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Abstract

In practical scenarios, a sample may have multiple labels that reveal its classes instead of a single la-

bel, which is widely known as multi-label classification (MLC). However, some practical situations may

lack reliable labels due to the high cost, time-consuming and professional labelling process. Although

Semi-supervised classification may become a potential solution, most of the outstanding existing meth-

ods are customized for the single-label situation and ignore multi-label situations. Consistency regu-

larization has performed great success in Weakly/Semi-supervised Single-label classification (SS-SLC),

but few efforts have been devoted to semi-supervised Multi-label classification (SS-MLC). A simple

solution for introducing consistency regularization to SS-MLC is to regularize predictions of models to

be consistent with different augmentation of the same image. Nonetheless, the solution lacks attention

to label relations which are crucial components of Multi-label classification.

In the thesis, I go beyond the consistency regularization in SS-SLC and propose Conditional Con-

sistency Regularization (CCR) that is designed for SS-MLC. To be specific, we make potential labels

(grand-truth label for labeled samples, pseudo-label for unlabeled samples) conditioned on different la-

bel states (i.e., positive, negative, or unknown for each class). By regularizing the two predictions to

be invariant, the model can learn label relations implicitly between two different label states, which

can boost classification performance. The comprehensive experiments that are conducted on different

datasets show that the proposed method can surpass state-of-art SS-MLC and MLC methods by a large

gap.
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CHAPTER 1

Introduction

1.1 Research Background

With the development of machine learning technology, many machine learning methods have been pro-

posed for many tasks, such as object detection, image classification, regression, etc. A practical classi-

fication scenario in the real world is that a simple sample may have a great number of descriptions or

classes. For example, an image shows "A man rides a motorbike on the road." The image may contains

’person’,’motorbike’ and ’road’. This kind of classification task is also known as multi-label classifi-

cation (MLC), which aims to assign multiple labels to a single input sample and keep vibrant in recent

years (Chen et al., 2019b; Xie and Huang, 2021; Cole et al., 2021; Hu et al., 2021; Gupta et al., 2021;

Gao and Zhou, 2021). Compared with single-label classification, a single input sample only have one

corresponding label (LeCun et al., 2015; He et al., 2016; Simonyan and Zisserman, 2015; Szegedy et al.,

2016; Xia et al., 2020; Wu et al., 2021), MLC is more valuable and challenging because most practi-

cal scenarios tend to have multi-label in a sample and consideration of more labels and their relations

(Gong et al., 2013; Wang et al., 2016; Li et al., 2016; Zhu et al., 2017; Xu et al., 2016). However, due

to the high-expense, labour-exhaustive, time-consuming and speciality of labelling process (Liu et al.,

2021), it is challenging to obtain reliable labels in practical cases. As a result of that, it is necessary and

meaningful to make the model can utilize massive unlabeled samples, which is also widely known as

Semi-supervised multi-label classification (SS-MLC).

1.1.1 Semi-supervised Single/Multi-label classification (SS-SLC/SS-MLC)

1.1.1.1 SS-SLC

SS-SLC is a task that set up a learning model and learning knowledge from a dataset that contains a few

of labeled samples and a large quantity of unlabeled samples, where a single labeled sample has only a

1
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single corresponding label. Normally, the most of SS-SLC tasks are inductive setting. It assumes that

the test samples are unknown samples and the unlabeled samples are not the test samples (Zhou, 2018).

The learned model is able to predict the label accurately when given unseen test samples. Formally, the

goal of SS-SLC is to learn a model fθ(·) from Nu unlabeled images Du = {(xj)}Nu
j=1 and Nl labeled

images Dl = {(xi, yi)}Nl
i=1, where x is the input samples and y is corresponding labels that can describe

the input x. A good learned model fθ(·) is able to accurately predict y from an unseen instance x

(Van Engelen and Hoos, 2020). There is also a special SS-SLC setting, which is named the transductive

setting. It assumes that the test data is given in advance and the unlabeled samples are the test samples.

The major aim is to increase the performance on test samples (Zhou, 2018). In the thesis, we will focus

on inductive settings, which are closer to practical tasks.

This kind of learning paradigm could partially resolve the problems of lack labels. Compared with

common single-label classification, it can leverage massive unlabelled samples with outstanding perfor-

mance that reduce the requirements of massive accurate labels. Therefore, semi-supervised classification

is one of the hottest and most popular research topics in the field of machine learning in recent years

(Zhou, 2018; Yang et al., 2021). A great number of researchers have proposed impressive methods to

deal with this task, like the self-training method (also known as pseudo-label) (Lee et al., 2013), con-

sistency regularization method (Samuli and Timo, 2017; Xie et al., 2020a), generative method (Kingma

et al., 2014), co-training method (Blum and Mitchell, 1998; Qiao et al., 2018) and hybrid method (Sohn

et al., 2020). Although these methods achieve excellent performance, they have not been extended to

SS-MLC, which is also a practical situation in real-world applications.

1.1.1.2 SS-MLC

SS-MLC is a task that proceeds MLC with a small number of labeled samples and a massive number of

unlabeled samples. Some early age methods utilize label propagation methods to address SS-MLC under

transductive setting (Lin et al., 2017a; Kong et al., 2011; Gong et al., 2016). However, these methods

are difficult to generalize to unseen test samples. Some researchers also proposed methods in inductive

setting (Jing et al., 2015; Wu et al., 2015), like manifold regularization, probabilistic framework (Chu

et al., 2018), pseudo-labels (Wang et al., 2021), etc, which the model could generalize to unseen test

samples. Although some methods are effective, these methods ignore the natural fact that the model

predictions should be similar when inputting a perturbed version of the same image, which is also

known as consistency regularization (Sajjadi et al., 2016; Tarvainen and Valpola, 2017).
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1.1.2 Consistency regularization

Consistency regularization is one of the state-of-art methods that achieved promising performance in SS-

SLC. Generally, this method assumes that the predictions of the learned model should be consistent when

we input different image augmentations that originate from the same image (Xie et al., 2020a; Berthelot

et al., 2019b; Huang et al., 2022). There are many image augmentation methods that have been proposed,

like some weak augmentations, which only slightly add perturbations and strong augmentation, which

makes large variations of the image (Cubuk et al., 2020). Consistency regularization has been verified in

many previous papers (Sohn et al., 2020; Zhang et al., 2021) that it can achieve outstanding performance

in weakly/semi-supervised learning areas. It is necessary to extend advanced MLC and SS-SLC methods

to SS-MLC area to obtain better performance.

Specific literature on MLC, SS-SLC, SS-MLC and Consistency Regularization will be exhaustively

discussed in section 2 below. This part only has a brief introduction of the background.

1.2 Current problems

Currently, there are no feasible and effective solutions to utilize a small number of labeled samples and

a large number of unlabeled samples in multi-label learning, also named semi-supervised multi-label

classification, which limits the applications of multi-label learning. Although some previous researchers

have proposed some impressive methods in MLC, SS-SLC and SS-MLC, they have some weaknesses

in practical situations. Methods in MLC (Lanchantin et al., 2021) achieve excellent performance under

reliable supervision by considering multi-labels and their relations. However, it is difficult to obtain

plenty of reliable labels due to the high-cost, time-consuming and professional labeling process in a

practical situation. These methods can not utilize a great number of unlabeled samples that easy to

obtain in the training phase, which is a practical challenge. Methods in SS-SLC (Berthelot et al., 2019a;

Cascante-Bonilla et al., 2021) achieve outstanding performance via using unlabeled samples. However,

they can not adopt multi-label situations and they also can not learn label relations between multi-label,

which has been verified to be unique and crucial for multi-label situation (Gong et al., 2013; Wang et al.,

2016; Li et al., 2016; Zhu et al., 2017). Although few methods in SS-MLC are effective, they ignore a

natural fact: the model predictions should be similar when inputting the perturbed version of the same

image, known as consistency regularization, which is an advanced method in SS-SLC. It is meaningful to

be introduced and tailored for SS-MLC. One intuitive solution for introducing consistency regularization
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to SS-MLC is to regularize the predictions of the model to be consistent under different augmentations

of the same image. However, such a direct method is not suitable for SS-MLC because it lacks the

learning process of label relations that have been proved vital for MLC. Therefore, it is meaningful and

necessary to conduct research that proposes an algorithm adopted and customized for SS-MLC that can

leverage unlabeled samples and learn label-relations between multi-label.

