in this case.

Parameter Studies

We study the effects of λ and N.

Effects of λ To study the effect of the balancing factor λ (cf. Eq. D.12), we
conduct a parameter study on Aalborg. Based on the results reported in
Table D.10, we see that the performance of our model changes when varying
λ. We can also see that the optimal λ is 0.8, which means that both global
WSC loss and local WSC loss can contribute to the model’s performance.
When λ = 0.0, the global WSC loss is ignored, which yields poor performance.
When λ = 1.0, the local contrastive loss is ignored, and the best performance is
not obtained, although the performance is quite good. When λ > 0, meaning
that we consider both weakly-supervised and local WSC loss, we observe that
the prediction performance is improved. Overall, we conclude that global
WSC loss is more important than the local loss.

Effects of N To study the effect of varying the number of Experts N, which is
also the number of curriculum stages as we always set N = M, in the curricu-
lum strategy, we observe the performance for values of N in {2, 6, 10, 14, 18}.
The results in Table D.11 indicate that the best performance is obtained for
N = 10 on Aalborg data set. We also observe that when N is too small,
the curriculum strategy is not effective. This occurs because the number of
Experts is small, meaning that the difficulty scores have more uncertainty and
inaccuracy. This can also be the reason why the number of curriculum stages
is small in the curriculum sample selection stage, such that the samples in the
beginning are difficult to learn. Next, when the N becomes too large, this may
cause problems in the curriculum sample selection stage because the diversity
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and number of data points in the meta-sets may be too small, resulting in the
model overfitting at each stage.

8 Conclusion and Future Work

We study temporal path representation learning using weak labels. We pro-
pose a novel weakly supervised contrastive learning method that uses weakly
supervised contrastive learning and local constrative loss. Next, we integrate
curriculum learning into the method to further enhance its performance. Fi-
nally, we report on experiments on three data sets in the settings of three
downstream tasks, finding that our proposal achieves significant performance
improvements over unsupervised and supervised baselines. In addition, the
proposed method can be utilized as a pre-training method to enhance super-
vised temporal path representation learning. As future work, it is of interest
to study how to incorporate additional weak labels such as drivers and vehicle
types.
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1. Introduction

Abstract

Movement paths are used widely in intelligent transportation and smart city applica-
tions. To serve such applications, path representation learning aims to provide compact
representations of paths that enable efficient and, still, accurate operations when used
for different downstream tasks such as path ranking and travel cost estimation. In
many cases, it is attractive that the path representation learning is lightweight and
scalable; in resource-constrained environments, it is essential. Yet, existing path
representation learning studies focus on accuracy and pay at most secondary attention
to resource consumption and scalability.

We propose a lightweight and scalable path representation learning framework,
termed LightPath, that aims to reduce resource consumption and achieve scalability
without affecting accuracy, thus enabling broader applicability. More specifically, we
first propose a sparse auto-encoder that ensures that the framework achieves good
scalability with respect to path length. Next, we propose a relational reasoning
framework to enable faster training of more robust sparse path encoders. We also
propose global-local knowledge distillation to further reduce the size and improve the
performance of sparse path encoders. Finally, we report extensive experiments on two
real-world datasets to offer insight into the efficiency, scalability, and effectiveness of
the proposed framework.

1 Introduction

Motivated in part by an increasing number of intelligent transportation and
smart city services that operate on movement paths, path representation
learning (PRL) has received remarkable attention [5, 7, 41]. Specifically, a
variety of intelligent transportation services involve paths, e.g., travel cost
estimation [13, 24, 32, 33, 39, 40], routing [8, 14, 20, 29, 31], trajectory analysis [9,
22, 23, 28, 30] and path ranking [16, 33, 35]. Thus, path representations that are
both accurate and compact, thus facilitating efficient operations, are in high
demand as they hold the potential to significantly improve the services that
use them. Indeed, recent path representation learning methods, in particular
deep learning based methods, demonstrate impressive and state-of-the-art
performance on a wide variety of downstream tasks.

However, existing path representation learning methods focus on accuracy
improvement and pay secondary attention at best to scalability and resource
usage. The resulting models often include large numbers of layers and param-
eters, driving up computational costs and memory consumption, especially
for long paths. For instance, a model with many parameters may achieve
good accuracy, but cannot be used in resource-restricted environments, e.g.,
on edge devices. On the other hand, increasingly more users access intelli-
gent transportation services through edges devices, such as mobile phones.
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Figure E.1: Scalability w.r.t. Path Length.

Existing path representation methods suffer from two limitations.
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Figure E.2: Encoder Architectures: (a) A traditional transformer encoder with L layers and
M heads, takes as input a path (N-Length) and thus has complexity O

(
L ·M · N2); (b) A

sparse transformer encoder takes as input a sparse path (i.e., reducing path length from N
to N′), resulting in O

(
L ·M · N′2

)
complexity; (c) LightPath further compresses the traditional

transformer in terms of layers and heads, yielding complexity O
(

L′ · N′2
)
, making it more

scalable and lightweight than a traditional transformer encoder.

Poor scalability w.r.t. path length Since a path is a sequence of road-network
edges, path representation learning benefits from models that are good at
capturing sequential relationships, such as the Transformer [26]. However,
a Transformer-based method [3] employs a self-attention mechanism, where
one edge attends to all other edges in a path in each attention, resulting in
quadratic complexity, O

(
N2) of path length N. As a result, models such

as this one exhibits poor scalability with respect to path length, where the
path length is the number of edges in a path. Figure E.1 gives an example of
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Table E.1: Model Parameter Size with Varying Encoder Layers

Encoder Layers L 12 24 48 96
Parameters
(Millions)

29.85 55.07 105.51 206.40

the scalability w.r.t. path length N, covering both memory consumption and
computational cost, in terms of GPU memory (gMem.) and Giga floating point
operations per second (GFLOPs), respectively. We observe when the path
length N increases from 50 to 200, the Transformer-based method performs
poorly. A method that scales better w.r.t. N is desirable.

Very large model size. Many existing PRL models have a large number of
parameters, which limits their use in resource-constrained environments. For
example, in a Transformer-based method [3], where the Transformer stacks L
transformer layers, each layer employs multi-head (i.e., M heads) attentions.
Thus, the Transformer functions like a large cuboid, with a total complexity
of O

(
L ·M · N2), as shown in Figure E.2a. For example, Table E.1 shows the

numbers of parameters of Transformer-based path encoders when varying the
number of layers among 12, 24, 48, and 96 while fixing the number heads at 8
per layer and the feature dimension of the encoder at 512. We can observe that
the model parameters grow dramatically when the number of encoder layers
increase, preventing the models from being deployed in resource-constrained
environments. Moreover, models with large amounts of parameters also
suffer from high storage and computational costs. Such costs are unattractive,
particularly in resource-limited environments. More specifically, as shown
in Figure E.1a, for path length N = 200, the Transformer-based model needs
almost 3.4GiB GPU memory. A lightweight path representation learning
method that is accurate and efficient is desirable.

