167 research outputs found

    Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification

    Get PDF
    Aortic dissection (AD) is a life-threatening cardiovascular disease with a high mortality rate. The accurate and generalized 3-D reconstruction of AD from CT-angiography can effectively assist clinical procedures and surgery plans, however, is clinically unavaliable due to the lacking of efficient tools. In this study, we presented a novel multi-stage segmentation framework for type B AD to extract true lumen (TL), false lumen (FL) and all branches (BR) as different classes. Two cascaded neural networks were used to segment the aortic trunk and branches and to separate the dual lumen, respectively. An aortic straightening method was designed based on the prior vascular anatomy of AD, simplifying the curved aortic shape before the second network. The straightening-based method achieved the mean Dice scores of 0.96, 0.95 and 0.89 for TL, FL, and BR on a multi-center dataset involving 120 patients, outperforming the end-to-end multi-class methods and the multi-stage methods without straightening on the dual-lumen segmentation, even using different network architectures. Both the global volumetric features of the aorta and the local characteristics of the primary tear could be better identified and quantified based on the straightening. Comparing to previous deep learning methods dealing with AD segmentations, the proposed framework presented advantages in segmentation accuracy

    AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment:Status Quo

    Get PDF
    The aortic vessel tree is composed of the aorta and its branching arteries, and plays a key role in supplying the whole body with blood. Aortic diseases, like aneurysms or dissections, can lead to an aortic rupture, whose treatment with open surgery is highly risky. Therefore, patients commonly undergo drug treatment under constant monitoring, which requires regular inspections of the vessels through imaging. The standard imaging modality for diagnosis and monitoring is computed tomography (CT), which can provide a detailed picture of the aorta and its branching vessels if completed with a contrast agent, called CT angiography (CTA). Optimally, the whole aortic vessel tree geometry from consecutive CTAs is overlaid and compared. This allows not only detection of changes in the aorta, but also of its branches, caused by the primary pathology or newly developed. When performed manually, this reconstruction requires slice by slice contouring, which could easily take a whole day for a single aortic vessel tree, and is therefore not feasible in clinical practice. Automatic or semi-automatic vessel tree segmentation algorithms, however, can complete this task in a fraction of the manual execution time and run in parallel to the clinical routine of the clinicians. In this paper, we systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree. The review concludes with an in-depth discussion on how close these state-of-the-art approaches are to an application in clinical practice and how active this research field is, taking into account the number of publications, datasets and challenges

    Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D ResUNet: Contribution to the SEG.A Challenge

    Full text link
    Automatic aorta segmentation from 3-D medical volumes is an important yet difficult task. Several factors make the problem challenging, e.g. the possibility of aortic dissection or the difficulty with segmenting and annotating the small branches. This work presents a contribution by the MedGIFT team to the SEG.A challenge organized during the MICCAI 2023 conference. We propose a fully automated algorithm based on deep encoder-decoder architecture. The main assumption behind our work is that data preprocessing and augmentation are much more important than the deep architecture, especially in low data regimes. Therefore, the solution is based on a variant of traditional convolutional U-Net. The proposed solution achieved a Dice score above 0.9 for all testing cases with the highest stability among all participants. The method scored 1st, 4th, and 3rd in terms of the clinical evaluation, quantitative results, and volumetric meshing quality, respectively. We freely release the source code, pretrained model, and provide access to the algorithm on the Grand-Challenge platform.Comment: MICCAI 2023 - SEG.A Challenge Contributio

    CIS-UNet: Multi-Class Segmentation of the Aorta in Computed Tomography Angiography via Context-Aware Shifted Window Self-Attention

    Full text link
    Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to erroneous surgical planning and endograft construction. Previous methods simplified aortic segmentation as a binary image segmentation problem, overlooking the necessity of distinguishing between individual aortic branches. In this paper, we introduce Context Infused Swin-UNet (CIS-UNet), a deep learning model designed for multi-class segmentation of the aorta and thirteen aortic branches. Combining the strengths of Convolutional Neural Networks (CNNs) and Swin transformers, CIS-UNet adopts a hierarchical encoder-decoder structure comprising a CNN encoder, symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) as the bottleneck block. Notably, CSW-SA introduces a unique utilization of the patch merging layer, distinct from conventional Swin transformers. It efficiently condenses the feature map, providing a global spatial context and enhancing performance when applied at the bottleneck layer, offering superior computational efficiency and segmentation accuracy compared to the Swin transformers. We trained our model on computed tomography (CT) scans from 44 patients and tested it on 15 patients. CIS-UNet outperformed the state-of-the-art SwinUNetR segmentation model, which is solely based on Swin transformers, by achieving a superior mean Dice coefficient of 0.713 compared to 0.697, and a mean surface distance of 2.78 mm compared to 3.39 mm. CIS-UNet's superior 3D aortic segmentation offers improved precision and optimization for planning endovascular treatments. Our dataset and code will be publicly available

    DeepVox and SAVE-CT: a contrast- and dose-independent 3D deep learning approach for thoracic aorta segmentation and aneurysm prediction using computed tomography scans