1.3 Major work and contribution

1.3.1 Major work

Compared to the intuitive solution discussed above, the thesis goes beyond the traditional consistency

regularization and focuses on customizing for SS-MLC. The proposed method goes a step further by

giving consistency regularization with the ability of modeling label relations, which we named Condi-

tional Consistency Regularization (CCR). To be specific, the CCR models the input contains an image

and a label state. The label state denotes the state of each class as positive, negative or unknown. In

the training process, the model makes predictions of two augmented images conditioned on different

label states respectively. Because of the minimization of the distance between these two predictions, the

outputs obtained from different label states and augmented images are encouraged to be consistent. In

this way, the model is able to learn label relations from different label states. Specifically, for labeled

samples, the label state is a randomly masked version of the ground truth label, where parts of the label

state are set to unknown. While, for unlabeled samples, because there is no ground truth label, we set up

pseudo-label memory that utilizes the pseudo-label of each image in the latest epoch. Then, similar to

labelled samples, the label is generated by randomly masking the pseudo-label with the unknown state.

At test time, the label state is set to unknown for every class in order to obtain accurate predictions.

To better explain our method intuitively, we can take Fig 1.1 as an example, the label state of Person

for the weakly-augmented image and the label state of Motorbike for the strong-augmented image is

set to be positive. When we push the two predictions to be consistent, the model is encouraged to output

positive predictions for both Person and Motorbike, which means the model can learn class Peson and

class Motorbike are likely to appear in one image. Similarly, class Motorbike and class Cat are not

likely to appear together in one image due to the same reason. Under this training process, the model can

learn label relations between multi-label and images that can reason the unknown class (e.g., Person,

which is involved in another label state) based on the known label state (e.g., Motorbike) by pushing
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Model

Model

Same prediction

Model

Model

Same prediction

Person: Unknown

Motorbike: Unknown
Bus: Unknown
Cat: Unknown
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Motorbike: Unknown

Bus: Negative
Cat: Unknown

(a) Consistency Regularization

Model

Model

Same prediction

Model

Model

Same prediction

Motorbike: Unknown
Aeroplane: Negative

Bird: Unknown
Cat: Negative

Motorbike: Positive
Aeroplane: Unknown

Bird: Negative
Cat: Unknown

Person: Positive

Person: Unknown

(b) Conditional Consistency Regularization

FIGURE 1.1: Difference between conventional consistency regularization and our pro-
posed Conditional Consistency Regularization (CCR).

the model predictions to be the same to different label states. Namely, a higher confidence of a known

class, like class Person, promotes a higher probability of an unknown class, like Motorbike that

appears in the same image. In this way, the model can learn label relations implicitly by the proposed

CCR framework. In order to verify the feasibility and the effectiveness of the CCR, I conduct the

experiments on various practical datasets, like VOC-2007 and COCO-80. The CCR’s performance

could outperform the state-of-arts at about 10% on average.

1.3.2 Contribution

The major contributions are summarized as follows:

• The thesis is the first to introduce consistency regularization, which is known as the outstanding

technology in SS-SLC to SS-MLC.

• In order to learn label relations and knowledge of unlabeled samples, we proposed CCR, which

is a novel SS-MLC method with detailed explanations, discussions, and analysis.
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• Extensive and comprehensive experiments have been carried out on different datasets and var-

ious baselines, with complete ablation studies to evaluate the effectiveness of the CCR and

result in a performance boost in SS-MLC.

• Discussion of CCR has been introduced, which describes the advantages, disadvantages and

future work of the CCR.

1.4 Structure of the thesis

The structure of the thesis is summarized as follows. Chapter 1 is the introduction of the thesis. Chapter

2 is the literature review of the thesis. Chapter 3 introduces the proposed CCR method in detail. Chapter

4 is about the experiments. Chapter 5 is a discussion of the proposed method. And Chapter 6 is the final

conclusion of the thesis.

• Chapter 1: Introduction

This chapter provides brief introduction of the research background, including MLC, SS-

SLC, SS-MLC and consistent regularization. On this basis, this chapter also summarizes the

major work, performance and contribution of the proposed method.

• Chapter 2: Literature Review

This chapter briefly summarizes the relevant work of the thesis, including MLC, SS-SLC,

SS-MLC and consistency regularization.

• Chapter 3: Method

This chapter gives a detailed explanation of the proposed method - CCR. It includes Prob-

lem Formulation, Method Overview, Multi-view Image Consistency Regularization, Condi-

tional Consistency Regularization with Label State, Training Objective and Comparison with

other baselines, etc.

• Chapter 4: Experiments

This chapter describes the experiment in detail, including experimental setup, performance

comparison with other benchmarks, ablation research, etc.

• Chapter 5: Discussion

This chapter discusses the proposed method, Comparison with previous work, open prob-

lems, potential extension and significance of the proposed method.

• Chapter 6: Conclusion
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This chapter provides a summary of the thesis and proposes some meaningful ideas that

could be done in the future.



CHAPTER 2

Literature Review

This chapter will discuss related work on Multi-label classification (MLC) in section 2.1, Semi-supervised

Single-label classification (SS-SLC) in section 2.2, Semi-supervised Multi-label classification (SS-MLC)

in section 2.3 and consistency classification in section 2.4. Moreover, Fig 2.1 shows the difference be-

tween MLC, SS-SLC and SS-SLC.

2.1 Multi-label classification (MLC)

MLC keeps vibrant in recent years with outstanding performance and benefits a massive number of

practical applications, like text classification, image classification, protein classification, etc. It assigns

multiple labels to a single input instance. In general, the model could learn knowledge from a dataset that

contains a large number of training examples and their corresponding multi-labels (Liu et al., 2021). The

learned model could predict accurately the multi-labels when the unseen samples are inputted. Com-

pared with single-label classification, the effective MLC methods not only learned excellent features of

the image but also explored the fund of knowledge of label relations to improve classification perfor-

mance, which is a unique and pivotal factor to achieve excellent performance. Lots of methods have been

proposed with impressive performance in MLC areas. Some methods estimate the joint probabilities of

predicted labels from given inputs by using chain rules (Dembczynski et al., 2010; Nam et al., 2017;

Read et al., 2009). Some methods leverage shared latent space of features and labels (Bhatia et al.,

2015; Yeh et al., 2017). Some methods modified loss function that adapted MLC (Lin et al., 2017b;

Ridnik et al., 2021; Wu et al., 2020). Some researchers modelled label relations and label dependen-

cies by utilizing inference formulation (Guo and Gu, 2011; Li et al., 2016). Finally, some state-of-art

methods introduced graph neural networks according to label occurrence frequency (Chen et al., 2021,

2019b,a). Those previous methods have achieved promising classification performance in MLC, they

can not utilize massive unlabeled samples during the training process.

8
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FIGURE 2.1: Difference between MLC, SS-SLC and SS-MLC.

2.2 Semi-supervised Single-label classification (SS-SLC)

Semi-supervised single-label classification (SS-SLC) is a problem setting that the training set that con-

tains a small proportion of labeled examples and a large proportion of unlabeled examples, which is

also known as semi-supervised classification or semi-supervised learning. It is a popular research topic

that has a great number of methods in recent days. For example, Pseudo-label methods (also known as

self-training) utilize the model’s high confidence prediction of unlabeled samples which could be con-

sidered as labeled samples to increase classification performance (Lee et al., 2013; Xie et al., 2020b).

Consistency regularization is a kind of method that states that the variations of input data should not

affect the output of the model (Samuli and Timo, 2017; Xie et al., 2020a). Generative methods can set

up a feasible connection between unlabeled samples and labels by using P (x, y) = P (y)P (x|y) (Dai

et al., 2017; Kumar et al., 2017; Liu et al., 2020). On top of those methods, There are other types of

methods that can achieve outstanding performance, such as graph-based methods (Iscen et al., 2019;

Kipf and Welling, 2016; Liu et al., 2017; Wang et al., 2020), hybrid methods (Sohn et al., 2020) that

mix the methods above. For example, Mixmatch (Berthelot et al., 2019b) produces pseudo-labels for

augmented unlabeled samples and mixes the labeled and unlabeled samples via Mixup (Zhang et al.,

2016) to learn better representations. Remixmatch (Berthelot et al., 2019a) extends from the Mixmatch



2.4 CONSISTENCY REGULARIZATION 10

via adding novel augmentation skills and distribution alignment. Fixmatch (Sohn et al., 2020) proposed

a simple but effective way to combine pseudo-label methods and consistency methods. PAWS (Assran

et al., 2021) tailed novel algorithms for SS-SLC that can utilize both labeled samples and unlabeled

samples under self-supervised learning. Although these semi-supervised single-label learning methods

have promising performance, they can not adapt to multi-label scenarios and are unable to learn label

relations which is unique and crucial for better performance in MLC.