Proposed Solution. To tackle the above limitations, we propose LightPath,
a lightweight and scalable path representation learning approach. To address
the first limitation, we first propose a sparse auto-encoder targeting good
scalability, w.r.t., path length. In particular, the introduction of sparseness
reduces the path length from N to N′ by randomly removing edges and
returning a sparse path of length N′. The sparse path is fed into a Transformer-
based encoder as input, which reduces the complexity from O

(
L ·M · N2) to

O
(

L ·M · N′2
)
, as shown in Figure E.2b, reducing a huge cuboid to a slimmer

cuboid. To avoid information loss due to the removed edges, we connect the
encoder with a decoder, with the aim of reconstructing the whole path. This
enables scalable yet effective unsupervised training. To further improve the
training of the sparse encoder, we introduce an additional training scheme
based on relational reasoning. In particular, for each path pi, we construct two
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distinct sparse path views, denoted as p1
i and p2

i , using different reduction
ratios, e.g., removing 40% and 80%, respectively. Then, we propose a dual
sparse path encoder, including the original main encoder, and an additional,
auxiliary encoder. Then, the dual sparse path encoder encodes the two
path views. Thus, we achieve four path presentations PR1

i , PR2
i , P̂R1

i , and

P̂R2
i for path pi in terms of the two path views and the twosparse path

encoders, where PR and P̂R denote the representations from the main and
the auxiliary encoders, respectively. Finally, given two path representations,
we train a relational reasoning network to determine whether the two path
representations are from the same “relation” or not. If they are from the same
path, we consider them positive relations; otherwise, they belong to negative
relations.

To address the second limitation, we propose a global-local knowledge
distillation framework that aims to reduce the model size of the main path
encoder, which not only enables use in resource-constrained environments
but also improves accuracy. To this end, we consider the main path encoder
as a teacher, and we create a lightweigth sparse encoder with less layers
and one head as a student, further reducing a slimmer cuboid to a slim
rectangle (cf. FigureE.2c). The global knowledge distillation tries to push
the lightweight student to mimic the teacher from a global semantic level
(i.e., path representation level), while the local knowledge distillation can
push the lightweight student to mimic the edge correlations from the teacher,
thus building a lightweight encoder while maintaining or even improving the
accuracy for downstream tasks.

To the best of our knowledge, this is the first study that systematically
targets lightweight and scalable path representation learning. This study
makes four main contributions.

• Sparse Auto-encoder. We propose a sparse auto-encoder framework that
takes as input sparse paths with reduced path lengths, achieve good
scalability. w.r.t the path length.

• Relational Reasoning. We introduce relational reasoning to enable efficient
sparse auto-encoder training. Specifically, we propose two types of rela-
tional reasoning objective for accurate and efficient path representation
learning. These two objectives regularize each other and yield a more
effective path encoder.

• Global-local Knowledge Distillation. We propose a novel global-local knowl-
edge distillation framework that enables a lightweight student sparse
encoder to mimic a larger teacher sparse encoder from global and local
perspectives. The resulting lightweight model that can be deployed on
edge devices while achieving accurate performance at different down-
stream tasks.
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• Extensive Experiments. We report on extensive experiments for two large-
scale, real-world datasets with two downstream tasks. The results offer
evidence of the efficiency and scalability of the proposed framework as
compared with nine baselines.

2 Related Work

2.1 Path Representation Learning

Path Representation Learning (PRL) aims to learn effective and informa-
tive path representations in road network that can be applied to various
downstream applications, i.e., routing, travel cost estimation, and path recom-
mendation. Existing PRL studies can be categorised as supervised learning
based [16, 35, 37], unsupervised learning based [33], and weakly supervised
learning based [34] approaches. Supervised learning-based methods aim
at learning a task-specific path representation with the availability of large
amounts of labeled training data [16, 35, 37], which has a poor generality for
other tasks. Unsupervised learning methods are to learn general path repre-
sentation learning that does not need labeled training data and generalizes
well to multiple downstream tasks [33, 34]. Take the cream and discard the
dross, weakly supervised learning methods try to learn a generic path rep-
resentation based on meaningful weak labels, e.g., traffic congestion indices,
that are easy and inexpensive to obtain, and are relevant to different tasks [34].
However, these methods are computationally expensive and hard to deploy in
resource-limited environments.

2.2 Self-supervised Learning

Self-supervised learning (SSL) tries to learn informative representations with-
out the availability of labels through well-defined pretext tasks. State-of-the-art
SSL can be classified into contrastive learning-based and relation reasoning-
based methods. Contrastive learning-based methods [2, 12, 25, 27, 33], espe-
cially for InfoNCE loss-based, commonly generate different views of same
input data through different augmentation strategies, and then discriminate
positive and negative samples. However, these methods suffer from their
quadratic complexity, w.r.t. the number of data samples, given that it needs a
large number of negative samples to guarantee that the mutual information
lower bound is tight enough [12]. In contrast, relation reasoning-based meth-
ods [4, 19] aim to learn relation reasoning head that discriminates how entities
relate to themselves and other entities, which results in linear complexity.
However, existing studies construct relation reasoning between different views
from the same encoder, ignoring the effect of different views between differ-
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ent encoders, i.e., main encoder and auxiliary encoder in Siamese encoder
architecture.

3 Preliminaries

We first cover important concepts that underlie the paper’s proposal and then
state the problem addressed.

3.1 Definitions

Road Network. A road network is defined as a graph G = (V, E), where V is
a set of vertices vi that represents road intersections, E ⊆ V × V represents
a set of edges ei = (vj, vk) that denotes road segments. GPS Trajectory. A
GPS trajectory of a moving object is defined as a sequence of spatio-temporal
sample points, each of which contains a location (i.e., longitude and latitude)
and a timestamp.

Path. A path p = ⟨e1, e2, e3, · · · , eN⟩ is a sequence of connected edges,
where ei ∈ E denotes the edge in path p. We denote p.Φ = ⟨1, 2, 3, · · · , N⟩ as a
sequence of orders for edges in p. Sparse Path. A sparse path p′ =

{
ei
}

i∈p′ .Ω
contains a subset of edges in path p, where p′.Ω is a sub-sequence of p.Φ,
which is denoted as the original edge orders of p′ in p, where p′.Ω ⊆ p.Φ.
Example. Given a path p = ⟨e1, e3, e4, e6, e7⟩ and p.Φ = ⟨1, 2, 3, 4, 5⟩, then
sparse path p′ =

{
e1, e4, e7

}
, where p′.Ω = ⟨1, 3, 5⟩, is one of the sparse paths

for p.
Edge Representation. The edge representation of an edge in a road

network graph is a vector in Rdk , where dk is the dimensionality of the
vector. Transformer Layer. Given a sequence of edge representations
X = ⟨x1, x2, x3, · · · , xN⟩ for a path p. Transformer layer takes as input a X and
returns the encoded edge representations Z = ⟨z1, z2, z3, · · · , zN⟩ that capture
the correlation of different edges. Especially, each Transformer layer consists
of multi-head attention and position-wise feed-forward networks.
Multi-Head Attention. Instead of employing a single attention function, we
define multi-head attention that linearly projects the queries, keys and values
into M subspaces with different, learned linear projections to dk, dk and dv
dimensions, respectively. Multi-head attention allows the model to jointly
attend to information from different representation subspaces at different
positions. Then, we formulate it as:

