126 research outputs found

    LiDAR based multi-sensor fusion for localization, mapping, and tracking

    Get PDF
    Viimeisen vuosikymmenen aikana täysin itseohjautuvien ajoneuvojen kehitys on herättänyt laajaa kiinnostusta niin teollisuudessa kuin tiedemaailmassakin, mikä on merkittävästi edistänyt tilannetietoisuuden ja anturiteknologian kehitystä. Erityisesti LiDAR-anturit ovat nousseet keskeiseen rooliin monissa havainnointijärjestelmissä niiden tarjoaman pitkän kantaman havaintokyvyn, tarkan 3D-etäisyystiedon ja luotettavan suorituskyvyn ansiosta. LiDAR-teknologian kehittyminen on mahdollistanut entistä luotettavampien ja kustannustehokkaampien antureiden käytön, mikä puolestaan on osoittanut suurta potentiaalia parantaa laajasti käytettyjen kuluttajatuotteiden tilannetietoisuutta. Uusien LiDAR-antureiden hyödyntäminen tarjoaa tutkijoille monipuolisen valikoiman tehokkaita työkaluja, joiden avulla voidaan ratkaista paikannuksen, kartoituksen ja seurannan haasteita nykyisissä havaintojärjestelmissä. Tässä väitöskirjassa tutkitaan LiDAR-pohjaisia sensorifuusioalgoritmeja. Tutkimuksen pääpaino on tiheässä kartoituksessa ja globaalissa paikan-nuksessa erilaisten LiDAR-anturien avulla. Tutkimuksessa luodaan kattava tietokanta uusien LiDAR-, IMU- ja kamera-antureiden tuottamasta datasta. Tietokanta on välttämätön kehittyneiden anturifuusioalgoritmien ja yleiskäyttöisten paikannus- ja kartoitusalgoritmien kehittämiseksi. Tämän lisäksi väitöskirjassa esitellään innovatiivisia menetelmiä globaaliin paikannukseen erilaisissa ympäristöissä. Esitellyt menetelmät kartoituksen tarkkuuden ja tilannetietoisuuden parantamiseksi ovat muun muassa modulaarinen monen LiDAR-anturin odometria ja kartoitus, toimintavarma multimodaalinen LiDAR-inertiamittau-sjärjestelmä ja tiheä kartoituskehys. Tutkimus integroi myös kiinteät LiDAR -anturit kamerapohjaisiin syväoppimismenetelmiin kohteiden seurantaa varten parantaen kartoituksen tarkkuutta dynaamisissa ympäristöissä. Näiden edistysaskeleiden avulla autonomisten järjestelmien luotettavuutta ja tehokkuutta voidaan merkittävästi parantaa todellisissa käyttöympäristöissä. Väitöskirja alkaa esittelemällä innovatiiviset anturit ja tiedonkeruualustan. Tämän jälkeen esitellään avoin tietokanta, jonka avulla voidaan arvioida kehittyneitä paikannus- ja kartoitusalgoritmeja hyödyntäen ainutlaatuista perustotuuden kehittämismenetelmää. Työssä käsitellään myös kahta haastavaa paikannusympäristöä: metsä- ja kaupunkiympäristöä. Lisäksi tarkastellaan kohteen seurantatehtäviä sekä kameraettä LiDAR-tekniikoilla ihmisten ja pienten droonien seurannassa. ---------------------- The development of fully autonomous driving vehicles has become a key focus for both industry and academia over the past decade, fostering significant progress in situational awareness abilities and sensor technology. Among various types of sensors, the LiDAR sensor has emerged as a pivotal component in many perception systems due to its long-range detection capabilities, precise 3D range information, and reliable performance in diverse environments. With advancements in LiDAR technology, more reliable and cost-effective sensors have shown great potential for improving situational awareness abilities in widely used consumer products. By leveraging these novel LiDAR sensors, researchers now have a diverse set of powerful tools to effectively tackle the persistent challenges in localization, mapping, and tracking within existing perception systems. This thesis explores LiDAR-based sensor fusion algorithms to address perception challenges in autonomous systems, with a primary focus on dense mapping and global localization using diverse LiDAR sensors. The research involves the integration of novel LiDARs, IMU, and camera sensors to create a comprehensive dataset essential for developing advanced sensor fusion and general-purpose localization and mapping algorithms. Innovative methodologies for global localization across varied environments are introduced. These methodologies include a robust multi-modal LiDAR inertial odometry and a dense mapping framework, which enhance mapping precision and situational awareness. The study also integrates solid-state LiDARs with camera-based deep-learning techniques for object tracking, refining mapping accuracy in dynamic environments. These advancements significantly enhance the reliability and efficiency of autonomous systems in real-world scenarios. The thesis commences with an introduction to innovative sensors and a data collection platform. It proceeds by presenting an open-source dataset designed for the evaluation of advanced SLAM algorithms, utilizing a unique ground-truth generation method. Subsequently, the study tackles two localization challenges in forest and urban environments. Furthermore, it highlights the MM-LOAM dense mapping framework. Additionally, the research explores object-tracking tasks, employing both camera and LiDAR technologies for human and micro UAV tracking