2.3 Semi-supervised Multi-label classification (SS-MLC)

SS-MLC is conducting MLC with small parts of labeled samples and large parts of unlabeled samples

which the thesis focuses on. label propagation methods are popular in the early days. For example,

a curriculum-learning-based label propagation is proposed by (Gong et al., 2016) in 2016. DLP and

DGFLP (Wang et al., 2013; Lin et al., 2017a) design a dynamic label propagation process. While the

majority of these label propagation methods are under a transductive setting, which means that the al-

gorithm is unable to generalize to unseen test examples. As for the algorithm that can be generalized

to unseen test samples, which is also known as the inductive setting. SLRM (Jing et al., 2015) utilizes

unlabeled examples by constructing a low-rank mapping from feature space to label space based on

manifold regularization. COINS (Zhan and Zhang, 2017) maximizes the difference between two classi-

fiers and updates the model by ranking predictions on unlabeled examples, which is an extension of the

co-training strategy. Moreover, Chu et al. (Chu et al., 2018) constructs a generative model by using a

sequence architecture. DRS (Wang et al., 2021) aligns the feature distribution of labeled and unlabeled

examples into a latent space by proposing a two-classifier domain adaption network and learning the la-

bel relations by using a graph-based relation network. Although effective, the aforementioned methods

ignore the natural fact that the model predictions should be similar for perturbed versions of the same

image. In the thesis, I propose to introduce consistency regularization and go beyond it by building

relations between different label states.

2.4 Consistency Regularization

Consistency regularization is a kind of technique that states that the variations of input data should not

affect the output of the model based on the manifold assumption (Yang et al., 2021). It could also be

regarded as utilizing unlabeled examples to find a smooth manifold on the datasets (Belkin and Niyogi,
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2001). Recently, consistency regularization is used in SS-SLC and becomes a key module of the state-

of-the-art methods in the semi-supervised learning area. Existing methods put efforts into different

aspects of the variations and training framework. For example, some methods add augmentations to

images. Sajjadi et al. (Sajjadi et al., 2016) generates two stochastic augmentations. Xie et al. (Xie et al.,

2020a) investigates the input variation effects in consistency regularization and utilizes high-quality

data augmentation for images, like AutoAugment (Cubuk et al., 2019) and RandAugment (Cubuk et al.,

2020). Miyato et al. (Miyato et al., 2018) produces adversarial perturbations. The variations can also

be added to the neural network, such as adding Gaussian noise in every network layer (Rasmus et al.,

2015) and dropping some connections and layers (Zhang and Qi, 2020). Moreover, some variations

are produced in the training framework. For example, Mean Teacher (Tarvainen and Valpola, 2017)

builds a teacher-student framework that leverages the model parameter’s exponential moving averages.

Temporal ensembling (Samuli and Timo, 2017) sets up a temporal training framework that computes

the consistency loss on current epoch predictions and previous epoch predictions. The mentioned meth-

ods above achieved outstanding performance in SS-SLC. However, these methods are not specifically

designed for MLC, since they lack the consideration of label relations and label dependencies. In con-

trast, the proposed CCR is tailored for SS-MLC and constructs the consistency by making the model

predictions conditioned to different label states, which helps to make use of label relations for boosting

classification as discussed.

2.5 Summary

Although the previous methods achieve impressive performance in MLC, SS-SLC, and SS-MLC, these

methods have their specific weakness to address SS-MLC. The proposed method gives a feasible solution

that takes the advantage of both MLC and semi-supervised classification by taking account of label

relations and unlabeled samples which are unique and important in both areas.



CHAPTER 3

Method

In this chapter, the thesis discusses the specific methods of conditional consistency regularization in SS-

MLC. In section 3.1, I first introduce the overview of the method with formal problem formulation. In

section 3.2, the thesis explains the consistency regularization that the method used. In section 3.3, the

thesis discusses conditional consistency regularization via label state and its generation and discussion.

In section 3.4, the thesis formally defines the training objective of the proposed method and finally

compares the proposed method with the current advanced SS-SLC method in section 3.5.

3.1 Method Overview

The thesis proposes Conditional Consistency Regularization (CCR) to deal with the SS-MLC problem.

As shown in Fig. 3.1 and Alg. 1, the model input includes an augmented image and a label state that

has three states of positive (P), negative (N), and unknown (U) for each class. For a labeled example

xi, following techniques in masked sequence modeling (Kenton and Toutanova, 2019; Lanchantin et al.,

2021), the proposed method generates label states si ∈ {0, 1,U}C by masking a certain amount of

ground truth labels as unknown. Then, the proposed method calculates the Binary Cross Entropy (BCE)

loss only on those unknown classes. Hence, the model learns to use the known label states and the input

image xi, to predict the unknown classes.

For an unlabeled example xj , since there is no ground-truth label, the proposed method builds a pseudo-

label memory to cache the pseudo-label ȳj of each example xj from the latest epoch. Subsequently,

the label states sj is generated from the masked version of ȳj like the labeled examples. As for im-

age xj , the proposed method applies a weak augmentation α(·) and a strong augmentation Λ(·) to it

respectively (Sohn et al., 2020), denoted as α(xj) and Λ(xj). The two augmented views and their la-

bel states are then fed into the model fθ(·) to obtain the final predictions, which are encouraged to be

consistent by a Mean Square Error (MSE) loss function in the training phase. It should be noted that

12
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the masks for label states of different views are randomly generated, resulting in different label states

for two augmented views. Therefore, when the proposed method pushes the two model predictions to

be the same, the model learns the relations between the two different label states. On the other hand,

the consistency between the two augmented views facilitates the learned models to be invariant under

diverse data augmentation transforms.

Compared with previous methods, conditional consistency regularization makes predictions of two aug-

mented images conditioned on different label states respectively which helps to learn the knowledge

of unlabeled samples and their label relations. It should be noted that the proposed method is simi-

lar to most SS-SLC methods which only have one model, the labeled samples, unlabeled samples and

augmented samples will be input into one model in every epoch.

As for the formal problem definition of SS-MLC, we can define that the goal of SS-MLC is to learn a fea-

ture embedding network(commonly neural network) fθ(·) from Nu unlabeled images Du = {(xj)}Nu
j=1

and Nl labeled images Dl = {(xi, yi)}Nl
i=1. For each image xi, yi ∈ {0, 1}C is the corresponding one-

hot label, where C is the number of classes. We define y[c] = 1 if the image is associated with the c-th

label, otherwise y[c] = 0. A good feature embedding network fθ(·) is able to accurately predict y from

an unseen instance x.
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FIGURE 3.1: Illustration of the proposed Conditional Consistency Regularization (CCR) framework for semi-supervised multi-
label classification.
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Algorithm 1 Pseudo-codes of our proposed method

Required: (xi, yi)→ labeled training examples
Required: xj → unlabeled training examples
Required: fθ(·)→ the model with parameters θ
Required: α(·) and Λ(·)→ weak and strong augmentation functions
Required: g(·)→ the label state generation function
Required: h(·|ru, rl)→ the pseudo-label generation function with thresholds ru and rl
Required: M → pseudo-label memory for the unlabeled images
Required: w(t)→ the ramp-up weighting functions of the t-th epoch
Required: Bi and Bj → batch sizes for labeled and unlabeled examples
1: for t in [1, num_epochs] do
2: for each mini batch B do
3: si ← g(yi), sj,w ← g(Mj), sj,s ← g(Mj) {Get the label states}
4: zi ← fθ(α(xi)|si) {Feed-forward for labeled examples}
5: zj,w ← fθ(α(xj)|sj,w) {Feed-forward for unlabeled examples with weak augmentation}
6: zj,s ← fθ(Λ(xj)|sj,s) {Feed-forward for unlabeled examples with strong augmentation}
7: Mj ← h(zj,w|ru, rl) {Update the pseudo-label memory}
8: loss← 1

Bi
BCE(zi, yi)+ {BCE loss for labeled examples}

9: w(t) 1
Bj

MSE(zj,w, zj,s) {MSE loss for unlabeled examples}
10: end for
11: end for

3.2 Multi-View Image Consistency Regularization

Inspired by FixMatch (Sohn et al., 2020) in SS-SLC, we introduce the multi-view image consistency

regularization into SS-MLC. It generates two different views of the same unlabeled image by using weak

augmentation α(·) and strong augmentation Λ(·) respectively. In more detail, the weak augmentation

consists of a horizontal flip with a probability of 50% and a random crop operation. While the strong

augmentation consists of RandAugment (Cubuk et al., 2020; Xie et al., 2020a) and Cutout (DeVries

and Taylor, 2017). RankAugment works by randomly selecting transformation on each input image,

including AutoContrast, Brightness, Equalize, Sharpness, Posterize, Solarize, etc.