Z = MultiHead(X) = Concat ( head 1, . . . , head M) ·WO ,

head i(·) = softmax
((

XWQ
i

) (
XWK

i

)T
/
√

dk

)(
XWV

i

)
,

(E.1)
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where Concat(·, ·) represents concatenation. WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
WV

i ∈ Rdmodel×dv , WO ∈ RMdv×dmodel are projections parameter matrices for
scaled dot-product attention. M denotes number of heads. dmodel represents
the feature dimension of final output.
Position-wise Feed-Forward Networks. Except the attention sub-layers, each
of the layers in Transformer (encoder/decoder) contains a fully connected
feed-forward network (FFN), which is used to each position separately and
identically. This FFN consists of two linear transformations with ReLU activa-
tion in between. Specifically, we have

FFN(Z) = max
(

0, ZWFFN
1 + bFFN

1

)
WFFN

2 + bFFN
2 , (E.2)

where WFFN
1 , WFFN

2 , bFFN
1 , and bFFN

2 are learnable parameters of feed-forward
network.

3.2 Problem Definition

Given a set of paths P = {pi}
|P|
i=1 in a road network G, scalable and efficient

path representation learning aims to learn a function SEPRLθ (·) which can
generate a generic path representation for each path pi ∈ P without relying
on the labeling information, which can be formulated as follows.

PR = SEPRLθ (pi) : RN×dk → Rd , (E.3)

where PR is learned path representation. θ represents the learnable parameters
for the sparse path encoder. N is path length, dk and d are the feature
dimensions for an edge, and a final path representation, respectively.

3.3 Solution Overview

Figure E.3 shows an overview of the proposed LightPath, which consists of
the following three modules: 1) Sparse Auto-encoder, 2) Relational reasoning,
and 3) Global-local knowledge distillation. The details of those modules are
provided in Section 3, 4 and 5, respectively. To create LightPath, we first
train a large teacher encoder that has multiple layers and heads based on
sparse auto-encoder and relational reasoning. Then, we employ global-local
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Figure E.4: Sparse Auto-encoder. We remove a subset of edges from a path based on a reduction
ratio γ to obtain a sparse path. We introduce a learnable path representation in front of the
sparse path. And then, we fed the resulting sparse path vectors with position embeddings to a
Transformer based encoder. We then introduce a learnable edge representation, denoted as a
triangle, to represent the removed edges. The encoded edges in the sparse path and the removed
edge representations with position embeddings are processed by a decoder that reconstructs the
edges in the original path.

knowledge distillation to compress the large teacher encoder to achieve a
small student encoder that has much less layers and heads.

4 Sparse Path Encoder

4.1 Overview

Figure E.4 illustrates the sparse path encoder framework, which includes a
sparsity operation, a sparse path encoder, and a path reconstruction decoder.
The sparsity operation takes as input a full path and returns a sparse path with
respect to reduction ratio γ. Sparse path encoder takes as input a sparse path
and learnable path representation and outputs learned path representations.
Next, we introduce a path reconstruction decoder to reconstruct the path, thus
ensuring the learned path representation captures the entire path information.

4.2 Sparsity Operation

Path consists of a sequence of edges p = ⟨e1, e2, e3, · · · , eN⟩, which are the
basic processing units of different sequential models. The processing times
of sequential models become longer when the path gets longer. Thus, we
propose a sparsity operation, which is an approach to reduce the path length
from N to N′, where N′ is much less than N. Specifically, we conduct path
reduction by randomly removing a subset of edges in a path based on a high
reduction ratio γ (e.g., γ = 0.6). A high reduction ratio γ (the ratio for edge
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removal) can significantly reduce the length of each input path, thus enabling
the scalability of the path. Specifically, we construct the sparsity operation as:

p′ = f (p, γ) =
{

ej
}

j∈Ω , (E.4)

where p is input path. p′ denotes the sparse path. For example, as shown in
Figure E.4, if we have a path p = ⟨e1, e3, e4, e6, e7⟩, then we conduct sparsity
operation, which randomly removes a subset of edges in p, i.e., e1, e4, e7 based
on reduction ratio γ = 0.6 and achieve the sparse path p′ =

{
e3, e6

}
and

p′.Ω = [2, 4]. Thus, we can reduce path from N to N′, i.e., from 5 to 2 in this
example.

4.3 Learnable Path Representation

We use Transformer as our path encoder since it processes the input edges
parallel using the self-attention mechanism. In contrast, the recurrent neural
network (RNN) family is inefficient due to its recurrent nature. To avoid
achieving path representation through extra aggregation function [33], we
add a super extra learnable path representation in front of each sparse path.
Moreover, PR is attached to position 0 for every path, thus enabling it to
capture global information of the path during the training procedure. Thus,
we update the p′ as:

p′ =
{

PR
}
+

{
ej
}

j∈Ω =
{

ek
}

k∈Ω′ , (E.5)

where e0 = PR denotes a virtual edge and Ω′ = [0, Ω].
To preserve the sequential information of the path, we add learnable

position embedding into the sparse path representations based on order
information in Ω′. Specifically, we have:

X = Concat
{

xk
}

k∈Ω′ , where xk = ek + posk , (E.6)

where posk represents the learnable position embedding for edges in the
sparse path. X represents the sparse path edge representation concatenation.

Take Figure E.4 as an example, we first construct p′ =
{

PR, e3, e6
}

. Then,
we add corresponding position embedding to the edge vectors of p′, i.e.,
positions 0, 2, and 4, where the added position embeddings can help the
Transformer encoder to be aware of the input order instead of treating them
as a set of unordered path edges. Meanwhile, they enable the learned path
representation PR to capture global-level semantics in the sense that edges
might play a different role in a road network. The intuition is that the super
learnable path representation can attend attention with other edges, which
captures global-level semantic. In contrast, the learnable edge representation
aims to construct a full path set and reconstruct the specific edge in input
path.
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4.4 Transformer Path Encoder

To achieve better performance, we usually stack multiple Transformer layers,
each consisting of two sub-layers: multi-head attention and position-wise
feed-forward network mentioned above (ref. as to Definition 3.1 in Section ??).
Motivated by [11], we employ a residual connection around each sub-layers,
followed by layer normalization [1]. The stacked transformer model can be
formulated as:

Z = LayerNorm(X + MultiHead (X)) ,

PR = LayerNorm (Z + FFN (Z)) ,
(E.7)

where LayerNorm represents layer normalization and PR is learned path
representation.

Remarkably, our path encoder only takes as input a small subset of edges
(e.g., 60%) of the full path edges, which means we ignore the removed edges
and just consider unremoved edges during the encoder stage to enable the
path scalability. Path scalability enables us to train our path encoders con-
cerning different lengths of path effectively and reduce the corresponding
computational cost and memory usage.