    Full text link
    Thoracic aortic aneurysm (TAA) is a fatal disease which potentially leads to dissection or rupture through progressive enlargement of the aorta. It is usually asymptomatic and screening recommendation are limited. The gold-standard evaluation is performed by computed tomography angiography (CTA) and radiologists time-consuming assessment. Scans for other indications could help on this screening, however if acquired without contrast enhancement or with low dose protocol, it can make the clinical evaluation difficult, besides increasing the scans quantity for the radiologists. In this study, it was selected 587 unique CT scans including control and TAA patients, acquired with low and standard dose protocols, with or without contrast enhancement. A novel segmentation model, DeepVox, exhibited dice score coefficients of 0.932 and 0.897 for development and test sets, respectively, with faster training speed in comparison to models reported in the literature. The novel TAA classification model, SAVE-CT, presented accuracies of 0.930 and 0.922 for development and test sets, respectively, using only the binary segmentation mask from DeepVox as input, without hand-engineered features. These two models together are a potential approach for TAA screening, as they can handle variable number of slices as input, handling thoracic and thoracoabdominal sequences, in a fully automated contrast- and dose-independent evaluation. This may assist to decrease TAA mortality and prioritize the evaluation queue of patients for radiologists.Comment: 23 pages, 4 figures, 7 table

    Multiple adversarial learning based angiography reconstruction for ultra-low-dose contrast medium CT.

    Get PDF
    Iodinated contrast medium (ICM) dose reduction is beneficial for decreasing potential health risk to renal-insufficiency patients in CT scanning. Due to the lowintensity vessel in ultra-low-dose-ICM CT angiography, it cannot provide clinical diagnosis of vascular diseases. Angiography reconstruction for ultra-low-dose-ICM CT can enhance vascular intensity for directly vascular diseases diagnosis. However, the angiography reconstruction is challenging since patient individual differences and vascular disease diversity. In this paper, we propose a Multiple Adversarial Learning based Angiography Reconstruction (i.e., MALAR) framework to enhance vascular intensity. Specifically, a bilateral learning mechanism is developed for mapping a relationship between source and target domains rather than the image-to-image mapping. Then, a dual correlation constraint is introduced to characterize both distribution uniformity from across-domain features and sample inconsistency with domain simultaneously. Finally, an adaptive fusion module by combining multiscale information and long-range interactive dependency is explored to alleviate the interference of high-noise metal. Experiments are performed on CT sequences with different ICM doses. Quantitative results based on multiple metrics demonstrate the effectiveness of our MALAR on angiography reconstruction. Qualitative assessments by radiographers confirm the potential of our MALAR for the clinical diagnosis of vascular diseases. The code and model are available at https://github.com/HIC-SYSU/MALAR

    Assessing the role of an artificial intelligence assessment tool for thoracic aorta diameter on routine chest CT

    Get PDF
    OBJECTIVE: To assess the diagnostic accuracy and clinical impact of automated artificial intelligence (AI) measurement of thoracic aorta diameter on routine chest CT. METHODS: A single-centre retrospective study involving three cohorts. 210 consecutive ECG-gated CT aorta scans (mean age 75 ± 13) underwent automated analysis (AI-Rad Companion Chest CT, Siemens) and were compared to a reference standard of specialist cardiothoracic radiologists for accuracy measuring aortic diameter. A repeated measures analysis tested reporting consistency in a second cohort (29 patients, mean age 61 ± 17) of immediate sequential pre-contrast and contrast CT aorta acquisitions. Potential clinical impact was assessed in a third cohort of 197 routine CT chests (mean age 66 ± 15) to document potential clinical impact. RESULTS: AI analysis produced a full report in 387/436 (89%) and a partial report in 421/436 (97%). Manual vs AI agreement was good to excellent (ICC 0.76-0.92). Repeated measures analysis of expert and AI reports for the ascending aorta were moderate to good (ICC 0.57-0.88). AI diagnostic performance crossed the threshold for maximally accepted limits of agreement (&gt;5 mm) at the aortic root on ECG-gated CTs. AI newly identified aortic dilatation in 27% of patients on routine thoracic imaging with a specificity of 99% and sensitivity of 77%. CONCLUSION: AI has good agreement with expert readers at the mid-ascending aorta and has high specificity, but low sensitivity, at detecting dilated aortas on non-dedicated chest CTs. ADVANCES IN KNOWLEDGE: An AI tool may improve the detection of previously unknown thoracic aorta dilatation on chest CTs vs current routine reporting.</p

    Deep learning method for aortic root detection

    Get PDF
    Background: Computed tomography angiography (CTA) is a preferred imaging technique for a wide range of vascular diseases. However, extensive manual analysis is required to detect and identify several anatomical landmarks for clinical application. This study demonstrates the feasibility of a fully automatic method for detecting the aortic root, which is a key anatomical landmark in this type of procedure. The approach is based on the use of deep learning techniques that attempt to mimic expert behavior. Methods: A total of 69 CTA scans (39 for training and 30 for validation) with different pathology types were selected to train the network. Furthermore, a total of 71 CTA scans were selected independently and applied as the test set to assess their performance. Results: The accuracy was evaluated by comparing the locations marked by the method with benchmark locations (which were manually marked by two experts). The interobserver error was 4.6 ± 2.3 mm. On an average, the differences between the locations marked by the two experts and those detected by the computer were 6.6 ± 3.0 mm and 6.8 ± 3.3 mm, respectively, when calculated using the test set. Conclusions: From an analysis of these results, we can conclude that the proposed method based on pre-trained CNN models can accurately detect the aortic root in CTA images without prior segmentationThis work was partially financed by Consellería de Cultura, Educación e Universidade (reference 2019–2021, ED431C 2018/19)S
    • …
    corecore