In the multi-view image consistency regularization, for each unlabeled example xj , two augmented

views α(xj) and Λ(xj) are generated. They are then fed into the model to obtain two predictions.

By minimizing the distance between the two predictions, we are able to impose a constraint on the

model to make it harder to memorize the training data. Therefore, the model will be more robust when

generalizing to unseen data (Berthelot et al., 2019b).

Although the multi-view image consistency regularization achieves great successes in SS-SLC, it lacks

the consideration of label relations, which is vital for MLC (Gong et al., 2013; Wang et al., 2016; Li
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et al., 2016; Zhu et al., 2017). To tackle this issue, in the following subsection, we will introduce our

proposed CCR for SS-MLC.

3.3 Conditional Consistency Regularization with Label State

Label state

The label state s represents the state of labels for each input image. There are three possible states:

positive (P), negative (N), or unknown (U). For example, if we have prior knowledge that the image is

associated with the c-th label, s[c] is positive. If not, s[c] is negative. It also can be unknown if we give

no prior knowledge of the c-th class.

Label state generation for labeled examples

During training, for the labeled example xi, we have a ground truth label yi, which can be used as the

label state si. However, directly giving yi to the model will inevitably make the model fall into a trivial

solution since the model simply learns to output the given yi. To handle this problem, we refer to masked

sequence modeling (Kenton and Toutanova, 2019; Lanchantin et al., 2021). Specifically, we mask some

percentages of yi at random and use the remaining parts (via the label state) to predict the masked labels.

In this case, the classes corresponding to the masked position are set as the unknown state.

Formally, for a given label yi = (y1i , y
2
i , . . . , y

C
i ), where C is number of possible classes. We ran-

domly mask 25% to 100% labels and replace them with a special symbol [unknown] as did in the liter-

ature (Lanchantin et al., 2021). Denote κ as the set of masked positions, yκi as the set of masked labels,

and si as the labels after masking. As shown in the example in the upper case of Fig. 1.1(b), κ = {1, 3},

yκi = {y1i , y3i }, and si = g(yi) = ([unknown], y2i , [unknown], y4i , y
5
i ) = ([U], [N], [U], [N], [P]), where

g(·) is the label state generation function. To integrate the generated label state and the input image,

we transform each element in si to a d dimension feature vector by a learned embedding layer of a size

d×3. Then, the embedded label state, acting as the condition, is added to the image feature as the model

input.

Label state generation for unlabeled examples

As there are no ground truth labels for the unlabeled examples, one possible solution is to employ

pseudo-labels as an alternative. To achieve this goal, for each training iteration, we should evaluate
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the weakly-augmented image to obtain the pseudo-labels first. Then, the label state can be generated

from the obtained pseudo-labels. However, there are two feed-forward runnings for each unlabeled

example in this case, which makes the training process inefficient and time-consuming. To tackle this

challenge, we propose to use pseudo-label memory with a size of d×Nu, which stores the latest pseudo-

label for each unlabeled example. More specifically, at each training iteration, we use the function

h(·|ru, rl) to generate pseudo-labels from the prediction of the weakly-augmented image, where ru is

the upper threshold and rl is the lower threshold. If the probability of a class is higher than the upper

threshold ru, we assign the pseudo-label of this class as positive. While, if the probability of a class

is lower than the lower threshold rl, we assign the pseudo-label of this class as negative. For the class

with probabilities between ru and rl, we assign the pseudo-label of this class as unknown. In our

implementation, the pseudo-label memory is initialized as unknown for all unlabeled examples. The

reason why we set threshold rl and ru and choose relatively high confidence labels for pseudo-labels

is that higher confidence usually results in more reliable pseudo-labels, which possibly reduce the side

effect of noisy pseudo-labels, especially at the beginning of the training when the model’s predictions

are unstable.

After acquiring the pseudo-label memory, we generate the label state for each unlabeled example by

mimicking the masking process of the labeled example as described before. Note that, different from

the ground truth labels that only have positive or negative states, there actually exists the unknown state

in the pseudo-label memory (i.e., the classes with probabilities between ru and rl). Therefore, we only

mask 25% to 100% positive or negative states for unlabeled examples.

It should be noticed that the label state generation process is conducted for each augmented image.

Therefore, the label states for the two different views (i.e., weakly-augmented and strongly augmented

views) of unlabeled examples are likely to be different. When we minimize the distance between the two

model predictions that are obtained from these two different views, the model is encouraged to output

the same distribution conditioned on the two different label states. The model hence learns the relations

between the two different label states.

At inference time, since there is no prior label knowledge for the test data, we set the input label state as

unknown for each class.

Discussions
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One intuitive reason for introducing the label state is to provide the prior label observation to the model.

It acts like Masked Language Modeling (MLM) (Kenton and Toutanova, 2019). In MLM, the model is

trained to predict missing words from the given language context. As a result, it can learn the correlation

between the words from the unlabeled training corpus. Our CCR framework works in a similar way

for learning correlation between the classes, but differs from it in two aspects: 1) MLM typically learns

from the unlabeled corpus, since the word correlation exists in every language context (e.g., a sentence

or a paragraph). While our CCR learns correlation from the labels or pseudo-labels; 2) There are only

three states (i.e., positive, negative, or unknown) for our CCR, while there are tens of thousands kinds

of word embeddings in MLM. Therefore, our CCR does not need massive training data to learn the

correlation like the MLM.

3.4 Training Objective

The proposed Conditional Consistency Regularization (CCR) contains two loss terms: Ll for labeled

examples and Lu for unlabeled examples. Specifically, Ll is a standard Binary Cross Entropy (BCE)

constraint (Lanchantin et al., 2021), i.e.,

Ll =
1

Bi

C∑
c=1

BCE(fθ(α(xi)|si), yi), (3.1)

where BCE represents the binary cross-entropy loss function, si means the given label state for image xi,

C is the number of classes, and Bi is the batch size for labeled examples. Note that, since the label state

involves a part of ground truth labels, calculating loss on these known classes is meaningless. Therefore,

we discard the loss of these known classes and only accumulate the loss of unknown classes.

For the unlabeled examples, we use the Mean Square Error (MSE) loss function to constrain the distance

between two model predictions that are obtained from different views and label states. Formally,

Lu = w(t)
1

Bj

C∑
c=1

MSE(fθ(α(xj)|sj,w), fθ(Λ(xj)|sj,s)) (3.2)

where w(t) is a time-dependent weighting function that balances the loss weight for labeled and unla-

beled examples, t indicates the current epoch, and Bj is the batch size for unlabeled examples. Similar

to the BCE loss for the labeled examples, we only accumulate the loss of the classes that exist at least

one unknown states in sj,w and sj,s. Hence, the model learns to predict the unknown class from the

observed known classes. In total, our loss can be formulated as L = Ll + Lu.
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In addition, we empirically find that the weighting function w(t), which decides the balance between

the terms Ll and Lu, is important for the performance. We make it slowly increase from 0 to 1 in the

early training stage (Samuli and Timo, 2017). Formally, we have

w(t) =

exp{−5[1− (t/T )]2}, t ≤ T

1, t > T,
(3.3)

where t indicates the epoch number, T is a time threshold. Consequently, the loss is dominated by the

labeled examples at the beginning, and gradually achieves a balance between the labeled examples and

unlabeled examples during the training process. In this way, we can alleviate the unreliable and unstable

predictions on unlabeled examples due to insufficient training. We also investigate the influence of T in

the Section 4, experiments.