4.5 Path Reconstruction Decoder

To capture the global information of the full path, we further introduce a
lightweight path decoder to reconstruct the removed edges in a path. As
shown in Figure E.4, we first complement the encoded path edges and path
representation with a shared, learnable vector that represents the presence of
a removed edge based on the original index of each edge in a path. Then, we
add the position embedding vectors to all edge representation, which enables
the learnable path representation vector to capture the global information
of the entire path. Next, the path decoder takes as input the full set of
representations, including (1) path representation, (2) encoded unremoved
edges, and (3) removed edges. We select a more lightweight decoder structure,
which has less number of Transformer layers. Since the path decoder is only
used to perform path reconstruction, the architecture of our path decoder can
be more flexible and independent of the path encoder. Thus, the decoder is
much shallower than the encoder, e.g., one layer for the decoder and 12 layers
for the encoder, which significantly reduces training time. We reconstruct
the input path by predicting the removed edges to ensure the learned path
representation contains complete information about the entire path. We
employ mean squared error (MSE) as our reconstruction loss function and
compute MSE between the reconstructed and initial edge representations in
the edge level. We only employ MSE loss on removed edges, which can be
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formulated as follows:

Lrec =
1
N

N

∑
i=1

(ei − êi)
2 , (E.8)

where ei and êi are the initial and predicted removed edge representation,
respectively. N represents the number of edges for each input path.

5 Relational Reasoning Path Representation Learn-
ing

5.1 Overview

To further enhance sparse auto-encoder (cf. Section ??) training, we propose
a novel self-supervised relational reasoning (RR) framework, as shown in
Figure E.5. The intuition behind this is that we train a relation head RRHφ(·)
to discriminate how path representations relate to themselves (same class)
and other paths (different class). In particular, this framework consists of
path representation construction (cf. Figure E.5a) and relational reasoning
(cf. Figure E.5b), which includes cross-network relational reasoning and
cross-view relational reasoning. To train our dual sparse auto-encoder, we
first generate two path views, denotes as p1

1 and p2
1, based on two different

reduction ratios γ1 and γ2. After this, by processing these two path views
via the main encoder and the auxiliary encoder of the sparse path encoder,
we construct different paths on multiple views in the representation space.
Finally, we employ relational reasoning to enable efficient path representation
learning.

5.2 Dual Sparse Path Encoder

In this section, we introduce our dual sparse path encoder (SPE) that is
employed to generate different path representations based on different path
views. As shown in Figure E.5a, given a path p1, we first generate sparse
paths in terms of two different reduction ratios γ1 and γ2. We consider them
as different path views, i.e., path view 1 and path view 2. Then, our dual
sparse path encoder, including a main encoder and an auxiliary encoder, takes
as input two different path views (i.e., p1

1 and p2
1) and returns different path

representations. Specifically, each encoder takes as input two different path
views and returns two different path representations, where solid and dotted
□ denote the path representations returned from main encoder based on path
view 1 and path view 2, respectively, i.e., PR1

1 and PR2
1. In contrast, solid and

dotted △ represent the path representations achieved from auxiliary encoder
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Figure E.5: Illustration of RR Training: (a) Given an input path p1, we construct two path views
(i.e., p1

1 and p2
1) through two reduction ratios γ1 and γ2, based on which a main encoder and an

auxiliary encoder are employed to generate path representations for each view (i.e., PR1
1, PR2

1,

P̂R1
1, and P̂R2

1). (b) After getting corresponding path representations for paths in a minibatch,
a relational reasoning path representation learning scheme, which utilizes both cross-network
and cross-view relational reasoning modules, is deployed. In particular, for both modules,

an aggregation function a joins positives (representations of the same paths, e.g., a(PR1
1, P̂R1

1),

a(PR1
1, PR2

1)) and negatives (randomly paired representations, e.g., a(PR1
1, P̂R1

3), a(PR1
1, PR2

3))
through a commutative operator. Then relation head module RRHφ(·) estimates the relation
score y, which must be 1 for positive and 0 for negatives. Both cross-network and cross-view
objectives are optimized minimizing the binary cross-entropy (BCE) between prediction and
target relation value t. In this example, i ∈ [1, 2, 3] denotes the number of paths in the minibatch
and j ∈ [1, 2] represents the number of views.

based on both path views, respectively, i.e,. P̂R1
1 and P̂R2

1. To this end, we
construct four different path representations for a given path, which promote
our design of cross-network relational reasoning and cross-view relational
reasoning in turn. Finally, we formulate it as:

PRj
i = SPEθ(pj

i , γ) , P̂Rj
i = SPEθ̂(pj

i , γ) , (E.9)
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where PRj
i and P̂Rj

i are path representations obtained from the main encoder
and the auxiliary encoder, respectively. pi denotes the i-th path in the path
set. j ∈ [1, 2] denotes the path views. θ and θ̂ are the parameters for the main
encoder and auxiliary encoder.

5.3 Relational Reasoning

Cross-Network Relational Reasoning

In LightPath, we employ a dual sparse path encoder, which includes main and
auxilary encoder, as shown in Figure E.5a. We first construct path representa-
tions through sparsity operation based on different reduction ratios γ1 and
γ2. Given a set of path

{
p1, p2, · · · , pK

}
, we can have a set of path represen-

tations
{

PR1
1, PR1

2, · · · , PR1
K
}

from main encoder and
{ ˆPR1

1, P̂R1
2, · · · , P̂R1

K
}

or
{

P̂R2
1, P̂R2

2, · · · , P̂R2
K
}

from auxiliary encoder by using path representation
construction. Then we employ relation aggregation a(·) that joins the positive
path representation relations ⟨PR1

i , P̂R1
i ⟩ or ⟨PR1

i , P̂R2
i ⟩ and the negative path

representation relations ⟨PR1
i , P̂R1

\i⟩, where i denotes the i-th path sample and
\i ̸= i represents randomly selected path representations in a minibatch. Take
Figure E.5b as an example, where K = 3. we join ⟨PR1

1, P̂R1
1⟩ as a positive

relation pair (representation from same path), and ⟨PR1
1, P̂R1

2⟩ as a nega-
tive relation pair (representation from different paths) through aggregation
function a. Next, the relational head RRHφ(·), which is non-linear function
approximator parameterized by φ, takes as input representation relation pairs
of cross-network and returns a relation score y. Finally, we formulate the
cross-network relational reasoning task as a binary classification task, where
we use binary cross-entropy loss to train our sparse path encoder, which is
given as follows.

Lcn = argmin
θ,φ

K

∑
i=1

2

∑
j=1
L
(

RRHφ

(
a
(

PRj
i , P̂Rj

i

))
, t = 1

)
+ L

(
RRHφ

(
a
(

PRj
i , P̂Rj

\i

))
, t = 0

)
,

(E.10)

where K is the the number of path samples in the minibatch. a(·, ·) is an
aggregation function. L is a loss function between relation score and a target
relation value. t is a target relation values.