    Distributed approaches for coverage missions with multiple heterogeneous UAVs for coastal areas.

    Get PDF
    This Thesis focuses on a high-level framework proposal for heterogeneous aerial, fixed wing teams of robots, which operate in complex coastal areas. Recent advances in the computational capabilities of modern processors along with the decrement of small scale aerial platform manufacturing costs, have given researchers the opportunity to propose efficient and low-cost solutions to a wide variety of problems. Regarding marine sciences and more generally coastal or sea operations, the use of aerial robots brings forth a number of advantages, including information redundancy and operator safety. This Thesis initially deals with complex coastal decomposition in relation with a vehicles’ on-board sensor. This decomposition decreases the computational complexity of planning a flight path, while respecting various aerial or ground restrictions. The sensor-based area decomposition also facilitates a team-wide heterogeneous solution for any team of aerial vehicles. Then, it proposes a novel algorithmic approach of partitioning any given complex area, for an arbitrary number of Unmanned Aerial Vehicles (UAV). This partitioning schema, respects the relative flight autonomy capabilities of the robots, providing them a corresponding region of interest. In addition, a set of algorithms is proposed for obtaining coverage waypoint plans for those areas. These algorithms are designed to afford the non-holonomic nature of fixed-wing vehicles and the restrictions their dynamics impose. Moreover, this Thesis also proposes a variation of a well-known path tracking algorithm, in order to further reduce the flight error of waypoint following, by introducing intermediate waypoints and providing an autopilot parametrisation. Finally, a marine studies test case of buoy information extraction is presented, demonstrating in that manner the flexibility and modular nature of the proposed framework.Esta tesis se centra en la propuesta de un marco de alto nivel para equipos heterogéneos de robots de ala fija que operan en áreas costeras complejas. Los avances recientes en las capacidades computacionales de los procesadores modernos, junto con la disminución de los costes de fabricación de plataformas aéreas a pequeña escala, han brindado a los investigadores la oportunidad de proponer soluciones eficientes y de bajo coste para enfrentar un amplio abanico de cuestiones. Con respecto a las ciencias marinas y, en términos más generales, a las operaciones costeras o marítimas, el uso de robots aéreos conlleva una serie de ventajas, incluidas la redundancia de la información y la seguridad del operador. Esta tesis trata inicialmente con la descomposición de áreas costeras complejas en relación con el sensor a bordo de un vehículo. Esta descomposición disminuye la complejidad computacional de la planificación de una trayectoria de vuelo, al tiempo que respeta varias restricciones aéreas o terrestres. La descomposición del área basada en sensores también facilita una solución heterogénea para todo el equipo para cualquier equipo de vehículos aéreos. Luego, propone un novedoso enfoque algorítmico de partición de cualquier área compleja dada, para un número arbitrario de vehículos aéreos no tripulados (UAV). Este esquema de partición respeta las capacidades relativas de autonomía de vuelo de los robots, proporcionándoles una región de interés correspondiente. Además, se propone un conjunto de algoritmos para obtener planes de puntos de cobertura para esas áreas. Estos algoritmos están diseñados teniendo en cuenta la naturaleza no holonómica de los vehículos de ala fija y las restricciones que impone su dinámica. En ese sentido, esta Tesis también ofrece una variación de un algoritmo de seguimiento de rutas bien conocido, con el fin de reducir aún más el error de vuelo del siguiente punto de recorrido, introduciendo puntos intermedios y proporcionando una parametrización del piloto automático. Finalmente, se presenta un caso de prueba de estudios marinos de extracción de información de boyas, que demuestra de esa manera la flexibilidad y el carácter modular del marco propuesto