Discussion

It should be noted that the weighting function is commonly used in many SS-SLC methods, in the thesis

we follow (Samuli and Timo, 2017). Both (Samuli and Timo, 2017) and I found that the gradual ramp-

up of the unsupervised loss is important to the final performance, unsupervised loss introduced too fast

or too slow will degrade model performance. As for the final weight after the t reach the threshold T ,

we also follow the (Samuli and Timo, 2017) which has been verified to be effective. It should be noted

that this weight only represents the weight between supervised loss and unsupervised loss. Because the

number of unlabeled samples is 5 times more than the number of labeled samples in every batch, as we

return the average loss of each sample, every single labeled sample actually has more weight than every

single unlabeled sample. The formal formulas and ablation study of the number of labeled samples and

unlabeled samples are carefully discussed in Algorithm 1, line 8 & line 9 and table 4.8.

3.5 Comparison with the methods in SS-SLC

Recently, a large number of methods in SS-SLC have emerged such as FixMatch (Sohn et al., 2020),

and temporal ensembling (Samuli and Timo, 2017). Compared with these methods in SS-SLC, the

differences of the proposed method could be summarized in three aspects below:

• The proposed method targets SS-MLC, while these methods targets SS-SLC that can not be

directly applied to our SS-MLC task.
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• The proposed methods can utilize and learn label relations between multiple labels to enhance

classification performance. It is well-known that the learning and use of label relations are

crucial factors in MLC.

• We present experiment comparisons with some extensions of advanced semi-supervised single-

label methods in experiments. CR is the extension of (Samuli and Timo, 2017) and CR-BCE

is the extension of (Sohn et al., 2020). As we can see, our method surpasses these methods in

most cases due to the acquirement of label relations.



CHAPTER 4

Experiments

This chapter describes the experimental part in detail. There are 3 main sections in this chapter. The

experimental setup are introduced in section 4.1, which explains the datasets used in experiments, im-

plementation details of the CCR and evaluation metrics. The comparison with the advanced methods

in semi-supervised multi-label classification and multi-label classification area are introduced in sec-

tion 4.2. The ablation study discusses the effectiveness of every part of the CCR, including conditional

consistency regularization, different model architectures and examples of prediction, in section 4.3. And

finally the thesis also discusses the influence of the choices of hyper-parameters on the proposed method,

including weighting function, the ratio between labelled and unlabeled samples and threshold, in section

4.4.

Finally, the thesis talks about the ablation study which verifies the effectiveness of every part of the CCR,

including conditional consistency regularization, different model architectures, examples of predictions

and the influence of the choices of hyper-parameters on the proposed method, including weighting func-

tion, the ratio between labelled and unlabeled samples and threshold.

4.1 Experimental Setup

Datasets

We use two large-scale real-world MLC datasets VOC-2007 (Everingham et al., 2015) and COCO-

80 (Lin et al., 2014) to evaluate our method. VOC-2007 is a commonly used dataset for multi-label

classification, object detection, and segmentation. It contains 9,963 images in realistic scenes, including

20 classes (e.g., person, bird, cat, and etc). We split about 50% data for training (5,011 images) and

50% for testing (4,952 images). COCO-80 contains 80 classes. We utilize 82,783 images as a training

21
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set and evaluate all methods on a testing set consisting of 40,504 images. We randomly select a specific

ratio and sample images from the training set with this ratio as unlabeled examples.

Implementation details

For both VOC-2007 and COCO-80, following (Wu et al., 2015), each image is resized to 256×256

pixels and randomly cropped to 224×224 pixels. We use pre-trained ResNet-101 (He et al., 2016)

on ImageNet as a feature extractor following previous work (Lanchantin et al., 2021) for all methods.

By default, following (Lanchantin et al., 2021), we employ a module with three-layer self-attention

blocks (Vaswani et al., 2017) to output the prediction. For test images, the image is centred cropped.

We conduct experiments on 5%, 10%, 20%, and 50% labeled examples for VOC-2007, and 1%, 3%,

5%, and 10% labeled examples for COCO-80 following (Chu et al., 2018). We set batch size as 16

for labeled examples and 80 for unlabeled examples. The learning rate is set to 10−5. We use Adam

optimizer for training. The hyper-parameters ru and rl are consistently set to 0.7 and 0.3.

Evaluation metrics

Following the previous works (Chen et al., 2019b; Lanchantin et al., 2021), we report three metrics to

evaluate the performance for all methods: (1) the average per-class F1 score (CF1), where CF1=2CP∗CR
CP+CR .

Here, CP is the average per-class precision, and CR is the average per-class recall. (2) the average overall

F1 score (OF1), where OF1=2OP∗OR
OP+OR . Here, OP is the average overall precision, and OR is the average

overall recall. (3) the mean average precision (mAP).

4.2 Comparison with State-of-the-Arts

For COCO-80, we compare the proposed CCR with multiple advanced methods, including DRS (Wang

et al., 2021), West (Wu et al., 2015), DSGM (Chu et al., 2018), and DGM-Native (Chu et al., 2018).

The results of West, DSGM, and DGM-Native refer to the numbers that are reported in literature (Chu

et al., 2018). For VOC-2007, we take DRS (Wang et al., 2021) and COINs (Zhan and Zhang, 2017) as

our baselines.

For fair comparison, we use the same training strategy for both baselines and our method that mentioned

above. We use a pre-trained ResNet-101 (He et al., 2016) as the backbone to extract the features for all

the methods.



4.2 COMPARISON WITH STATE-OF-THE-ARTS 23

Following (Chu et al., 2018), we randomly example 1%, 3%, 5%, and 10% of training set as labeled

examples for COCO-80. The detailed experimental results are shown in Tab. 4.1. We can observe that,

for all ratios and all evaluation metrics, our proposed CCR surpasses the state-of-the-arts by a large

margin. Specifically, our method achieves about 10% leads in CF1 and OF1, and more than 15% lead

in mAP compared with the state-of-the-arts when the labeled ratio is low, e.g., 1% and 3%. With the

increase of the ratio of labeled examples, the proposed method still surpasses state-of-the-arts clearly in

CF1, OF1, and mAP.

For the experiments on VOC-2007, we randomly sample 5%, 10%, 20%, and 50% of a training set

as labeled examples following the baseline (Chu et al., 2018). We demonstrate the results in Tab. 4.2.

As we can see in the experiments, the performance of our method also has a significant increase over

the state-of-the-arts in all labeled ratios and all evaluation metrics. To be specific, our method reaches

84.0% in CF1 and 86.2% in OF1 when the labeled ratio is relatively high at 50%. If we set the labeled

ratio as 20%, for example, our method exceeds COINs (Zhan and Zhang, 2017) by 7.6% in CF1, 8.4%

in OF1, and 7.6% in mAP. With the decrease in the labeled ratio, the task becomes more challenging.

The proposed method still surpasses the state-of-arts (the best performance achieved by baselines) by

4.3% in CF1, 6.1% in OF1, and 9.3% in mAP when the labeled ratio is 10%.

TABLE 4.1: Performance comparison on COCO-80 dataset. The best results (%) are bolded.

1% labeled 3% labeled
Method CF1 OF1 mAP CF1 OF1 mAP

West (Wu et al., 2015)* 2.8 5.5 - 2.1 16.7 -
DSGM (Chu et al., 2018)* 36.1 48.3 - 41.1 52.2 -

DGM-Naive (Chu et al., 2018)* 42.5 49.9 - 42.6 50.1 -
DRS (Wang et al., 2021) 39.9 52.2 36.8 51.3 58.8 46.7

CCR (Ours) 51.9 60.0 54.4 60.2 66.0 62.5
5% labeled 10% labeled

Method CF1 OF1 mAP CF1 OF1 mAP
West (Wu et al., 2015)* 2.9 18.6 - - - -

DSGM (Chu et al., 2018)* 42.9 53.8 - - - -
DGM-Naive (Chu et al., 2018)* 45.1 51.1 - - - -

DRS (Wang et al., 2021) 52.4 60.2 47.7 53.9 61.6 50.0
CCR (Ours) 62.9 67.0 65.7 64.8 69.1 68.6

The method with ’*’ is reported by (Chu et al., 2018)

In addition to the methods of semi-supervised multi-label classification, we also include a state-of-

art multi-label classification method (Lanchantin et al., 2021) under the fully supervised setting(with
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TABLE 4.2: Performance comparison on VOC-2007 dataset. The best results (%) are bolded.