The intuition behind this is to discriminate path presentations of same path
and different paths, which are from different views across dual sparse path
encoder and are able to distill the knowledge from historical observations,
as well as stabilizing the main encoder training. To realize this, we adopt
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Siamese architecture for our dual sparse path encoder, where the auxiliary
encoder does not directly receive the gradient during the training procedure.
In contrast, we update its parameters by leveraging the momentum updating
principle:

θ̂t = m× θ̂(t−1) + (1−m)× θt, (E.11)

where m is momentum parameter. θ and θ̂ are the parameters of the main
encoder and the auxiliary encoder.

Cross-View Relational Reasoning

To enhance the learning ability of our LightPath, we further consider the ties
between two views within main encoder, which acts as a strong requarization
to enhance the learning ability of our methods. We do not have to include such
relational reasoning within the auxiliary encoder because it will not directly
compute gradient during training, and our goal is to train main encoder.
Figure E.5b shows the design of our cross-view relational reasoning, which
contains two similar representations from two views based on γ1 and γ2. The
intuition of cross-view relational reasoning is to preserve the relation between
two views of the same path and discriminate them from the view of other
paths.

Similar with cross-network, given a set of paths
{

p1, p2, · · · , pK
}

. We first
achieve two set of path representations in terms of two path views based on
main encoder, i.e.,

{
PR1

1, PR1
2, · · · , PR1

k
}

and
{

PR2
1, PR2

2, · · · , PR2
K
}

. Then, we
join the positive relation pairs (e.g., ⟨PR1

i , PR2
i ⟩) and negative relation pairs

(e.g., ⟨PR1
i , PR2

\i⟩) through aggregation function. For example, as shown in

Figure E.5b, there are 3 paths in the set. Thus, we can denote ⟨PR1
1, PR2

1⟩ as
a positive pair and ⟨PR1

1, PR2
3⟩ as a negative pair. Then, we further employ

relational head RRHφ(·), which takes as input a positive pair and a negative
pairs from different views, to achieve the corresponding relation score y for the
cross-view relational reasoning. Last, we formulate the cross-view relational
reasoning loss to discriminate how different views of a path is related to
themselves and other paths. In this phase, the complete learning objective can
be specified as:

Lcv = argmin
θ,φ

K

∑
i=1
L
(

RRHφ

(
a
(

PR1
i , PR2

i

))
, t = 1

)
+ L

(
RRHφ

(
a
(

PR1
i , PR2

\i

))
, t = 0

)
,

(E.12)

where K is the the number of path samples in the minibatch.
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Objective for RR

To train our dual path encoder end-to-end and efficient learn path representa-
tions for downstream tasks, we jointly leverage both the cross-network and
cross-view relation reasoning loss. Specifically, the overall objective function
is formulated as Eq. E.13.

min
θ,φ
LRR = Lcn + Lcv (E.13)

5.4 LightPath Training

To train our sparse path encoder and learn path representations for down-
stream tasks, we jointly minimize the reconstruction and RR loss. Specifically,
the overall objective function is defined as:

L = Lrec + LRR (E.14)

6 Global Local Knowledge Distillation (GLKD)

So far, we realize our LightPath through sparse auto-encoder and relational
reasoning and transform it from large cuboid (cf. Figure E.2a to a slim
cuboid (cf. Figure E.2b). To enable the LightPath that can be deployed on
resource-constrained mobile devices, we introduce our global-local knowledge
distillation (GLKD) to further reduce the size of the sparse auto-encoder,
as shown in Figure E.6. We first train a large cuboid teacher encoder with
multiple transformer layers and heads (cf. Figure E.2b) based on path recon-
struction and relational reasoning. Then, we employ a small rectangle student
encoder (cf. Figure E.2c), which has less layers and heads, to mimic a large
teacher model and use the teacher’s knowledge to obtain similar or superior
performance based on GLKD. Specifically, GLKD constructs a local knowledge
distillation by matching the representations of correlated edges. On such
a basis, the global term distills the knowledge from teacher to student that
enabling the informative and powerful path representation for the student
model.

6.1 Global-path Representation Distillation

Given a path pi = ⟨e1, e2, e3, · · · , en⟩, where n is the number of edges in a
path. We define PRT (pi) and PRS (pi) represent the path representations
achieved from teacher encoder Tθ and student encoder Sθ . The intuition of
global path representation knowledge distillation is to let the student encoder
mimic the global properties captured by a large cuboid teacher encoder. And
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Figure E.6: Illustration of GLKD. Given an input path, we formulate our GLKD as a weighted sum
of global path representation knowledge distillation (GPRKD) loss and local edge representation
knowledge distillation (LERKD) loss.

thus, the goal of global path representation knowledge distillation is to put
closer the path representation from teacher encoder and student encoder in
the latent space. We formalize this problem as minimizing a latent space
distance representation pairs in terms of the large cuboid teacher encoder and
the rectangle student encoder. The formulation of the objective function is
given as follows:

min
θ
Lglobal

(
PRT (pi), PRS (pi)

)
=

∥∥∥sp(PRT (pi)/t)− sp(PRS (pi)/t)
∥∥∥2

, (E.15)

where sp(·) is exponential function. t denotes the temperature. Using a higher
value for t produces a softer probability distributions over path representa-
tions.

6.2 Local-edge Correlation Distillation

The goal of local-edge structure distillation is to preserve the local similarity
of the edge correlations in a path. In particular, it is expected that the rep-
resentation of the same edge in a path represented by the teacher encoder
and the student encoder should be close to each other. The intuition is that a
rectangle student encoder mimics the edge correlations in a path captured by
a large cuboid teacher encoder. Using a similarity measurement, we formulate
the local-edge structure distillation problem as minimizing the latent space
distance of edge representations from the teacher encoder and then student
encoder.

In specific, given a path p = ⟨e1, e2, e3, · · · eN⟩ in a road network, where N
is the number of edges in a path. Through applying an L-layers Transformer
encoder (i.e., teacher encoder Tθ) and L′-layers Transformer encoder (i.e., stu-
dent encoder Sθ) upon sparse path p′, where L≪ L′, the edge representation
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that captures spatial dependencies are derived as follows.

FT (ei)
N′
i=1 = Tθ(p) , FS (ei)

N′
i=1 = Sθ(p) , (E.16)

where FT (ei)
N′
i=1 and FS (ei)

N′
i=1 represent the edge representation with respect

to the teacher and student encoder, respectively.
In this phase, the goal of learning is to reduce the latent space distance

between same edge pair from the teacher and student encoder, respectively.
To this end, we aim to minimize the following objective functions between
edge representation pairs in terms of the parameters of the student encoder.

min
θ
Llocal

(
FT (ei), FS (ei)

)
=

1
n

n

∑
i=1

∥∥∥sp(FT (ei)/t)− sp(FS (ei)/t)
∥∥∥2

, (E.17)

where sp(·) represents exponential function. t denotes the temperature. Using
a higher value for t produces a softer probability distributions over edges.