    Decentralized High Level Controller for Formation Flight Control of UAVs

    Get PDF
    International audienceThe main contribution of this paper is the design of a decentralized and tuning-less high level controller able to maintain without tracking errors a Leader-Follower (LF) configuration in case of lack or degraded communications (latencies, loss…) between the leader and followers UAVs. The high level controller only requires simple tunings and rests on a predictive filtering algorithm and a first order dynamic model to recover an estimation of the leader UAV velocities and avoid the tracking errors

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio

    Managing distributed situation awareness in a team of agents

    Get PDF
    The research presented in this thesis investigates the best ways to manage Distributed Situation Awareness (DSA) for a team of agents tasked to conduct search activity with limited resources (battery life, memory use, computational power, etc.). In the first part of the thesis, an algorithm to coordinate agents (e.g., UAVs) is developed. This is based on Delaunay triangulation with the aim of supporting efficient, adaptable, scalable, and predictable search. Results from simulation and physical experiments with UAVs show good performance in terms of resources utilisation, adaptability, scalability, and predictability of the developed method in comparison with the existing fixed-pattern, pseudorandom, and hybrid methods. The second aspect of the thesis employs Bayesian Belief Networks (BBNs) to define and manage DSA based on the information obtained from the agents' search activity. Algorithms and methods were developed to describe how agents update the BBN to model the system’s DSA, predict plausible future states of the agents’ search area, handle uncertainties, manage agents’ beliefs (based on sensor differences), monitor agents’ interactions, and maintains adaptable BBN for DSA management using structural learning. The evaluation uses environment situation information obtained from agents’ sensors during search activity, and the results proved superior performance over well-known alternative methods in terms of situation prediction accuracy, uncertainty handling, and adaptability. Therefore, the thesis’s main contributions are (i) the development of a simple search planning algorithm that combines the strength of fixed-pattern and pseudorandom methods with resources utilisation, scalability, adaptability, and predictability features; (ii) a formal model of DSA using BBN that can be updated and learnt during the mission; (iii) investigation of the relationship between agents search coordination and DSA management

    Robust Positioning Performance in Indoor Environments

    Get PDF
    Increasingly, safety and liability critical applications require GNSS-like positioning metrics in environments where GNSS cannot work. Indoor navigation for the vision impaired and other mobility restricted individuals, emergency responders and asset tracking in buildings demand levels of positioning accuracy and integrity that cannot be satisfied by current indoor positioning technologies and techniques. This paper presents the challenges facing positioning technologies for indoor positioning and presents innovative algorithms and approaches that aim to enhance performance in these difficult environments. The overall aim is to achieve GNSS-like performance in terms of autonomous, global, infrastructure free, portable and cost efficient. Preliminary results from a real-world experimental campaign conducted as part of the joint FIG Working Group 5.5 and IAG Sub-commission 4.1 on multi-sensor systems, demonstrate performance improvements based on differential Wi-Fi (DWi-Fi) and cooperative positioning techniques. The techniques, experimental schema and initial results will be fully documented in this paper

    Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles

    Full text link

    Reactive collision-free motion planning of a helicopter using data from onboard stereo camera

    Get PDF
    Cílem této práce je navrhnout systém, který detekuje překážky pro bezpilotní letadla vybavené hloubkovou kamerou. Především navrhujeme metody pro filtrování vstupního obrazu, automatická detekce překážek v reálném čase a nezávisle na prostředí, ve kterém se bezpilotní letadlo pohybuje a algoritmus pro vyhýbání se překážkám založený na metodě vector field histogram, která se používá pro reaktivní bezkolizní plánování letu. Navržený systém je modulární a může být použit pro zpracování dat z různých typů kamer založených na stejném principu funkce. Funkčnost systému byla testována v několika simulacích a experimentech v reálném světě.The aim of this work is to design obstacle detection system for Unmanned Aerial Vehicle (UAV) equipped with a depth camera. Especially, we propose methods for image filtering, real-time automatic detection of obstacles in a forest-like environment in which the UAV fly, and obstacle avoidance algorithm based on Vector Field Histogram (VFH) which is used for reactive collision-free motion planning. The proposed system is modular and it can be used for processing of data from different types of cameras with the same function principle. The functionality of the system has been tested in several simulations and real-world experiment

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    corecore