5% labeled 10% labeled
Method CF1 OF1 mAP CF1 OF1 mAP

COINs (Zhan and Zhang, 2017) 60.9 65.7 66.3 69.0 71.7 75.6
DRS (Wang et al., 2021) 68.2 72.4 62.9 74.1 76.4 69.6

CCR (Ours) 69.1 76.6 81.4 78.4 82.5 84.9
20% labeled 50% labeled

Method CF1 OF1 mAP CF1 OF1 mAP
COINs (Zhan and Zhang, 2017) 74.2 76.3 80.0 76.6 78.3 82.9

DRS (Wang et al., 2021) 74.8 76.9 72.0 79.8 81.6 75.9
CCR (Ours) 81.8 84.7 87.6 84.0 86.2 89.6

100% labeled examples) on the VOC-2007 dataset for completeness of experiments. As we can see in

Tab. 4.3, our method surpasses CTRANS (with 100% labeled examples) in all evaluation matrices with

only 50% labeled examples on the VOC-2007 dataset. Moreover, we also provide CCR (with 100%

labeled examples) performance, which uses labeled examples to calculate the unsupervised loss. Our

method leads to improvements of 0.3% in CF1, 0.5% in OF1, and 1.1% in mAP. The results shows that

the proposed method-CCR’s effectiveness and feasibility.

TABLE 4.3: Comparison with advanced MLC methods on VOC-2007 dataset. The best
results (%) are bolded.

CF1 OF1 mAP
CTRANS(Lanchantin et al., 2021) (100% labeled) 83.9 86.0 89.5

CCR (50% labeled) 84.0 86.2 89.6
CCR (100% labeled) 84.2 86.5 90.6

4.3 Ablation Study

In this section, we conducted several experiments to verify the effectiveness of each part, including

consistent regularization and network architecture.

Consistency regularization matters for SS-MLC

As mentioned in the introduction, we are the first to introduce consistency regularization into the SS-

MLC. The consistency regularization imposes a constraint on the model, making the training data harder
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to memorize. Therefore, the model will be more robust when generalizing to unseen data. Here, we con-

struct the conventional consistency regularization on the same model architecture and training strategy

of our method in order to verify the effectiveness of CCR, the proposed method. In detail, we implement

a multi-view image consistency regularization, which is similar to (Samuli and Timo, 2017) (denoted

as CR) as described in Section 3.2. The differences between CR and CCR lie in: (1) During training,

CR uses unknown states for every unlabeled example, while CCR uses randomly generated label states.

For the labeled examples, we employ label states in a similar manner for both CR and CCR for a fair

comparison. (2) CR removes the pseudo-label memory module since it uses unknown states for every

example instead of cached pseudo-labels. Note that, the weakly and strongly augmented operations are

the same for CR and CCR. We demonstrate the results of CR on COCO-80 and VOC-2007 in Tab. 4.4

and Tab. 4.5 in terms of CF1, OF1, and mAP.

The results tell that the performance of CR is lower than our proposed CCR, but it outperforms all the

state-of-the-art methods. For example, when using 5% labeled examples on COCO-80, CR achieves

55.7%, 64.4%, and 65.0% on CF1, OF1, and mAP respectively, while DRS (Wang et al., 2021) only

obtains 52.4%, 60.2%, and 47.7%.

Furthermore, we implement a variation by replacing the MSE loss with BCE loss (denoted as CR-BCE).

Specifically, there are three differences between CCR and CR-BCE: (1) For unlabeled examples, CR-

BCE generates pseudo-labels for the prediction of the weakly-augmented image with ru = 0.7 and

rl = 0.3, and then calculates the loss by using BCE between the pseudo-label and the prediction of

the strongly-augmented image, which is similar to FixMatch (Sohn et al., 2020). (2) CR-BCE also uses

unknown states for every example like CR. (3) CR-BCE removes the pseudo-label memory module.

From Tab. 4.4 and Tab. 4.5, we can observe that CR-BCE realizes slightly better performance than CR

in most cases. Actually, we have also implemented CCR with BCE loss for unlabeled examples, but

have not observed performance gain. Therefore, we use MSE for simplicity. Compared with Tab. 4.4

and Tab. 4.5, the performance gains in all evaluation metrics on the VOC-2007 dataset are slightly lower

than the performance gains on the COCO-80 dataset. We conclude that the performance gains come from

the label relations knowledge that learns via the label state. While, the VOC-2007 dataset has a smaller

size of classes of labels (only 20 possible classes for each image) compared with the COCO-80 dataset

(80 possible classes for each image), resulting in fewer label relations. In a nutshell, the aforementioned

experiments mean that consistency regularization can boost the performance of SS-MLC.
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TABLE 4.4: Ablation study on the consistency regularization on COCO-80 dataset.
The best results (%) are bolded.

1% labeled 3% labeled
CF1 OF1 mAP CF1 OF1 mAP

CR 47.1 58.1 53.7 58.2 64.8 62.0
CR-BCE 49.5 59.5 52.9 59.5 65.6 61.8

CCR (Ours) 51.9 60.0 54.4 60.2 66.0 62.5
5% labeled 10% labeled

CF1 OF1 mAP CF1 OF1 mAP
CR 55.7 64.4 65.0 45.7 57.7 67.8

CR-BCE 62.1 67.4 64.8 64.7 69.3 68.5
CCR (Ours) 62.9 67.0 65.7 64.8 69.1 68.6

TABLE 4.5: Ablation study on the consistency regularization on VOC-2007 dataset.
The best results (%) are bolded.

5% labeled 10% labeled
CF1 OF1 mAP CF1 OF1 mAP

CR 64.4 74.6 80.9 75.1 80.6 84.6
CR-BCE 67.5 76.5 80.3 78.0 82.4 84.6

CCR (Ours) 69.1 76.6 81.4 78.4 82.5 84.9
20% labeled 50% labeled

CF1 OF1 mAP CF1 OF1 mAP
CR 77.4 82.1 87.3 83.2 86.0 89.8

CR-BCE 80.8 84.3 87.4 83.4 86.1 88.9
CCR (Ours) 81.8 84.7 87.6 84.0 86.2 89.6

It should be noted that, for the labeled examples, CR and CR-BCE still use the randomly generated

label state, therefore, they are able to learn the label relations from the labeled examples. In this way,

the performance gain of our proposed CCR mainly comes from the additional knowledge of the label

relations in the unlabeled examples. The experimental results also verify this statement in that, when

the ratio of labeled examples is low, the performance gain is larger than the higher ratio of the labeled

examples.

Examples of predictions
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TABLE 4.6: Ablation study on various model architectures.

5% labeled 10% labeled
Method CF1 OF1 mAP CF1 OF1 mAP
CCR-FC 72.7 76.1 77.4 75.9 79.5 81.9

CCR (Ours) 69.1 76.6 81.4 78.4 82.5 84.9
20% labeled 50% labeled

Method CF1 OF1 mAP CF1 OF1 mAP
CCR-FC 79.8 82.8 85.7 81.9 84.6 88.1

CCR (Ours) 81.8 84.7 87.6 84.0 86.2 89.6

In order to visualize the CCR method learned the label relations, we provide some image prediction

examples of the COCO-80 dataset and the VOC-2007 dataset. As we can see in Fig. 4.1, our method’s

predictions are more accurate and reflect the correlation between labels. For example, our method could

predict more kitchenware labels based on the label relation in the first image. Even some labels that are

not in the ground truth labels but appear in the image are also predicted, like Bowl in the first image.

Similar to the COCO-80 dataset, we also provide some examples of the VOC-2007 dataset. As we can

see, our predictions have stronger label relation compared with the baseline methods. For example,

though Person is very hard to predict in the first image, our method still gives the Person prediction

based on the label relation, because the car usually appears with a person. Moreover, our method could

give an accurate prediction of the third image, because bicycles usually appear with a person.