6.3 Objective for GLKD

To train our global and local knowledge distillation in an end-to-end fashion,
we jointly leverage both the global and local knowledge distillation loss.
Specifically, the overall objective function to minimize is defined in Eq. E.18.

min
θ
LGLKD = α ∗ Lglobal + (1− α) ∗ Llocal , (E.18)

where α is balancing factor.

7 Experiments

7.1 Experimental Setup

Datasets

We conduct experiments on two real-world datasets and one synthetic dataset
to enable fair comparisons with existing studies. Based on two real-world
datasets, we report results for two downstream tasks: travel time estima-
tion [34, 39], and path ranking [16, 35, 37]. Due to the lack of large amounts
of long paths in the real-world datasets, we construct one synthetic dataset
that contains paths with lengths of 100, 150, and 200 to verify the efficiency
and scalability of LightPath.
Aalborg, Europe: We collect the road network of Aalborg from OpenStreetMap1

that contains 10,017 nodes and 11,597 edges. Specifically, this dataset contains

1https://www.openstreetmap.org
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180 million GPS records from 183 vehicles sampled at 1 Hz over a two-year
period from 2017 to 2018. After map matching [18], we obtain 39,160 paths
with length 50.
Chengdu, China: This dataset was collected from Chengdu, China, on Oct.
and Nov. 2016. We obtain the corresponding road network from Open-
StreetMap. The network contains 6,632 nodes and 17,038 edges. The GPS
data was sampled at about 1/4-1/2 Hz. We obtain 50,000 paths through map
matching with lengths 50.
Synthetic: We generate paths with lengths of 100, 150, and 200 from the
Aalborg Road Network to study the training efficiency and scalability of the
LightPath.

Downstream Tasks

We report the results on two downstream tasks:
Path Travel Time Estimation: We obtain travel time (in seconds) for each path
from the trajectory. We aim to utilize a regression model to predict the travel
time based on the learned path representations. We employ Mean Absolute
Error(MAE), Mean Absolute Relative Error(MARE), and Mean Absolute Per-
centage Error(MAPE) to evaluate the performance of travel time estimations.
The smaller values of these metrics, the better performance we achieve.
Path Ranking: Each path is assigned a ranking score in the range [0, 1], which
is obtained from historical trajectories by following the existing studies [35, 37].
More specifically, we take the path that is used by a driver in the historical
trajectories as the trajectory path, which is denoted as the top ranked path.
Then, we generate multiple paths connecting the same source and destination
via path finding algorithms [17]. Finally, we calculate the similarity between a
generated path and the trajectory path as a ranking score. The higher ranking
score indicates a generated path is more similar to the trajectory path, and the
trajectory path itself has a score of 1 and ranks the highest. To measure the
path ranking, we apply MAE, the Kendall rank correlation coefficient (τ), and
the Spearman’s rank correlation coefficient (ρ), which are widely used metrics
in path ranking, to evaluate the effectiveness of path ranking.

Models for Downstream Tasks

For all unsupervised learning methods, we aim to build a regression model to
estimate the travel time and path ranking. In particular, we select ensemble
model Gradient Boosting Regressor(GBR) [21] as our prediction model since
they are regression problems.
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Baselines

We compare LightPath with 9 baselines, including 6 unsupervised learning-
based methods and 3 supervised learning-based methods. The details of these
baseline methods are summarized as follows:

• Node2vec [6] is an unsupervised node representation model that learn
node representation in a graph. We achieve the path representation by
aggregating the node representations of the nodes in a path.

• MoCo [10] is a momentum contrast for unsupervised visual repre-
sentation learning. Here we use momentum contrast to learn path
representations.

• Toast [3] first uses auxiliary traffic context information to learn road
segment representation based on the skip-gram model and then utilizes
a stacked transformer encoder layer to train trajectory representation
through route recovery and trajectory discrimination tasks. We use the
same schema to learn path representations.

• t2vec [15] is a trajectory representation learning method for similarity
computation based on the encoder-decoder framework, which is trained
to reconstruct the original trajectory. We use a sequence of edges in a
path to represent a trajectory.

• NeuTraj [38] is a method that revised the structure of LSTM to learn
representations of the grid in the process of training their framework.
To support our task with it, we replace the grid with edges in their
framework.

• PIM [33] is an unsupervised path representation learning approach that
first generates negative samples using curriculum learning and then
employs global and local mutual information maximization to learn
path representations.

• HMTRL [16] is a supervised path representation learning framework
for multi-modal transportation recommendation.

• PathRank [35] is a supervised path representation learning model based
on GRUs, which treats departure time and driver ID as additional
information.

• LightPath-Sup is a supervised version of our LightPath, where we train
it in a supervised manner.
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Implementation Details

We employ an asymmetrical sparse auto-encoder architecture and randomly
initialize all learnable parameters with uniform distributions. In particular, we
adopt Siamese architecture, where we update the parameters of the auxiliary
encoder based on the momentum updating principle based on the main en-
coder and we set the momentum parameter m = 0.99. We employ node2vec [6]
to embed each edge to 128-dimensional vectors and set the dimension for
path representation to 128. We select concatenate as the relation aggregation
function a(·, ·). We use the AdamW optimizer with a cosine decay learning
rate schedule over 400 epochs, with a warm-up period of 40 epochs. We
set the base learning rate to 1e-3 and betas as (0.9, 0.95). We vary γ from
0.1,0.3,0.5,0.7,0.9 to study the effect of path scalability and efficiency for the
LightPath. In addition, we consider four different path lengths, i.e., 50, 100, 150,
and 200, to study the effectiveness, efficiency, and scalability of the LightPath.
We then evaluate our LightPath as well as all baselines on a powerful Linux
server with 40 Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz and two TITAN RTX
GPU cards. Finally, all algorithms are implemented in PyTorch 1.11.0.

7.2 Experimental Results

Overall Performance

Table E.3 shows the overall performance of our LightPath and all the compared
baselines on both datasets in terms of different evaluation metrics. Especially,
we select 30K unlabeled paths on Aalborg and Chengdu, respectively, but we
only have 12K labeled paths for both datasets. Thus, we use 30K unlabeled
paths to train path encoder for unsupervised-based methods. However, su-
pervised approaches can only use the 12K labeled paths. Overall, LightPath
outperforms all the baselines on these two tasks for both datasets, which
demonstrates the advance of our model. Specifically, we can make the fol-
lowing observations. Graph node representation learning approach based
Node2vec is much worse than LightPath. This is because Node2vec fails to
capture spatial dependencies in a path. In contrast, LightPath considers the
spatial dependencies through the self-attention mechanism, thus achieving
better performance.

Although MoCo considers the dependencies among edges in a path, this
method still performs worse. The main reason is that MoCo can leverage
the spatial dependencies, but it converges very slow since it needs large
amounts of negative samples to enable training. LightPath also outperform
t2vec and NeuTraj, which both are first design to learn trajectory representation
for trajectory similarity computation. This suggests that random drops on
some edges and not reconstruct these edges in a path resulting in spatial
information missing, thus achieving the worse performance on downstream
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Table E.3: Overall Accuracy on Travel Time Estimation and Ranking Score Estimation [36].
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Figure E.7: Effects of Pre-training.

tasks. PIM consistently outperforms all other unsupervised baselines, which
demonstrates the effectiveness of representation learning. The main reason
is that PIM is designed for path representation learning. However, PIM is
InfoNCE based method and has high computation complexity, making it hard
to deploy on resource-limited edge devices.

HMTRL, PathRank and LightPath-Sup are three supervised learning meth-
ods that achieve relatively worse performance due to the lack of labeled
training data. Since labeling data is very time-consuming and expensive. We
consider a scenario where labeled data is limited in this paper.

Using LightPath as Pre-training Methods

In this experiment, we evaluate the effect of Pre-training. We employ LightPath
as a pre-training method for the supervised method LightPath-Sup. Specifically,
we first train LightPath in an unsupervised fashion, and then we use the learned
transformer path encoder to initialize the transformer in LightPath-Sup. Here,
it takes as input a sequence of edge representations and predicts the travel time
and path ranking score. Figure E.7 illustrates the performance of LightPath-
Sup w. and w/o pre-training over two downstream tasks on both datasets.
When employing non-pre-trained LightPath-Sup, we train it using 12K labeled
training paths. We notice that (1) when employing pre-training, we can obtain
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Table E.4: Effect of Variants of LightPath

Method
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

w/o RR 94.90 0.12 13.85 0.17 0.66 0.70
w/o Rec. 103.45 0.14 15.76 0.15 0.65 0.69
w/o ME 91.57 0.12 13.09 0.16 0.68 0.72
w/o CN 93.17 0.12 13.35 0.15 0.68 0.73
w/o CV 89.84 0.12 13.51 0.15 0.68 0.72
LightPath 85.76 0.11 12.12 0.13 0.73 0.77

Method
Chengdu
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

w/o RR 224.31 0.19 21.90 0.14 0.76 0.79
w/o Rec. 229.24 0.20 22.36 0.16 0.69 0.73
w/o ME 223.81 0.19 21.86 0.13 0.78 0.81
w/o CN 217.14 0.18 21.29 0.08 0.80 0.83
w/o CV 215.59 0.18 21.20 0.09 0.81 0.83
LightPath 212.61 0.18 20.75 0.07 0.87 0.88

the same performance with no-pre-trained LightPath-Sup using less labeled
data. For example, LightPath-Sup w. pre-training only needs 8K, and 10K
labeled training paths for the Aalborg and Chengdu, respectively, to achieve
the same performance of LightPath-Sup w/o pre-training with 12k labeled
samples on the task of travel time estimation. (2) LightPath-Sup w. pre-training
achieves higher performance than LightPath-Sup w/o pre-training. We observe
similar results on the task of path ranking, demonstrating that LightPath can
be used as a pre-training method to enhance supervised methods.

Ablation Studies

To verify the effectiveness of different components in LightPath, we conduct
ablation studies on LightPath: a) effect of variants of LightPath, specifically
reconstruction (Rec) loss, relational reasoning (RR) loss, cross-network loss
and cross-view loss; b) effect of global-local knowledge distillation.

a) Effect of variants of LightPath, we consider five variants of LightPath:
1) w/o RR; 2) w/o Rec.; 3) w/o ME; 4) w/o CN; 5) w/o CV. In w/o RR, we only
consider path reconstruction loss and use main encoder; In w/o Rec., we
only consider relational reasoning loss; In w/o ME, we consider both path
reconstruction and relational reasoning losses, but we do not consider Siamese
architectures in dual path encoder; In w/o CN, we remove the cross-network
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Table E.5: Effect of KD, Global Loss and Local Loss

Method
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

w/o KD 87.77 0.11 12.94 0.14 0.70 0.74
w/o Global 90.24 0.12 13.31 0.18 0.67 0.71
w/o Local 89.23 0.12 12.78 0.16 0.69 0.73
LightPath 85.76 0.11 12.12 0.13 0.73 0.77

Method
Chengdu
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

w/o KD 213.26 0.18 20.97 0.08 0.84 0.86
w/o Global 220.32 0.19 21.52 0.09 0.79 0.81
w/o Local 215.03 0.19 21.02 0.08 0.82 0.84
LightPath 212.61 0.18 20.75 0.07 0.87 0.88

loss in RR; And in w/o CV, we remove cross-view loss in RR. Table E.4
report the results on both dataset. We can observe that (1) LightPath w/o
Rec. achieves the worst performance because the learned PR only capture
information from sparse path while ignoring the removed edges, which
verifies the importance of path reconstruction decoder; (2) LightPath w/o
RR also achieves the poor performance, which implies the effectiveness of
self-supervised relational reasoning. (3) We observe that the performance of
LightPath degrades without cross-network and cross-view loss on both datasets,
which further demonstrates the effectiveness of our relational reasoning loss.
(4) We notice that LightPath achieves the best performance. This result implies
that all the proposed modules contribute positively to the final performance,
which validates that LightPath takes advantage of all designed components.

b) Effect of KD, global KD loss, local KD loss: We further study the effect
of global-local knowledge distillation. We compared our framework with
three variants: 1) w/o KD, which denotes the performance of the teacher
model; 2) w/o global KD loss, which removes global loss from global-local
knowledge distillation; and 3) w/o local KD loss, which removes local loss from
global-local knowledge distillation. As shown in Table E.5, compared with
KD, LightPath achieves a better performance, which verifies that the teacher
model can improve the performance of the student model. Both global and
local loss can improve the performance of the learned path representation
of the student model. In specific, global loss makes more contributions to
the learned path representations. As a result, removing global loss degrades
performance significantly.
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Table E.7: Effect of Reduction Ratio γ

γ
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

0.1 82.79 0.11 11.95 0.12 0.74 0.77
0.3 84.75 0.11 12.14 0.13 0.73 0.77
0.5 84.81 0.11 11.86 0.14 0.72 0.76
0.7 85.91 0.11 12.49 0.14 0.71 0.75
0.9 85.76 0.11 12.12 0.13 0.73 0.77

Parameter Sensitivity Analysis

We proceed to study three important hyper-parameters, including 1) model
scalability w.r.t. reduction ratio and path length, 2) model scalability com-
parison, 3) Effect of Reduction Ratio γ, 4) the parameter of temperature for
global-local knowledge distillation, and 5) effect of balancing factor α.