Conditional consistency regularization works on various model architectures

Since our proposed method CCR is independent of the model architecture, we also implement a simple

variation by using a 5-layer fully-connected network after the ResNet backbone (denoted by CCR-

FC), where the fully-connected network is responsible for outputting the prediction. We conduct the

experiments on VOC-2007 with 5%, 10%, 20%, and 50% ratios of labeled examples, and demonstrate

the results in Tab. 4.6. In Tab. 4.6, CCR-FC is slightly inferior to CCR, indicating that the self-attention

block has stronger abilities on learning features and label relations. We also find that CCR-FC still

outperforms the state-of-the-art that are illustrated in Tab. 4.2, even with the simplest model architecture.

This phenomenon strongly verifies that our CCR framework works on various model architectures.
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Truth Car, Person Bottle, Person Bicycle, Person

DRS Car Bottle Person

COINS Car Bottle None

Ours Car, Person Bottle, Person Bicycle, Person

FIGURE 4.1: Illustrations of the examples of the predictions by CCR.

4.4 The Choices of Hyper-parameters

In this section, we investigate the hyper-parameters of the CCR, including the weighting function w(·),

the value of Bj , and the values of thresholds ru and rl.

The weighting function w(·) affects the performance

As defined in Section 3.4, the weighting function w(·) is a time-dependent function that slowly increases

from 0 to 1 by the T -th epoch, and is fixed to 1 after the T -th epoch. It provides the balance of the

losses for labeled examples and unlabeled examples. To study the influence of w(·), we adjust T to
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TABLE 4.7: Ablation study on the weighting function w(·). The best results (%) are bolded.

CF1 OF1 mAP
labeled Ratio\T 0 10 30 50 0 10 30 50 0 10 30 50

5% 68.2 69.1 69.2 71.2 76.5 76.6 76.9 77.8 80.9 81.4 81.2 80.9
10% 79.8 78.4 78.0 78.9 82.9 82.5 82.4 82.6 85.4 84.9 84.6 84.5
50% 83.3 84.0 83.4 83.5 85.0 86.2 85.6 86.1 89.6 89.6 88.7 88.7

TABLE 4.8: Ablation study on the ratio between labeled examples and unlabeled ex-
amples for each training iteration. The best results (%) are bolded.

CF1 OF1 mAP
labeled Ratio\Bj 16 48 80 112 16 48 80 112 16 48 80 112

5% 70.3 69.4 69.1 69.0 76.7 76.8 76.6 76.6 81.2 81.0 81.4 80.5
10% 77.3 79.3 78.4 78.8 82.0 82.6 82.5 82.4 84.8 84.9 84.9 85.1
50% 83.5 83.4 84.0 83.7 85.2 85.5 86.2 85.6 89.5 89.4 89.6 89.6

different numbers and report the results in Tab. 4.7. As we can see in the table, when the ratio of labeled

examples is low, like 5%, the model results in better performance when T is larger. In the cases of the

higher ratios, the model results in better performance when T is smaller. It is reasonable since the model

may generate unreliable pseudo-label for the higher ratio of the unlabeled examples, the larger impact

of these unreliable pseudo-label leads to larger noise in the optimization. In experiments, we set T = 10

by default.

The ratio between labeled examples and unlabeled examples matters

By default, we fix the batch size Bi for labeled examples as 16. In this paragraph, we adjust the batch

size Bj for unlabeled examples. As shown in the Tab. 4.8, the model achieves the best performance

when Bj is slightly larger than Bi. We argue that a small batch size for unlabeled examples limits the

regularization ability of consistency. In experiments, we set Bj as 80.

On the thresholds ru and rl

As introduced in Section 3.3, the thresholds ru and rl are used in the pseudo-label generation function,

which determines how we obtain the pseudo-label in the pseudo-label memory. We investigate different

values for ru and rl in Fig. 4.2. As we can see, the performance is stable for different thresholds, which

shows that our method is robust to these hyper-parameters.
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FIGURE 4.2: Ablation study on the thresholds ru and rl.



CHAPTER 5

Discussion

In this chapter, we will discuss the CCR, the proposed method, compare it with the previous method,

and analyze why it is effective, the existing problems and the significance of this work. In summary, this

chapter will critically analyze the proposed method.

5.1 The proposed method

As mentioned above, this work tries to resolve a practical problem that there are large numbers of un-

labeled samples and small numbers of labeled samples in multi-label classification (MLC) due to the

difficulties in the labelling process. It is also known as semi-supervised multi-label classification (SS-

MLC). In order to solve this problem, Conditional Consistency Regularization (CCR) has been proposed

and conducting comprehensive experiments with many baselines and ablation studies. The thesis intro-

duces many advanced baselines from different aspects, like advanced methods in SS-MLC (Wang et al.,

2021), MLC-CTRANS (Lanchantin et al., 2021) and extension of semi-supervised single-label clas-

sification (SS-SLC)-FixMatch(CR-BCE)((Sohn et al., 2020), Temporal ensembling(CR) (Samuli and

Timo, 2017). According to the experiments, the proposed methods have better performance than base-

line methods in most cases. These situations verify that the proposed method not only has outstanding

performance in SS-MLC but also surpass some state-of-art MLC method by using 50% less labeled

samples. Although some extensions of SS-SLC method have similar performance in some cases, like

50% labeled samples in COCO-80. It is possible that with the increase of labeled data, the relation-

ships between labels will not bring much gain. Moreover, the success of CCR shows a feasible way of

introducing advanced SS-SLC methods and MLC methods to SS-MLC. It improves classification per-

formance by taking full advantage of leveraging unlabeled samples and modeling label relations. These

performance of the experiments show that the CCR has a strong ability in addressing SS-MLC tasks.
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5.2 Comparison with previous work

Compared with the previous method, the previous work focus on only MLC and SS-SLC. For instance,

some researchers proposed many impressive methods in MLC, like conditional prediction (Cheng et al.,

2010; Read et al., 2011), shared embedding space (Bhatia et al., 2015; Yeh et al., 2017), label graph for-

mulation (Chen et al., 2019b, 2021), etc. Other researchers pay attention to SS-SLC, like self-training

(Lee et al., 2013; Xie et al., 2020b), consistency regularization (Samuli and Timo, 2017; Xie et al.,

2020a), graph-based method (Wang et al., 2020) and hybrid methods (Sohn et al., 2020; Berthelot et al.,

2019b,a). Even though these methods perform well in their area, the previous methods are difficult to

suit SS-MLC scenarios. It is clear that the MLC methods lack the strategy of leveraging the unlabeled

samples which are unique and important in the semi-supervised classification area. And the proposed

methods in SS-SLC lack the way of learning label relations which are seen as the key factors in the MLC

area. Although few methods in SS-MLC also emerged, they may have some weaknesses like being un-

able to generalize to unseen test samples, out-of-date learning strategy, low performance, etc. However,

SS-MLC scenarios have widely existed in practical challenges, which greatly limit the development of

MLC and the performance of learning models. The proposed method fills the gap in this area via provid-

ing a way of introducing advanced SS-SLC methods and retaining key factors of MLC simultaneously.

As a result of that, the proposed method can leverage unlabeled samples and learning label relations at

the same time, which directly improves the utilizing efficiency of unlabeled samples in MLC and reduce

the cost of labelling and learning process. In addition, the ablation studies on different model architec-

tures demonstrate that the proposed methods’ flexibility and expandability on the different models. In

conclusion, the proposed methods provide a novel and effective way of combining MLC and SS-SLC

methods.

5.3 Open problems of the proposed method

While there are many advantages and contributions in this work, there are some open problems and

weaknesses that may appear in practical tasks. The section below will discuss 3 major problems that the

author thinks out, including the limitation of labeled samples, the limitation of unlabeled samples and

other methods of MLC with limited supervision.
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5.3.1 Limitation of labeled samples

This subsection will discuss the labeled samples’ impact on the proposed model in practical situations.

There are 3 major limitations for labeled samples in real-world challenges, including unreliable labels,

irrelevant multi-label and unadjustable number of labels.

Unreliable labels

Due to the lack of labeled samples in training samples, the proposed methods are very dependent on

the reliability of labeled samples, especially at the beginning of the training process. If noisy labels or

unreliable labels appear in the labeled samples which is quite common in the practical dataset, the model

performance may strongly degrade or even have worsened performance than the unsupervised learning

method. As a result of that, it is necessary to keep the reliability of labelled samples. Currently, the

proposed method does not have any potential solutions for noisy labels, we may regard this problem as

future work.

Irrelevant multi-labels

As mentioned above, the proposed method could have an increase in classification performance by

leveraging the knowledge of unlabeled samples and modeling relationships between labels. If each given

training sample has fewer corresponding labels (eg. 2-3 labels) or given labels do not have an obvious

relationship, which may appear in the real-world task. The performance of the CCR will degrade to

the simple extension of SS-SLC. While, if there are no unlabelled samples, the proposed method also

achieves better performance than MLC methods via utilizing conditional consistency regularization,

which provides better learning features and knowledge of label relations. The experimental results could

be found in table 4.3.

Unadjustable number of labels

As mentioned in section 4.1, the goal of SS-MLC is to learn a feature embedding network(commonly

neural network) fθ(·) from Nu unlabeled images Du = {(xj)}Nu
j=1 and Nl labeled images Dl =

{(xi, yi)}Nl
i=1. For each image xi, yi ∈ {0, 1}C is the corresponding one-hot label, where C is the

number of classes. We define y[c] = 1 if the image is associated with the c-th label, otherwise y[c] = 0.

The proposed method needs to fix the number of potential labels, by that I mean, the C should be fixed

by following the previous MLC methods(Lanchantin et al., 2021; Yeh et al., 2017). This situation raises

the question that the proposed method is unable to add extra new labels that appear in unlabeled samples

or in the new dataset. Namely, the number of labels may dynamically expand. We only can utilize the



5.3 OPEN PROBLEMS OF THE PROPOSED METHOD 34

labels we have already defined before training. This situation is also widely known as MLC with unseen

labels(Liu et al., 2021).

5.3.2 Limitation of unlabeled samples

This subsection will discuss the unlabeled samples’ impact on the proposed method in practical situ-

ations. There are 2 major limitation in unlabeled samples, including out-of-distribution samples and

unreliable pseudo-labels cache in label state.

Out-of-distribution samples

According to many previous work(Wei et al., 2021; Guo and Li, 2022), there might be out-of-distribution

samples in unlabelled samples, where the sample does not contain the corresponding objects of the pro-

viding labels. This situation may also decrease the performance of the model because the unlabeled

samples may assign to the wrong class. Currently, the proposed method does not have solutions for

out-of-distribution samples, we may set dealing with out-of-distribution samples as future work to better

help the proposed method suit the practical situations.

Unreliable pseudo-labels cache in label state

Although the proposed methods leverage many measures to avoid unreliable pseudo-labels cache, like

choosing high confidence samples, randomly masking the label state and reducing the weight of un-

supervised loss at the beginning of training, it still may have wrong pseudo-labels cache. The wrong

pseudo-labels may have a negative impact on learning models. There are many reasons for unreliable

pseudo-label cache, like unwell-learned training models, unreliable labeled samples, etc.

5.3.3 other methods of multi-label classification with limited supervision

Expect SS-MLC scenarios that dataset contains completed labeled samples and unlabeled samples, there

are many other multi-label with limited supervision situations(Liu et al., 2021). For examples, MLC with

missing labels, which means the annotators only assign parts of labels in every sample, namely, there

are incomplete labels in each sample; Weakly MLC, which means that there are fully labelled samples,

incompletely-labelled samples and unlabelled samples in the dataset at the same time. These situations

may also appear in practical tasks. The proposed methods currently do not have a solution to deal with

these kinds of scenarios. The author may extend the proposed method to fit these practical situations.
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5.4 Significance of the work

The significance of the proposed method is concluded below:

• The thesis is the first to extend consistency regularization which is an advance SS-SLC method

to SS-MLC.

• The thesis is the first to propose a novel algorithm (CCR) that could boost classification per-

formance via learning knowledge of unlabeled samples and label relationships. Normally,

previous methods, like methods in semi-supervised classification and MLC only consider one

aspect.

• The CCR provides a novel way to take full advantage of both SS-SLC and MLC methods by

acquiring the knowledge of unlabeled samples and label relations, which are crucial to SS-SLC

and MLC.

• Because SS-MLC has commonly existed in the practical task, the proposed novel algorithm

helps the MLC method suit the real-world task and application and reduce the cost of labelling

process.

• The thesis also presents many analyses, discussions, and insights into multi-label/single-label

classification with limited supervision which may inspire researchers and students to have a

better understanding of this area and encourage them to conduct in-depth research.



CHAPTER 6

Conclusion and future work

This chapter will summarize the research problems, proposed methods, experiments, and discuss the

necessary and meaningful work that may be carried out in the future.

6.1 Conclusion

The thesis proposed a novel method named Conditional Consistency Regularization (CCR) to resolve

the problem in semi-supervised multi-label classification (SS-MLC). SS-MLC is a practical scenario

that the training set has large numbers of unlabeled samples and small numbers of labelled samples

due to the high-cost, time-consuming and professional labelling process, especially for the multi-label

dataset that has more than one label for each sample. Normally, Previous methods only consider one

aspect, like methods in semi-supervised single-label classification (SS-SLC) and methods in multi-label

classification (MLC) that they can not extend to SS-MLC. Specific background knowledge of semi-

supervised classification and MLC is introduced in chapter 1 (introduction) and chapter 2 (literature

review).

In order to solve the problems, the thesis proposed a novel algorithm named Conditional Consistency

Regularization by introducing consistency regularization which is an advanced technology in SS-SLC.

Specifically, CCR utilizes consistency regularization and conditional label state to implicitly learning the

knowledge of unlabeled samples and modeling the relationship between labels, which are verified to be

pivotal in SS-SLC and MLC. Detailed methods, like method overview, algorithms, general framework,

objective function, etc, are carefully explained in chapter 3. Comprehensive experiments on differ-

ent datasets, baseline methods and ablation studies that show the effectiveness of the proposed method

(CCR) describe in chapter 4(experiments) in detail. The proposed methods not only surpass all the base-

line methods in SS-MLC, but also surpass state-of-art in MLC via only using half of labelled samples.
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Finally, a comprehensive and critical discussion and analysis, like advantages, weakness, significance,

reflection and summary, are explained in chapter 5.

To sum up, this thesis proposes Conditional Consistency Regularization (CCR) to deal with the SS-

MLC. CCR is the first method that introduces the consistency regularization into SS-MLC. It is built

upon the conventional consistency regularization that regularizes model predictions to be invariant to

different augmented views of the same input image. In addition, to learn label relations for MLC, CCR

leverages the label states that act as a condition for model training. By minimizing the distance between

the two model predictions of two augmented images, the outputs that are obtained from different label

states, are encouraged to be consistent. As a result, the model learns knowledge of unlabelled samples

and the label relations to increase the performance.

6.2 Future work

Based on the experiments and discussion above, it is necessary and meaningful to conduct some exten-

sion based on this work in order to make the proposed method have better application in the real-world

task, which could be regarded as future work. For example, dealing with out-of-distribution samples.

It is necessary and meaningful to conduct further research to discover potential value in academics and

applications. The words below demonstrate the future work that may extend from the proposed method-

CCR:

• Create a standard dataset warehouse from real-world data and set the criterion to evaluate the

samples from the dataset by their labels. To be specific, we can divide the samples into fully

labelled samples, incomplete labelled samples, unlabelled samples and samples with noisy

labels. These will help the academics and engineers obtain desired data before training the

model.

• Extend the proposed method to make it suit other weakly-supervised multi-label classification

scenarios, like the dataset with fully-labelled, incompletely-labelled and unlabelled samples.

This extension will help the proposed method better fit the practical work.

• Extend the proposed method to adapt the out-of-distribution samples, which commonly existed

in unlabelled datasets.

• Extend the proposed method to address dynamically expanding of the number of labels, which

is also known as MLC with unseen labels.
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• In the future, the author encourage other researchers to introduce other advanced semi-supervised

classification methods and MLC method to SS-MLC in order to propose a better solution to

deal with this practical scenario.
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