Model Scalability In the sequel, we explore the model scalability in terms
of reduction ratio and path length based on the synthetic dataset. Table ??
depicts the results for both LightPath and its teacher model, with varying
γ = 0, 0.1, 0.3, 0.5, 0.7, 0.9. γ = 0 denotes we do not conduct sparsity operation
for the input path, i.e., using a classic Transformer based encoder. We can
observe that the GFLOPs and gMem. (GiB) decrease with the increase in the
reduction ratio. It is because the higher value of γ is, the more edges we can
remove. Second, LightPath has significantly reduced model complexity, w.r.t.,
GFLOPs and gMem.. For example, we can reduce the training GFLOPs by
2.54× for the LightPath by increasing the reduction ratio γ from 0 to 0.9 in
terms of path length 200. Moreover, LightPath also shows better performance
(i.e., GFLOPs and gMem.) over teacher model, e.g., 1.79× GFLOPs speedup
with reduction ratio γ = 0.9. Third, the parameters (Para. (Millions)) of
teacher model is at least 3.5× of LightPath, which implies the effectiveness of
our proposed framework. Overall, LightPath shows potential of scalability to
support path representation learning for long paths.

Model Scalability Comparison In this section, we further explore the scal-
ability performance (i.e., GFLOPs, gMem.(GiB), and Para. (Millions)) of
LightPath compared with PIM and Toast with respect to different path lengths.
We select PIM since (1) it achieves the better performance compared with other
unsupervised baselines (cf. Table E.3); (2) it is a InforNCE based contrastive
path representation learning method. In contrast, we choose Toast since it
is Transformer-based method. Table E.9 report the experiment results. We
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Table E.8: Effect of Temperature t in KD

t
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

1 92.01 0.12 13.30 0.16 0.65 0.69
3 94.11 0.12 13.54 0.15 0.68 0.72
5 90.39 0.12 12.85 0.15 0.66 0.70
7 89.64 0.12 12.76 0.15 0.70 0.74
9 85.76 0.11 12.12 0.13 0.73 0.77
11 87.15 0.12 12.43 0.14 0.70 0.74

t
Chengdu
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

1 225.70 0.20 22.02 0.09 0.79 0.82
3 217.07 0.19 20.77 0.09 0.81 0.84
5 216.93 0.19 21.24 0.08 0.83 0.86
7 214.88 0.19 20.98 0.08 0.86 0.87
9 212.61 0.18 20.75 0.07 0.87 0.88
11 214.17 0.19 21.00 0.08 0.83 0.85

observe that, (1) although the LightPath’s model parameters is at least 2×
compared with PIM, the GFLOPs and gMem. of LightPath is much less than
PIM. In particular, LightPath has much less GFLOPs and gMem. compared
with PIM when path length is 200. i.e., 42.47 v.s. 12.31 and 2.80 v.s. 1.65; (2)
LightPath has significant computation performance improvement over Toast,
where the GFLOPs becomes much larger than LigthPath when path length
increases, i.e., at least 9×. In addition, Toast also needs larger memory com-
pared with LightPath when path length gets long, i.e. 3.38 v.s. 1.65 when
path length is 200. Overall, our LightPath shows good potential scalability to
support deploying it on resource-limited environments.

Effect of Reduction Ratio γ To study the impact of reduction ratio γ in the
final performance, we conduct an experiment by varying the γ from 0.1 to
0.9 on Aalborg, which is shown in Table E.7. We can observe that the overall
performance in both downstream tasks degrades a little when γ increases,
which is reasonable as the the model has more input information. However,
we can also observe the performance differences are not so significant, which
suggests the effectiveness of our proposed framework. Even when a high
reduction ratio is applied, the performance does not does not go down too
much. Therefore, our proposed method can achieve good scalability while
ensuring accuracy.
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Table E.9: Model Scallability Comparison

N
LightPath PIM Toast
GFLOPs/gMem./Para. GFLOPs/gMem./Para. GFLOPs/gMem./Para.

50 3.18/1.33/1.57 10.62/2.02/0.66 28.43/2.23/1.81
100 6.23/1.43/1.57 21.23/2.28/0.66 56.87/2.63/1.81
150 9.27/1.52/1.57 31.85/2.55/0.66 93.30/2.95/1.81
200 12.31/1.65/1.57 42.47/2.80/0.66 113.74/3.38/1.81

Table E.10: Effect of Balancing Factor α

α
Aalborg
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

0 90.24 0.12 12.78 0.16 0.69 0.73
0.2 89.35 0.12 12.85 0.14 0.69 0.73
0.4 91.57 0.12 13.17 0.15 0.69 0.73
0.6 85.76 0.11 12.12 0.13 0.73 0.77
0.8 87.44 0.12 12.76 0.14 0.70 0.75
1 89.23 0.12 12.78 0.16 0.69 0.73

Method
Chengdu
Travel Time Estimation Path Ranking
MAE MARE MAPE MAE τ ρ

0 220.32 0.19 21.52 0.09 0.79 0.81
0.2 217.10 0.19 21.34 0.09 0.78 0.80
0.4 217.33 0.19 21.21 0.08 0.85 0.87
0.6 212.61 0.18 20.75 0.07 0.87 0.88
0.8 214.34 0.19 20.93 0.08 0.84 0.86
1 215.03 0.19 21.02 0.08 0.82 0.84

Effect of Temperature t of Knowledge Distillation To study the effect of
the temperature t, we conduct a parameter study on both datasets, which is
reported in Table E.8. We can observe that the performance of LightPath varies
with different temperatures. It can be figured out that the best temperature
t is 9, which indicates warm temperature can mitigate the peakiness of the
teacher model and results in better performance.

Effect of Balancing Factor α . To study the effect of the balancing factor of
global-local knowledge distillation, we conduct a parameter study on both
datasets. Based on the results reported in Table E.10, we observe that the
performance of our model changes when varying α. We can observe that the
optimal α is 0.6, which means that global and local knowledge distillation
loss can contribute to the LightPath’s performance. When α = 0, the global
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knowledge distillation loss is ignored, which yields poor performance. When
α = 1.0, the local knowledge distillation loss is ignored, and the performance
also performs poorly. This confirms our conjecture that the two proposed
global-local knowledge distillation losses can regularize each other and achieve
better results than only optimizing one of them (i.e., α = 0.0 or α = 1.0).

Model Efficiency

We finally evaluate the model efficiency, including training and inference
phases. Figure ?? illustrates the corresponding results. The first observation
is that LightPath outperforms PIM and Toast in both training and inference
phases. In the training phase, LightPath is more than 3× faster than PIM and
almost 5× faster than Toast when path length is 200. In the testing phase,
we measure the running time for each path sample. As observed, LightPath
achieves up to at least 100% and almost 200% performance improvement
compared with PIM and Toast when path length is 200.

8 Conclusion

We design a lightweight and scalable framework called LightPath for unsu-
pervised path representation learning. In this framework, we first propose
sparse auto-encoder that is able to reduce path length N to N′, where N
is much larger than N′, which in turn reduces the computation complexity
of the model. Then, we use path reconstruction decoder to reconstruct the
input path to ensure no edges information missing. Next, we propose a novel
self-supervised relational reasoning approach, which contains cross-network
relational reasoning and cross-view relational reasoning loss, to enable effi-
cient unsupervised training. After that, we introduce global-local knowledge
distillation to further reduce the size of sparse path encoder and improve the
performance. Finally, extensive experiments on two real-world datasets verify
the efficiency, scalability, and effectiveness of LightPath.
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